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Abstract

Computer vision is experiencing an AI renaissance, in
which machine learning models are expediting important
breakthroughs in academic research and commercial appli-
cations. Effectively training these models, however, is not
trivial due in part to hyperparameters: user-configured val-
ues that control a model’s ability to learn from data. Exist-
ing hyperparameter optimization methods are highly par-
allel but make no effort to balance the search across het-
erogeneous hardware or to prioritize searching high-impact
spaces. In this paper, we introduce a framework for mas-
sively Scalable Hardware-Aware Distributed Hyperparam-
eter Optimization (SHADHO). Our framework calculates
the relative complexity of each search space and monitors
performance on the learning task over all trials. These
metrics are then used as heuristics to assign hyperparam-
eters to distributed workers based on their hardware. We
first demonstrate that our framework achieves double the
throughput of a standard distributed hyperparameter opti-
mization framework by optimizing SVM for MNIST using
150 distributed workers. We then conduct model search
with SHADHO over the course of one week using 74 GPUs
across two compute clusters to optimize U-Net for a cell
segmentation task, discovering 515 models that achieve a
lower validation loss than standard U-Net.

1. Introduction

Without question, advances in high-performance com-
puting architectures have fueled the innovation and success
of computationally expensive machine learning methods.
New many-core architectures allow researchers to make full
use of the large labeled datasets that are necessary to train
effective models (i.e., solutions) for various learning prob-
lems. Modern machine learning tools backed by GPUs,
clusters of traditional CPUs, and custom parallel hardware
have enabled data-driven computer vision approaches in nu-
merous domains, including healthcare [16], autonomous ve-
hicles [9], human biometrics [34], and many more [17].

Despite these successes, selecting the correct model for
particular data remains a difficult problem. Model per-
formance is highly algorithm-specific, with different mod-
els producing wildly different results on the same dataset.
However, model selection is not simply an algorithmic
choice. Model searches must also account for hyperparam-
eters: free parameters associated with a particular machine
learning model that govern its ability to learn. These pa-
rameters are separate from the elementary parameters (i.e.,
weights) that are learned from the data, and are set before
training takes place. Hyperparameters are often defined
over nonlinear, non-convex spaces with many local min-
ima, making optimization non-trivial. Choosing the best
model for a particular learning task boils down to choosing
the parametrized model that can accurately make predic-
tions from new data. This is known as the hyperparameter
optimization problem.

Steps have been made toward local [29, 35] and dis-
tributed [5, 11, 13, 38, 39, 40] hyperparameter search strate-
gies. An example of the distributed hyperparameter opti-
mization process is shown in Figure 1. Curiously, though,
current distributed strategies do not take advantage of po-
tential systems-based optimizations. Existing solutions do
not account for the hardware being used, instead enforcing
(in the case of cloud-based platforms [13, 39]) or assum-
ing that all connected hardware is identical. A key problem
that we and many other machine learning researchers have
encountered is that available computing resources for dis-
tributed hyperparameter optimization are typically hetero-
geneous and often spread across different networks. This is
the state of affairs for nearly all users outside of a handful
of cloud-based providers, which have internal on-demand
access to large homogeneous collections of fast hardware.
In the former case, efficient hyperparameter searches must
adjust the search strategy to make the best use of available
hardware. Even in the latter case, though, for collections
of homogeneous systems, decisions may be made about the
level of parallelism to exploit during the search.

While adapting distributed hardware to a search is not
possible, information about the search can be used to adapt



Figure 1. Example distributed hyperparameter optimization of U-Net [36] with different bypass connections for cell segmentation in
images from electron microscopy [28]. During optimization, a set of bypass connections is selected, then the layers of the network are
parametrized. The parametrized model is then sent to a remote worker for training and evaluation. This process is repeated many times,
and the optimal parametrized model is returned. Existing distributed hyperparameter optimization frameworks assign models to the first
available worker. SHADHO, by contrast, uses model structure and search performance to influence throughput by directing models to
appropriate hardware.

it to the hardware. Hyperparameters are ubiquitous across
different classes of machine learning algorithms, and each
algorithm can have a different set of hyperparameters dis-
tributed over different numeric and categorical spaces. For
example, a Support Vector Machine (SVM) has one to four
numeric parameters depending on the kernel function used
(i.e., linear, radial basis function, sigmoid, and polynomial).
Turning to deep learning, convolutional neural networks
(CNNs) require tuning a number of hyperparameters within
each convolutional layer, meaning that the search must ex-
pand with the size of the network. Information about the
structure of the search, such as the hyperparameter count of
each model, can inform how optimization proceeds.

A number of hyperparameter search strategies have
been proposed to solve this optimization problem, rang-
ing from naive approaches like random search [3], to more
rigorous approaches like Bayesian optimization [6, 38],
gradient-based learning [33], and bandit-based searches
[31]. These strategies address the problem of choosing the
next parametrization to test, but they operate under two ma-
jor simplifying assumptions: 1) that hyperparameters have
equal priority in the search, and 2) that hyperparameter
search spaces are equally complex. In practice, neither of
these assumptions are generally true.

One avenue for improving distributed hyperparameter
optimization, then, is to account for the necessity and
complexity of searching hyperparameter spaces to improve
scheduling the search. Hyperparameter optimization is best
represented as a bag of tasks (BoT) application, in which
there are an effectively infinite number of tasks that must
be mapped to a finite set of resources and no task is ex-

plicitly dependent upon another. Existing hyperparameter
optimization software uses a naive first-come, first-serve
(FCFS) approach to schedule hyperparameter evaluations.
By incorporating information about the models and hyper-
parameters being searched, however, it is possible to sched-
ule such that a greater proportion of searches are allocated
to larger models with less certain performance.

In this paper, we present the Scalable Hardware-
Aware Distributed Hyperparameter Optimization frame-
work (SHADHO), a general-purpose hyperparameter op-
timization framework. For each model in the search,
SHADHO approximates the complexity (aggregate size of
the hyperparameter domains) and priority (variation in per-
formance across different parametrizations). Models are
ranked by these two heuristics, and high-complexity / high-
priority models are assigned to more performant hardware.
In this way, search throughput is increased across models
with many hyperparameters and wider ranges of perfor-
mance on the learning task, making SHADHO suitable for
applications such as neural network architecture search. In
summary, the contributions of this paper are as follows:

1. Two heuristics — complexity and priority — for rank-
ing models in a model search / hyperparameter opti-
mization process.

2. A description of the SHADHO framework.

3. A demonstration of what the increased throughput
heuristic-based scheduling with SHADHO can offer
over FCFS schemes.

4. An application of SHADHO to CNN optimization for
membrane detection in microscopic images.



2. Related Work
Hyperparameter Optimization. Hyperparameter opti-

mization methods typically address the problem of how to
choose the next hyperparameter value to search. Manual
tuning and grid search [15] are popular methods because
they are easy to implement, however they rely upon domain
knowledge and will skip over many values in continuous
domains. Bergstra and Bengio [3] argued to replace these
practices with random search because it is just as easy to im-
plement and does not require discretizing the search space.
This scheme will more thoroughly search the hyperparame-
ter spaces, however it has no mechanism for narrowing the
scope of the search. Random search is the basis for Hy-
peropt [4, 5], a widely-used open source hyperparameter
optimization framework.

Guided approaches to hyperparameter optimization are
also popular, notably genetic algorithms and Bayesian op-
timization strategies. Genetic algorithms [2, 19, 43] have
historically been applied to hyperparameter optimization,
however they are prohibitively expensive as the number
of hyperparameters increases [6]. Sequential Model-based
Bayesian Optimization [26], Tree-Structured Parzen Esti-
mators [6], Gaussian process-based estimation [38], and
Sequential Model-based Algorithm Configuration [24] are
popular Bayesian optimization strategies, implemented in a
number of open source and proprietary frameworks [5, 11,
13, 29, 38, 39, 40]. These methods use previous hyperpa-
rameter values and their corresponding evaluations as pri-
ors for approximating viable hyperparameter values, and as
such can become stuck in local minima.

Methods beyond genetic algorithms and Bayesian opti-
mization have also been explored to exploit different selec-
tion criteria. MacLaurin et al. [33] introduced a method
that learns gradients with respect to hyperparameter values,
allowing for fine-grained hyperparameter optimization but
requiring an expensive gradient calculation step. Domhan
et al. [14] introduced a method for extrapolating learning
curves using Markov-Chain Monte Carlo inference to pre-
dict parametrized model performance and update the hy-
perparameter selection method using the predicted perfor-
mance. The Hyperband method introduced by Li et al. [31]
performs grid search using a budgeted successive halving
method that assigns a cost to each search. Ilievski et al. [25]
propose using radial basis function surrogates and dynamic
coordinate search to select candidate hyperparameter val-
ues. Like Bayesian optimization, these each narrow the vi-
able domain of each hyperparameter under optimization by
examining previously tested values and applying an opera-
tion to prune the domain. As with Bayesian optimization,
these methods run the risk of falling into local minima.

Tuning a neural network architecture for a particular
learning problem presents a different set of challenges to
standard hyperparameter tuning, including selecting neural

network layers and connections between layers. The opti-
mal neural network architecture is typically determined by
iteratively building up the network and observing perfor-
mance on the dataset. Historically, this iterative procedure
has been carried out by trial-and-error [18, 20], in which
one parameter from one layer is manually varied at a time.
Several automated methods, including construction / prun-
ing methods [23], particle swarm optimization [21], and ge-
netic algorithms [2] select new layers based on observed
performance. Zoph et al. [47, 48] developed a method that
chooses optimal neural network models using reinforce-
ment learning, however they report using several hundred
GPUs to conduct this search in both published case stud-
ies. Neural networks are also being applied on a smaller
scale for architecture selection [10, 12], utilizing a network
trained to generate candidate architectures for evaluation.

All of these hyperparameter optimization and architec-
ture search methods were created to decide which hyper-
parameter values to search while assuming all models and
hyperparameters are equal. The question of how to conduct
a hyperparameter search given a set of possibly heteroge-
neous distributed resources, particularly in terms of direct-
ing models to appropriate hardware and focusing on models
with uncertain performance, is new to this problem.

Dynamic Distributed Task Scheduling. A number of
heuristic-based distributed scheduling algorithms exist for
general-purpose task scheduling, with a focus on optimiz-
ing for task dependency graphs. The two algorithms (HEFT
and CPOP) presented in [41] focus on providing solutions
to scheduling tasks in a directed acyclic graph (DAG) struc-
ture to prioritize critical tasks which many other tasks rely
upon. HEFT uses a task complexity heuristic to schedule
dependent tasks similar to the heuristic we propose. In [8],
the authors built upon the HEFT algorithm presented in
[41] to more explicitly consider the effect scheduling cer-
tain tasks before others will have on the performance of the
DAG workflow. Biswas et al. [7] extended the HEFT algo-
rithm with additional heuristics and a multi-queue scheduler
to address the problem of scheduling across heterogeneous
systems. Al Ebrahim and Ahmad [1] also extended HEFT
to explicitly consider all dependencies and data transfer
among a static set of tasks.

Existing heuristic scheduling solutions are not well-
suited for solving the problem of scheduling a model search
or hyperparameter optimization process because they as-
sume that the task space is modeled as a dependency graph.
Hyperparameter optimization is best modeled as a BoT ap-
plication: mapping an effectively infinite set of indepen-
dent tasks to a finite set of resources. Heuristic schedul-
ing for BoT typically involves monitoring resource utiliza-
tion [46, 45] to minimize the cost of running the tasks, or
else scaling hardware to the set of tasks in the case of elas-
tic cloud services [37]. This work, by contrast, schedules



based on properties of the tasks (i.e., model training ses-
sions) themselves to match the available hardware, focusing
on larger models with less certainty in their performance.

3. Heuristics for Hyperparameter Search
Fundamentally, hyperparameter optimization is the

problem of selecting a model,M, and parametrizing it with
a set of hyperparameters, λ, such that M(λ) learns a de-
sired set of patterns from a dataset with minimal error. Each
hyperparameter λi ∈ λ is defined over a distinct discrete
or continuous domain, si ∈ s, and hyperparameters are
searched by drawing a value from each domain and eval-
uating the performance ofM(λ).

Optimizing hyperparameter search over a particular set
of hardware is the problem of mapping models to hardware
with resources proportionate to the need to search a given
model. To measure “need,” two pieces of information must
be known: 1) the number of searches necessary to com-
pletely searchM(λ), and 2) the fitness ofM to the learning
problem. Both of these values must be approximated in gen-
eral because hyperparameters are often defined over contin-
uous domains, and model performance may only be deter-
mined experimentally. We define these approximations as
the search complexity and priority of each model.

3.1. Complexity

The complexity of a model is determined by the aggre-
gate size of its viable hyperparameter domains. Hyperpa-
rameter domains are defined over both continuous and dis-
crete spaces, so any heuristic must be an necessarily approx-
imation of the size of the search. Moreover, a complexity
heuristic should maintain the order of spaces based on their
size. Thus, for any hyperparameter domain si ∈ s, we de-
fine the search complexity C(s) as

C(si) =

{
2 + ‖b− a‖ if s is continuous
2− 1

|si| if s is discrete
(1)

where [a, b] is the closed interval containing 99% of the
probability distribution governing s. C(s) enforces a strong
ordering on spaces based on their size: continuous spaces
are considered more complex to search than discrete spaces.
Moreover, C(s) maintains the order of continuous spaces
relative to continuous spaces and discrete spaces relative to
discrete spaces. Model complexity is then approximated as
C(s) =

∑
si∈s C(si).

Complexity offers a static measure of the need to search
a particular space, gearing a search toward models with a
large number of hyperparameters defined over a wide vari-
ety of spaces. Note that complexity is not necessarily an
approximation of running time, rather it is a description
of the size of the search spaces. In many cases, particu-
larly when searching neural network architectures, there is a

correspondence between hyperparameter count and running
time, however this relationship does not generally hold.

3.2. Priority

To complement the static complexity heuristic, dynamic
assessment of the need to search a model is also neces-
sary. The priority heuristic accounts for model performance
across different parametrizations, estimating the fitness of
a model to learn from the data as a function of variation in
performance.

Priority is calculated using the method described by
Bergstra and Bengio [3] for approximating hyperparame-
ter importance to a model’s performance on a dataset. For
a given model, a Gaussian process with RBF kernel is fit
to a dataset consisting of the tested hyperparameter values
and their resulting loss values. The learned length scale l of
the RBF kernel that maximizes the log marginal likelihood
is extracted after fitting as an approximation of the sensi-
tivity of the RBF kernel to changes in the hyperparameter
values. This process is repeated 50 times to obtain a sample
of length scales, L, and the priority is approximated as

P (L) = min(L)−1 −max(L)−1 (2)

In essence, P (L) approximates the covariance between
parametrizations and their resulting performance to give an
estimate of the intrinsic fitness of a model for the learning
task. Models with high parameterization covariance (low
P (L)) are less pressing to search because their fitness is
known; those with low covariance (high P (L)) have a wide
range of observed performance and thus should be searched
more thoroughly to determine their fitness. Note that a
model with “consistent performance” will receive a low pri-
ority regardless of whether it performs well or poorly, as
priority is a measure of variation.

Like complexity, models with a larger priority are pre-
ferred in the search because there is less certainty about
their fitness to the learning task. This lack of certainty in-
dicates that the hyperparameter spaces should be explored
more thoroughly to better understand how the model per-
forms under different parameterizations. Models with low
priority should continue to be searched, given that the per-
formance of the model over the entire hyperparameter do-
main cannot be known, however the number of searches al-
located should be scaled back.

4. SHADHO Framework
To create a heuristic scheduler for hyperparameter op-

timization, we implemented complexity and priority in the
SHADHO framework. SHADHO is an open-source Python
package built on top of the scientific Python stack [27, 35]
and the Work Queue framework [44] for hyperparameter
generation and distributed task management, respectively.



Figure 2. Splitting a specification tree into a set of disjoint trees. (Left) The specification tree contains two subtrees: an optional subtree A
and an exclusive subtree B. The root level indicates that a subset of both subtrees should be included if possible. (Right) The trees created
by splitting the specification tree. Because A is flagged as optional, trees (1) and (2) include both children of A, while A is excluded
entirely from trees (3) and (4). Additionally, each of the four trees contains only one child of B. In terms of hyperparameter search, A
corresponds to an operation that is global across models, such as a preprocessing step, and B corresponds to disjoint models.

4.1. Defining Search Spaces

Prior to a search, models are defined as a tree with hy-
perparameter domains as the leaves. In this tree, individual
models are demarcated by tagging subtrees as “exclusive”
(only one path below may be followed at a time) or “op-
tional” (the subtree is either included or excluded entirely).
SHADHO splits this tree into a forest at runtime based on
the exclusive and optional tags, with each tree in the forest
corresponding to a single model, as shown in Figure 2.

Search space definition semantics were created based on
the best practices outlined by Bergstra et al. [4]. As a re-
sult, the API will be familiar to users of Hyperopt, a stan-
dard open-source distributed hyperparameter optimization
framework. Examples of defining search spaces, including
the usage of “exclusive” and “optional” flags, can be found
in the SHADHO documentation (see supp. material).

4.2. Hardware Awareness with Compute Classes

To simplify hardware-aware scheduling, SHADHO
groups connected workers based on common hardware re-
sources. These compute classes can be grouped by GPU
model, number of cores, memory size, and other arbitrary
user-defined features. These are then ranked in order of per-
formance to create a hierarchy by which models may be as-
signed to hardware.

4.3. Using Heuristics in SHADHO

SHADHO uses an implementation of the complexity
and priority heuristics defined in Equations 1 and 2 to
rank each tree (model) in the forest. The models are then
ranked by their complexity and priority, with equal prece-
dence given to both heuristics. The ranking is used to
weight models such that higher-ranked models are sched-

uled more often and assigned to higher-performing hard-
ware. Considering both heuristics as equal balances the
search between emphasizing models with more potential
parametrizations and those with greater performance vari-
ation across parametrizations.

While SHADHO uses both heuristics by default, one or
both may be deactivated to accommodate the model search
and available resources. For example, if a large model can-
not feasibly run on one particular compute class, the search
can use complexity only to ensure that the model is only
trained and evaluated on nodes of that compute class. Sim-
ilarly, exploratory studies with a large number of models
may benefit from using priority only to direct the search
based on model performance alone. For evaluation pur-
poses, SHADHO may also operate in heuristic-free mode
(SHADHO-FCFS), in which models are scheduled FCFS.
SHADHO-FCFS is equivalent to other distributed hyperpa-
rameter optimization frameworks in that it makes no deci-
sions about task scheduling.

4.4. Distributed Task Management

Distributed task management and execution in
SHADHO are handled by the Work Queue execution
engine [44]. Work Queue uses a master-worker scheme
consisting of a centralized master and distributed worker
processes. The master coordinates the workers that may
be running on a variety of machines in clusters, clouds,
or grids. Work Queue workers are persistent processes
submitted to a batch job system that communicate with the
master to request work. If tasks are available, the master
dispatches them as shown in Figure 3. The worker operates
entirely within a sandboxed environment on its host system
that includes cached versions of files used across tasks.

Workers and tasks support specifying hardware resource



Figure 3. Work Queue Master-Worker architecture. Tasks are dis-
patched by the master process with the necessary input files (F1),
command to run (T1), and the expected output files (F2 and F3)
to an available worker process. Each worker may handle multiple
tasks that all share a common data cache in each worker.

requirements. For the worker process, the resource require-
ments may consist of any or all of: cores, memory, disk,
and GPUs. This ensures that the batch system managing
the workers will only land each worker process on a ma-
chine with at least the minimum requested resources. A
worker can also advertise an arbitrary feature to the master
(i.e., the CPU model). For tasks, the resource specifications
ensure the master only dispatches tasks to workers that can
handle them. Task resource specification includes the same
resources as the worker (cores, memory, disk, and GPUs),
but it may also request any arbitrary feature. SHADHO uses
Work Queue’s hardware requirements specification to group
workers into compute classes.

5. Experiments
To demonstrate the effectiveness of heuristic-based hard-

ware assignment for hyperparameter search, we apply
SHADHO to two computer vision problems: Support Vec-
tor Machine (SVM) optimization for handwritten charac-
ter identification, and fully-convolutional neural network
(FCNN) optimization for cell segmentation in electron mi-
croscopy images. SVM optimization allows us to quan-
tify improvements in performance compared to software
with FCFS scheduling. FCNN optimization demonstrates
SHADHO’s applicability to difficult learning problems.

5.1. SVM Optimization

Our first experiment, optimizing SVM for handwritten
digit recognition using the MNIST dataset [30], is a bench-
mark for determining the throughput of hyperparameter op-
timization software. While MNIST classification is a solved
problem, it is a useful benchmark for demonstrating in-
creases to throughput enabled by SHADHO because each
individual sets of hyperparameters may be tested quickly,
but performance and running times vary across SVM ker-
nels. Figure 4 presents the four SVM kernels and the spaces
searched for each of their hyperparameters.

Figure 4. Specification for searching four SVM kernel functions,
with four distinct models. Each kernel contains a different number
of hyperparameters, giving the trees a strong complexity-based or-
dering. C: soft-margin constant, defined uniformly over [0, 15],
and scaled logarithmically. γ: kernel coefficient, defined uni-
formly over (0, 103]. r: an additional coefficient, defined over
[−103, 103]. d: polynomial degree, a random integer from 1 – 15.

In this experiment, we used the scikit-learn [35]
SVM implementation trained using one-vs-rest classifica-
tion with one estimator per class (10 total) parallelized over
the number of available cores on a worker. Tests were dis-
tributed over 150 workers: 50 4-core machines, 50 8-core
machines, and 50 16-core machines. In this case, a 4-core
worker was able to train 4 estimators in parallel, while a
16-core worker trained all 10 simultaneously.

We performed random search using SHADHO,
SHADHO-FCFS, and Hyperopt [5], a standard hyperpa-
rameter optimization package, and report the performance
in terms of the number of hyperparameters tested per hour.
To standardize each trial, SHADHO performed a search
for one hour, assigning searches to workers based on their
complexity and priority. The same set of parameters were
then tested using SHADHO-FCFS and Hyperopt, both of
which perform FCFS scheduling.

Table 1. SVM Optimization Metrics
Method Avg. Throughput (tasks/hr)

SHADHO 463.03
SHADHO-FCFS 227.28

Hyperopt [5] 252.42

The average throughput per trial over 48 trials is shown
in Table 1. On average, SHADHO achieved a 1.8× in-
crease in throughput over Hyperopt and a 2× increase over
SHADHO-FCFS, with all three using approximately the
same workers in each trial. As shown in Figure 5, the
distribution of SHADHO’s throughput across the 48 tri-
als was much smaller than that of Hyperopt or SHADHO-
FCFS, indicating that heuristic-based hardware-aware task
scheduling leads to more consistent performance than FCFS
scheduling. We attempted to mitigate the effects of dis-
tributing trials across a network with dynamic usage pat-
terns by running the three methods back-to-back in each
trial. In general, this led to similar worker connectivity
patterns, however sharp drops in connectivity can be seen
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Figure 5. The throughput in tasks completed per hour over all SVM optimization trials (left) and average connected workers over the first
hour of each trial (right) for SHADHO (green), SHADHO-FCFS (blue), and Hyperopt [5] (red). SHADHO had the highest throughput
on average, 1.8× that of Hyperopt and 2.0× that of SHADHO-FCFS. SHADHO also had the smallest throughput distribution, indicating
that heuristic-based distribution leads to more stable performance. In most cases, the difference in average number of connected workers
between SHADHO, SHADHO-FCFS and Hyperopt in a given trial is extremely small, indicating that the three methods were operating
with approximately the same set of distributed workers in every case. Thus, the difference in throughput is attributable to heuristic-based
task scheduling except in extreme cases of network load (e.g., trials 26, 29, 33, and 48).

in Figure 5. In each of these cases, the limiting factor on
throughput was network load — we intentionally ran these
experiments in a production environment with other users.

It should be noted that both SHADHO-FCFS and Hy-
peropt were able to match the throughput of SHADHO dur-
ing a small number of trials. This is not unexpected: a
FCFS scheduling scheme, which is effectively random task
scheduling, will on occasion achieve much higher through-
put than average due to task order. This is not reliable,
though, as is evident from the size of each distribution.
Both of the FCFS-based methods have wide throughput
distributions, indicating extremely unreliable performance.
SHADHO, on the other hand, boasts a smaller throughput
distribution and thus more consistent performance.

5.2. U-Net Optimization

In the neuroscientific domain, neuronal cell segmenta-
tion by membrane detection in electron microscopic (EM)
images is a difficult problem. In general, EM data is
noisy with staining and imaging artifacts obscuring fea-
tures, and few annotated datasets exist to train a pixel-
wise classifier [22, 32]. We selected the EM dataset in-
troduced by Kasthuri et al. [28] because it is one of the
few with comprehensive ground-truth annotations created
by a domain expert that is not of trivial size. We selected a
253× 2048× 2048 voxel subset of the data for training and
evaluation. The goal of this experiment was to train a pixel-
wise classifier to correctly segment cells in the volume.

We used SHADHO to optimize U-Net [36], a state-of-
the-art fully-convolutional neural network for microscopic
image segmentation. In addition to a forward downsam-

pling / upsampling path, U-Net includes bypass connections
that feed the output of early convolutional layers on the
downsampling path to the corresponding convolutional unit
on the upsampling path. In this experiment, we conducted
model search and hyperparameter optimization over a num-
ber of different U-Net models with varying bypass connec-
tions1. Table 2 lists the hyperparameter values searched,
with all hyperparameters except learning rate randomly
sampled for each convolutional layer. In all cases, mod-
els were trained to optimize cross entropy on augmented
tiles from the first 80% of the dataset and evaluated on the
last 20% of the dataset. The ground truth was inverted to
emphasize cell membranes over cell interiors. Models were
trained for 150 epochs with a batch size of 100 128× 128-
pixel images and early stopping for models with plateauing
performance.

Table 2. U-Net Hyperparameter Search Spaces
Parameter Values

Min. Kernels 16, 32, 64, 128
Kernel Size 1, 3, 5, 7, 9
Activations sigmoid, tanh, relu, elu, PReLU,

LeakyReLU,
ThresholdedReLU

Initializers zeros, ones, glorot normal,
he normal

Regularizers l1, l2, l1 l2
Dropout Rate uniform distribution over [0, 1]
Learning Rate uniform distribution over [10−4, 1]
Over the course of one week, we evaluated 1075 U-Net
1Details about the bypass connections may be found in supp. mat.



a b c
Figure 6. An image from the validation set created from the EM cell segmentation dataset of Kasthuri et al. [28] with ground-truth overlaid
in red (a), and predictions obtained from the standard U-Net model (b) and an optimized model found by SHADHO (c). The SHADHO
model includes less noise in its predictions and more clearly separates the individual cells. Both segmentations classify dark features in
the cell interiors as background, and this is a difficult challenge to overcome due to their similarity to the background of the ground-truth.
Circled: Examples of merge errors and misclassifications improved upon by our discovered model. Best viewed in color.

models with different parametrizations using 16 NVIDIA
Titan X Pascal, 50 NVIDIA Tesla K80, and 8 NVIDIA GTX
1080ti GPUs. We compared these against a standard U-Net
model as described by Ronneberger et al. [36] trained us-
ing a cross entropy loss function and the Adam optimizer
with a learning rate of 10−4. The published U-Net achieved
a validation loss of 1.07 after training, and we discovered
515 models with a lower loss. An example of the differ-
ence in classification ability between one of our models
and the published U-Net model is shown in Figure 6. As
can be seen, the U-Net model discovered by SHADHO in-
creases the separability between cells in the image and in-
curred fewer merge errors and misclassifications than the
standard U-Net model. Based on these results, we conclude
that SHADHO was able to find higher-quality models than
the hand-tuned published U-Net model.

6. Conclusions
Hyperparameter optimization is a crucial step in the ma-

chine learning process, and evaluating as many parametriza-
tions as possible increases the chance of finding a high-
quality model. SHADHO increases the throughput of hy-
perparameter optimization by determining the complexity
and priority of searching each model and adjusting the pro-
portion of searches allocated to each by assigning models
to appropriate hardware. In the case of SVM kernel op-
timization, SHADHO increased the throughput of model
evaluations by a factor of 2.0 over FCFS distributed hyper-
parameter optimization. Moreover, when applied to U-Net
for microscopic image segmentation, SHADHO discovered
a large number of models with lower validation error than
the standard U-Net, indicating that SHADHO can improve

upon hand-tuned models.
The current implementation of SHADHO only makes

use of a random hyperparameter search strategy. Recent
studies have introduced promising search strategies involv-
ing Bayesian optimization and bandit-based search, and fu-
ture versions of SHADHO will incorporate these and forth-
coming developments. Additionally, the problem of auto-
mated neural network architecture construction has been
broached in recent deep learning work [42, 47]. One of the
prime benefits of SHADHO is the ability to dynamically re-
allocate work to appropriate hardware. Neural network ar-
chitecture search involves testing networks of varying com-
plexities and running times, making SHADHO a suitable
framework for exploring and scaling their architectures.

The ability to effectively allocate hyperparameters to
hardware is central to SHADHO’s operation. We will con-
tinue to explore other methods for approximating com-
plexity and priority, including methods for understanding
running time across heterogeneous hardware (complexity)
and comparative performance metrics between models and
search spaces (priority). SHADHO will allow us to explore
these methods at a massive scale and advance both machine
learning and distributed computing.
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