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Abstract—Logical workflow management systems provide a
user-friendly portal through which data can be processed using a
sequence of standard tools. These logical workflows are a natural
way to express the high level intent of the user, and to share
the structure and the results with other users. However, logical

workflows are not necessarily suited to expressing parallelism for
very large runs. As the amount of data is scaled up, the run time
of each node in the logical workflow may become extreme. We
propose a technique of job expansion to solve this problem. When
job expansion is applied to a logical workflow, each node in the
workflow is itself expanded into a large performance workflow
that may consist of hundreds to thousands of tasks that can
be executed in parallel, thus enabling high concurrency and
scalability. From the user’s perspective, nothing has changed and
the logical workflow remains in its original form. To demonstrate
this technique, we have applied job expansion to a selection
of bioinformatics applications running in the Galaxy workflow
management system. Each job in the workflow is expanded into a
highly parallel workflow executed using Makeflow, which is well
suited to express high levels of parallelism. Work Queue is then
utilized for execution because of its ability to quickly dispatch
tasks and cache files for later reuse. After applying job expansion,
we improve the execution time of BWA 18X and GATK 402X,
with a total speedup of 61.5X on the workflow. We also take
a look at the systems behavior since its launch to analyze its
effectiveness.
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I. INTRODUCTION

Workflow management systems (WMS) such as Galaxy [1]–

[3], Taverna [4], and Kepler [5] allow scientists to easily

combine multiple tools into a coherent whole. While a WMS

is designed to manage the connected steps, it may also offer

a graphical user interface with more intuitive features for job

configuration and basic data management. These traits make

the systems versatile, and allow integrating tools from different

sources to process data in a consistent, reproducible manner

across users and environments. We refer to this as a logical

workflow.

Many WMS assume that each tool is the smallest granularity

of computation. As a result, these systems are limited when

inputs become larger as there is either limited or no mechanism

to further increase parallelism. Scaling in a WMS is not related

to resources only, but also the size and complexity of the jobs

executing. These complexities come in many different forms

from the number of concurrent jobs, interjob dependencies,

and the complexity of combining different topical programs.

Enabling additional parallelism must then come as either a

change to the WMS’s job handling, or an extension of the

job structure already in place. However, such extensions are

invariably tied to the local execution environment, which limits

portability and reproducibility.

We propose dynamic job expansion as a solution to this

problem. In this technique, each job of a logical workflow is

expanded at runtime into a performance workfow in which

the majority of the work is done in parallel, accelerating the

performance of the original process. The purpose is to create

tools that are indistinguishable from sequential tools, while

supporting greater parallelism. Abstracting this parallelism

from the user allows dynamic job expansion to be utilized

by WMS without user involvement, and enables the paral-

lelization to be specialized to the local environment. Ideally

this method could apply to any computation that consists of

data-independent sub-groups, which we find to be prevalent in

bioinformatics.

For many applications, dynamic job expansion can be im-

plemented with the split-process-join computing pattern. First,

the single job is processed by a job expander which writes out

a performance workflow corresponding to a single job in the

logical workflow. The performance workflow then partitions

the inputs to prepare for parallel execution, dispatches parallel

tasks to a remote cloud or grid, and then joins the results into

a format identical to that of the original tool. This allows the

user to run the application faster, getting the same results, with

no knowledge of the difference in execution.

We have implemented dynamic job expansion using Galaxy

as a logical workflow manager, Makeflow [6] as the perfor-

mance workflow manager, and Work Queue [7] as a remote

execution system. Galaxy was used because of its large au-

dience, bioinformatic focus, and GUI workflow construction.

Makeflow was utilized because it provides a workflow expres-

sion language that simple and easily scripted. Makeflow also

provides the ability to directly submit to a number of execution

systems. Combining these tools required careful attention to

the semantics of dependency management, remote execution,

and garbage collection, in order to yield a stable and consistent

system. We demonstrate the combined effect of job expansion

while running a four-job logical workflow in which the two



most time consuming jobs (BWA [8] and GATK [9]) are

converted into performance workflows consisting of hundreds

of tasks. This resulted in a speedup of 18X and 402X on BWA

and GATK individually, and an overall speedup of 61.5X for

the entire workflow.

To look at the behavior in a non-ideal setting, we analyzed

data logged on our catalog server. This allowed us to see that

while the process does reduce the execution time of these

tools, there is room for improvement in bring the acheived

concurrency closer to the potential concurrency. Despite the

difference, we discuss several causes such as workflowmakeup

and system congestion.

II. BACKGROUND

In this section we will give a brief introduction to each of the

following frameworks, as well as reasons for their selection.

Though these were selected, it would be possible to replace

these techonologies with other technologies whose benefits are

more suited to the application in mind.

A. Galaxy

Galaxy is a web portal that was created to provide biologists

with ready access to a number of bioinformatic tools. It

creates an environment where the user only supplies inputs

and selects the tool to perform computation. This abstraction

provides biologists with a generic analysis framework without

the need for specifying resources. The administrator of a

Galaxy instance configures the underlying infrastructure and

provides the tools available to the users. The portal records

how and when the tools are run, so that reproduction of an

experiment is consistent and easy. Each tool consists of a

predefined web page that serves as a launch for the tool, as

well as scripts in the background to provide the correct setup.

Galaxy also provides the user with a means of creating

DAG-based workflows. Workflows use the data dependencies

between tools to determine order, and provide a means of

creating a logical flow for processing inputs in a consistent

way. Workflows created may be configured with predefined

parameter values and can be shared so that analysis can be

reproduced easily by numerous parties.

The portal creates an environment through which users

can analyze data without the hassle of data and resource

management. Galaxy’s abstraction makes using tools quick

and easy, while offering a platform to create meaningful

results. It also provides a means of sharing results and the

process required to achieve them. Work can then be verified

and analyzed by many people at once, allowing for easy

collaboration.

B. Makeflow

Makeflow is a system built to create and run performance

workflows, using a syntax that is very similar to that of classic

Make. Each rule in the performance workflow must explicitly

state input and output dependencies, along with the command

to run. Makeflow can dispatch jobs to a variety of execution

systems, including Condor, SGE, and Work Queue.

The simple syntax supports DAG-structured workflows,

which are ideal for transformation of input to output over a

number of predefined steps. This syntax also makes it easy to

write or have a script write rules for a workflow based on the

inputs. This allows for the dynamic creation of performance

workflows based on the provided input, and a means to execute

them. Makeflow is great for running workflows on a distributed

platform as Makeflow supports several different execution

engines. For improved flexibility, Makeflow assumes there is

no shared file system and provides the execution engines with

the information about file dependencies. These qualities make

Makeflow a good intermediate platform between Galaxy and

the execution.

Since many workflows are structured as a series of defined

tasks that can be mapped accross the input, scripts can readily

describe the workflow as a Makeflow. This architecture also

performs well as a lightweight workflow manager that can

express resources needed by tasks and schedule when these

requirements are met. The scheduling algorithm is limited,

requiring the user to manage scheduling by how the perfor-

mance workflow description is written. This design also allows

workflows to be submitted to batch systems, but is restricted by

the time required for tasks to be scheduled, inputs transferred,

and execution on the batch platform.

C. Work Queue

Work Queue is a lightweight master-worker platform. Work-

ers consist of a process that is started at an execution site and

communicates with the master process to retrieve, execute,

and return tasks. While preparing the task, the required de-

pendencies described by Makeflow are staged and a sandbox

is established. To utilize a worker, the site runs the worker, al-

lowing for workers to be created on any supported platform or

through a batch system. Work Queue provides several benefits

that help performance workflows. Workers are processes that

persist outside of the execution of single tasks. This allows

the master to cache files on the worker and reuse them to

limit multiple transfers to a single worker. Caching helps to

limit the execution time as well as the number of workers

needed to impact performance. This benefit can be extended

by utilizing ”multi-slot” workers on multi-core machines. If a

task is labeled with resource needs and the worker is larger

than the task’s requirements, multiple tasks can be scheduled

on the same worker. When a worker performs several tasks,

they share a cache that limits transfers and total disk usage.

Worker persistence also enables workers to be given tasks

as soon as they are available, without the overhead of waiting

for the task to be scheduled through the batch system. Side-

stepping the batch scheduler allows short tasks to be rapidly

scheduled, with of a less penalty. The uninstantiated workers

still need to go through the scheduling process, but once at

an execution site they can be utilized. Further, a Work Queue

pool can be created that scales active workers up and down as

need arises. If more workers are needed, the pool will submit

them to the specified resource, and lets them time out when

more exist than are needed. Work Queue’s design benefits



performance workflows in several ways, and has a means of

managing workers dynamically. These allow for applications

such as Galaxy to create and dispatch tasks and have a facility

that scales to handle them.

III. DYNAMIC JOB EXPANSION

Dynamic job expansion is the run-time transformation of

a single job in a logical workflow into a performance work-

flow. The resulting performance workflow must be logically

indistinguishable from the original job by accepting the same

input files and generating the same output files, while hiding

the complexity from the user. Figure 1 gives an overview of

dynamic job expansion.

For each type of logical job to be expanded, we must write

a job expansion tool. This is a command-line tool that is

invoked in an identical manner to the underlying applica-

tion. Instead of running the application directly, it writes out

the desired performance workflow, invokes the performance

workflow manager, and waits for it to complete. From the

perspective of the logical workflow manager, the job expansion

tool is the job to be run.

Naturally, job expansion must be specialized to a given

application and must take advantage of details of the appli-

cation’s structure and performance. For many applications, a

split-process-join pattern is effective. The initial step of the

generated performance workflow evaluates the size of the input

and split the inputs into appropriately sized pieces. Then, the

primary application runs on each split of the input, generating

multiple outputs. The final step merges the results into a single

output file. In simple cases, this might be concatenation of

the outputs, while in more complex cases, it could require

recomputing statistical results. The more complex cases rely

on knowledge of properly dividing the work, possibly in

stages, to maintain equivilance with the original tool.

Using Galaxy, Makeflow, and Work Queue, the process

works as follows. For each tool in the logical workflow, Galaxy

assigns the job an identifier, specifies input locations, and gen-

erates output filehandles. Galaxy creates a working directory

for the job and job execution is moved to the directory where

the job expansion tool can create the performance workflow.

The Galaxy wrapper script links inputs to the directory and

copies down the necessary execution files. The job expansion

tool writes a performance makeflow based on the input’s

characteristics.

After the performance workflow is created, the job expander

invokes Makeflow with Work Queue as its execution environ-

ment. Makeflow verifies that the structure of the performance

workflow is correct, and confirms the presence of required

input files. The split and join processes, which require most

of the existing files, run locally to limit the data transfer. The

remaining tasks utilize a subset of the files and are run in

parallel. Makeflow sends each task through the Work Queue

master to workers as required files become available.

The Work Queue master communicates with workers to

send tasks and inputs. When the task is ready at the worker,

the process is executed in a task sandbox. The completed task

returns the output to the master. Having verified that the task

produced a successful return value, the output is collected and

returned. Makeflow continues to submit and collect tasks until

all the tasks have been completed.

Upon completing the tasks, Makeflow joins the result and

the wrapper copies outputs to the specified filehandles. The

Galaxy wrapper script completes and Galaxy verifies that the

output files have been created. After the verification, Galaxy

changes the state of the job to either successful or failed. The

results are then delivered to the user, and the Galaxy job is

complete.

Dynamic job expansion benefits from several characteristics

of this process.

• Hidden Complexity Using an expansion tool to write

and run a performance workflow alleviates the user need

to understand the interprocess complexities and expand

within the logical workflow. This allows lay users to

quickly pick up a tool and use it interchangably with the

original tool, without needing to know the background

process.

• Environment Aware Decisions Expanding the workflow

at the execution environment provides several benefits.

Inputs are defined and can be used to make intelligent

partitioning decisions [10]. Intermediate files are man-

aged locally and do not fill the data store and history.

Processes utilizing many inputs, such as split and join,

can be run locally to prevent large amounts of data traffic.

• Flexible Execution Resources The ability to utilize

resources that are not primarily dedicated provides a flex-

ibility in scaling. This flexibility also provides a means

of users coming to a portal with their own resources.

IV. EXAMPLE APPLICATION

To demonstrate job expansion, we show a logical workflow

that transforms general genomic data to aligned genotyped

data. The working data is a query of 32GB of reads against a

reference dataset of 36MB, which are the reference loci of Red

Oak. This is done using BWA alignment, SAMtools sort, Pi-

card AddOrReplaceReadGroups, and GATK HaplotypeCaller.

When run on the working data, the BWA alignment and GATK

genotyping steps take the longest to execute: 19 hours and 12

days, respectively. These two steps were used to demonstrate

dynamic job expansion, and remaining intermediate steps were

left as sequential jobs.

Figure 2 details how this particular logical workflow was

expanded at runtime. The expansion strategy is slightly differ-

ent for each of the two tools:

BWA employs the Burrows Wheeler Transform algorithm

to align genome queries. BWA is a light-weight alignment tool

that supports paired-end mapping, gapped alignment, and var-

ious file formats like ILLUMINA [11] and ABI SOLiD [12].

The output format is SAM (Sequence Alignment Map), which

can be analyzed using a number of tools such as GATK and

the SAMtools package [13].

In previous work [14] we observed that the runtime of BWA

is roughly proportional to the product of the reference and



Fig. 1. Dynamic job expansion. In Stage 1, the job has been created by the user from the tool launch page. Once Galaxy gets the launch, the job is given an
id, a working directory is created, and the job is added to the history. Stage 2, the files selected at launch are located via the file database, and the location is
communicated to the job. Stage 3, inputs are collected, either directly or linked, in the job sandbox. Following setup, a script creats the performance workflow.
Stage 4, Makeflow is launched with the performance workflow in the job sandbox, and the workflow begins processing. Stage 5, a Makeflow creates a Work
Queue master that communicates with workers to create execution locations. Stage 6, the worker receives task, retrieving the inputs and task information. The
task is computed and the output delivered back to Work Queue, who relays this to Makeflow. The performance workflow will move through stages 4, 5, and
6, until the workflow is complete. After completion, stage 4 will finalize the outputs and copy it to the output location defined by Galaxy. If successful, stage
3 is cleaned up, and the wrapper process concluded. At stage 1 Galaxy will change the job status and the user will be informed.

the input size. The input dataset was partitioned into splits

of approximately 50K reads each. Partitioning the reference is

also possible, but would increase the complexity of joining and

negatively impact the use of cached files. We kept the reference

whole and distribute it to all nodes of the performance work-

flow. The joining phase of the BWA workflow separated the

header and content of each of the output splits, then generate

a single output with one header and concatenated contents.

GATK employs a sophisticated Bayesian algorithm to com-

pare aligned sequences with the reference. In this workflow,

GATK’s HaplotypeCaller walker was used for it higher sensi-

tivity, when compared with GATK’s UnifiedGenotyper. Hap-

lotypeCaller functions by indexing the input set and creating

walkers to locate variations between the query and reference.

Once a difference is detected, HaplotypeCaller performs local

assemblies to fill gaps or correct mistakes. This produces a

output that expresses how closely alignments match and other

information about the analysis as a whole.

The runtime of GATK is dominated by the size of the

reference file. Thus, the job expander splits both the query

file by size and the reference by distinct reference contigs.

There is added complexity after completion due to correcting

quality scores, but affects the runtime of the application less

than if the input were a single piece.

Using Galaxy’s workflow creation system, we were able

to create tools that split and join the input files. However, the

tool, in order to be used in a workflow, needed to have a static

number of inputs and outputs, limiting the dynamic nature of

this approach. This static design requirement is lifted when

expanding a job at runtime allowing the number of partition

be dynamically based on the input and not an arbitrary decision

made when creating a tool.

V. DESIGN CONSIDERATIONS

In the process of implementating job expansion, we en-

countered several problems that resulted from converting what

was previously a locally executed job into a performance

workflow: dependency management, remote execution, and

garbage collection.

A. Dependency Management

1) Problem: Jobs depend, explicitly and implicitly, on

things being in the local environment. An input file is an

example an explicit resource and is straight-forward to express.

Explicit resources are specified in the command, and expressed

by the user at launch. Implicit resources are, by nature, left

unspecified and known only by the program. Implicit resources

fall into two categories, the first is reference material, such

as database indexes, that are expected to exist within the

environment. When a user is not expected to specify these

resources, modifying a tools to require expression confuses

tool implementation. The second category is environment

resources, Java being a great example. Java is often required,

but the environment’s version may not be clearly expressed.

This causes confusion for the developer as they attempt to use

incorrect or absent versions.

For explicit resources, Galaxy tools clearly request re-

sources using the tool XML launch page. This handles the

expression of resources such as inputs and reference files.

Implicit resources such as database index files, are added to a

default location within the Galaxy instance. Referencing loca-

tion in the environment allows the indexes to be located by the

tools at execution. This solution requires users utilize existing

indexes, or add references and indexes, which is perfomed by

administrators. Implicit resources, such as Java versions, are

more difficult to deal with as they can be dynamic. Versioning,



Fig. 2. Detail of Example Application. The top level shows a workflow as it is represented in Galaxy. Each box is a tool, with the names and arrows
differentiating inputs and outputs. The Galaxy Logical Workflow lever simplifies the Galaxy representation to the simple logical workflow that it implies.
This level shows the sequential nature of the jobs. The Galaxy Execution level defines the environment in which they are running, local being on the Galaxy
instance and Makeflow denoting that the Makeflow process is local, but is creating tasks for parallelism. The Makeflow Environment level shows the process
of expanding a single job. This level clearly shows the split-process-join nature of the performance workflow created. The lowest layer illustrates that workers
from a number of systems can be utilized to perform the individual tasks.



in systems like Java, creates incompatitability that are difficult

to handle in the program and necessitate the program expresses

these requirements. These requirements need to either be

provided by the developer or expressed in a manner so tools

could access the intended variable or installation.

2) Solution: When designing an expanded tool, both the

explicit and implicit resources must be expressed prior to

execution. BWA alignment requires its reference be indexed

and the index be present. Many users know these files, but

often overlook them as they are assumed to be present. Galaxy

allows this implementation, assuming that the reference is in

a common location. This limits the references that the user

can use as this location file needs to be updated for every

additional reference, along with having the files moved to a

safe location. This was addressed here by creating the index

files at job execution. This adds the index files to the local

environment, but must be recreated every run. In the ideal

situation, the first time an index is created it is stored and

the reference is for future use. This option does not require

changes to the tool implementation that utilize the indexes, but

must be monitored as these files are moved and collect in the

system.

Handling environment settings also presents an interesting

set of problems. Java is a great example, as many programs

that utilize Java require a minimum and maximum allowed

version. This is remedied by utilizing a script that unpacks the

required version from an archive file and sets the neccesary

environment variables to utilize the unpackaged version. This

allows the required environment to be created at any execution

site specified. Packing the environment with the tools allows

freedom of movement for the execution, as well as guarentees

that it is utilizing the correct tool. Enviroment replication is

a well known issue encountered distributed computing. In our

simple example, a python script was created to package Java

locally prior to the workflow and one that unpacked Java at

the execution site. More complex situation can be handled by

tools such as Docker [15] and Umbrella [16].

B. Remote Execution

1) Design: Galaxy assumes that all jobs are run and

handled by the machine on which Galaxy is running. This

restraint was relaxed with the introduction of CloudMan [17],

which allows the user to send jobs to a number of different

cloud resources. CloudMan allows for the creation of a runner

that submits jobs to a cloud resource. Galaxy’s assumption

that each task in a workflow is a single job allows for easy

mapping from a Galaxy workflow to the scheduled task on

a cloud resource. An issue that arose in our implementation

is that the tool creates tasks that cannot use cloud resources

without having a mechanism to launch them within the Galaxy

controlled environment.

2) Solution: This was solved by utilizing Work Queue as an

execution engine. Using Makeflow in conjunction with Work

Queue, the tool uses a single port on the Galaxy machine

that communicates with Work Queue workers on a variety of

platforms. A pool of Work Queue workers was used to supply

a steady stream of cloud resources. This allows tools to be used

at different sites and execution engines. Work Queue utilizes

project names and passwords to allow workers to connect

without knowing the specific location ahead of time. The

project names allows the tools to be configured by allowing

Galaxy to name projects dynamically or for the user set it.

Allowing users to devote resources to a project, even if the

resources on the WMS are limited.

C. Garbage Collection

1) Design: When running an application, it is important to

create a clean namespace for the application to work in, and

clean the workspace after. Galaxy enforces this by creating

a job working directly when a tool is launched. Galaxy runs

the entire application from within this newly created directory.

Tools limit the amount of space used by specifing the absolute

path to the scripts, executables, inputs, and outputs. When

using this method, tools make no noticable footprint within it

and require no clean up. Some applications create temporary

files and miscellaneous outputs by default that are not cleaned

by the tool. The tool implemenation creates partitions of the

input, as well as the creation of many intermediate files that

are ignored by Galaxy, and would exist only at the working

directory.

2) Solution: The solution strives to minimize the footprint

and clean the directory. At the end of the a tool execution, after

the outputs are transferred back, the tool utilizes the Makeflow

clean option. This option removes all intermediate files and

output files that are located in the current directory. Following

this, the only remaining things to clean are executables and

inputs that were fully transfered to the directory. It is the

responsibility of the developer to clean any files that were

explicitly added, as they are neither dynamically created nor

removed by Makeflow.

VI. OPPORTUNITIES

We also observed two opportunities for better integration

between Galaxy and Makeflow, but did not address them in

this work: expression of job status and checkpointing.

A. Expression of Job Status

1) Problem: Galaxy expresses a job as running, waiting,

or complete. However, there is no clear indication of either

a job’s progress, or why a job is waiting. Additionally, the

completion status relays to the user only if a job failed or

completed as expected. Failures can be clarified by looking

at the logs and system output, but leaves investigation of the

cause to the user. The job running and completion status relay

to the user the barest amount of information about the job.

Some tools, such as GATK, give progress of what is being

done and progress through the input. This helps estimate the

time needed to finish as well as assure the user that processing

continues. These simple estimates would help Galaxy users to

better understand the tools and Galaxy’s overall progress.



2) Solution: Our tool implementation does not directly

address this design choice, but a simple solution may be found.

If, within a tool, a status file were designated, the WMS could

be configured to follow the tail of the status file. This would

allow any tool to create a status file of a supported format to

allow the WMS to track progress. A simple example of this

would be processes reporting their percentage done. The WMS

would need a means of expressing status in a location other

than the output files history. The WMS is informed about the

location of the working directory and status file to draw from.

After this, tools need to simply create a status file to enable

status updates. If a tool did not create a status file, then no

more information would be relayed than already provided.

B. Checkpoints and Partial Failure

1) Problem: Completion in Galaxy is a binary state, where

the job has either failed or completed, but there is no concept

of checkpointing or partial failures. This is adaquate for tools

that are extensively tested and there is little possibility of

system circumstances interferring with completion, such as

intermittent network connection. Galaxy treats jobs as local

Unix tasks, where the process is either done or not. Perfor-

mance workflows, however, can be represented as partially

finished, as either a result of failure or the workflow is still

computing. These partially completed workflows have check-

points, that allow for the workflow to be moved and restarted.

For example, Makeflow can be rerun using the Makeflowlog,

when intermediate data is present. Though WMS can preserve

the logs, it is difficult to preserve the working directory for

reuse. A manner of expressing both checkpoints and non-fatal

failures allows the underlying system to better express and

handle failures. Also,workflows are easily created and run, but

there is no functionality that allows for workflows to be rerun,

as you would for a single tool. Utilizing previously computed

results in restarting a partial workflow would improve usability

and reproducibility.

2) Solution: The solution would be to define a means of

returning either the working directory, if the user has machine

level access, or creating an archive for the user to modify.

The user resubmits the job after determining it was a non-

fatal error, or modifies to correct a user error. This package or

directory would then be resubmitted through a generic tools

that detects the required tool. This solution fundamentally

changes how WMS views tools and would require careful

thought for correct design.

As Work Queue utilizes network resources, failures that are

unrelated to the execution tool may occur. Failures in Work

Queue are not necessarily failures in the workflow, but possibly

an issue on the resource on which the task ran. In this case,

running the Makeflow-Work Queue process again from the

same directory and log changes the outcome of the workflow,

while not recomputing any previously successful work.

A mechanism within the WMS that allowed directly re-

running a workflow introduces a similar issue for workflows.

Assuming the WMS allowed rerunning workflow directly,

utilizing the previous results in a rerun would be as straight
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Fig. 4. The top images shows a histogram of the number of dynamically
expanded workflows that had a max of X workers running. The bottom
image shows the number of total tasks that each dynamically expanded
workflow had over the course of its execution. All workflows shown were
run with Work Queue and managed through Makeflow, and contains a mix
of workflows run concurrently and alone. The difference between the graphs
comes from two sources. The first being the tiered nature of the workflows,
only allowing a portion of the total tasks being executed at any given point due
to dependencies. The second being that for BWA the amount of concurrency
was limited to 50 to prevent overloading the network. The last is the potential
for better task partitioning and handling in future iterations as not every
situation is perfectly matched with workers.

forward as using the links within the workflow to determine

the work that has been previously done. The same result could

be reached by creating a workflow log that would link previous

progress to a new run of the workflow.

VII. EVALUATION

To evaluate the combined system, we implemented dynamic

job expansion on BWA and GATK as described above, and

then ran the combined workload in four different configura-

tions, using a campus Condor [18] pool to provision workers

on demand for the expanded jobs. We varied the amount

of query data in the first three configurations, using workers

configured to each run a single task. In the fourth configuration

(described below), the workers were configured to run four

tasks at once, sharing a local cache.

Config Query Reference Tasks/Worker

Small 0.6 GB 36 MB 1
Medium 7.5 GB 36 MB 1
Large 32 GB 36 MB 1
Large-Shared 32 GB 36 MB 4

Figure 3 shows the timeline of execution for each configu-

ration. The thin line of each graph shows the number of tasks

available to be executed, the thick line shows the number of

tasks executing, and the gray bars show data transfer over

a 10 second period. Note that the left axis measures tasks

ready/running, while the right axis measures data transfers. In

the first graph, dotted lines indicate the phases of the logical

workflow. In the later graphs, only the BWA and GATK phases

are shown.

On the largest dataset, the sequential version of BWA ran

19 hours, while the expanded version completes in one hour,

3 minutes. This resulted in a speedup of 18X on utilizing
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Fig. 3. This shows the execution of BWA, sorting, adding read groups, and using GATK to refine the results. The thin line of each graph shows the number
of tasks available to be executed. The thick line shows the number of tasks executing. The gray bars show data transfer during a 10 second period. The left
axis corresponds to the two lines, while the right axis corresponds to the data transfer. The four graphs, from top to bottom, show the small, medium, large,
and large with shared cache workflows. As you can see we are able to dynamically create partitions that allowed for greater parallelism and performance in
both BWA and GATK.



up to 50 workers. Figure 3 Row 4 Column 1 shows BWA,

with the bold line in front representing the spliting task, the

jagged section running BWA, and the end bold line joining the

results. The sequential version of GATK ran for days, while

the expanded version completes in 43 minutes for a speedup of

402X utilizing up to 125 workers. (The super-linear speedup

comes from keeping the memory consumption of each task

within physical memory.) Figure 3 Row 4 Column 2 shows

splitting, GATK, and joining similar to BWA. The four-job

logical workflow is accelerated by 61.5X overall.

In each configuration, it can be noted that neither the

available workers nor the running tasks are ever constant.

The workers vary due to competition from other users of the

shared Condor pool. The variance in running tasks is due to

the structure of the workload, and also due to the data transfer

between the master and the workers. That is, the master can

only dispatch tasks when the bandwidth can support transfer

of necessary data to workers.

The main barrier to scaling up further is data transfer. For

both BWA and GATK, not only must the query and reference

datasets be sent, but also the software tools and dependencies

such as the Java virtual machine. Each of these unique items

is cached at each worker node and reused for future tasks.

As the workload progresses, more workers have the necessary

data cached, and parallelism can increase.

The first three configurations use worker processes that can

execute one task at a time. This turns out to be inefficient,

because the physical machines are multi-core and often end

up running multiple workers simultaneously, each with its own

distinct cache that must be managed. To improve this situation,

we reconfigured the workers to consume four cores each, thus

sharing a single local cache among four running tasks. The

result of this can be seen in the bottom graph of Figure 3,

where the running tasks grows more quickly and moves less

data. In this configuration, we saw an 24 percent reduction

in outgoing data from the master to the workers, from 69

GB to 52.1 GB. This is substantial, because as the number

of concurrent tasks increases, the scalability is limited by the

systems bandwidth.

The ideal scenario shown helps to showcase the benefits

of this system design. To understand non-ideal situations, we

looked at data gathered from the catalog server, which matchs

workflows with workers, over the several month period of

operation to see actual behavior. Figure 4 shows a comparison

of histograms grouped by the number of tasks in each group,

running and total. The disparity between the running and

total histograms shows that there are limitations in the current

implemenation. This is the result of several design decisions.

The first is the limited concurrency through BWA. This only

allows the running tasks to reach 50, despite the total number

of tasks. This was done to limit the load on the network. The

second is caused by general traffic on the machine that limited

the ability to supply workers with work. These area provide

an opportunity to improve the performance and further limit

strain on the system. Figure 5 gives a full view of the system

and the comparitive concurrency.
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Fig. 5. The above image shows a scatterplot of the concurrency expressed, in
terms of number of tasks, opposite of the concurrency achieved, the number
of running tasks. As mentioned above, there are several reasons for disparaty
between expressed and achieved, but it also showcases area for improvement
in workflow creation. This would benefit from modeling functions to better
partition the workflows.

Overall, dynamic job expansion has a dramatic impact on

the overall performance of the workload, to the point where

attention must be paid to improving the performance of the

intermediate sequential steps.

VIII. RELATED WORK

The area of workflow design and management is a heavily

investigated field. This paper addresses two areas, the use

of logical workflows that describe the overview process of

applications and the performance workflows that aims to de-

crease runtime. Though Makeflow was selected for its simple

syntax and flexibility, there many other WMS that can be used

to create performance workflows, which allow for different

control. Taverna [4] is a system that enables the creation

of workflows for complex pipelines, and makes sharing and

reusing workflows a high priority to enable collaboration and

reproducibility. Pegasus [19] workflow management system

utilizes directed acyclic graphs (DAG) similar to Makeflow.

Pegasus make data flow and movement a priority and attempts

to optimize scheduling for this. Other systems, such as Ke-

pler [5] aim to provide tools for creating generic scientific

workflows where portability and power are important.

Swift [20], [21] has even been used to investigate similar

approaches that can be used to integrate it with Galaxy. The

most pronounced difference between many of these approachs

and our own is the focus on abstracting the parallelism from

the user. Spark [22] is another powerful WMS, that focuses on

utilizing the RAM to achieve higher performance, and could

be leveraged to further boost performance. A great overview

by Wang et al. [23], that looks at many of these systems and

there place within the WMS spectrum.

Ideally, any of the above mentioned management systems

could be used to replace either Makeflow, Work Queue, or

both. However, these were selected due to their interoper-

ability, Makeflows commandline interface, the light weight

expression of a workflow, and familiarity with them. Each of



these as advantages, that should be considered when using the

proposed approach for dynamic expansion.

IX. CONCLUSION

In conclusion, this paper looked at the structure of Galaxy’s

Workflows and proposed a manner through which jobs can be

partitioned for speed. An additional goal shown, is that the

complexity and structure of job expansion is hidden from the

user. This allows the user to utilize any number of tools with

only the small learning curve of understanding Galaxy’s envi-

ronment and Workflow Management System, without needing

to learn about cloud resources to utilize them. This manner of

cloud resource utilization shifts the control and care of these

resources to the resources provider, allowing to the correct

usage and management to be monitored and controlled.

This paper also explores the design decisions of WMS sys-

tems, to better accommodate this type of work. In addressing

these, WMS designers should look to how the system will be

utilized and who should be responsible for different aspects

of these systems control. This may lie on the designer to

abstract difficult system interactions, on the tool developer to

hide complexity and only show relevant choices to the user,

or on the user to be educated on the use of a set of tools to

better utilize the resources. These should be clearly laid out,

so as users come to a system in different roles they are aware

of what is abstracted away, and what can be relegated to the

user.
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