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Abstract—High energy physics experiments produce petabytes
of data annually that must be reduced to gain insight into
the laws of nature. Early-stage reduction executes long-running,
high-throughput workflows across thousands of nodes spanning
multiple facilities to produce shared datasets. Later stages are
typically written by individuals or small groups and must be
refined and re-run many times for correctness. Reducing iteration
times of later stages is key to accelerating discovery. We demon-
strate our experience reshaping late-stage analysis applications
on thousands of nodes. It is not enough merely to increase
scale: it is necessary to make changes throughout the stack,
including storage systems, data management, task scheduling,
and application design. We demonstrate these changes when
applied to two analysis applications built on open source data
analysis frameworks (Coffea, Dask, TaskVine). We evaluate the
performance of the applications on opportunistic campus clus-
ters, showing effective scaling up to 7200 cores, thus producing
significant speedup.

I. INTRODUCTION

The Compact Muon Solenoid (CMS) experiment at CERN
produces petabytes of data annually, collected from particle
collisions in the Large Hadron Collider (LHC). The early
stages of processing this ”raw” data involve distributed high
throughput computing across multiple facilities, making use
of hundreds of thousands of cores for weeks to months at a
time. [8] These massive workflows result in common ”cooked”
datasets that are shared across the CMS collaboration and
become the starting point for late-stage data analysis by
individuals and small groups. A typical ”small” data analysis
carried out by a single investigator might consume TB of data
and 10K CPU-hours in order to emit a final publishable result.

Of course, no custom analysis code is correct the first time:
it is common to run an analysis many times, troubleshooting
and refining the work until a correct outcome is obtained.
Reducing the iteration time is critical. In principle, data
analysis applications consist mainly of independent tasks and
can be reshaped elastically: by running tasks of 1/10th the size
on 10X nodes, one should get a 10X speedup. But of course
it is not this simple: Figure 1 suggests why: as the data is
sliced more finely, tasks are indeed shorter and run on more
nodes. But eventually, the fixed costs of each task begin to
dominate execution time. These overheads can include things
like staging data, initializing software environments, linking
and loading libraries, and communicating task state. In order

Fig. 1: Application Reshaping
In principle, a high throughput data analysis code can be
elastically reshaped by running tasks of 1/10th the size on
10X more nodes. In practice, such reshaping is limited by the
overheads of task dispatch, task startup, and data movement.
How can we effectively scale up such codes to achieve near-
interactive execution times?

to scale up, applications and frameworks must be designed to
minimize or otherwise hide these overheads.

A growing number of high energy physics (HEP) applica-
tions are written using high level Python frameworks, in order
to take advantage of numeric libraries that are accelerated
on GPUs and multi-core CPUs. For example, Coffea [22]
encourages analysis codes to be written as a small number
of distinct Python functions that can be combined into large
graphs and then distributed across a cluster using technologies
like Work Queue [30], Dask [19], Parsl [3], Ray [17], and
TaskVine [21]. This creates a natural separation of concerns
between the application (which defines the analysis), the graph
manager (which expresses concurrency), the task scheduler
(which makes runtime decisions, and the underlying cluster
hardware and distributed filesystem.

Each layer in this stack has an impact on the application’s
overall performance. In this paper, we explore improvements
to every element of the stack, from the bottom up. First,
we replace a legacy HDFS filesystem on spinning disk (high
capacity but also high latency) with a modern VAST parallel
filesystem based on NVMe storage. While this improves ac-
cess latency, new hardware alone has minimal impact without
further structural improvements. Second, we replace the Work
Queue task scheduler with the TaskVine task and data sched-
uler in order to exploit node-local storage for intermediate



Fig. 2: Architecture of Application Stack
The application defines tasks using the DAG manager, which
computes a graph based on the logic defined within the appli-
cation. The DAG manager then sends tasks to the scheduler,
which dispatches tasks to compute nodes in a compute cluster.

data. Third, we transform the task-oriented execution model
into a function-oriented model, which reduces task latency and
improves software re-use. Finally, we transform the task graph
structure of the application to make more incremental use of
distributed storage.

This paper shares our experience of reshaping the entire
application stack for production high energy physics applica-
tions DV3 and RS-TriPhoton. The combined impact of these
hardware and software changes is evaluated on a campus
HTCondor cluster [23], demonstrating an improvement in
scalfability from a few hundred cores up to 7200 cores,
effectively reducing application execution time from hours
down to minutes. Our changes are incorporated into the open
source frameworks Coffea, Dask, and TaskVine to enable
broader impact upon the high energy physics community.

II. THE APPLICATION STACK

A growing number of HEP data analysis applications are
making use of a multi-layer analysis stack. At the top of the
stack exists the application itself, which is written in a high
level language like Python and expresses user-defined func-
tions applied to abstract objects like structured data sources,
distributed arrays, or large arrays. Below the application exists
elements needed to distribute and execute tasks. This includes
a DAG manager which maintains a directed acyclic graph
(DAG) composed of many small tasks and data dependencies
needed for workflow execution. The DAG manager sits upon
a task scheduler which dispatches individual tasks to worker
nodes for execution. At the lowest level are the systems
and facilities used to execute the workflow. This includes
specialized data stores, shared filesystems, the compute and
storage at worker nodes, and the interfaces which facilitate
their interactions.

Figure 2 depicts the overall architecture of this application
stack during execution. Tasks flow down through the stack
to be eventually executed on workers at the compute nodes.
Results subsequently flow up through the stack back to the

Fig. 3: Generalized Analysis Workflow
The topology of an analysis workflow splits initial input data
into ”chunks” for processing tasks (P), which produce his-
tograms (H) of relevant physics results. These histograms are
then accumulated to form a single histogram via accumulation
tasks (A). Each task also requires a software environment (E).

application, which may trigger the generation of new graphs
and tasks to execute.

A. Application Layer

At the application level is the primary logic that defines
the analysis computation in terms of high level operations
on data sources, data structures, and user defined functions.
The specific applications used in this paper are known as
DV3 and RS-TriPhoton. DV3 searches collision events to find
particle jets that result from decays of the Higgs boson to
two bottom quarks and to two gluons. Typical executions of
DV3 process datasets on the order of terabytes. RS-TriPhoton
searches collision events find rare signatures of new physics
which appear in a three-photon final state, which is a the result
of a heavy new particle decaying to a photon and a light new
particle which then decays to two photons.

Both applications are expressed using Coffea [22], a frame-
work used in HEP to map physics-oriented data formats into
familiar objects in the Python data ecosystem. A typical Coffea
application refers to a data source in the form of ROOT[5]
files which are read into column-oriented data structures.
User defined functions are then applied to these structures
in various combinations, usually resulting in an accumulation
operation that produces a summary histogram of the result. All
of these operations are performed at a bulk abstract level to
permit future adaptation to a variety of parallel and distributed
systems. Various parameters are available to the user to control
the partioning of the input data as well as the granularity of
the processing tasks.

Figure 3 depicts the typical topology for analysis workflows
like DV3 and RS-TriPhoton. In general, large amounts of



1 from ndcctools.taskvine import DaskVine
2 from coffea.nanoevents import NanoEventsFactory
3 import hist.dask as hda
4 import dask
5

6 dataset = get_dataset("SingleMu")
7 events = NanoEventsFactory.from_root(
8 dataset,
9 permit_dask=True,

10 uproot_options={"chunks_per_file": 5}
11 metadata={"dataset": "SingleMu"}
12 ).events
13

14 hist = (
15 hda.Hist.new.Reg(100, 0, 200, name ="met")
16 .Double()
17 .fill(events.MET.pt)
18 )
19

20 manager = DaskVine(name="my_manager")
21

22 hist.compute(
23 scheduler=manager.get(),
24 peer_transfers=True
25 task_mode='function-calls'
26 lib_resources={'cores':12, 'slots':12}
27 import_modules=[numpy, scipy]
28 )

Fig. 4: Sample Application Code
A simple but complete example of a data analysis application
that uses Coffea to fetch data from ROOT, converts it into
NanoEvents, constructs a Dask task graph that computes a
histogram, and executes it on the cluster using TaskVine.

intermediate data are produced in the form of histograms,
requiring large amounts of resources during execution. This
has some similarity to Map-Reduce [10] style computation,
however more complex programs can easily generate richer,
multi-phase graphs. In addition, the reduction phases can often
be done hierarchically because the aggregation of histograms
is both commutative and associative. Figure 4 shows a simple
but complete and executable application expressed using the
Coffea framework which consumes HEP data using ROOT
and generates a graph of tasks using Dask, and passes it to
TaskVine for execution. Both DV3 and RS-TriPhoton are more
complex but use this same basic approach.

B. DAG Manager Layer

The high level analysis approach described by the appli-
cation must be decomposed into a concrete set of tasks to
be carried out in a distributed system. These are arranged in
a directed acyclic graph (DAG), where each node is a task
that consumes specific inputs and produces specific outputs.
The DAG naturally expresses constraints upon execution: a
task can only be executed once its input dependencies have
been created. A DAG manager is responsible for keeping track
of the state of each element of the DAG, and dispatching
individual tasks and data items as they become ready. A DAG
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Fig. 5: Sample Task Graph
The task graph generated by Dask from the sample code in
Figure 4. The example data set contains 12 files which are
processed and then accumulated to a single histogram at top.

structure is naturally flexible and admits a variety of optimiza-
tions and deployment decisions across different architectures.

There are a number of frameworks that can express and
execute Python workflows in the form of DAGs, such as
Parsl [3], Ray [17], and Dask [19]. These HEP applications
make use of Dask for its natural coupling with Python data
structures. Dask accepts the application’s statement of function
operations on the underlying data structures, and partitions
each element appropriately, internally creating the DAG of
Python function calls and data objects. Dask is accompanied
by a native task scheduler (Dask.Distributed) that can execute
the DAG. However, the DAG can be executed by other schedu-
lures, and (as we show below) we can improve upon both
the scalability and performance offered by Dask.Distributed.
Figure 5 shows the DAG that is generated by Dask directly
from the example code in Figure 4

C. Scheduler Layer

The job of the scheduler is to dispatch ready tasks and data
to specific nodes within a compute cluster. For a standard
execution, a given amount of resources (cores, gpus, disk,
memory) are allocated for a fixed time period. Utilizing the
knowledge of available resources, it is the job of the scheduler
to place tasks in a manner for efficient execution. While
scheduling tasks, the scheduler must also dispatch data de-
pendencies, and fetch produced results. This is a critical point
that is liable to become a bottleneck if not done efficiently.

In this work, we make use of Work Queue [6] as our
baseline task scheduler, and then shift to TaskVine [21].
In addition to scheduling tasks, TaskVine also makes use
of in-cluster storage and networks to improve data access.
Additionally, TaskVine provides multiple execution paradigms
for executing remote tasks on compute nodes. With TaskVine,
specialized workers are dispatched to compute nodes within a
cluster via a batch system. These workers communicate with
the centralized TaskVine manager, which dictates all necessary
operations regarding data movement, task placement, task
execution, and data retention.



D. Storage Layer

Once tasks are dispatched to be executed on a specific
compute node, the performance of the task is often constrained
by access to needed data. The typical HPC facility provides
a shared parallel filesystem mounted on all nodes, but of
course physically separate from the compute cluster. In this
model, input data is read into the compute node on demand,
and outputs written back as produced. If read onto the local
disk of a compute node, the performance of those disks affect
performance as well. In some cases, data consumed by an
analysis may be stored outside of the facility, and fetched
on demand from remote services, as suggested in Figure 2.
Facilities may set up specialized data stores for improved data
access speeds as there exists limitations to solely relying on
the shared filesystem. These data stores may be configured to
improve data access speeds for specific types of applications.
Systems such as HDFS [4] provide cheap bulk high throughput
data access while parallel filesystems systems like VAST [9]
can provide low-latency data access for applications.

III. RESHAPING LIMITATIONS

To transition a high energy physics application from long-
running to near-interactive, there are various challenges that
need to be addressed. Individual data sets exist on the order
of terabytes. Relevant data must be fetched and staged into
the compute cluster. For large quantities of data, staging data
may make up a significant amount of the runtime for a given
application. Additionally, as tasks execute, intermediate data is
generated which may be even larger than the initial set of data.
Facilitating data movement effectively into and throughout
the cluster is a necessary step towards application reshaping.
Within a given workflow, tasks may share common data
dependencies. However, the standard task execution paradigm
may reload shared dependencies adding on overhead to task
execution. Thus, this paradigm must be improved upon.

A. Data Access

The CMS experiment at CERN generates petabytes of
data annually resulting from particle collisions in the LHC.
Conventionally, to provide wide access, data is distributed
throughout institutions participating in the experiment. These
files are typically formatted as ROOT files, a file format in
which columnar data is stored. Remote ROOT files, can be
accessed through a variety of means, though XRootD [11] is
a protocol specialized for accessing specific columns in remote
ROOT files. However, accessing files remotely may contribute
significant overhead to staging data into the compute cluster.
Because of this, we have procured specialized data stores
spatially close to the compute nodes within the cluster. From
here, data access times are then limited to the quality of disks
on the storage nodes as well as the architecture that facilitates
reading from the data stores on the nodes.

B. Data Movement

Once initial data has been accessed and staged into the
compute cluster, tasks may produce intermediate results which

are to be used for subsequent tasks. To facilitate efficient task
scheduling, data may be moved to a new site for execution. In
the typical HPC facility, tasks may write intermediate results
to a designated location within a shared filesystem. However,
as the result is to be used again, it will be read again from the
shared filesystem at less than optimal speeds, limited by the
bandwidth between storage and compute nodes. Furthermore,
for intermediate data that is used by many tasks, this may
overload a shared filesystem with metadata requests. In the
case that there is no access to a shared storage system, it is
possible for a centralized scheduler to stream input and output
data to and from compute nodes, storing intermediate results at
the location of the scheduler. For a centralized scheduler, this
puts large strain on the bandwidth between the scheduler and
compute nodes. This may also limit the ability of scheduler to
dispatch tasks as it is busy transferring data. This also limits
application execution to the disk capacity at the location of
the scheduler, as the scheduler cannot store more intermediate
results than it has capacity for. One way to alleviate this
pressure is to utilize the internal bandwidth and storage of
the compute nodes within the cluster. Intermediate results can
be kept on disk at the compute node and transferred between
nodes when needed. However, to implement this files stored
on compute disks must be named consistently for accurate
results or even successful execution.

C. Task Execution

Once all the data dependencies needed for task execution
are present, tasks can be executed on the compute node.
Many high energy physics applications are written in Python,
including the applications we’ve evaluated. The Python envi-
ronment provides physicists with an array accelerated libraries
to perform their analyses. Conveniently, tasks definitions are
often user-defined Python functions. Our applications have
defined ”processor” functions which analyze input data for
relevant physics events. Additionally, there are ”accumula-
tion” functions which accumulate these relevant results into
a final histogram. Conventionally, to distribute tasks, function
objects are serialized along with their arguments and sent
to a compute node to be executed using a Python wrapper
script, which deserializes the function and its arguments for
execution. However, using this method poses some limita-
tions to reshaping applications. Mainly, for each execution,
the function is serialized and transferred to the the worker
node. As tasks may use common functions, serializing a
function object multiple times is redundant. Additionally, at
each execution, a wrapper script is executed with the Python
interpreter. During this process, specified libraries are loaded
for each execution. While the Python interpreter may cache
the compiled bytecode of these libraries, for each execution
they are still to be read from disk. For functions that use a
large number of libraries or a few large libraries this method
increases startup costs. One way to alleviate this limitation
is with the serverless execution paradigm. With serverless,
functions are loaded into a persistent process and invoked
remotely, reducing invocations of the Python interpreter. This



Fig. 6: Application Stack Progression
Incremental improvements to the underlying hardware and
software facilitated application reshaping with minimal
changes to the application itself. Much of benefit is due to
optimizations from using the TaskVine scheduler.

removes the need serialize the function definition per execution
and permits loaded libraries to remain in memory.

IV. STRUCTURAL IMPROVEMENTS

To facilitate application reshaping, we evolved the appli-
cation stack through changes at the hardware, scheduler, and
DAG layers. While changes to the hardware layer provided
some improvement, the bulk of improvements come from
optimizations in the scheduler layer. Using TaskVine, we are
able to retain data at each execution node, enabling peer trans-
fers, and convert conventional tasks into serverless function
invocations. Figure 6 shows each stage of the evolution.

Except where noted, each of the improvements in this sec-
tion was evaluated on a ”standard” run of the DV3 application,
consisting of 17,000 tasks consuming 1.2TB of data, running
on 200 12-core workers, each with 2.50GHz Intel Xeon CPUs,
96GB RAM, and 108GB of disk. Workers were allocated from
a heterogeneous campus HTCondor cluster with opportunistic
scheduling, resulting in the preemption of up to 1% of workers
in each run. Such preemptions appear as worker ”failures” to
the manager, which compensates by replicating data or re-
running tasks. Table I shows the performance improvement
obtained by each structural change applied incrementally,
which we now describe.

Stack Change Runtime Speedup
Stack 1 Original 3545s 1.00x
Stack 2 HDFS → VAST 3378s 1.05x
Stack 3 WQ → TaskVine 730s 4.86x
Stack 4 Tasks → Functions 272s 13.03x

TABLE I: Overall Stack Performance

A. Storage Hardware Improvements

As the applications DV3 and RS-TriPhoton processed large
sums of data repeatedly, it was impractical to rely on the wide
area XROOTD federation to deliver data to each run. Instead,
specialized data subsets are maintained at the facility on bulk
storage. For a number of years, the CMS group has stored root
files on an HDFS [4] cluster consisting of 644TB of spinning

disks on commodity hardware nodes, with triple replication.
HDFS is specialized towards high-throughput data access
rather than low access latency, and as analysis applications
became more time sensitive with smaller constituent tasks, la-
tency to access the primary data storage cluster was perceived
to be the primary application bottleneck. As the HDFS cluster
approached end-of-life, we had the opportunity to move the
application over to a new general purpose VAST [9] parallel
filesystem procured by our campus HPC center to serve a wide
variety of application needs, with 918TB of logical disk space,
where 676TB is usable (across 44 15.36GB NVMe SSDs).
This filesystem provides much improved latency over HDFS,
by virtue of the underlying storage hardware (NVMe drives)
as well as a POSIX standard filesystem interface. We expected
this dramatic improvement in hardware to provide a notable
improvement in application performance, however as Table I
notes, the end-to-end impact was quite modest. In its initial
state, reading initial data from storage was not (yet) the system
bottleneck. Rather, improvements must come from improved
task scheduling and intermediate data handling.

B. Scheduler Improvements

The original scheduler for DV3 was Work Queue [6], which
consists of a ”manager” that distributes tasks to individual
”workers” running on compute nodes within the cluster. Work-
ers are submitted to the cluster as jobs in a batch system.
We replaced the Work Queue scheduler with TaskVine [21], a
scheduler that manages both data distribution and task assign-
ments with the cluster. Like Work Queue, TaskVine consists
of a manager coordinating workers. However, TaskVine makes
extensive use of the local storage at each worker and the avail-
able in-cluster bandwidth to store and move data within the
cluster, not relying upon a shared distributed filesystem. This
results in the following optimizations to the DV3 application:

Retaining Data. As data is produced within the cluster, it
is retained on the local storage of each node by the worker
process. Retaining data on each worker provides opportunities
for the manager to make informed decisions regarding task
placement. Additionally, subsequent reads to cached data on
the worker’s local disk is typically faster than reading from
the shared filesystem at large scale. The manager maintains a
mapping of the location of each file within the cluster. Using
this mapping, tasks can be scheduled where data dependencies
are already available, reducing the need for unnecessary data
movement. To implement this, files must be named consis-
tently. That is, files cannot be staged into a worker’s cache
simply with their names as they appear to the application
or shared filesystem. To name files consistently, TaskVine
makes use of file metadata and content to derive a unique
”cachename” for each file in the system. Such cachenames
can refer to single files, or to directory hierarchies treated
as atomic units. Instead of writing intermediate results to a
location outside the compute cluster, or streaming the data
back to the manager, intermediate results are retained on the
worker nodes and only moved when necessary.
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Fig. 7: Data Transfer Comparison
A comparison between executions of DV3 with and without

peer transfers (first 20 workers). Each plot displays the total
data transferred between nodes during execution. DV3 exe-
cuted with Work Queue (Left), which only tranfers between the
manager (node 0) and the workers. Execution of DV3 (Right)
with TaskVine, which allows peer transfers between workers.

Peer Transfers. While moving tasks to data is the preferred
mode, it may still be necessary to move or replicate files
between workers in order to meet the data dependencies of
each task. Instead of writing data back to the shared parallel
filesystem, TaskVine opts to directly transfer data between
worker nodes. To facilitate this, during task placement, the
manger will instruct a worker to retrieve a data dependency
from a peer. A peer transfer is done asynchronously as to
not inhibit task execution. Additionally, the manager manages
the number of concurrent peer transfers that a worker may
perform, so that uncontrolled peer transfers do not create
network contention for frequently used files.

Transferring intermediate data between workers takes ad-
vantage of in-cluster disk and bandwidth. Utilizing distributed
disk space relieves pressure on the manager and shared
filesystem, which would otherwise become a bottleneck for
applications that generate large amounts of intermediate data.
Stack 2 is primarily constrained by data transfer between the
manager and the workers.

To show the advantage of utilizing distributed bandwidth
and memory we executed the standard DV3 configuration
with the (old) Work Queue scheduler and the (new) TaskVine
scheduler making use of peer transfers. Figure 7 shows a
heatmap of data transfer between pairs of nodes in each
case. When using Work Queue, all data transfer is between
the manager (node 0) and each of the workers individually.
Upwards of 40GB is transmitted to each worker. When using
TaskVine and peer transfers, the maximum amount of data
transferred between any two nodes tops off at around 4GB,
dramatically relieving the manager (and shared filesystem) of
this responsibility.

Serverless Execution. In Python based frameworks such
as Dask, Ray, and Parsl, tasks are typically represented as
individual user-defined functions. A commonplace practice to
distribute tasks to worker nodes involves serializing a function
along with its arguments and delivering these files to a worker
node, where a wrapper deserializes and executes the function
along with the provided arguments. In this mode, there is
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Fig. 8: Standard Tasks vs Function Calls
A comparison of execution modes on runs of DV3. Traditional
tasks require the invocation of a Python interpreter for each
task. Serverless execution mode keeps the code and libraries
resident in memory for multiple executions, which reduces per-
task overheads. This has the most significant impact on short-
running tasks. (Note log scale)

substantial overhead from transferring serialized functions,
reading them from disk, invoking the Python interpreter, and
loading any needed libraries

To reduce this overhead, TaskVine offers a serverless task
execution mode, in which the application defines a Library-
Task containing the function code and any fixed data. This be-
comes a persistent task which receives invocations to specified
functions inside the LibraryTask. Each invocation is known as
a FunctionCall which contains only the name of the target
function and the unique arguments. Upon receiving a function
invocation, the library forks a child process to contain the
desired invocation. Multiple invocations can run concurrently
in order to exploit the total capability of the worker node. This
mode dramatically reduces the overhead of task invocation and
eliminates distribution of duplicate state.

To evaluate the improvement from serverless execution, we
compared the standard task execution mode (Standard Tasks)
with the serverless mode (Function Calls) on the standard DV3
workload (DV3 Large). Figure 8 shows the difference in the
distribution of task execution times. A majority of tasks have
execution times between 1s and 10s (with some outliers on
either side). Because the workload consists of 17000 small
tasks, task overhead is substantial, and serverless execution
has a dramatic effect on overall completion time. Can it be
improved further?

Import Hoisting. As described so far, each FunctionCall
invocation would find it necessary to import libraries particular
to that function at every invocation. This can have a non-
trivial cost due to the large number of metadata operations
needed to search and traverse the local filesystem. While
Python ordinarily caches the bytecode of imported libraries,
the fact that the function runs in a child process means
the imported library would be lost after each invocation. To
reduce this effect, TaskVine provides the ability to ”hoist”
import statements inside the FunctionCall to the preamble of
the LibraryTask, so that libraries are loaded once per library
task rather than per function invocation, execution, reducing
the overhead further. Figure 9 shows the structure of import
hoisting within TaskVine.



Fig. 9: Import Hoisting
When Imports are hoisted, necessary libraries are only read
from disk once per LibraryTask instance. Conversely, if im-
ports are not hoisted, each FunctionTask instance would read
libraries from disk. For larger imports, hoisting imports can
reduce task execution overhead.

To evaluate the performance of import hoisting we executed
a workflow containing 15,000 independent serverless tasks
(function calls) with and without hoisting import numpy,
comparing TaskVine local storage and the VAST shared
filesystem, separately. Each configuration is executed on a set
of 16 32-core workers. Additionally, we artificially scale the
execution time of a single function from roughly 0.1 seconds to
about 35 seconds, which corresponds linearly to a complexity
range from 0.125 to 64. Essentially, both filesystems operate
on similar workflow patterns, with the TaskVine local storage
slightly outperforming the VAST shared filesystem. This im-
proved performance is attributed to localizing library metadata
searches to the local disk of each node, rather than traversing
the network for the shared filesystem. With import hoisting,
each library task on a worker will initially load all of the
specified dependencies from the filesystem. Without import
hoisting each function call will load the required libraries
individually. From Figure 10, we see that significant speedup
in shorter running fine-grained tasks. With longer running
tasks this speedup is less significant.

C. Application and DAG Improvements

Scheduler improvements are easily incorporated with mini-
mal or no changes to the application itself, as each application
uses Coffea, which in turn creates a Dask graph of the resulting
workflow. Upon creation of the graph, results can be obtained
by calling compute(x) for a given task x within the graph. To
connect the two layers, we constructed the DaskVine module,
which converts the nodes of a Dask graph into task and file
submissions to the TaskVine scheduler. A variety of arguments
that enable DAG optimizations can then be given to the
DaskVine module.

Fig. 10: Import Hoisting Comparison
Execution time of 15K function calls with and without import
hoisting. (Top) Import libraries stored in shared filesystem.
(Bottom) Import libraries stored in TaskVine local storage.
Overall, import hoisting has the most significant effect on
small functions.

Figure 11 gives an example of this sort of DAG modi-
fication. The original RS-TriPhoton application performed a
single node reduction that compiled results from all branches
of the application in a single task. This required that all
input files be transferred to the same node at once, in many
cases, overflowing the available local storage and extended
overall runtime. Figure 11(a) shows the individual storage
consumption of every worker in the system. Each line shows
the consumption at a single worker, with arrows indicating
reduction operations, and Xs indicating failures. It can be
seen that all workers quickly grow to about 200GB of cache
usage, but then a few outliers rapidly grow even higher to
700GB or more, and result in the failure and preemption of
the worker, and delays in completing the workflow until 6000s.
The solution is to modify the DAG as shown in Figure 11(b) so
that the reduction is performed as a binary tree, dramatically
reducing the quantity of storage needed by each node. In this
case, the storage consumption of workers is both reduced and
made more uniform, allowing the analysis to succeed and
complete in about 1000s.

V. END TO END EVALUATION

We now take a closer look the end-to-end performance pre-
viously summarized in Table I, including improvements made
to the application stack throughout its evolution along with
the scalability of our improved stack including comparisons
to the Dask native Dask.Distributed task scheduler. Here we
consider a number of size variations on the DV3 and RS-
TriPhoton applications, summarized in Table II.
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Fig. 11: RS-TriPhoton Reduction Graph Modification
When reducing a graph, hierarchical reduction provides better performance, as a single worker does not become a bottleneck
within a cluster. (Left) A single dataset, of 20, is reduced via a single task, causing worker cache utilization to spike and
runtime to increase. (right) a dataset is reduced gradually, with improved application runtime and distributed cache utilization.

Application Input Data Size Tasks
DV3-Small 25GB 900
DV3-Medium 200GB 1,400
DV3-Large 1.2TB 17,000
DV3-Huge 1.2TB 185,000
RS-TriPhoton 500GB 4,000

TABLE II: Application Workflow Sizes

A. Application Stack Evolution

Incremental evolution of the hardware and software compo-
nents of the application stack has allowed us to produce sig-
nificant gains in speedup during execution. To evaluate these
improvements we executed the ”standard” DV3 configuration
(DV3-Large in Table II), on each application stack, progressing
with improvements to our current stack. Each stack is executed
on a set of 200 12-core workers submitted to a compute
cluster via HTCondor, where each worker is allocated 98GB
of memory and 108GB of disk space.

Transition from Stack 1 to 2 improves upon the storage
layer, moving from HDFS to VAST. From Stack 2 to 3, the
scheduler layer is improved by incorporating peer transfers
to application execution via the move from Work Queue to
TaskVine. Lastly, transitioning from Stack 3 to 4, changed task
execution paradigms, exchanging the traditional task based
execution paradigm to a serverless execution paradigm.

Figure 12 shows a timeline of the first 300 seconds of
each stack. (Recall that Stacks 1-3 run much longer than
300s, while Stack 4 completes in 272s.) The top graph shows
the number concurrent running tasks, while the bottom graph
shows the number of waiting tasks as the workflow executes.
Several aspects jump out: Stack 1 sustains high concurrency
initially (precisely because its tasks are longer running) but
suffers a very long tail during accumulation, with concurrency
stabilizing to around 100 tasks. Stack 3 shows oscillating
behavior because dispatched tasks complete faster than the

next round can be dispatched. This is resolved in Stack 4
which can dispatch and complete function calls much faster
than conventional tasks.

Note that improvements of the storage hardware layer (stack
1 to 2) does not produce a significant speedup. Much of
the total speedup is attributed towards improvements made
within the scheduler. Mainly, the utilization of a worker’s local
disk, peer transfers, and serverless task execution. With these
improvements, data access speeds are improved by utilizing
local disk, data movement costs are distributed among the
worker nodes within the cluster, and startup costs are reduced
for individual task executions.

To better understand these differences, we measure the
performance of DV3-Large on Stack 3 and 4 when utilizing
20 and 200 12-core workers, totalling to 240 and 2400 cores
respectively, with the same resource allocations from before.
Figure 13 depicts the execution of tasks across workers during
executions of Stacks 3 and 4. Colored bars indicate when
a task (or function) is actively running on each specific
worker. Stack 3 (top) effectively keeps 20 workers busy,
but is unable to dispatch and collect tasks fast enough to
keep 200 workers consistently working. In contrast, Stack 4
(bottom) is marginally faster than Stack 3 at 20 workers, but
much more effective at keeping 200 workers busy, because
of the lower overhead of collecting and dispatching function
invocations. In this mode, the scheduler is able to distribute
task to larger number of workers concurrently, as tasks are now
comparatively closer grouped during execution. Because this
is a reduction workflow, concurrency drops as the workflow
progresses.

B. Scaling Up Workflows
As the bulk of improvements for workflow reshaping were

made possible via the scheduler layer, we also compare
TaskVine scheduler and workers to Dask.Distributed sched-
uler and workers, using the same application and underlying
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Fig. 12: DV3-Large Stack Evolution
A comparison of workflow execution timeline of DV3-Large as
the application stack has progressed. Each execution contains
17,000 tasks. (Top) The number of concurrently executing tasks
during application runtime. (Bottom) The number of tasks
waiting to be scheduled.

hardware. These configurations include DV3-Small and DV3-
Medium as shown in Table II, which produce workflows with
input data sizes of 25GB and 200GB respectively and are
scaled from 60 to 300 cores. Figure 14(a) shows that both
TaskVine and Dask.Distributed have similar behavior at small
scales, however TaskVine completes execution in about 1/2
the time as we approach 300 cores.

There are several structural differences that account for this
performance. In TaskVine, each worker manages an entire
12-core compute node, supervising 12 concurrent tasks with
a single shared file cache. While Dask.Distributed can be
configured in this way, the result is 12 threads competing for
a single global interpreter lock, which effectively results in
the use of only one core. Instead, it is necessary to run twelve
single-core Dask workers that share nothing. In TaskVine, this
is not a concern because individual tasks ocd gr r function calls
are processes forked from a common parent.

Next, we scale instances of DV3-Large (17K tasks and
1.2TB data) and RS-TriPhoton (4K tasks and 500GB data)
from 120 to 2400 cores. RS-TriPhoton has larger memory
and disk requirements, and workers in that case are allocated
700GB disk and 200GB of RAM. (Note that Dask.Distributed
is unable to execute these workflows at this scale, and con-
sistently fails with a combination of worker and applica-
tion crashes and hangs.) Figure 14(b) shows that DV3-Large
achieves peak performance at 1200 cores, while RS-TriPhoton
continues to see small but non-linear gains up to 2400 cores.

Finally, we demonstrate the largest configuration of DV3-
Huge, consisting of 185K tasks utilizing the same 1.2TB
dataset from the DV3-Large, but is comprised of 185K tasks
performing more extensive computation on the same data This
is executed on 600 12-core workers allocated on opportunistic

Fig. 13: DV3-Large Stack 3 (Tasks) vs Stack 4 (Functions)
A detailed comparison of the execution behavior of DV3-Large
using Stack 3 and Stack 4. Each bar shows where a given
worker is actively executing a task or a function. (Top) Stack 3
uses independent tasks, and gains little benefit in scaling from
20 to 200 workers. (Bottom) Stack 4 uses serverless execution
resulting in lower overhead and substantial benefit in scaling
from 20 to 200 workers.

resources. Stack 4 successfully peaks and maintains 7200 cores
until available concurrency drops in the reduction stage. What
would previously have taken days is completed in less than
one hour.

VI. RELATED WORK

Distributed Filesystems - Some of the improvements made
that facilitated application reshaping related to improving the
hardware in which datasets are stored on. Importantly, the
distributed filesystem in which users interact with impacts
performance as well. Along with hardware improvements, a
change to the distributed filesystem from HDFS to VAST
facilitated application reshaping, as HDFS focused on high-
throughput data access rather than low-latency. The optimal
distributed filesystem of choice may be application specific.
Other distributed filesystems include AFS [15], NFS [20],
Panasas [26], and CEPH [25], which provide are general
purpose filesystems used in a variety of settings.

DAG Based Workflows - DAG based workflows allow
users to create distributed applications using familiar syntax.
Typically, this results in the formation of a DAG, where
each node of the graph is a user-defined task. A variety
of frameworks allow for the creation DAGs such as Dask
[19], Parsl [3], Ray [17], Makeflow [2], and Pegasus [18].
Users can then express their distributed applications via the
provided API, which may be language specific. This specific
paradigm of application creation, is opposed to application
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Fig. 14: Scaling
The scaling of applications shown in Table II (excluding DV3-Huge). (Left) scaling comparison between TaskVine and Dask’s

native Dask distributed scheduler. TaskVine produces improved scalability and execution times. (Right) Scaling of standard
configurations of DV3 (DV3-Large) and RS-TriPhoton.
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Fig. 15: DV3-Huge
Full scale DV3 analysis. The generated workflow contains

185,000 tasks with 10,000 initial executable tasks from the
start. TaskVine maintains high concurrency during the dura-
tion of the execution until the reduction of the graph.

creation using MPI [24]. In turn, this allows for DAG-based
optimizations. Additionally, domain scientists need less to
worry about optimizations in regard to load balancing, task
placement, and data management as it is then handled by a
designated scheduler. Swift/T [29] translates user code into
MPI code. TaskVine provides an interface, DaskVine, which
allows it to be used for HEP workflows, which have a more
rigid application stack. While MapReduce [10] defines work-
flows using map and reduce functions, which are applicable to
general HEP processing and accumulation functions. TaskVine
provides flexibility from the ability to execute non-restricted
DAGs. Other restricted DAG runtimes include Twister[12]
DryadLINQ [13], and Spark [28].

Workflow Executors - A workflow executor or scheduler,
distributes tasks within a workflow to sites for execution.
These sites include allocated resources on compute clusters,
grids, or the cloud. A static workflow may be given in its

entirety the scheduler for execution. Conversely, individual
tasks within a dynamic workflow may be given to sched-
uler. Frameworks that provide workflow executors include
TaskVine[21], Work Queue[7], Dask [19], Ray [17], and Parsl
[3]. The scheduler facilitates task placement, and may facilitate
data movement as well. Different schedulers may either handle
dynamic or static workflows. Commonly, a scheduler commu-
nicates with worker nodes at the execution site. Additionally,
schedulers may be centralized or distributed. For TaskVine
tasks are executed on Workers submitted to a cluster via
HTCondor, though workers are able to be submitted through
a variety of schedulers aa well. In the HPC environment, this
includes Slurm [27], Flux [1], SGE [14], and LSF [16].

VII. CONCLUSIONS

The optimizations present in TaskVine facilitate application
reshaping by effectively managing data across computation
sites. Namely, by implementing peer transfers across compute
nodes, alleviating stress on the manager and shared filesystem,
allowing for increased time to schedule and distribute tasks,
by spreading responsibility for data movement across nodes in
a cluster. Additionally, TaskVine reduces startup overhead by
incorporating serverless task execution, reducing the amount of
invocations of Python interpreter by invoking functions within
a persistent library task process. Furthermore, the overhead
cost of importing libraries needed for task execution is reduced
via import hoisting, which allows for users to provide libraries
which are to be imported within the preamble of a library task.
With improvements to the hardware, filesystem, and workflow
scheduler. We facilitated application reshaping with TaskVine
on DV3, a high energy physics analysis application, producing
a speedup of 13x.

Acknowledgement: Removed for review.
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