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Abstract. Reproducibility is an essential component of the scientific method. In order to
validate the correctness or facilitate the extension of a computational result, it should be
possible to re-run a published result and verify that the same results are produced. However,
reproducing a computational result is surprisingly difficult: non-determinism and other factors
may make it impossible to get the same result, even when running the same code on the same
machine on the same day. We explore this problem in the context of HEP codes and data,
showing three high level methods for dealing with non-determinism in general: 1) Domain
specific methods; 2) Domain specific comparisons; and 3) Virtualization adjustments. Using
a CMS workflow with output data stored in ROOT files, we use these methods to prevent,
detect, and eliminate some sources of non-determinism. We observe improved determinism
using pre-determined random seeds, a predictable progression of system timestamps, and fixed
process identifiers. Unfortunately, sources of non-determinism continue to exist despite the
combination of all three methods. Hierarchical data comparisons also allow us to appropriately
ignore some non-determinism when it is unavoidable. We conclude that there is still room for
improvement, and identify directions that can be taken in each method to make an experiment
more reproducible.

1. Introduction
Scientific discovery in high energy physics is a collaborative effort. Confidence in and acceptance
of the work of colleagues is vital in making new discoveries. One of the ways we gain confidence
in research is by seeing that the results are not an accident. ”We do not take even our own
observations quite seriously, or accept them as scientific observations, until we have repeated
and tested them. Only by such repetitions can we convince ourselves that we are not dealing
with a mere isolated coincidence, but with events which, on account of their regularity and
reproducibility, are in principle intersubjectively testable.” [8] A publication is normally geared
more towards communicating ideas to colleagues rather than providing precise steps to compute
the results again.

Reproducible research can be shared with colleagues in a way that the research can both be
repeated and extended as a building block for other scientists. An article about computational
science in a scientific publication is not the scholarship itself, it is merely advertising of the
scholarship. The actual scholarship is the complete software development environment and the
complete set of instructions. [5] The environment and full set of instructions used by the
computer make it possible to check whether multiple runs of the same software produce the



same result. This may be done to validate whether a new machine produces correct results on
old software, whether new software produces correct results on an old machine, or to otherwise
compare repeated or extended iterations of the research.

Unfortunately, replicating an environment on disparate computing resources is very
challenging due to the wide variety of hardware and software choices. But even assuming
that the environment is unchanging, many additional technical issues in computing still make
it surprisingly hard to get the same result twice. Non-determinism in both codes and data[6]
can arise unexpectedly from the use of concurrency, random number sources, real-time clocks,
I/O operations, and other sources[4]. Differences might also be due to fundamentally different
algorithms, or from accidents of the runtime environment. As a result, one cannot simply
compare objects at the binary level.

We attempt to address non-determinism with the following three approaches. 1) Domain
specific methods are sometimes available to alleviate some of the non-determinism. If not, then
new methods might be implemented for this purpose. 2) Domain specific comparisons could
be applied to results to sort through results eliminating sources of non-determinism, such as
timestamps and ordering issues. 3) Virtualization adjustments allow control of environmental
sources of non-determinism without the need for domain specific considerations.

We evaluate a typical CMS workflow used by physicists at the University of Notre Dame
considering the same three ideas. 1) We tap into domain specific methods in the CMS software
which expose options such as a random seed setting in the configuration files. 2) We consider
an existing tool for comparisons on CMS data and introduce a new tool called ROOT diff for
comparing ROOT files in CMS but also more generally. The ROOT diff tool takes a hierarchical
approach to equivalence which helps us to isolate differences. 3) We search the CMS workflow
for possible sources of non-determinism using strace. While running what should be an identical
task multiple times, a few red flags are identified, and their possible severity is discussed.
Virtualization adjustments are also employed using the Parrot tool as a virtual environment
with various parameters used to eliminate some non-determinism.

After applying domain specific methods, some sources of non-determinism still existed in each
step of the workflow. The domain specific comparisons helped us see levels of equivalence that
were not detectable with bitwise or hash comparisons, so the problem was less about the real
results being unpredictable, and more about non-deterministic elements being embedded around
the real results. Using virtualization adjustments, the Time Warp feature in Parrot seemed to
produce the best results, and a fixed PID feature allowed for additional improvement. Using
them in tandem with the other methods, we were able to get deterministic results for the first
step in the workflow as long as we set a maximum event count of 121. We continue to investigate
possible causes of non-determinism when more than 121 events are requested.

All three evaluated avenues can be further pursued to make the validation of CMS workflows
more successful. 1) Additional domain specific methods may be needed to separate significant
results from incidental or transitory meta-data or to ensure predictable entropy. 2) Continued
work on domain specific comparison tools could enable the detection of more fine grained
differences, such as statistical equivalence, or to provide a framework for automating conclusions
based on various equivalence metrics. 3) More options for virtualization adjustment could force
the environment to ensure more deterministic behavior, such as by adjusting the algorithm that
‘warps’ time, or detecting other system calls that result in non-deterministic behavior. Efforts in
any and all of these avenues have the potential to improve the ability for researchers to validate
results and gauge reproducibility in their workflows.

2. Domain specific methods
There are often domain specific parameters or configuration options built into tools that enable
more deterministic behavior. Invoking these options can be helpful in avoiding non-determinism,



from IOMC.RandomEngine.RandomServiceHelper import RandomNumberServiceHelper

random_seed = sys.argv[2]

...

helper = RandomNumberServiceHelper(process.RandomNumberGeneratorService)

helper.resetSeeds(random_seed)

Figure 1. Python code for setting all random seeds up front.

but might not solve all problems. If identifiable problems are found for which configuration
options are not yet available, it might be possible to add new options or otherwise modify the
tools to behave more predictably.

Understanding common sources of non-determinism (which will be discussed later in the
Virtualization adjustments section) can be helpful in general. But clearly, changes to domain
specific tools are easier when a specific source of non-determinism can be clearly identified. So
we will start by observing the specifics of a CMS workflow used by physicists at the University
of Notre Dame before moving on to more generic observations.

After describing the workflow, we describe the behavior that we observed when attempting
to run the same exact task twice. In addition, we used a domain specific random seed parameter
to encourage the generation of deterministic results. The two runs of a given step are compared
to see whether we get bitwise identical results or not.

2.1. CMS workflow description
The following 4 steps make up a chain of tasks used to simulate possible collision events using
models based on the real events observed in the Large Hadron Collider. The only difference
between the workflow we used for our evaluation and the one used for real research is one
of scale. We simulate relatively few events for the purposes of our evaluation, but the full
complexity of the code is employed. Each of the 4 steps is described below, and the output
generated from earlier steps is used as the input for later steps.

Physics Simulation (step #1 - LHE): This is a simulation of the first part of the physics
involved in the collision. There is no attempt to account for the detector at this stage. The
acronym LHE stands for Les Houches Event [2].

Detector Simulation (step #2 - GEN-SIM): For very technical reasons, there is a
second part of simulating the physics of the collision that happens in this step. After this, the
effects of the detector are simulated, but the data format read out is not the same as what the
detector readout produces.

Reconstruction (step #3 - DIGI-RECO): The next step, is actually broken into two
separate sub-steps that are run sequentially: The DIGI step takes the simulation file output
and changes it into a format that is identical to what the detector produces. After this step, no
distinction needs to be made in the software between running on simulated and real data. The
RECO step is the same reconstruction that’s applied to real data that takes detector signals
and figures out which particles would have made those signals in the detector.

Data Reduction (step #4 - MiniAOD): This last step takes the output of the RECO
step (which is in a data format known as AOD = Analysis Object Data), and simplifies it into
a reduced data format that contains the information that almost everyone needs to do analysis.
Some small fraction of analyses actually need the level of detail in AOD and can’t use MiniAOD,
but most researchers use the MiniAOD data.



2.2. CMS workflow results
In an initial attempt to get deterministic results for each step in the workflow, the method shown
in Figure 1 was used to force every execution of the step to use the exact same random seed.

Each step in the workflow was then executed twice on the same machine, in the same day,
with the exact same command and parameters. The output of the first execution was even
moved to a separate folder so the exact same command (including the folder name) could be
used for the second execution immediately. For steps 2-4, where the results from the previous
step are used as input, the result from the first run of the previous step was used for both runs
of the following step.

Run checksums Size
1 b2ed825f... 6,545,067
2 c35bc9c4... 6,545,072

Run checksums Size
1 a2f8138c... 22,773,369
2 40c5791a... 22,773,362

File Run checksums Size
#1 1 b8e7810f... 21,320,833
#1 2 f3fb4d9c... 21,320,560
#2 1 81f04953... 38,799,122
#2 2 767237d7... 38,799,120
#3 1 4669be6b... 1,953,306
#3 2 534891a4... 1,953,460

Run checksums Size
1 ab202459... 3,384,806
2 0fa6a17a... 3,384,594

Table 1. File checksums at each stage

2.2.1. Physics Simulation (step #1 - LHE):
Unfortunately the checksums differ for the ROOT files
generated by each run as shown at the top of figure 1.

2.2.2. Detector Simulation (step #2 - GEN-SIM):
The same is true for step2. The checksums for the
two output files differ from each other.

2.2.3. Reconstruction (step #3 - DIGI-RECO): Step
3 produces 3 ROOT files, but only one of them (File
#1) is used as the input for step 4. File #2 is the
output from the DIGI sub-step and is used as input
for the RECO sub-step. File #3 is the data quality
monitoring output. None of the files appears to be
fully deterministic.

2.2.4. Data Reduction (step #4 - MiniAOD): The
final step also exhibits non-deterministic behavior. For
all steps in the workflow, the exact same command
produces results that are bitwise different each time it
is run. Without some domain specific comparison tool
or manual comparison by an expert, it is impossible to
know whether the results are equivalent or if some underlying change in the environment caused
the two results to diverge from each other in a significant manner.

3. Domain specific comparisons

Figure 2. ROOT file Structure

The results of a CMS workflow
are serialized into ROOT objects
and stored in a ROOT file. We
use the ROOT framework [3] to
process experiment datasets since
comparing checksums is insufficient.
As shown in Figure 2, a ROOT file
is a sequence of data records with a
well defined format. A file header
contains information such as a file identifier, file version, the compression level, etc. The file also
contains blocks of object data, each with header data. An object header contains the object
length, header length, pointer to the object, etc., for the binary object data which is found
immediately after it in the file.



We can validate successful reproduction of workflow by comparing the structure and contents
of each object in the ROOT file. If a workflow is reproduced correctly, each ROOT object it
produced should have a matching object from the result of the original workflow. Based on
this observation, we developed ROOT diff, a domain specific comparator for scientific workflows
that produce ROOT files.

3.1. Comparison procedure
Simulation results of large physics workflows are often large and contain different intermediate
ROOT files from multiple substages. There exists a tool developed by CMS for one-to-one
EDM object comparison. This is a perfect tool for domain scientists who want to observe the
difference between the events, particles and variables of two ROOT files. Since the comparison is
conducted at the physics object level, a more fine-grained analysis of root files is required, which
consumes time and resources. For comparing a typical RECO file, it launches 180 processes,
takes 30 minutes and creates many files[1]. To simplify and speed up the validation we only
compare the structure and contents of each data record.
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Figure 3. The ROOT diff algorithm

We defined three levels of equiv-
alence: (1) STRUCTURE-EQUAL:
Two root objects have same ob-
ject length, cycle number and class
name. (2) CONTENT-EQUAL:
Two root objects are structurally
equal to each other and have the
same object data content. (3)
BITWISE-EQUAL: Two root ob-
jects are content equal to each other
and have same timestamp. We claim
that reproduction is successful, if
two ROOT files are CONTENT-
EQUAL to each other.

The comparison procedure of
ROOT diff is shown in Figure 3,
Step 1, Scan ROOT file 1, extract
the information of each object and
generate an object information list
called objs info lst. Step 2, Compare
the structure of each object in
file 2 with every object cached in
objs info lst. This step ensures that
two root files have a different object
order but the same object structure
and contents will still be treated as equivalent. Step 3, If a matched object is found in file 1,
then we generate an object information pair that has the two structurally equivalent objects
from each file. All these pairs are stored in a list called struc eq objs. If every object in file 1 can
find a matching object in file 2, then file 1 is STRUCTURE-EQUAL to file 2. Objects with no
match are stored in lists no match 1 and no match 2 respectively for reporting purposes. Step
4, For each pair of structurally equivalent objects, the contents of the two objects are compared.
If each object in file 1 has a matching object in file 2 and has the same data content, we say
that file 1 is CONTENT-EQUAL to file 2. If all objects in file 1 have a CONTENT-EQUAL
object in file 2 and share the same timestamp, then we say file 1 and file 2 BITWISE-EQUAL
to each other.



Table 3. Ignored and Nonequal objects from LHE stage
Class Name TTree StreamerInfo TTree TTree TTree TTree TTree KeyList FreeSegments

Object Name Metadata StreamerInfo ParameterSets Parentage Events LuminosityBlocks Runs HIG-RunIIWinter15 LuminosityBlocks
Ignored Times 1 1 1 1 1 1 1 1 1

3.2. Comparator performance
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Figure 4. Performance of ROOT diff

We benchmark the performace of
Root diff by conducting comparison
on various sizes of ROOT files
produced by Lobster[10]. The
running time for comparing ROOT
files from megabytes to gigabytes
is shown in Figure 4. We also
compare ROOT diff with md5sum
and sha1sum. The growth of
the running time is not always
linear, because ROOT files we
chosen have different structures. As
shown in the figure, ROOT diff has
better performance than md5sum
and sha1sum, when the file size is
smaller than 6GB. That is because
ROOT diff does not scan the entire
file and ignores objects those are not
related to the simulation results. It
only reads the desired object buffer blocks and will stop comparing when the first different byte
is encountered. When the file size hits the memory limit, ROOT diff begins to suffer from the
overhead caused by random reads, while md5sum and sha1sum read data sequentially without
much of a decrease in performance.

3.3. Comparison results for Lobster workflow

Stage Name
Same Seed

Number of
Objects

Ignored
Not

Equal
Structure

Equal
Content
Equal

Bitwise
Equal

LHE 605 9 4 592 580 0
GENSIM 717 9 1 707 694 0

DIGI
1 1171 9 1 1161 1158 0
2 6563 9 21 6533 6526 0
3 204 21 7 176 175 0

MINIAOD 2723 9 4 2710 2671 0

Table 2. Comparison results for simulation stages

In Table 2, we show the results of
comparing ROOT files generated by two
simulation runs with same substages
and seed. ROOT diff ignores some of
the objects that are only related to
the structure of the file. Examples
of ignored objects in the lhe stage
are in Table 3. Four objects in file
1 named LHEEventProduct exter have
no matching objects in file 2. Four
EventAuxiliary objects in file 2 cannot be
matched to any object in file 1.

4. Virtualization Adjustments
The unix tool strace is an exploratory form of virtualization where system calls are captured and
logged to a file. This log file can then be searched for calls to known sources of non-determinism
such as random number generators provided by the kernel. While this tool is unlikely to eliminate
non-determinism, we use it with the CMS workflow to identify some read flags that could be
causing non-determinism.



The Parrot tool[9] is a translational form of virtualization where system calls are captured
and can be modified before being forwarded to the operating system. It can be used to trick a
program into behaving more deterministically[7].

4.1. Finding sources of non-determinism
Executing step 1 using strace two times in a row (keeping random seed, folders, and the machine
fixed, as before) produced two log files that were very similar but had notable differences. Various
categories of red flags appeared in the strace log files and in comparisons between the two files.

File and Folder names: File and folder names can be a source of non-determinism if
they are later included in any output file that includes data that should be used as a basis for
validation. The system call ‘getcwd’ was used which means that the execution could be affected
by the current directory that it executes in. Exactly 16,356 total filenames were referenced with
the same name in both runs. 23 additional filenames appeared in each run, but each used (what
appeared to be random) file names of the format /tmp/tmpfjAMpSC.

Concurrency: Both runs included the ‘execve’ system call, which starts up a child process.
This child process could have it’s own set of issues preventing determinism.

Entropy: A total of 2 bytes were read from ‘/dev/urandom’. This was one of our primary
concerns initially. The read occurred after the randomly named tmp files started being created,
so it was not the seed for that potential source of non-determinism, at least.

Available Memory: One of the runs used 74 more (about 5% more) ‘madvise’ system
calls than the other run. Even with the same available memory, available block sizes can cause
non-deterministic behavior. Additional system calls allocating memory lead to additional time
spent which can also affect the entropy of the operating system.

Input/Output: The ‘socket’ system call (and related calls) was used in the runs which
indicates an implicit dependence on some external resources. Non-determinism in those resources
and the connection to them can both cause unpredictable behavior in a task.

Time: Both the initial time and the passage of time due to possible congestion in the
operating system can be an issue.

4.2. Eliminating non-determinism
Parrot was used to capture system calls made by step 1 of the CMS workflow. Parrot is often
already used for high energy physics because it can translate file system requests for the CernVM
File System (CVMFS) into a network request when using computing resources that can’t easily
mount the CVMFS file system directly (often due to Unix permission issues). A few additional
flags in Parrot enabled us to translate additional system calls to encourage determinism.

Time-Stop in Parrot: A new feature in Parrot was enabled which always returns January
1st, 2000 at midnight when asked for the current system time. We hoped this would make the
results for the LHE step more deterministic, however the task seemed to never complete. Upon
further exploration it turns out that at one point the LHE step checks the current time and
waits for a certain amount of time to pass before continuing, so it waited indefinitely.

Time-Warp in Parrot: In order to overcome the issue with the time-stop feature, a more
intelligent feature called time-warp was used. The first time reported is January 1st, 2000 at
midnight, but for each additional request, the time is incremented by 1/100th of a second.
When set to a maximum of 1649 events, an LHE task completed on January 1st, 2001 at 4:18:57
(am). In other words, with the year 2000 being a leap year the task requested the time about
31,637,937 times. This feature in Parrot effected significant improvement in the determinism of
the the task. After running the task twice, the contents of all structurally equivalent objects
were also bitwise equivalent. In fact, for between 1 and 121 events the final ROOT file was
bitwise identical. But for 122 and more events there were still a few objects that were different,
requiring a more detailed comparison.



Fixed PID in Parrot: Looking more carefully at the 122 event cases, a colleague pointed
out that aux.processGUID() causes differences in an identifier that gets included in the ROOT
output file. So, a feature called pid-fixed was added to Parrot, so that the same PID would always
be returned whenever the system was asked for the current PID. This could be a dangerous
option if the provided PID is then used to terminate a process that happens to match an
important running process, but no harm appeared to come from using this in the LHE stage.
This feature made one additional object match between two LHE runs with 122 events, but
additional differences still exist.

5. Conclusions
While the general causes of non-determinism in software are well known, managing them in a
complex piece of software with many authors remains a challenge. Our first look at this issue
highlights some of these challenges. CMS codes produce non-deterministic results, even when
a random seed is fixed; and ROOT files contain provenance metadata intermixed with physics
data. But, we have also shown that some of these effects can be mitigated through the use
of system call interception, and various data comparison techniques. We expect that adding
concurrency in the form of processes, threads, and accelerators will reveal new challenges if
employed.

Going forward, our aim is to modify or augment CMS codes to achieve deterministic
execution, and then to create techniques and tools to assist developers with managing additional
non-determinism within the development process. We aim to improve both the productivity and
reliability of computational science in high energy physics.
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