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Abstract—Many scientific applications operate on large
datasets that can be partitioned and operated on concurrently.
The existing approaches for concurrent execution generally rely
on statically partitioned data. This static partitioning can lock
performance in a sub-optimal configuration, leading to higher
execution time and an inability to respond to dynamic resources.

We present the Continuously Divisible Job abstraction which
allows statically defined applications to have their component
tasks dynamically sized responding to system behaviour. The
Continuously Divisible Job abstraction defines a simple interface
that dictates how work can be recursively divided, executed,
and merged. Implementing this abstraction allows scientific
applications to leverage dynamic job coordinators for execution.
We also propose the Virtual File abstraction which allows read-
only subsets of large files to be treated as separate files.

In exploring the Continuously Divisible Job abstraction, two
applications were implemented using the Continuously Divisible
Job interface: a bioinformatics application and a high-energy
physics event analysis. These were tested using an abstract job
interface and several job coordinators. Comparing these against a
previous static partitioning implementation we show comparable
or better performance without having to make static decisions
or implement complex dynamic application handling.

I. INTRODUCTION

Many scientific applications consist of large datasets that
can be decomposed for concurrent execution. Fields such as
bioinformatics, high energy physics, and astrophysics leverage
concurrent execution to decompose and analyze data of all
scales. Most of these applications have consistent analysis
steps, particularly in pre-processing, which allows for clean
mapping to any size data. In this context, the methods for
partitioning large datasets into smaller and more manageable
components are well understood, which allows data analysis
to be described using common templates or frameworks.
The prevalence of concurrent execution is such that new
technologies are regularly developed and execution is deployed
across many different compute sites.

The proliferation of concurrent approaches has lead to a
wide variety of models, methods, and techniques that ap-
plication developers can leverage for execution and scale.
For many of these applications, decomposition into a bag-
of-tasks approach allows for a variety of execution platforms.
Examples are seen in areas of batch systems (HTCondor, AWS
Batch, SLURM), job execution frameworks such as MapRe-
duce (Hadoop, Spark), or more general workflow management
systems (Makeflow, Pegasus, Work Queue, Swift, etc.). These

systems explore different ways to handle application execu-
tion, data management, and scalability. Application developers
chose from a variety of concurrent systems based on needed
features and then design an application using their knowledge
of the underlying scientific application and the chosen system.
However, having made a predetermined partition the bag-of-
tasks approach often limits how responsive these systems can
be. Furthermore, the application designer may not be an expert
in either the underlying scientific application, scalable design,
or both, producing an application that makes naive design and
partitioning decisions which lead to sub-par performance and
resource utilization.

Bag-of-tasks approaches create a set of jobs that are passed
to the execution system. The common approach for speci-
fying bag-of-tasks applications predicates that the partitions
are already defined when submitted. The static nature of
the partitioning limits the ability of the execution system to
influence the size and performance of partitions. This static
definition either locks the applications performance or requires
a more complex application that uses feedback to adjust the
partitions. In many concurrent approaches the cost of creating
partitions is high, further increasing performance overhead.

In this paper, we propose the Continuously Divisible Job ab-
straction, which introduces a dynamic sizing job interface for
scientific applications. The Continuously Divisible Job inter-
face is used with an abstract job for portability and operation
abstraction and managed using a job coordinator that scales
abstract jobs based on resources and utilization. The Continu-
ously Divisible Job abstraction relies on a user specified inter-
face to define the mechanism for how inputs are partitioned,
jobs are executed, and the output handled. This interface
exploits the application developers domain knowledge and
allows for dynamic behavior via job abstractions. To further
enhance data partitioning, we also propose Virtual Files which
manage data indexing, lightweight partitioning, and just-in-
time file instantiation. Virtual Files help to limit the amount
of redundant file reads and writes, exploit cached or shared
files, and allow lightweight partitioning.

To show the Continuously Divisible Job abstraction we ex-
amine the performance of two applications, BWA for genome
sequence alignment and a high-energy physics event analysis
for detecting dimuon candidates. Using BWA, results were
compared between a static bag-of-tasks approach and as a



Continuously Divisible Job application. These were run locally
and using master-worker framework for distributed execu-
tion. We compare the scaling and execution time, showing
that in the good configurations the Continuously Divisible
Job implementation is comparable in performance, and in bad
configurations the Continuously Divisible Job implementation
can adjust sizing to improve performance. For the dimuon
detection we compared different methods of accessing the
complex input format as a virtual file.

II. CONTRIBUTIONS

Our contributions in the paper are:
1) We introduce a definition of the Continuously Divisible

Job abstraction and how it can be used to flexibly
partition, distribute, and execute on a large datasets.

2) We show how Continuously Divisible Jobs can be used
to tune applications online for better performance and to
escape bad initial partition configurations.

3) We discuss how Continuously Divisible Job coordinators
can be used to construct a hierarchy of resources and
coordinators to load balance and tune performance.

4) We define a Virtual File abstraction and how data parti-
tioning and movement can be minimized with indexing,
lightweight partitioning, and just-in-time file realization.

III. BACKGROUND AND CHALLENGES

To address the limitations of bag-of-tasks style concurrency,
the methods for constructing and executing them need to be
explored. In the area of concurrent execution, batch systems
form the basis of computational power. Batch systems provide
low-level mechanisms to describe and schedule work to a
host of machines, providing large scale available resources.
Batch systems are generally leveraged for high-performance
computing as with SLURM [1], PBS, and Torque, or high-
throughput computing such as HTCondor [2], Open Science
Grid, and the WLCG. The general submission approach used
by batch systems requires static submissions. Users aiming to
harness more resources must partition, submit, and manage
the work themselves.

As more general batch systems are limited in how dy-
namically work can be partitioned, more specific execution
frameworks have been developed. This includes approaches
such as MapReduce [3], bulk synchronous parallel [4], and
more general data driven models such as workflows, all of
which map cleanly with bag-of-tasks. MapReduce for ex-
ample, as implemented in Hadoop, relies on the inherently
parallel nature of the data analysis to scale smoothly. In the
standard Hadoop setup, the execution is scheduled to the node
where the data resides, relying on HDFS [5] to have created
a sufficient number of data shards for high performance. This
can lead to the predetermined splits having disproportionate
work and long tail execution. Spark [6], [7] , which is built on
Hadoop, can still fall prey to the same issues. Though Spark
is able to leverage more performance by enhancing HDFS
with resilient distributed datasets (RDDs), the partitioning is

still programmer and system driven which can lead to poor
configurations from imbalanced data and static sizing.

For more general data driven execution, scalable workflow
systems offer high-level task abstractions allowing for more
easily controlled scaling. Solutions for scalable workflow
systems fall into two categories: static and dynamic. In a
static approach the user defines the size, partitioning, and
scalability of the work and relies on the workflow system
for distribution and execution. This approach relies on the
application developer’s knowledge of the data to define and
predetermine the partitioning. After this point the workflow
system directs and manages the concurrency, dealing with
resources, communication, and failure management. Example
systems using this approach include Makeflow [8] and Pegasus
[9], both of which rely on static directed acyclic graphs. This
allows for simple workflow design and templating, but has lim-
ited flexibility for runtime adjustments. Similarly, workflows
can be defined more generally using the Common Workflow
Language [10] or the Workflow Description Language [11].
The goal of these systems is to write a workflow once and
use different engines or systems to execute. This is similar
to the API and job drivers that will be introduced, but lacks
the ability to create a feedback loop for sizing. The static
nature of partition decisions limit the responsiveness of the
underlying workflow system. Once a workflow is defined,
feedback cannot be used to adjust the size or shape of tasks.
This static sizing can lead to poor performance, often lacking
knowledge of number of resources, network performance, or
even application execution time. For example, in Figure 1 we
show how the total runtime of BWA is influenced by the task
size on a fixed dataset.
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Fig. 1. A standard BWA bioinformatics workflow’s performance with the
input partition size varied. The partition size was varied from the dataset
seize of 1,000,000 sequences down to 10. The overhead introduced when
using partitions of only a single sequence was so large that the application
consistently failed to complete.

The dynamic approach requires the application developer
to devise and direct the concurrency of the application. This



involves a more nuanced understanding of both the appli-
cation (i.e. partitioning, performance, resource requirements)
and distributed design (i.e. task scheduling/ordering, failure
management, resource acquisition). Examples include Work
Queue [12], RADICAL Cybertools [13], Swift [14], and Parsl
[15] allow for simple dynamic task definitions, but decisions
about sizing and task handling are still largely user burdens.
Similar to dynamic workflows are task based systems such
as Charm++ [16] that allow low level control, but need
more management. The challenge is that these approaches
require both knowledge of the application behavior and an
understanding of distributed application behavior.

The existing solutions provide many options for defining
and executing work, but lack flexibility when running bag-of-
tasks style work. In general, these approaches rely on static
partitions, either defined by the developer or the underlying
system, which constrain work similarly. Some of the common
challenges that arise from static sizing are high partition and
execution overhead, long tail execution from imbalanced work,
and rigid mapping to resources. Additionally, when the execu-
tion system is unable to further manipulate sizing it is difficult
to model solutions for more complex execution configurations,
such as adapting to heterogeneous resources, nested resources
for data distribution, or identifying and isolating failures.

IV. CONTINUOUSLY DIVISIBLE JOBS

Continuously Divisible Jobs are applications with defined
minimum computational units, such as an events, sequences, or
slices of input data that can be processed in large batches. This
structure is common and can be seen in high-energy physics
event processing for particle collisions, genome sequence
alignment in large queries, and large batch simulations for
model observation and validation. Each computational unit
has a short execution time, often on the order of seconds to
minutes. However, the collection of these units are large, often
processing thousands to millions of events in a single batch,
greatly increasing the execution time and resource needs.

Continuously Divisible Job interfaces are implemented in
terms of five functions: SPLIT, JOIN, EXECUTE, TO_DESC,
and FROM_DESC, that can be used to dynamically handle
and execute these large datasets, with each function operating
on any amount of data, from a single slice of data to the
full dataset. Applications that have implemented this interface
can be started and managed using a job coordinator that
partitions and executes the data. These job coordinators can
be designed for a number of execution platforms such as
batch systems, execution managers, or run locally. Using the
abstract jobs, the job coordinators can be chained together to
create flexible hierarchical stacks of resources that can share
work and load balance as needed. These job coordinators can
also be designed to tune the partitions to more efficient sizes,
but more importantly can be used to escape from bad initial
configurations (i.e. naive job partitions).

In this section we will define the design and capabilities of
the Continuously Divisible Job interface implemented by an
application, abstract jobs, and job coordinators that operate

on abstract jobs to partition and execute the application.
Dividing the Continuously Divisible Job abstraction allows
the mechanism of partitioning and executing to be defined by
the application domain expert, and the policy of executing
these job with job coordinators is left to the distributed system
expert or system administrator of a site.

A. Operations

To achieve the dynamic sizing and resource utilization
of the Continuously Divisible Job abstraction we define
a set of operations and attributes that applications need to
implement. These definitions can be implemented directly by
the application designer or domain scientist, as decisions on
how and where to partition data, what parameters are needed
for executions, and the expected environment can directly
impact the validity of the results. The Continuously Divisible
Job interface instructs the abstract job on the mechanism of
job handling, and are the only components the application
designer needs to implement.
SPLIT(JOBs, COUNT, SIZE)::[JOBs1,..,JOBsn]

Given a number and the size of splits this creates a set of new
jobs, containing the number of created jobs at the specified
size and an additional job containing any remaining slices.
Each new job should be able to reconcile its context in the
origin job and the dataset as a whole. If the split job does
not contain enough slices for the full count of partitions,
split should return a set with as many as possible. Splitting
a job does not necessarily perform partitioning, but logically
separates the slices for execution. In a base approach this may
partition data, but as will be explored later in Section V there
are other methods for late or just-in-time data partitioning.
JOIN(JOBa, JOBb)::[JOBjoin]||[JOBa, JOBb]

Join takes the specified job and joins it with the calling job
returning a set of new jobs. The implementing application
should determine if the two jobs are joinable and either return
a single combined job or the passed-in jobs in sorted order.
This allows for application specific join behavior for either
contiguous, ordered or unordered slice combinations. The join
operation may be called on jobs that have or have not been
executed, requiring the application developer to handle both
cases. As provided by abstract jobs, the application will not
need to join executed and non-executed jobs. If the application
chooses to allow for more application level management,
the application can simply merge all jobs, and hold its own
application level slices.
EXECUTE(JOB)::RESULT

The execute operation performs the application core computa-
tion. Application execution could be in the form of spawning
a process, running a shell command, or simply calling a
function. There are no parameters for the execute functions as
all application level variables should be specified in the jobs
definition. This operation may be executed remotely, addition-
ally requiring the list of files, environment, and resources.
TO_DESC(JOB)::DESCRIPTION
FROM_DESC(DESCRIPTION)::JOB

The TO_DESC and FROM_DESC define the basics for seri-
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Fig. 2. This diagram outlines the relationships between the data slice, Continuously Divisible Job interface, abstract jobs, and the job coordinator. An abstract
job consists of a data slice, the applications, and the interface wrapper. Abstract jobs may map a single slice, or contain several independent. These abstract
jobs are managed by the job coordinator, which splits, executes, and joins the work. The job coordinator decides how and when jobs are placed on resources.

alizing and deserializing the application. As the location of
execution is determined outside of the applications control the
serialization allows job instances to be consistently packaged,
moved, and reconstituted for execution, a core component
used in both bootstrapping this initial job and using remote
execution job coordinators. There are many methods that can
be used for implementing the serialization and deserialization
of an application instance such as converting objects to JSON
or language specific approaches (i.e. Python pickle). System
agnostic approaches such as JSON are preferred allowing for
a wide range of execution environments, possibly even mixed
within a single application.

In combination with the core operations implemented for
an application, there is also a set of attributes that allow the
above operations to be called intelligently and the overall per-
formance tuned. These are not strictly necessary, but provide
insight that allows the jobs to be run on a variety of systems
without assuming shared filesystems, complete node use, or
consistent environment for execution.

• Inputs files: Provides both the static files needed for all
jobs and the data specific to each job’s slices.

• Output files: The expected outputs of the job.
• Resources: The size of the resources needed for execu-

tions, such as cores, memory, and disk.
• Environment: The expected environment variables used

by the underlying application.
• Size: The total size of the application instance allowing

precise splitting and performance analysis.
• Result: An attribute that determines is the slice has be

completed, and if so if it was successful.
Having defined an application’s interface, an instance of

the application can be instantiated. This can be done either
by directly creating an instance or by using the FROM_DESC
to bootstrap. Each partition of the data is considered a slice,
and the combination of data slices with the application and
its interface create an abstract job. Abstract jobs, as will

be defined below, can contain a number of slices, allowing
dynamic sizing. The relationship between data, applications,
abstract jobs, and the job coordinator can be seen in Figure 2

B. Abstract Jobs

The core bridge of the Continuously Divisible Job abstrac-
tion between applications and job coordinators are abstract
jobs. Abstract jobs provide the management of higher level
applications. An abstract job allows a single large slice or mul-
tiple slices to be grouped and managed without the application
developer needing to handle every possible case of splitting
and merging partitions. Non-mergable partitions can coexist in
a single job, enabling more dynamic sizing. Executed and non-
executed partitions can be passed as one or separated with no
additional application handling. Application specific files and
libraries can be captured with minimal user involvement, such
as for bootstrapping an application remotely.

To facilitate the flexible handling of slices without pushing
the handling onto the job coordinator, the abstract job layer
needs to handle splitting mixed- and multi-slice jobs, joining
and sorting possibly non-contiguous jobs, and provide high
level mechanisms for reasoning about and classifying jobs.
This provides additional functionality for the job coordinators
to take advantage of in the areas of defining and tracking
application results, grouping jobs based on the underlying
state (un-executed, failed, successful), and logically packing
undersized slices together. This layer’s consistent interface
allows the job coordinator to organize and execute jobs with
no knowledge of application, and likewise the application
designer does not need to interact with job coordinators. On
execution the application bootstraps an instance with data,
creates an abstract job, and submits to the coordinator.

C. Job Coordinators

A job coordinator is the execution and policy management
of the Continuously Divisible Job abstraction. Job coordinators



are intended to be implemented by the execution system devel-
opers and site administrators, and are the primary component
deciding on job sizing, execution, and collection. As such, the
application developer (e.g., the scientist) does not implement
a coordinator, but selects from existing job coordinators based
on need. This could be in the form of a multicore executor,
a coordinators that submits to their execution system, or a
mix of job coordinators to achieve the desired configuration.
Job coordinators work directly with abstract jobs to distribute
and execute the specified computation. At its most basic, a
job coordinator receives an abstract job and executes it, but
more likely a job coordinator partitions the work to utilize
many core machines. Using the TO_DESC and FROM_DESC
functions in tandem allow job coordinators to adapt to a variety
of resources and sites.

As job coordinators operate on abstract jobs, the job co-
ordinator needs to rely on its own feedback and metrics to
inform partitioning size and performance. This allows the
job coordinator to tune for general performance, without
being application specific. Tracking the time to create slices,
execution time per slice, or cost of joining slices are just a
few ways to measure performance. Designed properly, job
coordinators can avoid bad performance in several cases. Jobs
with high overhead can be scaled up as the increased size may
mitigate execution overhead and improve throughput. Data can
be processed in batches with time limits to avoid losing entire
submissions if the resources time out or are lost, providing
timed checkpoints. The same structure of timed batches can be
used to load balance between fast and slow workers or highly
variable slice execution. Partitions can be sized to support any
number of workers, while maintaining user responsiveness.
The more flexible the execution system, the more ways jobs
can be tuned and resource utilization improved.

In addition to job performance tuning, job coordinators can
be used to distribute work in a number of ways. The recursive
nature of partitioning and joining allows several drivers to be
used in combinations to address the users needs. This can be
used to achieve multi- and mixed- tiered execution models as
seen in Figure 3. This model could be further extended to have
hierarchical job coordinators that submit to a tree of resources,
but allow the resources to report results directly back to the
source. In cases with large input data but compact results,
this model would allow for parallel distribution but centralized
result collation. An example of a hierarchical model similar
to what is shown in Figure 3.

Finally, job coordinators can be used to identify and isolate
failing partitions. As is often the case, data may be mal-
formed or corrupted causing the application to fail. In static
approaches, it is left to the user to bisect the failing task and
isolate the culprit. However, the dynamic sizing and result
tracking of abstract jobs allows the job coordinator to automate
isolation, minimizing analyzed slices.

D. Design Considerations

In developing the application operation for Continuously
Divisible Job interface, there are several design considerations
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Fig. 3. Capabilities of Continuously Divisible Job abstraction. Using the
Continuously Divisible Job abstraction, jobs can be partitions and run locally.
Using the same design we can also distribute to multicore workers or to
other job coordinators that further distribute the work. This highlights how
the Continuously Divisible Job interface relates to overall recursive design.

that should be taken into account. These considerations include
such topics as methods for file partitioning, how namespaces
and job sandbox should be handled, and how result ordering
can affect performance. Defined below are some larger con-
siderations along with designs and methods to resolve them.

1) File partitioning: File partitioning is often a crucial part
of Continuously Divisible Job applications, as applications
generally read in and analyze the full input dataset. As a
result, each split requires new data partitions to be create, but
generates redundant data in naive approaches. If each split
directly partitioned the data, the remaining post-split data is



repeatedly written. This leads to a multiplicative effect on the
necessary storage for execution, not even accounting to the
redundant file reads and writes. To prevent this, methods for
just-in-time or late file realization may be needed when using
the Continuously Divisible Job abstraction. Two examples of
file partitioning are shown in the analysis of this paper, the first
being a naive split-on-partition where files are written when
the SPLIT operation is called. This creates unnecessary files,
but allows the application to be executed without modification
similar to more static invocations. The second uses Virtual
Files, defined in Section V, to reference data slices. The Virtual
File abstraction allows for flexible data handling, such as the
just-in-time file instantiation or direct data access.

2) Job Namespaces: A job’s namespace consists of all the
files needed to complete the job. In the base case this is
simple as the namespace contains the uniquely named files
used to execute. Each job is invoked the same way, so it
is often tempting to use consistent generic names in the
invocation, but this fails when scaling as each partition loses
file name uniqueness. This leads to the more general issue
of clearly defining the namespace such that any split and
join results in uniquely identifiable files and names. There
are several approaches to resolving this, from the easiest and
often most straight forward of utilizing the partition name,
generating and tracking unique identifiers for each name, or
creating names based on content derived hashes. Each of
these methods prevents collision within a single Continuously
Divisible Job application, but with the possibility of other
executions and concurrently running instances, these methods
have varying success and should be considered carefully.

3) Execution Sandbox: Similar to job namespaces, many
applications operate naively in an execution environment.
Naive environment usage is common where standard data is
used or when the applications relies on complex configurations
of libraries and references. Common examples of this could be
using hardcoded paths and file names for inputs or resolving
reference databases from environment variables. In these cases
and more, it is likely the application will not operate correctly
when run concurrently in the same namespace, either file
namespaces, process namespaces, or both. As a result it may
be necessary to run an application in a sandbox to isolate
both the file and process namespaces. The common nature
of this problem has provides many solutions, such as using
containers [17], [18], sandboxes, and wrappers [19] to isolate
each application instance.

4) Job Ordering: Continuously Divisible Job applications
require the implementation of the join operation, which incor-
porates combining and consolidating application results. The
type and structure of this output data can have dramatic affects
on the overall performance of the applications. To illustrate
this let us consider two different potential applications, X and
Y. X is large data parallel analysis, where future pipeline steps
require sorted result ordering. Joining X jobs together requires
only combining contiguous jobs. Further, for performance, the
application only joins from the first job upward, appending, to
prevent repeatedly writing and re-writing data as out-of-order

jobs are joined. Y is a complex simulation with a small input
and output datasets consisting mainly of statistics. Joining Y
jobs requires only combining the statistics and can be done
completely out-of-order. This allows Y to quickly join results
are they are completed and retrieved

V. VIRTUAL FILE ABSTRACTION

A Virtual File defines a subset of a physical file, allowing
large data files to be logically partitioned quickly. A Virtual
File points to a source file, keep bounds on the logical slices
(logical offset and range), and can quickly resolve a slice’s
actual location in the large file (byte offset and range). Virtual
Files offer a lightweight mechanism for partitioning and sub-
referencing larger datasets, without the need to copy out the
actual subset of data. To facilitate quick repeated resolution
from a logical slice to a physical position, an index should be
be constructed. Using this quick translation, a sub-set of the
larger file can be realized as a physical file just prior to use.
As the physical offset is only needed prior to file realization,
data can be partitioned, re-partitioned, or joined with little
actual computational cost. Using virtual files, an application
can adapt quickly to performance feedback, without making
redundant copies of data.

A. Operations on Virtual Files

Virtual Files have several operations that allow for faster
or more lightweight operation on data than standard files.
Operations such as indexing, partitioning, location, and in-
stantiation can be done on standard data files, but introduce
considerable overhead in file system activity and redundant
work. In addition to the core Virtual File operations, Virtual
File serialization is also key to allowing for recursive parti-
tioning expected of jobs.

1) Indexing: Indexing a Virtual File, as with any index,
parses the origin data file and tracks the location of each
logical slice in the data source. If the logical slices are uniform
in size, the indexing step is quick and only the size of slice
needs to be tracked. If, however, the data is non-uniform in
size the byte offset for each slice needed for tracking. This
indexing step may be time intensive initially, but as more
partitions are created the cost is amortized over execution by
avoiding file accesses and redundant data copies. Though it is
possible to store this information in memory, it is advisable
to use a more compact persistent representation that can
be distributed and recovered. Due to the speed provided by
indices, many applications and formats have existing methods
for creating and accessing indexes, which can be leveraged for
an application’s Virtual File.

2) Partitioning: Partitioning allows for quick logical split-
ting of data source to virtual files. This partitioning can be
done with no handling of underlying data, using only logical
slices. Partitioning at the Virtual File level is much faster than
partitioning physical file because it handles logical slices that
are resolved as needed. Resolving the byte range can be done
lazily when the range is actually needed to limit accesses to
the index. Operating on the Virtual Files allows for partitions



to be merged or further split with less concern for the overhead
of reading and writing the actual data. Removing the need to
read and write for each partition allows job coordinators to
group or further split applications with less overhead.

3) Index Look-up: Index look-up provides the physical
location of a logical slice. This is used by partitioning and
realization to find a slice location, but can also provide this
information to the underlying application. An example of this
can be seen later, where modifications were made to the
BWA application to accept byte offsets for work. This look-up
allowed BWA to jump to the relevant location prior to analysis,
eliminating the need to create partition files entirely.

4) Instantiate: Instantiation writes a logical range of slices
into a physical file. Applications that do not accept offsets and
ranges of a Virtual File must be instantiated as a physical file.
In a local system, file instantiation simply uses index look-
up on the first slice and the last slice, writing the returned
byte range to a new file. As more complex job coordinators
are used, there may be cases where the data source is not
available, such as remote execution, and the realization needs
to carry context. A Virtual File instantiation not only copies
the defined source data, but also creates a copy of the index
and its new data offset. This allows the new offset to be quickly
computed using the index look-up minus the sub-data file
offset. This combination of the index and sub-data files allows
for virtual files to be used in the same recursive partitioning
and distribution as Continuously Divisible Job applications.

5) Serialization: Serialization of a Virtual File allows data
files to be partitioned remotely, even when the source data is
unavailable. This serialization is similar to the Continuously
Divisible Job operations, and should define how to reconcile
the data partition within the data source. As such, a more com-
plex hierarchy of how the partition was created is unnecessary,
only the source data, index, and the partitions relative location.
This information can be used to resolve the correct data offset,
as inform job coordinators how to resolve the data remotely
from the data source.

VI. IMPLEMENTATION

This section discusses the abstract implementations of the
example Continuously Divisible Job applications. The imple-
mentations for all aspects of Continuously Divisible Job were
done in Python, and the results below are based on this design.
In addition to the application implementations, we also discuss
several ways that virtual files could be implemented and used.

A. Example Continuously Divisible Job Application

For this paper, two application implementations were writ-
ten. The first is a bioinformatics alignment tool, BWA, that
is a common tool in genome annotation pipelines. BWA
was selected as it compares each query sequence against a
reference dataset, allowing the query dataset to be partitioned
down to a single sequence. The second is a high-energy
physics event analysis for detecting dimuon event candidates.
This application serves as an investigation into using the
complex ROOT format for concurrent event analysis and
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In the normal case, the application directly opens and navigates the file. In
the virtual file case, the reads are directed through the virtual file using either
an index or query to resolve and redirect to the read location. This approach
introducing overhead of creating the index and resolving the data. However, as
these application are partitioned for concurrent execution, the normal usage
requires expensive physical partitions, while partitioning of virtual files is
essentially free, allowing concurrent use of the data.

compares with a SQL-based virtual file implementation. For
both example applications this section will outline how the
interface was implemented, along with design challenges that
were addressed.

For the BWA interface two approaches were taken, a
simple direct partitioning approach and a indexed virtual file
approach. For the simple direct approach, split relies on the
standard fastq format which is commonly partitioned. Each
split results in new jobs, each with a unique data file. When
called to execute the job invokes BWA, passing its unique data
slice and the intended output as arguments. After completing
with results to join, the simple case checks that the joining
jobs are in the same state, returning if they differ. If the data
hasn’t been processed the inputs are combined. If the data has
been processed, then the results are combined. To increase
efficiency, the outputs are combined in order from the first
slice on, limiting the number of redundant appends.

The second approach relies on an indexed virtual file. When
this approach is initialized, an index is created for the source
data. After this, split is a lightweight call that partitions
logical ranges, without handling physical data. To further
exploit the indexed data, modifications were made to BWA that
utilized byte ranges to quickly seek to the intended data. This
implementation removed BWA’s requirement for physically
partitioned data, allowing minimal file manipulation. The join
functionality remains the same, as the outputs are identical.

We also use the Continuously Divisible Job abstraction to
detect dimuons in a High Energy Physics (HEP) analysis. In
a typical HEP task, events from a detector are analyzed one
at a time collecting diverse statistics. Events are recorded in a
tree-like structure in which statistics are grouped into particles,
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high overhead more quickly pushing to a better partition.

which in turn are grouped into events, luminosity sections, and
so on, which are stored in ROOT files [20].

In our implementation, jobs are given a range of events
to process. To feed data to the jobs, we experimented with
two different virtual files implementations. In the first one,
each job is submitted with the same ROOT file, and ranges
of events are read using uproot, a tool developed by the
DianaHEP project [21] that converts the tree-like structure of
the ROOT file into ragged numpy arrays. For the second one,
we flatten the root file into a sqlite database, in which each
row encodes a particle in some event.

For each, serialization was trivial and relied on the convert-
ing dictionaries of class information into JSON using Python.

B. Virtual Files

Virtual files can be implemented in several ways such as
directly in the application by physical offset and range resolved
from slices (used in BWA), in an API that copies when needed,
or by the filesystem redirecting Virtual Files to sections of
larger files. An example of the first was implemented in BWA,
which allows BWA to process a section of the data without
having to write out sub-data, limiting both the space needed
to operate on sub-data and the time needed to partition.

In the second case, a structure is needed to represent the
data as partitions are defined and moved around. Using Work
Queue [12], a virtual file can be specified for a job and realized
at the worker without ever directly writing the copy at the
master process. As the file already needs to be read for transfer,
the intermediate step of writing out the sub-data is skipped.

The third case could be implemented in file system, where a
new file type is created similarly to a symbolic link. In addition
to the link to the origin file, an offset and range define the size.
This implementation would interpose an EOF at the range to

support normal file usage. Additionally it would be prudent
to force read-only semantics on virtual files and their origin
counterparts to prevent invalid offsets and ranges, as well as
changing the intended data.

VII. RESULTS

For the analysis of the Continuously Divisible Job abstrac-
tion, we compared several of the design features discussed
previously. The majority of these results were gathered using
the BWA implementation, for which we had a moderately
sized dataset. The results for this paper were evaluated on
a 250 MB subset of the dataset. For the static partitioning
results that are compared against the Continuously Divisible
Job implementations, a Makeflow BWA workflow was used.
The structure of this was a simple split-join workflow that is
common in bioinformatics. Makeflow was used as it supports
similar execution platforms, has little overhead, and provides
native multi-core execution. The following results will show:
(a) Under good configurations, execution time is similar to

static partitioning.
(b) Under bad configurations dynamic sizing can find better

configurations.
(c) Virtual files provide better performance even with static

partitioning.
(d) In tiered, but uncoordinated configurations, resources can

be under-utilized.

A. Dynamic sizing

The first test that we wanted to investigate was the effect of
dynamic sizing using Continuously Divisible Jobs. As can be
seen in Figure 5, we are comparing static batch partitioning
and on-demand dynamic job partitioning. For each data point
the jobs were run concurrent on 8 cores. The value on the X



axis is the initial partition size. The dynamic sizing is based
on a basic hill climb algorithm that attempts to find the size
with the highest throughput. As was briefly discussed earlier,
the static partition’s execution time is limited at the right
by under-utilizing the available cores, and that the left with
increased overhead of file creation and job management. For
showing the Continuously Divisible Job implementations, we
compare the base implementation, with file creation on split,
and the indexed virtual file approach that directly accessed the
data. In both cases, we see that the dynamic sizing allows the
initial bad configurations can be escaped, leading to better
performance to the left of the graph. For the virtual file
implementation, we see consistently better performance, as
it benefits from less file access and increased flexibility. In
the base implementation, the middle section of the graph we
see worse performance than static, with the cost of partitioning
and re-partitioning data combating with the benefit of dynamic
sizing, but when compared to the orders of magnitude worse
behavior at the left it may be a reasonable compromise.

For evaluating the dimuon detection implementation, we
used a comparison of the ROOT and SQL approaches, as well
as comparing static and dynamic partitioning. Similarly to the
results we saw with BWA, when looking at Figure 6, we can
see that the dynamic sizing allows both implementations to
perform consistently, avoiding the increasing execution time
of smaller static partitions. Interesting, the gap between the
SQL and ROOT implementation shrinks when using dynamic
sizing. This is likely the result ROOT’s higher overhead,
causing the dynamic sizing to shift more quickly.

B. Virtual File Effectiveness

For the second test we wanted to isolate the effect of
virtual files when using static batch partitioning. The static
batch partitioning eliminates the dynamic sizing and just
compares the benefits of virtual files. This test disadvantages
the virtual file implementation as the data is still accessed
and indexed, but the limited partitions do not allow the cost
to be amortized. As can be seen in Figure 7, we compare
static batch partitioning between a static workflow, the base
BWA implementation, and the virtual file implementation. For
each data point the jobs were run concurrent on 8 cores.
The value of on the X axis is the static partition size. It is
important to note that these results are shown in log scale. The
static workflow approach shows the same behavior as before,
and we now see similar trends in both the base and virtual
file implementations. The interesting result that can be see is
that for both Continuously Divisible Job implementations the
results were consistently below the workflow approach, a result
of the dynamic joining and lighter weight partitioning. The gap
between these approaches is consistent at log scale, showing
the increased benefit in poor configurations. Additionally, the
performance of the virtual file approach was consistently better
than the base approach, showing that by limiting the file
partitions we gain a consistent performance benefit. Similarly,
when comparing the dimuon implementations we can clearly

see advantages to the SQL approach, with consistently better
performance (Figure 6).
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Fig. 7. This shows a standard BWA bioinformatics workflows where only
the size of each partition is varied. This is compared with similarly static
partitioned Continuously Divisible Job implementations. We can see that
lightweight partitioning and dynamic joining help them out perform the fully
static case.

C. Tiered sizing

The last test we wanted to explore was the affect of tiered
sizing, and how it can be either beneficial or negative. In the
previous dynamic sizing test, only a single layer was sizing the
results. For this test, we used a master-worker framework to
partition at the master level and for cores at the worker (Work
Queue). The results can be see in Figure 5. In this graph we
are comparing again against the static partitioning. Each of
the subsequent lines is grouped by the initial master partition
size and graphed along the worker initial size. Looking at
these results, we can see that though it was able to find
reasonable configuration is many cases, at the edges of the
search space, the combined dynamic partitioning competed
with itself slowing any corrective movement. For example, to
the right of the graph, performance was limited by the worker’s
partition being larger than the master’s. This forced only a
single core to be used, wasting resources. This approach shows
that job coordinators can be quickly combined, but exploration
is needed to understand how to avoid negative feedback.

VIII. CONCLUSION

In this paper we introduced the concept of Continuously
Divisible Jobs and discussed how dynamic sizing can be
used to address limitations of static partitioning. We discuss
how implementing the Continuously Divisible Job interface
allows applications to be dynamically partitioned, executed,
and distributed to dynamic resource using abstract jobs and job
coordinators. To further leverage this approach, we introduced
virtual files, and explored how they can be leverage to pro-
vide lightweight partitioning, fast data access, and eliminate



 1

 10

 100

 1000

 10000

 100  1000  10000  100000

Ti
m

e 
(S

ec
)

Initial Worker Partition Size

Static Partition
Master 100000
Master 10000
Master 1000

Fig. 8. This compares the Static partitions against several configuration of
Continuously Divisible Job using Virtual Files. Each line is grouped by the
initial master size and the X axis shows the initial worker size. As can be seen
across each case, at the right the limited worker partitioning under-utilizes the
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redundant reads and writes. Combining these concepts, we
implement Continuously Divisible Jobs using Python, and
provided two example applications. This implementation was
executed, comparing the results against static partitioning
approach to show in good configuration similar performance
and in bad configuration a significant improvement. Using
these results, this work will be further explored to better
understand applications that can benefit from Continuously
Divisible Job and how this approach can be improved.

IX. REPRODUCIBILITY DATA

In an effort to provide consistent, reproducible results here
are outlined the resources utilized in this paper and where they
can be found. If specific commits are mentioned to provide the
exact version that was used. All of these repositories are open
source and contain Makefiles and instructions on how to build
and run them.

The paper, prototypes of Continuously Divisible
Job, and the example application implementations:
https://github.com/nhazekam/partitioning-
scalability

BWA, which was forked and modified for the use in this
paper: https://github.com/nhazekam/bwa/tree
/add_offset_limits

Makeflow and Work Queue, which were used as
the baseline and for remote execution respectively:
https://github.com/cooperative-computing-
lab/cctools
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