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Abstract As scientific research becomes more data intensive, there is an increasing
need for scalable, reliable, and high performance storage systems. Such data reposito-
ries must provide both data archival services and rich metadata, and cleanly integrate
with large scale computing resources. ROARS is a hybrid approach to distributed
storage that provides both large, robust, scalable storage and efficient rich metadata
queries for scientific applications. In this paper, we present the design and implemen-
tation of ROARS, focusing primarily on the challenge of maintaining data integrity
across long time scales. We evaluate the performance of ROARS on a storage clus-
ter, comparing to the Hadoop distributed file system and a centralized file server. We
observe that ROARS has read and write performance that scales with the number of
storage nodes, and integrity checking that scales with the size of the largest node.
We demonstrate the ability of ROARS to function correctly through multiple system
failures and reconfigurations. ROARS has been in production use for over three years
as the primary data repository for a biometrics research lab at the University of Notre
Dame.

Keywords Distributed storage - Distributed system - Archive system

1 Introduction

Recent advances in digital technologies now make it possible for an individual or a
small group to create and maintain enormous amounts of data. “Ordinary” researchers
in all branches of science operate cameras, digital detectors, and computer simula-
tions that can generate new data as fast as the researcher can pose a hypothesis. This
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increase in the production of data allows the individual to carry out complex stud-
ies that were previously only possible with a large staff of lab technicians, computer
operators, and system administrators. Of course, such problems are not limited to sci-
ence. A similar discussion applies to a digital library, to a paperless business, or to a
thinly staffed internet startup that finds sudden success.

Unfortunately, this huge growth in data and storage comes with the unwanted bur-
den of managing a large data archive. As an archive grows, it becomes significantly
harder to find what data items are needed, to migrate the data from one technology
to another, to re-organize as the data and goals change, and to deal with equipment
failures.

The two canonical models for data storage—the filesystem and the database—are
not well suited for long term data preservation. Both concepts can be made parallel
and/or distributed for both capacity and performance. The relational database is well
suited for query, sorting, and reducing many discrete data items, but requires a high
degree of advanced schema design and system administration. A database can store
large binary objects, but it is not highly optimized for this task [25]. On the other
hand, the filesystem has a much lower barrier to entry, and is well suited for simply
depositing large binary objects as they are created. However, as a filesystem becomes
larger, querying, sorting, and searching can only be done efficiently if they match
the chosen parallel structure. As an enterprise grows, no single hierarchy is likely to
meet all needs. So while end users prefer working with filesystems, current storage
systems lack the query capabilities necessary for efficient operation.

To address this mismatch, we have created ROARS (Rich Object ARchival Sys-
tem), a long-term data archive that combines some features of both the filesystem
and database models, while eliminating some of the dangerous flexibility of each.
Although there exist a number of designs for scalable storage [3, 4, 12, 13, 15, 30,
36] ROARS occupies an unexplored design point that combines several unusual fea-
tures that together provide a powerful, scalable, manageable scientific data storage
system:

— Rich searchable metadata. Each data object is associated with a user metadata
record of arbitrary (name, type, value) tuples, allowing the system to provide some
search optimization without demanding elaborate schema design.

— Discrete object storage. Each data object is stored as a single, discrete object on
local storage, replicated multiple times for safety and performance. This allows for
a compact statement of locality needed for efficient batch computing.

— Materialized filesystem views. Rather than impose a single filesystem hierarchy
from the beginning, fast queries may be used to generate materialized views that
the user sees as a normal filesystem. In this way, multiple users may organize the
same data as they see fit, and make temporal snapshots to ensure reproducibility of
results.

— Transparent, incremental management. ROARS does not need to be taken offline
even briefly in order to perform an integrity check, add or decommission servers,
or to migrate to new resources. All of these tasks can be performed incrementally
while the system is running, and even be paused, rescheduled, or restarted without
harm.
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— Failure independence. Each object storage node in the system can fail or even be
destroyed independently without affecting the behavior or performance of the other
nodes. The metadata server is more critical, but it functions only as an (important)
cache. If completely lost, the metadata can be reconstructed by a parallel scan of
the object storage.

In our previous work on BXGrid [8], we created a discipline specific data archive
tightly integrated with a web portal for biometrics research. ROARS is our “second
version” of this concept, which has been decoupled from biometrics, generalized to
an abstract data model, and expanded in the areas of execution, management, and
fault tolerance. This article is an extension of the work we presented at the ACM
Workshop on Data Intensive Distributed Computing in 2010 [7].

This paper is organized as follows. In Sect. 2, we present the abstract data model
and user interface to ROARS. In Sect. 3, we describe our implementation of ROARS
using a relational database and a storage cluster. In Sect. 4, an operational and per-
formance evaluation of ROARS is presented. In Sect. 5, We discuss our real life ex-
perience using ROARS for a biometrics repository. In Sect. 6, we compare ROARS
to other scalable storage systems. We conclude with future issues to explore.

2 System design

ROARS is designed to store millions to billions of individual objects, each typi-
cally measured in megabytes or gigabytes. Each object contains both binary data and
structured metadata that describes the binary data. Because ROARS is designed for
the long-term preservation of scientific data, data objects are write-once, read-many
(WORM), but the associated metadata can be updated by logging. The system can be
accessed with an SQL-like interface and also by a filesystem-like interface.

2.1 Data model

A ROARS system stores a number of named collections. Each collection consists of a
number of unordered objects. Each object consists of the two following components:

1. Binary Data: Each data object corresponds to a single discrete binary file that is
stored on a filesystem. This object is usually an opaque file such as a TIFF or
PDF, meaning that the system does not extract any information from the file other
than the basic filesystem attributes.

2. Structured Metadata: Associated with each data object is a set of metadata items
that describes or annotates the raw data object with domain-specific properties and
values. This information is stored in plain text as rows of (NAME, TYPE, VALUE,
OWNER, TIME) tuples as shown in the example metadata record here:

NAME TYPE VALUE OWNER TIME
recordingid string nd3R22829 pflynn 1257373461
ingested date 08/03/2010 pflynn 1257373461

subjectid string ndls04388 pflynn 1257373461
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comment text Spring Co. pflynn 1257373461
state string problem dthain 1254049876
problemtype number 34 dthain 1254049876
state string fixed hbui 1254050851

In the example metadata record above, each tuple contains fields for NAME, TYPE,
VALUE, which define the name of the object property, the type, and its value. Cur-
rently supported types include string, number, date, and text, with no de-
clared limits on field length. This data model is schema-free: the user does not de-
clare any properties of a collection, and an object may have any number of properties.
In practice, a given collection is likely to have objects with similar metadata, so an
implementation of ROARS may reasonably optimize for that case.

In addition to the NAME, TYPE, and VALUE fields, each metadata entry also con-
tains a field for OWNER and TIME. This is to provide provenance information and
complete history of the metadata. Rather than overwriting metadata entries when a
field is updated, new values are simply appended to the end of the record. In the ex-
ample above, the state value is initially set to problem by one user and then later
to £ixed by another. By doing so, the latest value for a particular field will always
be the last entry found in the record. This transactional metadata log is critical to
scientific researchers who often need to keep track of not only the data, but how it is
updated and transformed over time. These additional fields enable the users to track
who made the updates, when the updates occurred, and what the new values were.

This data model fits in with the write-once-read-many nature of most scientific
data. The discrete data files are rarely if ever updated and often contain data to be
processed by highly optimized domain-specific applications. The metadata, however,
may change or evolve over time and is used to organize and query the data sets.

2.2 User interface

Users may interact with the system using either a command-line tool or a filesystem
interface. The command line interface supports the following operations:

IMPORT <coll> FROM <dir>

QUERY <coll> WHERE <expr>

EXPORT <coll> WHERE <expr> INTO <dir> [AS <pattern>]
VIEW <coll> WHERE <expr> AS <pattern>

DELETE <coll> WHERE <expr>

SCREEN <coll> FROM <dir>

The IMPORT operation loads a local directory containing objects and metadata
into a specific collection in the repository. QUERY retrieves the metadata for each
object matching the given expression. EXPORT retrieves both the data and metadata
for each object matching the given expression, which are stored on the local disk as
pairs of files. VIEW creates a materialized view on the local disk of all objects match-
ing the given expression, using the specific pattern for the path name. DELETE marks
data objects and the corresponding metadata as deleted; the system administrator may
permanently delete them if desired.
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Fig. 1 Example materialized view

Before data is ingested into ROARS. It is recommended that users use SCREEN
to examen the data and metadata for consistency purpose. The SCREEN operation
scans a local directory containing objects and evaluates metadata before TMPORT
is called. Because metadata schema can evolve overtime, it is important to make
sure that the metadata IMPORT is about to ingest into ROARS is consistent with the
current metadata schema. For each metadata attribute, the SCREEN checks for its
name, type and length, and compares these information to the information from the
metadata schema. If SCREEN detects any discrepancy, it notifies the user and gives
an option to correct the schema. For example, SCREEN can warn the user that an
attribute does not exist in the current schema and ask the user to expand the schema
to accommodate the new attribute. SCREEN also examines the actual data objects and
alerts users about missing objects.

Ordinary applications may also view ROARS as a read-only filesystem, using ei-
ther FUSE [1] (a user/kernel filesystem driver) or Parrot [31] (a ptrace-based inter-
position agent). Individual objects and their corresponding metadata can be accessed
via their unique file identifiers using absolute paths:

/roars/mdsname/fileid/3417
/roars/mdsname/fileid/3417 .meta

Of course, it would be impractical to list and navigate a flat directory consisting of
millions of files. Instead, most users find it effective to explore the repository using
the QUERY command line tool, then use VIEW to deposit a smaller materialized view
for direct use. A materialized view consists of a directory tree where the leaves are
symbolic links pointing to absolute paths in the repository. For example, Fig. 1 shows
a view generated by the following command:

VIEW faces WHERE true AS "gender/emotion/fileid.type"
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Because the materialized view is stored in the normal local filesystem, it can be
kept indefinitely, shared with other users, sent along with batch jobs, or packed up
into an archive file and emailed to other users. The creating user manages their own
disk space and is responsible for cleanup at the appropriate time. The ability to gen-
erate materialized views that provide third party applications an robust and scalable
filesystem interface to the data objects is a distinguishing feature of ROARS. Rather
than force users to implant their domain-specific tools into a database execution en-
gine, or wrap it in a distributed programming abstraction, ROARS enables scientific
researchers to continue using their familiar scripts and tools.

3 Implementation

Figure 2 shows the basic architecture of ROARS. To support the discrete object data
model and the data operations previously outlined, ROARS utilizes a hybrid approach
to construct scientific data repositories. Multiple storage nodes are used for storing
both the data and metadata in archival format. A metadata server (MDS) indexes all
of the metadata on the storage server, along with the location of each replicated ob-
ject. The MDS serves as the primary name and entry point to an instance of ROARS.

The decision to employ both a database and a cluster of storage servers comes
from the observation that while one type of system meets the requirements of one of
the components of a scientific data repository, it is not adequate at the other type. For
instance, while it is possible to record both the metadata and raw data in a database,
the performance would generally be poor and difficult to scale, especially to the level
required for large scale distributed experiments nor would it fit in with the work flow
normally used by research scientists. Moreover, the distinct advantage of using a
database, which is its transactional nature, is hardly utilized in a scientific repository
because the data is mostly write-once-read-many, and thus rarely needs atomic updat-
ing. From our experience, during the lifetime of the repository, metadata may change
once or twice, while the raw data stays untouched. Besides the scalability disadvan-
tages, keeping raw data in a database poses bigger challenges on everyday mainte-
nance and failure recovery. So, although, a database would provide good metadata
querying capabilities, it would not be able to satisfy the requirement for large scale
data storage.

Fig. 2 ROARS architecture
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On the other hand, a distributed storage system, even with a clever file naming
scheme, is also not adequate for scientific repositories. Such distributed storage sys-
tems provide scalable high performance /O, but provide limited support for rich
metadata operations, which generally devolve into full dataset scans or searches us-
ing fragile and ad hoc scripts. Although there are possible tricks and techniques for
improving metadata availability in the filesystem, these all fall short of the efficiency
required for a scientific repository. For instance, while it is possible to encode par-
ticular attributes in the file name, it is still inflexible and inefficient, particularly for
data that belong to many different categories. Fast access to metadata remains nearly
impossible, because parsing thousands or millions filenames is the same if not worse
than writing a cumbersome script to parse collections of metadata text files.

The hybrid design of ROARS takes the best aspects from both databases and dis-
tributed filesystems and combines them to provide rich metadata capabilities and ro-
bust scalable storage. To meet the storage requirement, ROARS replicates the data
objects along with their associated metadata across multiple storage nodes. Like in
traditional distributed systems, this use of data replications allows for scalable stream-
ing read access and fault tolerance. In order to provide fast metadata query operations,
the metadata information is persistently cached upon importing the data objects into
the repository in a traditional database server. Queries and operations on the data
objects access this cache for fast and efficient storage operations and metadata oper-
ations.

3.1 MDS structure

We employ a relational database to implement the main functionality of the MDS.
The database contains three primary tables: a metadata table, a file table and a replica
table. The metadata table stores the most recent values for all items in a collection,
indexed for efficient lookup. Each entry in the metadata table points to a unique
fileid in the file table. The file table plays the same role an inode table in a tra-
ditional Unix file system does for ROARS and holds the essential information about
raw data files, such as size, checksum, and create time. ROARS utilizes this
information to not only keep track of files but also to emulate system calls such as
stat. For any given fileid, there can be multiple replica entries in the replica
table, which tracks the location and state of each replica of a file. Figure 3 gives an
example of the relationship between the metadata, file, and replica tables. In this con-
figuration, each file is given an unique £ileid in file table. In the replica table, the
fileid may occur multiple times, with each row representing a separate replica lo-
cation in the storage cluster. Accessing a file then involves looking up the fileid,
finding the set of associated replica locations, and then selecting a storage node.

As can be seen, this database organization provides both the ability to query files
based on domain specific metadata, and the ability to provide scalable data distribu-
tion and fault-tolerant operation through the use of replicas. Some of the additional
fields such as lastcheck, state, and checksum are used by high level data ac-
cess operations provided by ROARS to maintain the integrity of the system and will
be discussed in later subsections.

A few complications regarding the metadata are worth noting.
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Fig. 3 MDS structure

First, the ROARS abstract data model has no schema, nor limits on field length.
In our current implementation, we map this to a relational database table by adding
new columns or expanding field widths as needed on the fly. This could be highly
inefficient for very sparse data, but is adequate for the common case where items in
a collection share a number of properties. Future work may address improvements to
this implementation. (As we show below, there is some penalty on imports, but read
and query performance are sufficient.)

Second, the metadata table only contains the most recent values for each tuple in
a record. The complete history including the OWNER and TIME elements described
in Sect. 2.1 is stored in a distinct metadata log table. Additionally, these informa-
tion is written to the metadata file next to each raw data object in the storage nodes.
This provides the complete history of the repository when it is necessary to audit for
scientific integrity.

Third, any changes to metadata must be reflected in several places: the metadata
table, the metadata log, and each of the distributed metadata files. This is accom-
plished by treating the metadata log as a roll-forward recovery log. All updates are
applied to the log first and marked as ‘incomplete’ until they are appended to each of
the distributed metadata files.

3.2 Storage nodes

We use the Chirp [32] user level filesystem to implement the software component
of each storage node. A storage node is typically a conventional server with large
local disks, organized into a cluster. Storage nodes are divided into different storage
groups based on locality, and given a groupid. This approach is consistent with the
structure principle that Maccormic et al proposed with Kinesis system [18]. In such
system, storage servers are grouped into different segments which are likely to be
failure-independent. Thus, failure in one segment would not catastrophically affect
the system as a whole. An IMPORT deliberately places replicas in different storage
groups to achieve both load balancing and failure independence. By convention, if
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a data object was named X . jpg, then the associated metadata file would be named
X .meta and both of these files are replicated across the storage nodes in each of the
Storage Groups.

By replicating the raw data across the network, ROARS provides scalable, high
throughput data access for distributed applications. Moreover, because each storage
group has at least one copy of the data file, distributed applications can easily take
advantage of data locality with ROARS. Applications using the filesystem interface
are directed to the closest replica, preferring one on the same node, otherwise in the
same storage group if possible.

3.3 System management

Management of a large storage cluster requires some care. Adding or removing stor-
age nodes may require movement of data, which itself may be a long-running and
fault prone task. To this end, ROARS provides a management interface which sep-
arates the logical addition and removal of nodes from data migration, which can be
performed at leisure. Our current implementation of ROARS includes the following
management operations:

LIST NODES

ADD NODE <nodename> <groupid>
REMOVE NODE <nodename>

ABANDON NODE <nodename>

MIGRATE DATA

AUDIT DATA

LIST NODES queries the MDS for the list of available storage nodes, showing
the current state, capacity, and usage. ADD NODE will add a storage node to the
system, and make it available as a target for newly placed data. REMOVE NODE will
put an existing storage node in the ‘removing’ state, but has no immediate effect on
the data on that node. A removed node is no longer a target for IMPORT, and is not
preferred for servicing reads. In the case where a physical failure renders migration
impossible, ABANDON NODE is used to immediately remove the corresponding node
and replica records from the system. Finally, MIGRATE DATA queries for nodes in
the removing state and files with too few replicas, and incrementally migrates or
replicates data to nodes with available space as needed. When a storage node in the
removed state no longer contains replicas, it is deleted from the MDS.

A major system reconfiguration—such as replacing one storage cluster with
another—can be achieved by calling ADD NODE to configure the new nodes,
REMOVE NODE to mark the old nodes as no longer needed, and then MIGRATE
DATA to begin the process of moving data. Note that because ADD and REMOVE
NODE only interact with the MDS, it doesn’t matter whether the server is online or
offline. If MIGRATE DATA finds a server offline, it simply moves on to other avail-
able work.

AUDIT DATA is used to check the data integrity of the entire system. This com-
mand checks all servers for basic health, then queries the MDS to ensure that ev-
ery file has sufficient replicas, that replicas are distributed across groups, and that
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there are no replicas located on removed or abandoned servers. Then, all data objects
are checksummed and compared against the value in the MDS. Checksumming is
performed in parallel locally at each storage node, making it feasible to check the
integrity of a very large archive in time proportional to the size of the largest stor-
age node. If problems exist, they are reported, and where possible, repair is done by
replicating good replicas. In extreme cases where no good replicas remain, repair is
not possible, and damaged replicas are left in place (and indicated as damaged) for
manual examination and recovery.

The time of the last good checksum for each replica is stored in the MDS. This data
has several uses: tools can focus on the oldest replicas first, management operations
can be done incrementally, and the physical wear of auditing on the system can be
throttled by specifying a minimum time between checksums.

3.4 Robustness

The ROARS architecture is robust to a wide variety of failures in a number of dimen-
sions, including server or network outage, server loss, data corruption, and interrup-
tion of write and administrative operations. The system design assumes that errors
are due to failures or accidents, but does not go to the expense of protecting against
Byzantine failures, as in LOCKSS [22].

Data integrity is achieved by checksumming all file objects on storage nodes, and
recording this in the MDS. (Integrity of the MDS can be accomplished via internal
hierarchical checksums of the tables, as in ZFS [5], although we have not yet im-
plemented this.) Data integrity is verified by a periodic AUDIT process as described
above. Damaged replicas are automatically deleted if a majority of replicas are in
agreement with the checksum stored in the MDS. If a majority of replicas agree upon
a checksum, but this does not equal that stored in the MDS, ROARS assumes the
MBDS is corrupted, and with manual approval, will update the MDS to correspond to
the majority view.

Replication is the primary defense against server and network outage. Files are
replicated three times by default. During a read operation by the query client or the
filesystem client, if a replica is not reachable due to server outage or hardware failure,
ROARS will randomly try other replicas until a user-specified timeout is reached.
As mentioned earlier, storage nodes are organized into groups based on locality. By
placing replicas in distinct groups, the likelihood of availability is improved.

ROARS employs complete replicas of each data object and corresponding meta-
data file to protect against server loss. In the event of multiple simultaneous hardware
failures from a fire, flood, etc, any individual storage unit that can be recovered con-
tains a usable fragment of the data and its corresponding metadata. If the metadata
server itself is lost, the entire contents of the metadata table, metadata log, file table,
and replica table can be reconstructed from the metadata files on the distributed stor-
age nodes, albeit at some expense. From this perspective, the MDS is an important
cache of the metadata, but not the authoritative copy.

All operations that write to the archive, including IMPORT, MIGRATE DATA,
and AUDIT DATA are carefully designed to move file servers and replicas through
the state transitions shown in Fig. 4. The common concept is that major actions are
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Fig. 4 State machines for storage nodes and replicas

accomplished via two phase commit: a state transition marks an intent to execute,
then the intention is executed before completing the next action. If an administrative
command crashes or is forcibly killed, the next invocation observes the previously
recorded intent, and continues. This makes all operations robust to system failures
or accidental cancellation. It also gives the system operator flexibility to spread out
long-running operations. For example, one might accomplish a complex migration
by running it incrementally for two hours every night during a period of low usage.
Additionally, both the command line client and the filesystem client take server and
replica states into account, so that imports and reads can continue while the system
is in flux.

4 Evaluation

To evaluate the performance and operational characteristics of ROARS, we deployed
ROARS, HDFS, and a central fileserver on a testbed cluster consisting of 22 data
nodes. They are servers with 32 GB RAM, twelve 2 TB SATA disks and two 8-
core Intel Xeon E5620 CPUs, all connected via a dedicated Gigabit Ethernet switch.
ROARS was deployed with 22 Chirp servers running on the 22 cluster data nodes,
and an MDS with the MySQL database on the cluster head node. HDFS was deployed
with 22 HDFS Datanodes running on the 22 cluster data nodes, and the HDFS Na-
menode running on the cluster head node. For HDFS, we kept the usual Hadoop
defaults such as employing a 64 MB chunk size and a replication factor of three.
The traditional centralized filesystem consists of a single Chirp server running on a
cluster node. Applications access all three systems identically through the filesystem
interface by using the Parrot interposition agent.

The following experimental results test the performance of ROARS and demon-
strate its capabilities while performing a variety of storage system activities such as
importing data, exporting materialized views, and migrating replicas. These exper-
iments also include micro-benchmarks of traditional filesystem operations to deter-
mine the latency of common system calls, and concurrent access benchmarks that
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demonstrate how well the system scales. For these latter performance tests, we com-
pare ROARS’s performance to that of the traditional network server and Hadoop,
which is an often cited alternative to distributed data archiving. At the end, we in-
clude operational results that demonstrate the operational robustness of ROARS.

4.1 Basic data storage operations

The purpose of these benchmark experiments is to measure ROARS’ performance on
daily operations of a storage system. These operations include SCREEN: exam data
and metadata before ingesting into the system, IMPORT: ingest data into ROARS,
EXPORT: get data and metadata out of ROARS, VIEWS: create a materialized view
with metadata, QUERY: only get metadata, and DELETE: remove data from ROARS.
Of the six operations, IMPORT, EXPORT, and DELETE interact directly with the
storage nodes, while SCREEN, VIEW, and QUERY do not.

Figure 5 shows the runtime of each of the key operations on 10,000 data objects
total of 17.4 GB data, with triple replication. Most operations require multiple trans-
actions against the database and the storage cluster. IMPORT operates at the lowest
speed because it has to create three replicas for each data file. Moreover, the number
of database queries is by far the most comparing to other operations. Table 1 shows
the number of database queries for each operations per data file.

UPDATE queries are extra expensive comparing to other types of query because of
ROARS’ metadata logging mechanism described in Chap. 2. Each update essentially
means another insert into the log table which decreases the performance of IMPORT
and DELETE operations. SCREEN is significantly faster than all other commands be-
cause it has the least number of database query and its merely stat data files on local
storage instead of transferring data files across the network multiple times sequen-
tially like EXPORT. QUERY is also fast because it only needs to query the metadata
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view, query, delete performance 1200 |
10,000 files 17.9 GB of data
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400 |
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Table 1 Number of database

queries per operation QUERY SCREEN IMPORT EXPORT VIEW QUERY DELETE
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from the database and it does not actually fetch any data file. VIEW is very simi-
lar to QUERY because it does not interact with the storage nodes. However VIEWS
creates symbolic link files on local hard drive for each object, thus the performance
differs from QUERY Fig. 6 shows the runtime of the same set of operations, this time
with 10,000 small data objects of about 300 KB each. As expected, the performance
of SCREEN, QUERY, and DELETE does not depend on the total size of the data,
their performance only depends on the number of objects. QUERY took longer in
this experiment because the number of metadata for this dataset is almost double the
number of metadata for the first experiment. The runtime of SCREEN and DELETE
are almost identical for both experiments. The experiment results show that ROARS
achieve good performance for daily use of data ingestion and data export.

4.2 Data import

The following test measured the performance of importing large datasets into both
Hadoop and ROARS. For this data import experiment, the test were divided into
several sets of data objects. Each set consists of number of fixed size files, ranging
from 1 KB to 1 GB. To perform the experiment, we imported the data from a local
disk to the distributed systems. In the case of Hadoop this simply involved copying
the data from the local machine to Hadoop filesystem. For ROARS, we used the
IMPORT operation.

Figure 7 shows the data import performance for Hadoop and ROARS for several
sets of data. The graph shows the throughput as the file sizes increase. The maximum
theoretical throughput on a gigabit link is 128 MB/s, and the maximum achievable
by a TCP connection is closer to 100 MB/s, depending on the variant used. Both
ROARS and HDFS achieve significantly less than that, due to the overheads of inter-
acting with the central metadata server, and the creation of multiple file replicas. The
overhead of interacting with the MDS is higher in ROARS, due to the multiple state
transitions shown in Fig. 4. The overhead of creating replicas is higher in ROARS,
because it transfers and verifies each replica separately, whereas HDFS sets up a data
forwarding pipeline, and only communicates with the primary replica. In both sys-
tems, higher throughput is achieved with larger files. For the purposes of long term
data preservation with a write-once, read-many model, this is an acceptable tradeoff
to achieve high integrity transactions.
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4.3 Metadata query

In this benchmark, we studied the cost of performing a metadata query. As previously
noted, one of the advantages of ROARS over distributed systems such as Hadoop is
that it provides a means of quickly searching and manipulating the metadata in the
repository. For this experiment, we created multiple metadata databases of increasing
size and performed a query that looks for objects of a particular type.

As a baseline reference, we performed a custom grep of the database records on
a single node accessing HDFS, which is normally what happens in rudimentary sci-
entific data collections. For Hadoop, we stored all the metadata in a single file in
NAME, TYPE, VALUE tuple format we described in Sect. 2.1. For each object, the
metadata takes up approximately 1.3 KB in storage. We queried the metadata by exe-
cuting the custom script using MapReduce [9]. For ROARS, we queried the metadata
using QUERY which internally uses the MySQL execution engine. We did this with
indexing on and off to examine its effect on performance.

Figure 8 clearly shows that ROARS takes full advantage of the database query
capabilities properly and is much faster than either MapReduce or standard grepping.
Evidently, as the metadata database increases in size, the grep performance degrades
quickly. The same is true for the QUERY operation. Hadoop, however, at first retains
a steady running time, regardless of the size of the database (up to 2.7 M rows or
3.6 GB). After that, Hadoop Map Reduce runtime only increases linearly. This is
because the MapReduce version was able to take advantage of multiple compute
nodes and thus scale up its performance. Unfortunately, due to the overhead incurred
in setting up the computation and organizing the MapReduce execution, the Hadoop
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query had a high startup cost and thus was slower than the MDS. Furthermore, the
standard grep and MDS queries were performed on a single node, and thus did not
benefit from scaling. That said, the ROARS query was still faster than Hadoop, even
when the database reached 345 M data objects (475 GB of data).

4.4 Filesystem access

ROARS provides a read-only filesystem interface for conventional applications, con-
sisting primarily of the system calls stat, open, read, and close. HDFS pro-
vides similar functionality through the library 1ibhdfs. To evaluate these side by
side, we implemented equivalent modules in Parrot for a single Chirp server, ROARS,
and HDFS. In addition, we provide a variant of the ROARS module which caches re-
cently used filesystem data and metadata. To test the latency of these common filesys-
tem functions, we constructed a simple benchmark which performs repeated stats,
opens, reads, and closes on a single file.

Figure 9 shows the latency of each operation on a centralized server, HDFS, and
ROARS. As can be seen, ROARS provides comparable latency to the centralized
server, and in the case of stat, open, and read, lower latency than HDFS. Since
all file access also pass through Parrot, there is some interposition overhead for each
system call. However, since all of the storage systems were accessed though the same
Parrot adapter, this additional overhead is same for all of the systems and thus does
not affect the relative latencies.

These results show that there is overhead to communicating with the MDS for
metadata, the latencies provided by the ROARS system remain comparable to HDFS.
Moreover, because of the write-once nature of the data, these queries can be cached
for significant performance gains. With this small optimization, operations such as
stat and open are significantly faster with ROARS than with HDFS due to HDFS
start-up cost.

4.5 Concurrent access

To determine the scalability of ROARS in comparison to a traditional file server and
HDFS, we exported two different datasets to each of the systems and performed a test
that read all of the data in each set. In the case of ROARS, we used a materialized view

with symbolic links to take advantage of the data replication features of the system,
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while for the traditional filesystem and HDFS, we exported the data directory to each
of those systems. We ran our test program using the Condor [33] distributed batch
system running on the same cluster with 1-32 concurrent jobs reading data from
each system.

We set up the experiment using a 32 storage nodes with the following setup.
Nodes are commodity servers with dual-core Intel 2.4 GHz CPUs, 4 GB of RAM,
and 750 GB SATA-II disks, all connected via a dedicated Gigabit Ethernet switch.
ROARS was deployed with 32 Chirp servers running on the 32 cluster data nodes,
and an MDS with the MySQL database on the cluster head node. HDFS was deployed
with 32 HDFS Datanodes running on the 32 cluster data nodes, and the HDFS Na-
menode running on the cluster head node.

Figure 10 shows the performance results of all three systems for both datasets.
In Fig. 10(a), the clients read 10,000 320 KB files, while in Fig. 10(b) 1,000 5 MB
files were read. In both graphs, the overall aggregate throughput for both HDFS and
ROARS increases with an increasing number of concurrent clients, while the tradi-
tional file server levels off after around 8 clients. This is because the central file server
is limited to a maximum upload rate of about 120 MB/s, which it reaches after 8 con-
current readers. ROARS and HDFS, however, use replicas to enable reading from
multiple machines, and thus scale with the number of readers. As with the case of
importing data, these read tests also show that accessing larger files is much more
efficient in both ROARS and HDFS than working on smaller files.

While both ROARS and HDFS achieve improved aggregate performance over
the traditional file server, ROARS outperforms HDFS by a factor of 2. In the
case of the small files, ROARS was able to achieve an aggregate throughput of
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526.66 MB/s, while HDFS only reached 245.23 MB/s. For the larger test, ROARS
reached 1030.94 MBS/s and HDFS 581.88 MB/s. There are several reasons for this
difference. First, ROARS has less overhead in setting up the data transfers than HDFS
as indicated in the micro-operations benchmarks. Such overhead limits the number
of concurrent data transfers and thus aggregate throughput. Another cause for the
performance difference is the behavior of the storage nodes. In HDFS, each block
is checksummed and there is some additional overhead to maintain data integrity,
while in ROARS, data integrity is only enforced during high level operations such
as IMPORT, MIGRATE, and AUDIT. Since the storage nodes in ROARS are simple
network file servers, no checksumming is performed during a read operation, while
in HDFS data integrity is enforced throughout, even during reads.

4.6 Integrity check & recovery

In ROARS, the AUDIT command is used to perform an integrity check. As we have
mentioned, the file table keeps records of a data file’s size, checksum, and the last
checked date. AUDIT uses this information to detect suspect replicas and replace
them. At the lowest level, AUDIT checks the size of the replicas to make sure it
is the same as the file table entries indicate. This type of check is not expensive to
perform, but it is also not reliable. A replica could have a number of bytes modified,
but remains the same size. A better way to check a replica’s integrity is to compute
the checksum of the replica, and compare it to the value in file table. This is expensive
because the process will need to read in the whole replica to compute the checksum.

Figure 11 shows the cost of computing checksums in both ROARS and HDFS. As
file size increases, the time required to perform a checksum also increases for both
systems. However, when the file size is bigger than a HDFS block size (64 MB),
ROARS begins to outperform HDFS because the latter incurs additional overhead
in selecting a new block and setting up a new transaction. Moreover, ROARS lets
storage nodes perform checksum remotely where the data file is stored while for
HDEFS this data must be streamed locally before an operation can be performed.

Verifying data integrity is an essential component of maintaining a long-term
archive with many stakeholders. If verification requires moving all data to an external
party, then it can only be done in time proportional to the sum of the archive. To make
this process feasible on a regular basis, ROARS uses the active storage facility to run
the checksums directly on each storage node, then runs each storage node in parallel.
In this way, a complete system audit can be performed in time proportional to the
capacity of the largest node.

We compared the performance of an external sequential audit against a parallel/
active-storage audit on a production ROARS deployment of 90,000 files totalling
497 GB. The sequential implementation completed in 4.2 hours, averaging 32.5 MB
of data verified per second. The parallel implementation completed in /9.6 min, for
a speedup of 13x, which is imperfect due to the Amdahl overhead of the MDS oper-
ations, but still significantly faster. If we consider much larger storage systems, say
100 storage nodes of 1 TB each, a sequential integrity check would take months and
be practically infeasible, while a complete parallel check could be scheduled into
system downtime and completed in hours.
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4.7 Metadata logging

Metadata can be modified through out the life cycle of a data object, starts with data
import, continues with data update and ends with data delete. At each phase, metadata
change is written to the database intermediately. However, those changes have not
been reflected at the storage level yet. ROARS could write changes to both database
and storage servers at the same time. However, because of the time discrepancy be-
tween a database update transaction and a disk write transaction, writing changes to
both is lagged and bounded by slow disk speed. Especially when there are mass meta-
data changes during the enrollment process, writing thousands of small transactions
to disk can take minutes to hours.

In order to maintain data consistency, ROARS logs all metadata changes in a log
table. The log table keeps track of what has been changed, who made the change,
and when the change was made. However, logging changes come with a cost. Fig-
ure 12 graphs shows the average performance import,update and delete operations on
100,000 metadata records with and without metadata logging. Obviously, metadata
logging feature does affect import, update and delete metadata performance. Each
update of metadata will result to at least one insert into a metadata log table. The
performance penalty is about 40 percent. While import and delete result in multiple
inserts into the log table.

4.8 Dynamic data migration

To demonstrate the data migration and fault tolerance features of ROARS, we set up
a migration experiment as follows. We added 16 new storage nodes to our current
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Fig. 13 Dynamic data migration

system, and we started a MIGRATE process to spawn new replicas. Starting with 30
active storage nodes, we intentionally turned off a number of storage nodes during
MIGRATE process. After some time, we turn some storage nodes back on, leaving
the others inactive.

By dropping storage nodes from the system, we wanted to demonstrate that
ROARS still could be functional even when hardware failure occurs. Figure 13
demonstrates that ROARS remained operational during the MIGRATE process. As
expected, the performance throughput takes a dip as number of active Storage Nodes
decreases. The decrease in performance is because when ROARS contacts an inac-
tive storage node, it would fail to obtain the necessary replica for copying. Within a
global timeout, ROARS will retry to connect to the same storage node and then move
on to the next available Node. Because storage nodes remain inactive, the ROARS
continues to endure more and more timeouts. That leads to the decrease of system
throughput. While the experiment was progressing, we added a number of storage
nodes back to the system. As soon as number of nodes came back online, we see the
increase in system throughput.

Although, throughput performance decreases slightly when there are only two in-
active storage nodes, throughput takes a more significant hit when there is a larger
number of inactive storage nodes. There are ways to reduce this negative effect on
performance. First, ROARS can dynamically shorten the global timeout, effectively
cutting down retry time. Or better yet, ROARS can detect inactive storage nodes after
a number of failed attempts, and blacklist them, thus avoiding picking replicas from
inactive Nodes in the future.

5 Experience with ROARS

At the time of writing, ROARS has been in use as the archival service for a biometrics
research group at the University of Notre Dame for over three years. We called the
system BXGrid. BXGrid is used to curate data which is transmitted to the National
Institute of Standards and Technology for evaluation of biometric technologies by the
federal government.
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BXGrid currently contains 853,004 recordings totalling 14.1 TB of data, spread
across 40 storage nodes. Figure 14 shows that the filesize distribution in BXGrid.
The repository is dominated by small and medium size files because the majority of
the files are iris and face images. Only a small portion of BXGrid consists of bigger
video and 3D files.

Approximately 60 GB of new data is acquired in the lab on a bi-weekly basis,
while collections on legacy storage devices are gradually being imported into the
system. This data includes pictures and videos of faces and irises, along with 3D
face scans. Each picture or video file is denoted by a recording which is associated
with metadata such as: the subject in the picture, lighting conditions, camera used to
take the picture. Additional metadata that must be kept internally for bookkeeping
purposes are ShotID: original filename, and BatchID: unique number for a collection
session.

The data model fits ROARS perfectly because the raw data never changes after
its initial ingestion. However the metadata can change or more precisely will change
throughout the biometrics team’s validation and verification process. When a record-
ing is first ingested, it is marked as unvalidated. The state, which is a part of record-
ing metadata, can be changed to validated or problem during a validation process.
A recording is deemed to be problem if its metadata is mislabeled or the record-
ing itself is unusable. In the case where its metadata is mislabeled (ex. right iris is
flagged as left iris), the metadata can be modified and the state of the recording is set
to validated. At the end of this whole process, the state of the recording changes to
enrolled, and a collectionID is assigned. collectionID differs from BatchID because
it is a unique number usually representing a semester worth of data.

In May of 2011. We upgraded the storage cluster for BXGrid. We removed 32
aging storage nodes from the storage pool and we added 32 new storage nodes. Each
storage node consists of 32 GB RAM, twelve 2 TB SATA disks and two 8-core In-
tel Xeon E5620 CPUs. All of them are equipped with Gigabit Ethernet. We safely
removed the old nodes, from the system and migrated the data to the new nodes.
Figure 15 shows the entire migration process. It took 40 hours to move approximate
5 TB to the new nodes.

In the last 6 months, there has been 1,685,509 entries inserted into the log table. So
far, 48 users has modified 21 types of metadata. More than half of the total metadata
changes were related to state changes, and they were made during validation and
enrollment process. The rest of metadata changes concentrated on a few metadata:
lighting condition, weather condition and yaw angle of face images.
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Fig. 15 BXGrid data migration to a new cluster

6 Related work

Our goal was to construct a scientific data repository that required both scalable fault-
tolerant data storage, and efficient querying of the rich domain-specific metadata.
Unfortunately, traditional filesystems and databases fail to meet both of these re-
quirements. While most distributed filesystems provide scalable data archiving, they
fail to adequately provide for efficient rich metadata operations. In contrast, database
systems provide efficient querying capabilities, but fail to match the work flow of
scientific researchers.

6.1 Filesystems

In order to facilitate sharing of the scientific data, scientific researchers usually em-
ploy various network filesystems such as NFS [23] or AFS [15] to provide data distri-
bution and concurrent access. To get scalable and fault tolerant data storage, scientists
may look into distributed storage systems such as Ceph [36] or Hadoop [13]. Most
of the data in these filesystems are organized into sets of directories and files along
with associated metadata. Since some of these filesystems such as Ceph and Hadoop
perform automatic data replication, they not only provide fault-tolerant data access
but also the ability to scale the system. Therefore, in regards to the need for a scal-
able, fault-tolerant data storage, current distributed storage systems adequately meet
this requirement.

Google developed GFS [12] to handle an enormous amount of data. GFS is de-
signed to store very large files, which are regularly generated by the Google Search
Engine. Files are divided into chunks of 64 MB, similar to clusters in a traditional lo-
cal filesystem. Chunks are replicated and stored in multiple Chunkservers. The num-
ber of data replications varies. High demand data have more replicated chunks than
low demand data. A single Masterserver manages the GFS namespace, mapping files
to chunks and enforcing file access control. Data modification is appended at the end
of file rather than being overwritten. Applications issue a read request through the
Masterserver. The Masterserver then passes the location of the chunk to the applica-
tion. The application then accesses the chunk directly from the Chunkserver.
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HDFEFS is an open source implementation of GFS by Apache Software Foundation.
HDFS is a distributed filesystem written in Java. It is designed to run on commodity
hardware to store big files that traditional local filesystems do not support. The HDFS
architecture includes a Namenode and multiple Datanodes. The role of the Namenode
is to manage the HDFS namespace while the Datanodes are in charge of storing
actual data. Namenodes can be in the same Local Area Network (LAN) or they can
span in multiple data centers. In HDFS, files are broken into chunks of a fixed size.
The default chunk size is 64 MB but it can be manually changed. For fault tolerance,
data files are replicated at the chunk level. Datanodes communicate to the Namenode
through a Heartbeat and BlockReport in order to maintain load-balancing [6]. HDFS
employs a locality awareness read policy to improve data read performance. A read
request for a chunk will be served by the same rack of Namenodes where the request
originates. If the chunk is not stored in the same rack as the reader, the request will
be served by the local data center before trying any remote chunk.

Where filesystems such as GFS and HDFS still fail, however, is in providing an
efficient means of performing rich metadata queries. Since filesystems do not pro-
vide a direct means to perform these metadata operations, export processes usually
involve a complex set of ad hoc scripts which tend to be error prone, inflexible, and
unreliable. More importantly, these manual searches through the data repository are
also time consuming since all of the metadata in the repository must be analyzed for
each export. Although some distributed systems such as Hadoop provide program-
ming tools such as MapReduce [9] to facilitate searching through large datasets in a
reliable and scalable manner, these full repository searches are still costly and time
consuming since each experimental run will have to scan the repository and extract
the particular data files required by the user. Moreover, even with the presence of
these programming tools it is still not possible to dynamically organize and group
subsets of the data repository based on the metadata in a persistent manner, making
it difficult to export reusable snapshots of particular datasets.

Although, ROARS storage organization is similar to the one used in the Google
Filesystem [12], and Hadoop [13], where simple Data Nodes store raw data and a
single Name Node maintains the metadata. ROARS architecture differs in a few im-
portant ways however. First, rather than striping the data as blocks across multiple
storage nodes as done in Hadoop and the Google Filesystem, ROARS store discrete
whole data files on the storage nodes. While this prevents us from being able to sup-
port extremely large file sizes, this is not an important feature since most scientific
data collections tend to be many small files, rather than a few extremely large ones.
Moreover, the use of whole data files greatly simplifies recovery and enables failure
independence. Likewise, the use of a database server as the metadata cache enables
us to provide sophisticated and efficient metadata queries. While Google Filesys-
tem and Hadoop are restricted to basic filesystem type metadata, ROARS can handle
queries that work on constraints on domain-specific metadata information, allowing
researchers to search and organize their data in terms familiar to their research focus.

6.2 Databases

The other common approach to managing scientific data is to go the route of projects
such as the Sloan Digital Sky Survey [29]. That is, rather than opt for a “flat file”
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data access pattern used in filesystems, the scientific data is collected and organized
directly in a large distributed database such as MonetDB [16] or Vertica [34]. Besides
providing efficient query capabilities, such systems also provide advanced data anal-
ysis tools to examine and probe the data. However, these systems remain undesirable
to many scientific researchers.

The first problem with database systems is that in order to use them the data must
be organized in a highly structured explicit schema. From our experience, it is rarely
the case that the scientific researchers know the exact nature of their data a priori
or what attributes are relevant or necessary. Because scientific data tends to be semi-
structured rather than highly structured, this requirement of a full explicit schema
imposes a barrier to the adoption of database systems and explains why most research
groups opt for filesystem based storage systems which fit their organic and evolving
method of data collection.

With the explosion of social networks in late 2000’s there has been another evo-
lution from traditional DBMS to NoSQL [17]. Unlike DMBS, NoSQL does not use
SQL structure to perform queries. There is no fixed schema; data is denoted and
stored in a key-value format instead of using a highly structured table. Major Internet
companies like Google, Facebook and Twitter have different challenges in managing
their users’ data. First of all, the data does not have a strong structure. For example
Facebook users’ photos can be tagged and associated with any type of imaginable
metadata. It is not feasible to modify the database schema when a new metadata is
added.

Adding a new field to the database schema will affect every single record, which
can take days to complete given the sheer amount of data these companies deal with.
Secondly there is a requirement for instant gratification. When users update their
status or post new photos, they expect to see the result right the way. Traditional
DBMS could not maintain and provide real-time information out of large volumes
of data update. A NoSQL system such as MongoDB, BaseX, SimpleDB, Apache
CouchDB [11, 14, 21, 24] fit this type of workload better than a traditional relational
DBMS. One of the drawbacks of NoSQL is that it has limited support to store raw
data files. For example, MongoDB imposes a limit on file size of 4 MB. In order to
store large data objects, users will need to use GridFS [19] GridFS is system built on
top of MongoDB. GridFS breaks up large files into chunks of 4 MB and stitches them
back together per users’ requests.

Database systems are not ideal for scientific data repositories because they do not
fit into the work flow commonly used by scientific researchers. In projects such as the
Sloan Digital Sky Survey and Sequoia 2000 [28], the scientific data is directly stored
in database tables and the database system is used as an data processing and analysis
engine to query and search through the data. For scientific projects such as these, the
recent work outlined by Stonebraker et al. [27] is a more suitable storage system for
these high-structured scientific repositories.

In most fields of scientific research, however, it is not feasible or realistic to put
the raw scientific data directly into the database and use the database as an execution
engine. Rather, in fields such as biological computing, for instance, genome sequence
data is generally stored in large flat files and analyzed using highly optimized tools
such as BLAST [2] on distributed systems such as Condor [33]. Although it may be
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possible to stuff the genome data in a high-end database and use the database engine
to execute BLAST as a UDF (user defined function), this goes against the common
practices of most researchers and diverts from their normal workflow. Therefore, us-
ing a database as a scientific data repository moves the scientists away from their
domains of expertise and their familiar tools to the realm of database optimization
and management, which is not desirable for many scientific researchers.

Because of these limitations, traditional distributed filesystems and databases are
not desirable for scientific data repositories which require both large scalable storage
and efficient rich metadata operations. Although distributed systems provide robust
and scalable data storage, they do not provide direct metadata querying capabilities.
In contrast, databases do provide the necessary metadata querying capabilities, but
fail to fit into the work flow of research scientists.

The purpose of ROARS is to address these shortcomings by constructing a hy-
brid system that leverages the strengths of both distributed filesystems and relational
databases to provide fault-tolerant scalable data storage and efficient rich metadata
manipulation. This hybrid design is similar to SDM [20] which also utilizes database
together with a file system. The design of SDM highly optimizes for n-dimensional
arrays type data. Moreover, SDM uses multiple disks support high throughput I/O for
MPI [10], while ROARS uses a distributed active storage cluster. Another example of
a filesystem-database combination is HEDC [26]. HEDC is implemented on a single
large enterprise-class machine rather than an array of storage nodes. iRODS [35] and
its predecessor the Storage Resource Broker [4] supports tagged searchable meta-
data implemented as a vertical schema. ROARS manages metadata with horizontal
schema pointing to files and replicas which allows for the full expressiveness of SQL
to be applied.

7 Conclusion

We have described the overall design and implementation of ROARS, a archival
system for scientific data with support for rich metadata operations. ROARS cou-
ples a database server and an array of storage nodes to provide users the ability to
search data quickly, and to store large amounts of data while enabling high perfor-
mance throughput for distributed applications. Through our experiments, ROARS
has demonstrated the ability to scale up and perform as well as HDFS in most cases,
and provide unique features such as transparent, incremental operation and failure
independence.
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