
Search Should Be a System Call

Brenden Kokoszka and Patrick Donnelly and Douglas Thain
Department of Computer Science and Engineering, University of Notre Dame

Technical Report TR-2013-03
April 2013

Abstract

Conventional operating systems are designed with
the assumption that applications are relatively close
to their data. However, as virtualization of systems,
networks, and storage becomes more widespread,
the typical latency between applications and data
has increased significantly. This increase in latency
can have a dramatic effect on application perfor-
mance, particularly on common system-level tools
that perform frequent metadata searches. To ad-
dress this problem,wepropose thatmetadata search
be elevated to a first-class system call within the ker-
nel. We present three implementations of the con-
cept: in anoperating systemkernel, in a ptrace sand-
box, and in a user-level file system. We demonstrate
that there are many opportunities to easily exploit
the search capability in standard system-level tools
with modest coding effort and no change in user
behavior. We evaluate the performance of common
applications using the search system call with vary-
ing levels of virtualization, showing reductions in
system call traffic ranging from 5 to 95 percent.

1 Introduction

Traditional operating system interfaces were de-
signed in a time when the software was relatively
“close” to the hardware. As such, most system
calls are relatively simple requests that correspond
closely to capabilities in the underlying hardware,
and are expected to have relatively low cost. How-
ever, as an increasing number of virtualization tech-
nologies are put intowide use, the distance between
software and hardware increases. Virtual machines
increase the cost of communication between appli-
cations and the operating system, and between the
OS and its drivers. Distributed file systems, storage
networks, and storage virtualization all increase the

distance and cost between device drivers and the
underlying storage devices. As a result, operations
that were once considered simple and inexpensive
can increase in cost by several orders of magnitude.

There is a long history of addressing this type of
problem by increasing the level of abstraction used
by the application. By allowing an application to ex-
press a high-level intent to performmultiple opera-
tions, the underlying software and hardware can do
a better job of carrying out the user’s intent. A well
known example of this evolution took place in disk
drives. AnOS no longer needs to direct themechan-
icalmotion of a spinning disk; instead, theOS issues
multiple operations concurrently via NCQ [5] and
the disk drive (or disk array) takes care of schedul-
ing, buffering, and fault tolerance. Likewise, it is
rare formodern applications to drawgraphics pixel-
by-pixel; instead, complex operations are specified
in a language like Postscript [15] or OpenGL [24],
enabling fast, parallel rendering on specialized ar-
chitectures found in devices like printers andGPUs.

Weargue that the distancebetweenapplications
and storage has increased to the point where it
is time to re-examine the interface between the
application and the file system.

In this paper, we focus on the performance of
metadata search within the file system. A large frac-
tion of the system call interactions between con-
ventional applications and the OS is due to pro-
grams searching through the file system: the shell
searches for executables to run, the linker searches
for libraries to load, interpreted languages search
for classes and extension modules, the list goes on
and on. Even the most trivial application like ls
can invoke thousands of system calls before it be-
gins its real work. When these searches occur on
a conventional operating system running on native
hardware, the cost can be overlooked. But, when
multiple virtualization layers are introduced and

1

system scale grows, these searches become a signif-
icant fraction of execution time.
To address this problem, we introduce a new sys-

tem call named search(). Search simply takes a list
of paths to be searched, a target pattern to find, and
a few options to control the behavior of the search.
By elevating this operation into a single system call,
we introduce several new opportunities:

• Fewer Kernel Interactions. Every interaction
an application has with the operating system
kernel is an interruption in task scheduling,
cache locality, and hardware properties. Espe-
cially as layers of virtualization are introduced,
the cost of each interaction increases. By reduc-
ing the interaction to a single system call, the
penalty of virtualization is reduced.

• Remote Delegation. In the case where the
metadata is stored on a remote service, typi-
cally a distributed file system, the entire search
operation can be delegated to the remote de-
vice, where it can be performed close to the
data itself. Modern file systems that imple-
ment a distinct metadata server (or a cluster of
metadata servers) are particularly well-suited
for this.

• Database Techniques. Once the entire search
operation is expressed as a single operation,
a whole fleet of database techniques become
relevant to serving the operation efficiently –
directories may be indexed, queries may be re-
ordered for locality, and results cached or com-
bined for scalability.

• Parallelization. In cases where the application
wishes to search across multiple file systems –
or the file system itself has internal paralleliza-
tion – parts of the search may be performed
concurrently for significant speedup.

We evaluate the concept of the search system call
by implementing it within the native Linux kernel.
Wemodify a selectionof standardGNUsystem tools
to use the system call internally without any change
in user behavior. We evaluate a series of system call
intensive operations in a number of configurations
including native hardware, a KVM [12] virtual ma-
chine, a ptrace-based sandbox, and a user-level re-
mote file system. We demonstrate that search dra-
matically reduces the number of system call inter-
actions between user and kernel. This has a modest
performance benefit when running on native hard-
ware, and an increasing benefits as the cost of virtu-
alization is increased.

libc

Kernel

libc

Kernel

Application

Without Search

System Call

With Search

System Call

Application

se
ar

ch

o
p
en

d
ir

re
ad

d
ir

st
at((n cl
o
se

d
ir

o
p
en

g
et

d
en

ts

st
at((cl
o
se

o
p
en

se
ar

ch

re
ad

se
ar

ch

((

cl
o
se

se
ar

ch

n

n

Figure 1: A single search system call replaces the many
system calls used to search through an n-file directory.

2 Search Opportunities

In a conventional operating system, search is em-
ployed ubiquitously by many different system tools
in order to locate the components that they need to
operate correctly. In all cases, a large number of
metadata operations are issued without interrup-
tion in order to reach a decision.
Following are examples of search operations com-

mon to many operating systems, with explanations
of how they appear in current versions of the GNU
tools running on Linux.
Path Search. Every time a new program is in-

voked, the file system must be searched for the de-
sired executable to run, taking the list from the PATH
environment variable. In a large organization with
a shared file system (or on a personal computerwith
a lot of software) there may be a very long list of di-
rectories to search before finding the desired entry.
On GNU-Linux, path searching is typically done

by the standard library in the execvp() system call,
or in some cases is handled by the user’s shell. A
typical system call trace would produce a series of
exec system calls to test for the existence of the ex-
ecutable for each entry in the PATH.
Library Search. Similar to PATH searching, pro-

grams search for a number of libraries on startup.
Modular setups also affect the time to search for
a library due to the setting of the LD LIBRARY PATH
environment variable. The number of permutations
increases with architectural variants supported. In
the case of an application which links to dozens of

2

open("/opt/lib/tls/x86_64/libselinux.so.1", O_RDONLY) = -1 ENOENT (No such file or directory)

stat("/opt/lib/tls/x86_64", 0x7fff941a9720) = -1 ENOENT (No such file or directory)

open("/opt/lib/tls/libselinux.so.1", O_RDONLY) = -1 ENOENT (No such file or directory)

stat("/opt/lib/tls", 0x7fff941a9720) = -1 ENOENT (No such file or directory)

open("/opt/lib/x86_64/libselinux.so.1", O_RDONLY) = -1 ENOENT (No such file or directory)

stat("/opt/lib/x86_64", 0x7fff941a9720) = -1 ENOENT (No such file or directory)

open("/opt/lib/libselinux.so.1", O_RDONLY) = -1 ENOENT (No such file or directory)

stat("/opt/lib", 0x7fff941a9720) = -1 ENOENT (No such file or directory)

open("/usr/local/lib/tls/x86_64/libselinux.so.1", O_RDONLY) = -1 ENOENT (No such file or directory)

stat("/usr/local/lib/tls/x86_64", 0x7fff941a9720) = -1 ENOENT (No such file or directory)

open("/usr/local/lib/tls/libselinux.so.1", O_RDONLY) = -1 ENOENT (No such file or directory)

stat("/usr/local/lib/tls", 0x7fff941a9720) = -1 ENOENT (No such file or directory)

open("/usr/local/lib/x86_64/libselinux.so.1", O_RDONLY) = -1 ENOENT (No such file or directory)

stat("/usr/local/lib/x86_64", 0x7fff941a9720) = -1 ENOENT (No such file or directory)

open("/usr/local/lib/libselinux.so.1", O_RDONLY) = -1 ENOENT (No such file or directory)

stat("/usr/local/lib", {st_mode=S_IFDIR|0755, st_size=4096, ...}) = 0

...

Figure 2: Example of Dynamic Library Searching
The first lines few output by strace ls, showing the dynamic linker searching for a single standard library
libselinux.so.1when the library path contains three entries: /opt/lib:/usr/local/lib:/lib64.

libraries, it is possible for thousands of system calls
to fly by before the program has an opportunity to
run. Figure 2 shows an all-too-common example of
ls searching for its libraries.

Filename Globbing. The shell often under-
takes search to complete filename patterns, which
is known as globbing. These may be simple comple-
tions like *.cor recursivedirectory completions like
/. The user may also do interactive completions
by typing a file prefix and pressing TAB. In GNU-
Linux, the bash shell handles these by opening the
directory appropriate to the context, reading all of
the entries with getdents and then applying stat
to get the metadata of the desired matches.

Directory Listing. Listing the contents of a di-
rectory is another common search pattern. While a
program such as ls is the most obvious example of
directory listing, there are many other applications
that could benefit from the search system call. For
example,when changing to another directory,many
shells will list child directories of the parent, as part
of tab-completion, to offer suggestions on a direc-
tory to change to. In this case, the shell is searching
a single directory for directories or links pointing
to directories. In GNU-Linux, ls uses getdents to
retrieve all the names in a directory, then calls stat
for every entry when detailed metadata is required.

Tree Search. The GNU find utility provides
a command interface for searching for files in the
file system. It provides advanced mechanisms for
searching a directory tree such as pruning sub-trees,
ignoring files, and selecting files based onmetadata.
Internally, this follows the same pattern as those
tools above.

These are only a few examples of search. Many
others come to mind: compilers search for include
files, web browsers search for extensions, and dy-
namic languages search for modules. Each of these
examples can be collected into a common code pat-
tern: for each directory in a list, search for the pres-
ence of files matching a pattern, and return that list
of files and (optionally) their metadata. We propose
to elevate this common pattern into a single system
call – search – which carries out the entire set of
metadata operations and returns a bulk result to the
caller.

3 Search Interface

We define the search system call as follows:

int search(const char *paths,

const char *pattern,

int flags,

void *buffer,

size_t len);

Where paths is a colon-separated list of directo-
ries to be searched, pattern is a filename pattern to
search for, flags control the search behavior, buffer
is where the results will be placed, and len is the
size of the buffer.

The pattern argument is a glob-like expression
against which file pathnames are matched. We se-
lected pattern semantics that best served the needs
of the system tools described below. The following
characters have a special meaning in pattern:

3

• * (asterisk) The asterisk is a wildcardmatching
zero or more characters, but not /, the directory
separator. For example, f*/b* would match
”foo/bar” but not “foo/xyz/bar”.

• ? (interrogation point) The interrogation point
is a wildcard matching zero or one characters,
but not /.

• | (pipe) The pipe is an alternation operator al-
lowing multiple patterns to match against a
pathname (logical OR).

• / (path separator) The forward slash matches
literally against a file’s canonical pathname.
Matching the forward slash follows the se-
mantics of the UNIX fnmatch function to
match a directory heirarchy, for example,
linux/Makefile will only match file “Make-
file” if contained in a parent directory “linux”.

All patterns are anchored to match against the
end of the pathname. Simply put, this means
the pattern must always match the final path-
name component, the filename. The pattern
maymatch the pathname partially. As a special
case, a leading forward slash anchors a pat-
tern to the top-level directory being searched.
This causes the pattern to be anchored on both
the front and back of the pathname and affects
the recursive behavior of search. A pattern
with a leading forward slash is considered non-
recursive while any other pattern is recursive,
able to match a file anywhere in the directory
tree.

The flags argument contains a number of bit
fields including:

• STOPATFIRST Halt search once the first
match is encountered. This flag is particularly
useful when searching for libraries.

• METADATA Include the the stat information
for each matched file as though a stat system
call were executed on each result.

• INCLUDEROOT Include the top-level direc-
tory the matched filename was found in. This
option is necessary if more than one directory
is in the paths argument to search.

• R OK, W OK, X OK Only match files that the
user can read, write, or execute, respectively.

The results of search are returned in a binary-
packed format that is space-efficient but somewhat
inconvenient to parse. Instead, we provide a user-
level interface that is analagous to opendir:

SEARCH * opensearch(char *paths,

char *pattern,

int flags);

struct searchent *

readsearch(SEARCH *search);

int closesearch(SEARCH *search);

struct searchent {

char *path;

struct stat *info;

int errsource;

int err;

};

When opensearch is called, it calls the search
system call and stores the results. Each call to
readsearchparses another searchent structure out
of the buffer, which contains a matching path,
the metadata, and (possibly) an error condition.
closesearch releases the buffer when done.

3.1 Examples

Afewexampleswill clarify how the interface is used
in practice. Suppose that a user at the shell enters
ch and presses TAB to complete the list of executa-
bles with that prefix. The shell code (ignoring error
handling) would look like this:

SEARCH *s;

struct searchent *e;

s = opensearch(

"/bin:/usr/bin:/home/fred/bin",

"/ch*",INCLUDEROOT|X_OK);

while(e=readsearch(s)) {

printf("%s\n",e->path);

}

closesearch(s);

After reviewing the list, the user selects chmodand
enters the command. The shell would then locate
the executable like this:

opensearch(

"/bin:/usr/bin:/home/fred/bin",

"/chmod", INCLUDEROOT|STOPATFIRST|X_OK);

A common directory list, ls -l, is simply:

opensearch(".", "/*", METADATA);

Now suppose the user enters cat */*.c to con-
catenate all C source files in all directories. The shell
would implement the pattern completion:

4

opensearch(".", "/*/*.c", INCLUDEROOT);

The search interface can also be used to perform
directory-related operations which may not com-
monly be considered searches. For example, this
concatenates the contents of two directories:

opensearch("/foo:/bar", "/*", INCLUDEROOT);

While the following gives a flattened representa-
tion of the tree at foo, using a recursive pattern:

opensearch("/foo", "*", INCLUDEROOT);

Now if the user wants to recursively locate all C
source files below the current working directory via
find -name *.c:

opensearch(".", "*.c", INCLUDEROOT);

4 Other Considerations

Error Reporting. There are a number of file opera-
tion primitives which may fail during the course of
a search. Some failuresmay be expected and should
not cause the entire search to fail. For example, a file
or directory may be unlinked before stat or open,
or the permissions on a directory may not allow
traversal. When handling these common errors, the
operating system tries to gracefully ignore the error
but still passes the failure up to the user within the
result buffer.
A failed action is reported in the result buffer

in three parts: the type of action which failed, the
pathname which the action failed on, and the errno
returned by the action. For example, if while per-
forming a recursive search, a sub-directory named
“Private” for which the user lacks list permissions is
encountered, an open operation would fail on path
“Private” with error EPERM. This information is re-
ported in the errsource, path, and err fields of the
searchent struct, respectively.
Crossing File System Boundaries. During the

course of search, a mount point for another file
system might be encountered. If the mounted file
system natively supports the search system call, it
can be most efficiently searched by invoking a new
child search system call directly on the mounted
file system’s root. The results from the child search
can then be appended to the results of the parent
search operation.
Because a new search call may be launched at

a file system boundary, it is necessary to mod-
ify the pattern for the new call. This is due to

partial pathname matches where the parent direc-
tory exists on another mount point. For example,
“/var/tmp” is commonly mounted on a separate file
system to prevent “/var” or “/” from running out
of space. If a user searches “/var” with the pattern
tmp/foo, the second search passed to the file sys-
tem driver for “/var/tmp” should receive two pat-
terns /foo|tmp/foo. The first pattern /foowill only
match a top-level file “/foo” in the “/var/tmp” file
system. The second pattern will allow the recursive
search for tmp/foo. This pattern decomposition al-
ways results in non-recursive patterns being added
to the new search.
Interruptibility. Apotentially long-running sys-

tem call should be interruptible so an application,
such as a shell, can be stopped by a user or external
force. At most system layers, the search system
call is decomposed into a series of stat, access,
getdents, and open system calls. So if these file sys-
tem operation primitives are interruptible, then the
search can also be interrupted.
If search is implemented by the file system —

probably a network file system — then interrupt-
ibility is more difficult. In the case of a network
file system, interrupting the remote procedure call
(RPC) may not be possible so the system is forced
to disconnect from the network volume temporar-
ily. Current implementations of NFS provide an
intrmount option to allow signals to interrupt the
process using NFS. Otherwise, a process would be
listed as uninterruptible and cannot be destroyed.

5 Implementations

To validate this concept, we have implemented the
search system in the Linux kernel, in a ptrace-based
sandbox, and in a user-level distributed file system.
In each case, the necessary code modifications were
modest, only a few hundred lines of code.

5.1 Native Linux

Our implementation of search within Linux com-
prises about 500 total lines of code. The system call
is implemented entirely within the portable system
layer and invokes abstract VFS operations to tra-
verse directories, obtain metadata, and so forth. A
more complete implementationwould adda search
operation to the VFS interface, and delegate the op-
eration to drivers that provide an optimized imple-
mentation.
It uses a buffer-oriented interface for returning re-

sults to the user. This is a necessity due to the kernel

5

being unable to return results via a callback (with-
out heavy cost). This type of interface is mirrored
in the Linux getdents system call which returns a
number of directory entries in a buffer for an open
directory. For the library interface, we are still able
to offer a streaming interface through readsearch.
Linux uses a virtual file system (VFS) abstraction

to enable the various file I/O system calls to easily
interact with a directory tree composed of multiple
file systems. These file systems can be very different
but offer a common interface to the VFS adapter.
Like other I/O system calls such as open, we use this
interface to search through the directory trees for
matching files. The basic operations we will use are
reading directory entries (readdir) and getting the
attributes of matched files (stat).
One of the complications of creating a search sys-

temcall onLinux isdealingwith the recursive aspect
of a depth-first search. Each directory searched re-
sults in a new procedure call to match the contents
of the directory with the given pattern. Addition-
ally, matching globbing patterns–patterns which can
match a range of characters–is naturally recursive.
Linux strongly discourages recursive algorithms be-
cause of very limited stack space available. By de-
fault, this stack space is 8192 bytes on a RedHat
Linux 6 x86-64machine. Because of this, we initially
allocate large blocks on the heap to store directory
entries and various state. This allows the stack to
be used almost exclusively for the procedure call
frames, allowing deep recursion. By default, we
limit a search to 16 levels of recursion before rais-
ing an EOVERFLOW error. So, searching /usr for a file
stored in /usr/1/2/3/4/.../16/17would cause an
abort in the system call.
Our tests for Linuxwill focus on achieving at least

competitive performance for search-enabled utili-
ties with the equivalent non-search-enabled utili-
ties. stat and open are aggressively optimized sys-
tem calls which, when data is colocated with the
kernel, will be difficult to match or beat. The main
performance benefit comes from avoiding system
call transitions.

5.2 Ptrace Sandbox (Parrot)

A growing amount of software uses the ptrace in-
terface as a basic virtualization mechanism, allow-
ing a controllingprocess to runa captiveprocess and
to observe or implement system calls on its behalf.
Commonapplications include full virtualization [6],
local file system development [26] or process isola-
tion.
In this case, we have used Parrot [28], a ptrace-

based virtual file system typically used to attach
programs running in a batch system to remote stor-
age devices over the wide area network. Like any
similar software, programs running in Parrot pay a
performance penalty due to the order-of-magnitude
increase in system call latency through ptrace.
From the user perspective, Parrot hooks other

file systems into the system namespace as if they
were mounted normally via the kernel. For ex-
ample, a GNU FTP server could be accessed as a
file via “/ftp/ftp.gnu.org/gnu/tar/tar-1.26.tar.gz” di-
rectly from the ptraced application. We will utilize
this capability in our tests of the search system call
against custom remote file systems.
To Parrot, we have added an implementation of

the search system call, which is also about 500 lines
of code. In the simplest case, the application invokes
search and Parrot decomposes it into basic system
calls, thus avoiding multiple ptrace transactions.
When the underlying file system driver supports it,
the search operation is passed over the network in
order to avoid multiple network transactions.

5.3 User Level Filesystem (Chirp)

To evaluate the use of search in a distributed con-
text, we make use of the Chirp [29] distributed file
system, which is a user-level system originally de-
signed to interoperate easily with Parrot. A Chirp
file server is a user-level process that accepts incom-
ing TCP connections, authenticates the client, and
then processes I/O requests in a simple ASCII proto-
col that corresponds closely to the POSIX interface.
(e.g. the client sends the text “open /etc/hosts r” and
the server responds with a file descriptor.)
To Chirp, we added a search RPC which corre-

sponds closely to the search system call. The client
sends a path list, a pattern, and flags, and the server
responds with the list of results. Because the client
and server communicate via TCP, the search RPC
can streamback an arbitrarynumber of resultswith-
out problem. Further, if the file server is running on
a kernel that supports the system call natively, the
operation can be passed down yet again.
From the user’s perspective, a Chirp server can

be accessed by starting the application through Par-
rot, and then accessing files through a path like
/chirp/hostname/path as if they were local file
names. To evaluate storage systems of varying la-
tency, we added to Chirp an option to add an artifi-
cial delay to each RPC.
One complication that results is when the Chirp

server is acting as an access control enforcement
point. The calling user may not have access to all

6

of the files that the server itself can access. In this
case,when the client requests a search, thefile server
must filter the results from either the native kernel
search system call or implement the search itself.

6 Modified Applications

To demonstrate the benefit of using the search sys-
tem call, we modified several common applications
and libraries to use search. We then compared the
search-enabled applications with their unmodified
counterparts, as will be discussed in Section 7.

bash v4.2: There are two obvious locations for
search optimization in the bash shell: PATH search-
ing and glob expansion. PATH searching is imple-
mented much like the examples in Section 3.1. glob
expansion is not complete because bashuses its own
globbing language that is an extension of the glob
and fnmatch interfaces in the standard library.

For simplicity, we did not handle these exten-
sions. In a complete implementation, we would
expect that an application with patterns that cannot
be expressed in the search system call would pass a
simplified search down to the kernel, then perform
a second level of filtering at the user level.

ls v8.13: We extended ls to use the search sys-
tem call to obtain the listing for a directory. By using
the METADATA flag, ls is able to obtain the stat in-
formation for each entry without statting results
individually (e.g. ls -l). By using recursive pat-
terns, ls can return results from an arbitrarily deep
directory tree with a single call to search.

ld.so v2.12.2: The loader must search
LD LIBRARY PATH for dynamic libraries each time an
application is executed. The optimization which
presents itself here is essentially the same as the one
made to bash’s PATH-searching routine. A single
search system call is used to check each entry in
LD LIBRARY PATH for the needed library.

glibc v2.12.2: The one glibc function we mod-
ified is execvpe. Normally, exevpe appends the
executable name to each PATH element and attempts
to execute the resulting path, generating atmost one
exec system call for each PATH element. The search
system call performs this PATH-searching in a single
system call.

find v4.4.2: Like ls, find traverses a directory
structure and outputs its contents. However, unlike
ls, find provides an extensive set of options for
pruning the search tree and filtering search output.
It is not possible to entirely replicate the function-
ality of find using solely the search system call.
However, it is still possible to intelligently utilize

the search system call at certain places within find
to improve performance.

Our modification of find uses the METADATA flag
to avoid making stat system calls. The directory
on which find is applied gets recursively searched
and the stat struct of each directory entry is saved
to a lookup table. find checks this table whenever
it would otherwise make a stat system call, thus
greatly reducing the application’s system call over-
head.

7 Evaluation

To evalute the impact of the search system call, we
focus on two metrics: system call count and wall
clock execution time. Though execution time is
what we seek to reduce in practice, it is highly de-
pendent on the environment in which the test is
performed. System call count, on the other hand, is
a portable result that explains the reason behind the
speedup.

The tests are run on a workstation machine with
a Intel Core 2 Duo x86-64 CPU (2 cores), 4 GB of
RAM, 8GB of swap space, and a 1 gigabit network
link. The system runs Red Hat Enterprise Linux
6.3 using Linux kernel 3.4.0. An identical machine
on the same switch is used as a remote fileserver
when needed. File system caches are dropped at
the beginning of each measurement.

The tests are run in six different environments:

• Native Red Hat Enterprise Linux 6.3 (Linux
kernel 3.4.0) modified to natively support the
search system call.

• KVM The previous environment running as a
KVM virtual machine.

• ptrace Sandbox Parrot running on the native
environment, passing through all file system
operations to the underlying file system.

• Remote {1ms,5ms,} Parrot running on Linux
with a remote Chirp [29] file system. In the Re-
mote 1ms and Remote 5ms environments, we
have imposed an artifical 1ms and 5ms RPC la-
tency on top of the latency of our local network.

The environments differ in terms of the time cost
of performing a system call, as summarized in Ta-
ble 1.

Across these six environments, we ran eight ap-
plications. The results of the tests are in Tables 2
and 3.

7

Environment stat µs open µs

Native 6.8 9.0
KVM 10.8 14.9
ptrace 101.5 152.0
Remote 221.0 335.8
Remote 1ms 1365.3 2671.5
Remote 5ms 5367.0 10684.5

Table 1

• find - Executes the command
find testbench/10 -name xyz, where the
directory “testbench/xyz” contains 1024 child
directories.

• ls -l - Executes the command ls -l on a direc-
tory containing 500 files. The reduction in open
systemcalls ismostlydue ld.so’s use of search
to locate libraries. The reduction in stat sys-
tem calls is due to the use of the search system
call to retrieve stat information for each of the
listed items.

• ls -lR - Executes the command ls -lR on a di-
rectory tree containing 1024 child directories.
The search system call has a much larger im-
pact on lswhen it is used recursively as in this
test. Because search can match filenames re-
cursively, the contents of an arbitrarily large
directory tree can be retrieved with a single
search call.

• exec - Executes a simple C program that calls
execvpe to execute cat and then terminates.
Three search system calls made by search-
enabled glibc replace over half of the system
calls that are made by the program when run
with unmodified glibc, resulting in a sizable
reduction in execution time.

• configure - Runs the configure script for vim
version 7.3. Present in the test are four differ-
ent uses of search: PATH-searching in bash
and execvpe, glob expansion, and library-
searching. This test highlights the benefits of
the search system call in a non-trivial situa-
tion.

• bash - Opens bash and runs the command ls *
on a directory containing 500 files. In this test,
it is bash, not ls, that has been modified to use
the search system call.

• firefox - Opens the address
http://google.com with Firefox, renders

it, and then exits. As with make, we did
not modify Firefox, and so this test shows
only the impact of the glibc optimizations.
Unlike make, Firefox only uses ld.so and not
execvpe. Though benefiting from only ld.so
optimizations, Firefox still exhibits modest
reductions in system call count and execution
time.

• make - Builds vim, i.e. runs vim’s makefile. We
did not modify make itself, so the system call
reduction in the search-enabled run of the test
is due solely to search optimizations in bash
and glibc.

System Call Count. Table 2 shows the result of
running each of the benchmark applications on the
native machine using the strace tool to count the
number of system calls with and without the search
system call enabled. The right side of the table
breaks down the search system call counts by the
calling code, indicating the nature of the optimiza-
tion. For applications whose key functionality is
addressed by search (find and ls), the reduction
in system calls is an order of magnitude or more.
For others (firefox and make) the improvement is
more modest (4-10 percent.)
Execution Time. Table 3 shows the wall clock

time to run each of the benchmark applications on
each of the six environments, with and without the
search system call optimization. (In the remote
cases, search is executed at the remote file server.)
In the native case, the time benefits are modest, but
increase as the virtualization levels increase.
Directory Scalability. Figure 3 shows the execu-

tion time and system calls, respectively, made by
find as it searched a complete balanced binary di-
rectory tree of varying depths. Even as the number
of directories increases exponentially, the search-
enabled version of find exhibits only a slight linear
increase in its execution time and system call count.
In this case, the cost of increasing the directory tree
size is dominated by user-kernel switching.
Remote Delegation. Figure 4 shows how search

can be implemented in different layers of the soft-
ware stack, ranging from the application itself (the
conventional) way, in the kernel, in a remote file-
server, or in the remote fileserver’s kernel. In this
case, we re-run find in each configuration, demon-
strating how moving search down each layer re-
duces the total number of interactions and the wall
clock time.

8

Total
Count

% Reduc.
Totals by System Call Type Search Callsites

Application
open {f,l,}stat execve getdents other bash

glob
bash
PATH

ls find execvp ld.so

129
99.5%

18 11 2 0 98
1 4find -name xyz

26789 6202 4130 2 4094 12361
2231

91.0%
19 15 2 0 2195

1 8ls -lR
24857 2156 6192 2 4094 12413
102

53.4%
15 9 4 0 74

1 2exec
219 69 63 20 0 67
1201

33.6%
20 516 2 0 663

1 8ls -l
1809 110 1051 2 2 644

630494
21.8%

38415 90345 5077 52 496605
221 318 183 5197configure

807159 132011 177403 11411 494 485840
1382

12.3%
36 1040 4 2 300

1 1 11bash -c ‘ls *’
1576 172 1128 4 2 270
4764

10.1%
105 112 2 0 4545

63firefox
5302 646 145 2 0 4509

985684
4.6%

288628 142257 1138 30 553631
3 110 152 1603make

1033077 313852 164357 4691 36 550141

Table 2: This table profiles the types of system calls generated in each of the tests we ran (columns 4-8). It further organizes search system calls by
the site from which they were invoked (columns 9-14). Gray cells denote the versions of programs extended to use the search system call.

Application
Native KVM ptrace Sandbox Remote Remote 1ms Remote 5ms

Time % Reduc. Time % Reduc. Time % Reduc. Time % Reduc. Time % Reduc. Time % Reduc.
2951

16.3%
6002

9.6%
1176

86.1%
7479

63.8%
7695

85.9%
8357

95.1%find -name xyz
4054 11024 8519 20662 54712 172022
3085

23.9%
9400

14.7%
2291

69.5%
6882

54.9%
7304

77.5%
8327

90.9%ls -lR
4407 11024 7528 15293 32591 91778
20

25.9%
106

24.2%
491

22.6%
5707

1.1%
5892

2.9%
6692

8.3%exec
27 140 635 5769 6068 7294
89

23.2%
946

13.2%
1095

4.7%
6880

2.3%
8963

8.6%
16408

15.3%ls -l
116 1091 1149 7043 9804 19372

15043
0.4%

25894
2.12%

118442
19.5%

167109
18.7%

338480
33.8%

804196
40.7%configure

15109 26457 147166 205644 511484 1357043
269

18.2%
599

3.2%
1197

8.1%
7433

-5.5%
6514

1.1%
6964

7.0%bash -c ‘ls *’
329 619 1303 7040 6589 7487
759

27.0%
1418

26.6%
65426

2.3%
13915

-1.5%
14400

-1.1%
88024

9.5%firefox
1040 1932 66959 13707 14240 97246

72957
0.6%

91124
0.5%

252230
6.5%

389438
3.9%

829179
15.0%

2340774
18.3%make

73413 91625 269812 405377 976440 2866695

Table 3: This table shows the wall time in milliseconds required to run each test program both with and without the search system call in various
environments. The displayed times are in milliseconds and are averages from ten runs (all but two tests had standard deviations below 22% of their
mean). Gray cells denote the versions of programs extended to use the search system call.

9

1 2 3 4 5 6 7 8 9 10
Directory Tree Depth

 1
 2
 3
 4
 5
 6
 7
 8
 9

Se
co

nd
s

Without Search With Search

Figure 3: Execution time of the find tool as it searches
through a complete binary directory tree of increasing
depth. Note that each tree contains 2depth−1 directories so
the x-axis is logarithmic with respect to directory count.

find -name xyz

ptrace Sandbox

Remote Filesystem

Kernel

search
syscall

search
operation

20.7s

14.8s

7.5s

6.3s

Figure 4: Execution time of find script with the search
operations progressively moved into deeper layers of the
storage stack. The black arrows represent the search sys-
tem call; the gray arrows represent the search operation
itself (consisting of many stat()s opens()s, etc.)

8 Observations

• Empircally, search is a very common activity in
standard system tools. Although we have only
instrumented ahandful of code points, wehave
already captured hundreds of search opera-
tions per second, particularly in highly scripted
tasks like configure. Many of them are redun-
dant in that they search for the same executa-
bles and libraries multiple times from different

programs, and could benefit from some form
of query caching in the kernel.

• The search system call significantly reduces the
number of user-kernel actions. Even in small-
scale user level tools like ls, there is only one
call to search, but it eliminates thousands of
interactions with the kernel and (potentially)
the underlying file system. In larger scale tests
like configure and make, the overall effect is
reduced, but given the larger number of calls
like open and stat remaining, the are further
opportunities to locate and elevate search

• The higher level abstraction of search has ma-
jor benefits in high virtualization environments.
When running on native hardware, search of-
fers modest benefits in execution time (with no
penalty), but as virtualization is added, the abil-
ity to “punch through” the layers pays increas-
ing dividends. In one case (find), the time
improvement is an order of magnitude.

9 Related Work

File system studies [21, 13] have found that as many
as 42% of file system system calls were stat and
fstat. The common usage pattern identified by
Roselli et al. is a stat for each file in a directory list-
ing and a stat before each open, which is consistent
with our observations. The problem is exacerbated
in large multi-user distributed file system installa-
tions, where it is common to have many indepen-
dent directories for each software item installed.
A common design pattern of scalable file sys-

tems is a centralized metadata service describing
a large number of storage devices that contain file
data. This pattern is used in AFS [11], GFS [8],
Hadoop [9], and NFSv4 [23]. While a central meta-
data server simplifies consistency management, it
presents a secondary scalability limit. This has been
addressed in recent years byfile systems that put the
metadata alongside the data storage [31], in a small
cluster of metadata servers (Ceph [32], GPFS [22]),
or in a distinct scalable name service (GIGA [19]).
In each of these cases, the cost of performing meta-
data operations is quite high because the clientmust
performmultiple operations against several servers,
and cache coherency issues prevent caching of data.
These are all good candidates for implementing a
native search operation within the metadata server
itself.
A number of additions to the POSIX interface

and semantics have been proposed to address com-
mon metadata operations of applications, typically

10

by optimizing one particular system call at at time.
The most widely used optimization (as in NFS) is to
permit the caching of metadata queries for a short
time, even when this conflicts with the desired con-
sistency semantics. POSIX extensions have been
proposed [33, 30] which returns the results of lstat
for each directory entry in getdents This extension
has been implemented in HPC file systems such as
PVFS [3, 4]. Still, even with improved directory list-
ing support, directories must be opened and closed
which can result in performance bottlenecks [2].
Patil et al.[18] have proposed the evolution of the
file system in this direction by adding higher level
capabilities that address indexing, search, and file
locality, demonstrating a prototype based on PVFS.

Deeper in the storage stack, a number of efforts
have improved the organization of the underlying
devices to support search operations. In-memory
directory hashing and on-disk B-trees have been
implemented in FreeBSD FFS [7] and XFS [27], re-
spectively, to provide better support for file search-
ing and indexing. The object storage model [16]
raises the level of abstraction of individual disks
from blocks to inode-like extents. Going farther,
intelligent storage [20] proposes that search and in-
dexing capabilities be native to individual storage
devices. Our proposal for a search system call is
consistent with this line of development, and could
bepushed as far as implementing a search capability
within individual storage devices.

From the top down, there have been many at-
tempts to combine the capabilities of file systems
and databases, so as to facilitate more efficient data
query, often for rich media applications. Inver-
sion [17] is an example of implementing afile system
on a relational database (rather than vice versa) so
as to accomodate deep queries into the file system
tree. Spyglass [14] is developed on top of file sys-
tem infrastructure to harness access to this informa-
tion to allow for efficient metadata search queries.
Most desktop operating systems now incorporate
an asynchronous indexing service to permit deep
content search across the file system. Our work is
complementary to these efforts in thatwe showhow
search is already ubiquitous in standard system tools
and not just a value-added operation for the end
user. By elevating search to a first-class operation,
we accelerate existing tools without any change in
user behavior, enabling future connections to these
types of operations.

A long-standing design question is whether
new operations in an existing interface should be
achieved by carefully selecting new fundamental
operations or by adding a limited programming in-

terface. Over the years, the latter approach has seen
prototypes in operating systems [1], networks [10],
andfile servers [25], but limiteddeployment inprac-
tice. In thiswork, wehavemade a limited expansion
of programmability in a way that closely matches
application needs without seeking complete gener-
ality of computation.

10 Conclusion and Future Work

We have argued that search should be a first class
system call in the file system interface. We have
demonstrated empirically that searches are com-
mon in standard system tools, and that by elevating
the interface, we can significantly reduce the total
number of interactions by moving the implementa-
tion into the kernel. The benefit of this change is am-
plified as the cost of virtualization increases. In fu-
ture work, we envision identifying other high level
operations that are candidates for elevation in the
file system interface, finding opportunitites to im-
plement search within scalable distributed file sys-
tems, and exploiting opportunitites for parallelism
and other optimizations.

References

[1] B, B., S, S., P, P., S, E., F,
M., B, D., C, C.,  E, S. Extensibil-
ity safety and performance in the spin operating system.
In ACM SIGOPS Operating Systems Review (1995), vol. 29,
ACM, pp. 267–283.

[2] B, P.,  N, P. Removing bottlenecks in dis-
tributed filesystems: Coda & InterMezzo as examples. In
Proceedings of Linux Expo 1999 (1999).

[3] C, P., L, S., R, R., V, M., K, J.,
 L, T. Small-file access in parallel file systems.
In Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE
International Symposium on (2009), IEEE, pp. 1–11.

[4] C, P., L III, W., R, R.,  T, R. PVFS:
A parallel file system for linux clusters. In Proceedings of
the 4th annual Linux Showcase & Conference-Volume 4 (2000),
USENIX Association, pp. 28–28.

[5] D, B. Native command queuing-advanced performance
in desktop storage. Potentials, IEEE 24, 4 (2005), 4–7.

[6] D, J. A user-mode port of the Linux kernel. In USENIX
Annual Linux Showcase and Conference (Atlanta, GA,October
2000).

[7] D, I., M, D. Recent filesystem optimisations
on freebsd. In Proceedings of the USENIX Annual Technical
Conference (FREENIX Track) (2002), pp. 245–258.

[8] G, S., G, H.,  L, S. The Google
filesystem. In ACM Symposium on Operating Systems Princi-
ples (2003).

[9] H. http://hadoop.apache.org/, 2007.

[10] H, M., K, P., M, J., G, C.,  N,
S. Plan: A packet language for active networks. In ACM
SIGPLAN Notices (1998), vol. 34, ACM, pp. 86–93.

11

[11] H, J., K, M., M, S., N, D., S-
, M., S, R.,  W, M. Scale and
performance in a distributed file system. ACM Trans. on
Comp. Sys. 6, 1 (February 1988), 51–81.

[12] K, A., K, Y., L, D., L, U.,  L, A.
kvm: the linux virtual machine monitor. In Proceedings of
the Linux Symposium (2007), vol. 1, pp. 225–230.

[13] L, A., P, S., G, G., M, E. Mea-
surement and analysis of large-scale network file system
workloads. In USENIX 2008 Annual Technical Conference on
Annual Technical Conference (2008), pp. 213–226.

[14] L, A., S, M., B, T., P, S., M,
E. Spyglass: Fast, scalable metadata search for large-scale
storage systems. In Proccedings of the 7th conference on File
and storage technologies (2009), USENIXAssociation, pp. 153–
166.

[15] MG, H. PostScript by Example. Addison-Wesley Long-
man Publishing Co., Inc., 1993.

[16] M, M., G, G.,  R, E. Object based
storage. IEEE Communications 41, 8 (August 2003).

[17] O, M. The design and implementation of the Inver-
sion file system. In Proceedings of the Winter 1993 USENIX
Technical Conference (1993), pp. 205–217.

[18] P, S., G, G., G, G., L, J., P, M., T-
, W.,  X, L. In search of an API for scalable file
systems: Under the table or above it? Defense Technical Infor-
mation Center, 2009.

[19] P, S., G, G., L, S.,  P, M. Giga+: scal-
able directories for shared file systems. In Proceedings of the
2nd international workshop on Petascale data storage: held in
conjunction with Supercomputing’07 (2007), ACM, pp. 26–29.

[20] R, A., J, M., M, M., D, B., 
D, D. Towards efficient search on unstructured data: an
intelligent-storage approach. In Proceedings of the sixteenth
ACM conference on Conference on information and knowledge
management (2007), ACM, pp. 951–954.

[21] R, D., L, J.,  A, T. A comparison of
file system workloads. In Proceedings of the annual confer-
ence on USENIXAnnual Technical Conference (2000), USENIX
Association, pp. 4–4.

[22] S, F.,  H, R. GPFS: A shared-disk file sys-
tem for large computing clusters. In USENIX Conference on
File and Storage Technologies (FAST) (Jan 2002).

[23] S, S., N, D., E, M., R, D.,
C, B., T, R.,  B, C. NFS version 4
protocol.

[24] S, D. OpenGL reference manual: The official reference
document to OpenGL, version 1.2. Addison-Wesley Longman
Publishing Co., Inc., 1999.

[25] S, M., A-D, A.,  A-D,
R. Evolving rpc for active storage. InACMSIGPLANNotices
(2002), vol. 37, ACM, pp. 264–276.

[26] S, R., W, C., S, G.,  Z, E.
Rapid file system development using ptrace. In Proceedings
of the 2007 workshop on Experimental computer science (2007),
ACM, p. 22.

[27] S, A., D, D., H, W., A, C., N-
, M.,  P, G. Scalability in the XFS file system. In
Proceedings of the 1996 annual conference on USENIX Annual
Technical Conference (1996), USENIX Association, pp. 1–1.

[28] T, D.,  L, M. Parrot: An Application Environ-
ment for Data-Intensive Computing. Scalable Computing:
Practice and Experience 6, 3 (2005), 9–18.

[29] T, D., M, C.,  H, J. Chirp: A Practical
Global Filesystem for Cluster and Grid Computing. Journal
of Grid Computing 7, 1 (2009), 51–72.

[30] V, M., L, S., R, R., K, R., W, L.,
 . Extending the POSIX I/O interface: A parallel file sys-
tem perspective. Tech. rep., Argonne National Laboratory
(ANL), 2008.

[31] W, S., P, K., B, S., M, E. Dynamic
metadata management for petabyte-scale file systems. In
Proceedings of the 2004 ACM/IEEE conference on Supercomput-
ing (2004), IEEE Computer Society, p. 4.

[32] W, S. A., B, S. A., M, E. L., L, D. D. E.,
 M, C. Ceph: A scalable, high-performance
distributedfile system. InUSENIXOperating SystemsDesign
and Implementation (2006).

[33] W, B. POSIX IO extensions for HPC. In Proceedings
of the 4th USENIX Conference on File and Storage Technologies
(FAST) (2005).

12

