
Efficient Access to Many Small Files
in a Filesystem for Grid Computing

Douglas Thain and Christopher Moretti
University of Notre Dame

Abstract— Many potential users of grid computing systems
have a need to manage large numbers of small files. However,
computing and storage grids are generally optimized for the
management of large files. As a result, users with small files
achieve performance several orders of magnitude worse than
possible. Archival tools and custom storage structures can be
used to improve small-file performance, but this requires the
end user to change the behavior of the application, which is
not always practical. To address this problem, we augment the
protocol of the Chirp filesystem for grid computing to improve
small file performance. We describe in detail how this protocol
compares to FTP and NFS, which are widely used in similar
situations. In addition, we observe that changes to the system
call interface are necessary to invoke the protocol properly. We
demonstrate an order-of-magnitude performance improvement
over existing protocols for copying files and manipulating large
directory trees.

I. INTRODUCTION

Much research in networking and grid computing has fo-
cused on the efficient storage, transfer, and management of
large files. [1], [2], [3], [4], [5], [6] For many important
applications, the quantity of data to be processed exceeds
the storage capacity or reasonable transfer times that can be
achieved on conventional systems. For these large-data appli-
cations, a variety of techniques such as disk aggregation [7],
[8], [9], [10], parallel network transfer [11], [12], peer-to-peer
distribution [13], and multi-level storage management [2] are
essential for constructing usable grid computing systems.

However, there are also many production workloads that
manipulate primarily large numbers of small files. For exam-
ple, in bioinformatics applications such as BLAST [14], it
is common to run thousands of small (less than 100 bytes)
string queries against a constant genomic database of several
GB. In other cases, a standard grid application may depend
on the installation of a complex software package consisting
of executables, dynamic libraries, and configuration files. The
package must either be accessed at run-time over the network,
resulting in many small network operations, or installed on
a worker node, resulting in a large number of small file
creations. Or, a grid computing system may create a large
number of small files internally in the course of executing a
workload for the inputs, outputs, log files, and so forth.

Unfortunately, the data throughput of small file operations
on both networks and filesystems is many orders of magnitude
worse than the bulk transfer speeds available with large files.
On the network, this is because protocols such as FTP [15]
treat a single file as a distinct heavyweight transaction that
requires an individual network stream and authentication step.

A network filesystem such as NFS [16] has the opposite prob-
lem: files are access on demand in small page-sized chunks,
resulting in many network round trips and poor performance.
This is particularly harmful in grids, where high network
latencies are common.

In some sense, the solution is easy: collections of small files
should be aggregated into large files and then transferred in
bulk. Archival tools can be used to collect many files into a
single compressed file. Some grid storage systems, such as the
Storage Resource Broker [2] introduce an explicit mechanism
called containers to encourage grouping for efficient transfer
to and from tape. When the set of files is known in advance,
many transfers can be pipelined or parallelized as shown by
Silberstein [17] and Bresnahan [18].

However, these techniques are not always applicable:

• The user may be generating a sequential workload from a
traditional script or interactive tool, so the set of all files
is not known to the system in advance.

• When copying archives to a remote file server, there may
not be a facility at the receiving end for unpacking the
data into multiple files.

• The semantics of the system may demand multiple files:
as above, the batch system may insist on having a distinct
input and output file for every single job in a workload.

• The user may not be technically inclined, and simply
takes an existing program, and multiplies by one thousand
instances before submitting it to the grid.

• The user may not even be aware that a system is in fact
distributed, and simply expects a large recursive directory
copy to proceed with reasonable performance.

Can we have a filesystem for grid computing that
supports efficient access to large numbers of small files
while still preserving good performance for large files and
avoiding any change in user behavior? We demonstrate that
it is possible by augmenting the protocol used by Chirp, a
distributed filesystem for grid computing, with hybrid opera-
tions that combine elements of traditional RPC and streaming
I/O. However, a protocol is no use unless programs can
employ it. We also demonstrate how user-transparent changes
to the system call interface and command line tools can
assist programs in harnessing the protocol. We demonstrate
the performance benefits of this approach on both file copies
and on ordinary scripts that manipulate large directory trees.
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Fig. 1. The Chirp Filesystem for Grid Computing

The Chirp filesystem consists of a user-level server that
exports an ordinary Unix filesystem. Users connect unmodified
applications to the server using assistive tools such as FUSE
and Parrot. The protocol employs standard authentication
technologies, allowing for secure wide-area data access.

II. CHIRP: A FILESYSTEM FOR GRID COMPUTING

In previous papers [19], [20], [21], we have introduced
Chirp, a filesystem for grid computing. In this section, we
offer a brief review of Chirp before describing the new work.

Figure 1 shows the overall structure of Chirp. A Chirp
server is a user-level process that runs as an unprivileged
user, and exports an ordinary Unix filesystem. The server
accepts connections, and then authenticates users via the Grid
Security Infrastructure (GSI) [22], Kerberos [23], or by simple
hostnames. Access controls are enforced on a per-directory
basis using these credentials, allowing users to share data
and storage space with highly flexible policies. A hierarchical
allocation mechanism allows the storage owner to control how
much space is consumed.

Users connect to Chirp in one of several ways. A library
libchirp is provided that allows custom code to access
Chirp servers explicitly. This interface offers the best perfor-
mance, but we do not generally expect application developers
to rewrite their applications to use Chirp. Unmodified applica-
tions may be attached to Chirp by employing either Parrot [19]
or FUSE [24] to mount the filesystem into the user’s view.
In addition, a command line tool allows for direct control of
access controls and other policies.

Chirp differs from traditional filesystems in that both client
and server components are designed to be rapidly deployed
without special privileges. Neither Parrot nor Chirp requires
root access, kernel changes, kernel modules, or access to
privileged ports. A user submitting jobs to any arbitrary grid
may bring Parrot along with the job, and use it to securely
access file systems established by the submitting user at

another location. The user is in full control of the caching
mechanism, caching policy, and failure semantics.

Chirp employs a custom protocol, which will be the subject
of this paper. A client establishes a TCP connection to a
server, negotiates an authentication method, authenticates, and
then performs a series of remote procedure calls (RPCs) over
that connection. If the connection is lost, a retry layer in
libchirp is responsible for transparently re-connecting, re-
authenticating, and re-opening files.

The base Chirp protocol is a set of RPCs that correspond
very closely to the Unix I/O interface. Each of the calls in this
is a “pure” RPC in the sense that the full arguments to the call
are marshalled in libchirp, transmitted to the server, and
the results are collected and verified before returning to the
client. For example, here is a commonly-used subset:

open (path,flags,mode) => fd
pread (fd,length,offset) => (result,data)
pwrite (fd,data,length,offset) => result
close (fd)
stat (path) => metadata
unlink (path) => result
getdir (path) => dirlist

To this base set, we add two new streaming calls:

getfile (path) => (size,data)
putfile (path,size,data) => result

These two calls are “impure” RPCs, because they cannot
be fully marshalled or unmarshalled without the help of the
calling client. That is, the client presents the (perhaps GB
of) file data in pieces as the TCP stream is ready to accept
it. Thus, we describe Chirp as a hybrid protocol that has
elements of both traditional RPC and streaming protocols. This
allows Chirp to handle both large and small files efficiently.
The challenge lies in designing the system such that the right
operation gets invoked by ordinary tools.

III. DATA ACCESS PROTOCOLS COMPARED

Figure 2 compares several existing grid I/O protocols in
detail, and explains why they have poor performance on small
file workloads. In each case, the figure shows the network
activity that occurs between a client and server upon an attempt
to write one file, and then read another.

FTP [15] is a streaming protocol that has been extensively
studied and optimized for grid computing [1], primarily be-
cause it is has a large existing user base. In FTP, a client
initiates a control connection to a server, authenticates, and
then issues commands to manipulate the filesystem. Simple
commands, such as creating a directory or querying the size
of a file are executed synchronously, and the result returned
back to the user on the control connection. To send or receive
a file, the client must request a data connection with either the
PORT or PASV command, indicate the filename and direction
of transfer with the STOR or RECV command, initiate or accept
the new connection, and then transfer the necessary data. End-
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Fig. 2. Detailed Comparison of I/O Protocols
This figure compares three protocols for network I/O. On the left, FTP is shown as an example for stream-based I/O. Each file
transfer requires a command on a control channel, followed by a new TCP connection to transfer data. In the middle, NFS is
shown as an example of RPC-based I/O. Each I/O system call results in one or more synchronous network operations. On the
right, Chirp is shown as an example of a hybrid protocol. Streaming of whole files may be interspersed with traditional RPCs.

of-file is indicated by the end of the TCP stream. To transfer
more data, another connection must be made.

FTP and similar protocols that transmit one file per stream
have both advantages and disadvantages. By using one file per
stream, clients and servers are arguably simplified. Programs
may use an FTP data connection as an input or output stream,
with the same semantics as a local pipe. However, due to the
vagaries of the system-call semantics, it is not always possible
to distinguish between an ordinary end of file and a server
crash or network failure. A higher-level check is needed to
verify that a transfer is successful. The distinct data stream can
be used to redirect data. For example, this is employed in third-
party transfers between servers, and redirection to distributed
storage devices in dCache [5].

However, from the perspective of moving small files, the
separate connection and its attendant setup calls are disadvan-
tages. Even assuming an existing control connection, each new
transfer requires at least three network round trips (more for
authentication) to transfer any file at all. Even for relatively
large files, a new connection for each file causes TCP to restart
its congestion control algorithm, resulting in less than optimal
use of network bandwidth.

NFS [16] is an RPC based protocol widely used in clusters
of all sizes, as well as a substrate for distributed and grid I/O
services [25], [26], [27], [28], [29], [30]. NFS is designed
for block-based access to files over a relatively low latency
network. NFS is traditionally carried over UDP, each request
and response contained in one packet. To access a file, a

client must issue a series of lookup requests to map a path
name to a file handle, which is usually the same as the inode
number. The client may then issue small block read and write
requests on that file handle. Block sizes are typically limited
by implementations to be 1KB to 8KB. The protocol can also
be carried over TCP, in which case block sizes may be larger.

The primary benefit of NFS is that it is very simple, which
makes it amenable to kernel-level implementations, and ac-
cessible to modifications for research. In a local area network,
small random accesses to files are very efficient, and result in
a minimum of data transfer. Because the protocol is stateless,
recovery from failure is very easy: unacknowledged operations
are simply retried up to a timeout limit. However, this also
places the obligation on the server to perform synchronous
writes to disk before returning an acknowledgement.

NFS is not well suited to large wide area data transfers.
A large file will be broken up into a large number of
packets, each of which must be synchronously written and
acknowledged. As network latency increases, data transfer
speed drops precipitously. A less well-known limitation is
this: the unlimited lifetime of file handles makes it impossible
to have a robust user-level implementation of NFS. Kernel-
level implementations traditionally use the inode number to
construct unique file handles; this allows a client to return
to a file at anytime without reprocessing the pathname. To
provide the same service, a user-level server must remember
on secondary storage all file handles ever issued.

Chirp is a hybrid protocol that combines elements of
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Without high-level knowledge, it is difficult for the kernel to carry out an efficient file copy. A standard cp tool opens the
source and target files, and then issues small reads and writes to copy the data. However, if cp invokes a Parrot-specific
system call copyfile, the more efficient streaming RPC can be used to transfer the data.

both streaming and RPC protocols. A client makes a single
TCP connection to a server, and then may make small RPCs,
much like NFS over TCP. This also amortizes the cost of
authentication, which may be quite high for systems such as
Kerberos and GSI. When a large data transfer is needed, a
header indicating the filename and transfer size is sent on the
connection, followed by the data itself. This allows multiple
transfers to occur in series, maintaining a large TCP window
size on high bandwidth connections, and minimizing round
trips on high latency connections. Unlike NFS, the use of
direct file names allows for server-side processing, reducing
round trips and allowing a simple user-level implementation.

We note that Chirp does not have the ability to stripe a file
transfer across multiple TCP streams in the same manner as
GridFTP [1], which is useful for rapidly achieving maximum
bandwidth in a high latency, high bandwidth network. How-
ever, the need for such techniques is somewhat reduced by
virtue of sustaining existing connections in the first place.

Based on this analysis, we propose that the hybrid Chirp
protocol should have better performance on workloads that
move large numbers of small files, because it minimizes the
number of round trips necessary to deliver a file, compared
to both NFS and FTP. However, it should also have large file
streaming better or equal to FTP by virtue of re-using the
existing stream across multiple files.

IV. SYSTEM SUPPORT FOR STREAMING I/O

Even if we provide a protocol that supports efficient small-
file I/O, it can be difficult to match the protocol to the
interfaces expected by existing programs. The hybrid protocol
can easily be invoked through custom tools whose only job
is to move data in and out of Chirp servers. However, users
often do not care to learn new tools, and simply expect the
existing interfaces to do a good job. We would like users to
invoke the Chirp protocol through existing command line and
graphical tools. Will they get good performance? The answer
is no, and Figure 3 shows why. (We will show a solution to
this problem below.)

Consider the user that invokes cp to copy a local file
to a Chirp server. To do this, the user must be running
the Parrot tool, which captures all of the system calls of
unmodified applications, and re-interprets those that refer to
remote filesystems. This is accomplished by associating user-
level filesystem drivers with various parts of the namespace.
For example, open("/tmp/data") is passed to the local
filesystem driver to be executed without modification, while
open("/chirp/server/data") is passed to the Chirp
driver, which then invokes RPCs on the remote server.

The problem is that Parrot is not aware of the intent to
copy a whole file. cp operates by opening the source file,
then opening the target file, and issuing page-size reads and
writes to copy the data. This situation is inefficient for several
reasons. First, by carrying out the reads and writes one by one,



many round-trips will be made to the remote server. Second,
all of the copied data is passed through the application, which
has no need to actually examine it. Parrot cannot do anything
more efficient, because it must support the full generality of
the Unix interface: a program could do anything at all after
calling open.

However, if the program makes Parrot aware of the intent to
copy a file, something more efficient can be done. To accom-
plish this, we introduce a new system call called copyfile
into Parrot. This system call simply takes two pathnames,
a source and a target. We also create a new cp program
that knows to invoke copyfile, rather than open followed
by read and write. Note that we have not modified the
host kernel nor the original cp program. Only Parrot and the
modified program are aware of the system call. If run on the
host kernel outside of Parrot, the copyfile call will fail,
and the modified cp falls back to the old behavior.

Upon receiving a copyfile system call, Parrot internally
opens the local source file, observes the file size, and then
invokes pufile on the Chirp driver, which then streams the
source data to the file server, using the hybrid RPC. This
allows for the efficient movement of small files through the
system. Although we have changed the system call interface
and a standard tool, the changes are essentially invisible to the
end user, who may use existing shells and scripts efficiently
without modification. If other tools (such as graphical shells)
are commonly used for copying files, then minor changes may
be necessary to those tools as well.

The notion of introducing a higher-level interface to make
system implementation more efficient is not new. The same
concept is employed by object storage [31], [32], which
proposes that disks should export an object-like interface,
rather than individual disk blocks. This allows the underlying
device to make more informed use of the available space.
In the same spirit, we can imagine a number of operations
(copyfile, movefile, checksum) that would be good
candidates for elevation to system-call status, thus admitting
a more efficient implementation.

Another idea similar to copyfile is sendfile, a Linux-
specific system call that is designed to stream data from a file
to a socket without passing through userspace. sendfile
was designed specifically to support web and file servers.
Why not overload sendfile to fit our needs? Unfortunately,
sendfile accepts two file descriptors, and would require
Parrot to translate and issue a remote open before discovering
a file copy is in progress, and then issue a compensating
close, resulting in two unnecessary round trips.

V. PERFORMANCE OF FILE COPIES

To measure the performance impact of these protocol
changes, we composed a series of experiments to compare
the performance of each discipline – stream, RPC, and hybrid
– in a common environment. Multi-protocol comparisons
have some potential pitfalls. It is potentially misleading to
compare three different protocols and implementations (e.g. an
FTP server, an NFS server, and a Chirp server) side-by-side,

because too many variables change: are the results an artifact
of the protocol itself, server implementation, the workload
generator, or tuning parameters?

Instead, we start by comparing the three styles of protocol
using only Chirp. We construct a custom tool that performs
a number of file copies from memory to /dev/null on
the target machine. By avoiding an adapter (Parrot or FUSE)
and the filesystem itself, we are exercising only the protocol
variations, and not other aspects of the system.

Each measurement involves copying 1000 files ranging
from 1KB to 4MB into a Chirp file server from a dedicated
client and server on the same gigabit ethernet switch. To
implement stream-per-file, we connect, authenticate, perform
a putfile, retrieve the result, disconnect, and repeat. To
implement RPC, we open the target file, issue a series of
writes of a fixed blocksize, close the file, and repeat without
disconnecting. To implement the hybrid protocol, we simply
issue a series of putfile operations without disconnecting.

The latency of a network can have a significant effect
on the performance of a protocol. The network hardware
employed has a minimum latency of about 0.1 ms. To emulate
higher latency networks, we implement an additional delay per
operation on the target file server, and set it to 1ms to emulate
a local area network, 10ms to emulate a wide area network,
and 100ms to emulate an intercontinental network, which are
not uncommon in wide-area grid computing systems.

The results of these experiments are shown in Figure 4.
Network latency increases from top to bottom. On each graph,
the size of files is shown on the X axis, and the time to
transfer 1000 files of that size is given on the Y axis. Five
lines indicate the transfer time for RPC (with three different
block sizes), file-per-stream, and the hybrid protocol. Several
items should be noted. As we might expect, the difference
between protocols hardly matters in the 0.1ms network. With
a low latency, the transfer time is dominated by the actual data
to be transferred, even in the extreme case of 1KB files.

At the other end of the spectrum, the performance of the
protocols differs by several orders of magnitude on the 100ms
latency network. For very small files, the hybrid protocol only
requires one round trip. RPC is three times slower than the
hybrid protocol, because each file requires a network round
trip to issue open, write, and close RPCs. Streaming is five
times slower, because each file copy requires a round trip to
open the connection, three to authenticate, and one to send the
file and read back the result.

The RPC variants show significant slowdowns as the block
size exceeds the file size, causing the performance to be
dominated by round-trip delays. Streaming performance holds
steady, until the total amount of data begins to dominate.
Across the range, the hybrid protocol achieves better perfor-
mance, and converges with streaming at very large data sizes.

At lower latencies, we see similar, if less pronounced
behavior. Even on the 1ms network, there is a full order
of magnitude difference in performance between the hybrid
protocol and one file per stream.

It is interesting to consider the use of RPC protocols with
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Each graph shows the time to copy 1000 files of varying sizes into
a Chirp file server, using RPC, single file per stream, and the hybrid
protocol. The induced network latency increases from top to bottom,
representing a 0.1ms switch, a 1ms LAN, a 10ms WAN, and a 100ms
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with the widest margin on high latency networks.

 1

 10

 100

 1000

4MB1MB256KB64KB16KB4KB1KB

Ti
m

e 
to

 M
ov

e 
10

0 
Fi

le
s 

(s
)

File Size

Actual Network
Latency: 30ms

globus-url-copy
GridFTP via Parrot

Chirp RPC
Chirp Copyfile

Fig. 5. Wide Area Protocol Performance.
The time to copy 100 files of varying sizes into a remote server
over a real wide area network with 30ms latency. The hybrid
Chirp protocol maintains the best performance by using a
single connection and by minimizing round trips.

very large block sizes. A 1MB block size appears to give
reasonable small file performance, and large file performance
competetive with streaming: why not simply use an existing
RPC protocol with a large block size? The problem with this
approach is memory consumption: every open file would have
a buffer of 1MB associated with it: an active system can easily
have thousands of files open at once, and this does not scale.

Do these controlled results apply to real tools running on
wide area networks? We answer this by running a similar
measurement on a real wide area network measured latency
of 30ms and maximum bandwidth of 2MB/s.

We compare the performance of several tools transfer-
ring 100 files of varying sizes over this network. (1)
globus-url-copy is invoked once for each file to transfer
data to a remote GridFTP server. This requires a control and
data connection to be established for each file. (2) Parrot is
used to copy files using the GridFTP protocol. The control
connection is established once, and a new data connection is
required for each file. (3) Parrot is used to copy files using
the original cp, which invokes multiple Chirp RPCs for each
file. (4) Parrot is used to copy files using the modified cp,
which invokes copyfile once for each file. In all four cases,
the data transfer is authenticated by GSI, but is not protected
with encryption. Note that we cannot compare to NFS, as the
protocol is blocked at campus firewalls.

The results are shown in Figure 5. globus-url-copy
has a significant overhead for moving many small files. This
can be improved by adding a component (Parrot) that can hold
a connection open for an entire session. However, for moving
many small files, the low-level optimization provided by Chirp
copyfile is another factor of two improvement.

VI. ADDITIONAL SMALL FILE IMPROVEMENTS

We can apply similar techniques to operations other than
file copies to achieve performance benefits on small file
workloads.



Third Party Transfer for Whole Directories. Both Chirp
and FTP provide the ability to perform a third party transfer,
in which a single node directs a file transfer between two
other nodes, avoiding unnecessary network traffic. However,
for moving a many small files, third party transfer of files
is rarely worth the trouble: each transfer still requires some
interaction with both the source and target server.

To make third party transfer more efficient for small files,
we have modified the system to move entire directories on
demand. When a client request a source to thirdput a di-
rectory to a target server, the server initiates a new connection
with the client’s delegated credentials, and then issues a series
of mkdir, putfile, and setacl commands to reproduce
the directory structure on the target server. This facility is
invoked transparently by the copyfile or rename system
calls, so that any attempt to cp or mv files between servers
results in an efficient (and secure) third party transfer. Figure 6
shows the performance of directory copies using RPC and
third party transfer on a file-by-file and whole directory basis.

Detailed Directory Listings. Listing directories is a very
common (even impulsive) action performed by interactive
users. A traditional ls -l on a filesystem invokes the open,
readdir, and close system calls to fetch the directory
names, and then an lstat on each file to retrieve its details.
If each system call is mapped to its equivalent RPC in Chirp,
then a large directory list will require many lstats.

To optimize this situation, we introduce a new RPC
getlongdir that fetches both the directory entries and the
lstat data in a single round trip. To exploit this, an open on
a directory invokes getlongdir and then caches the results
for the successive lstat calls. Any other system call causes
the cache to be discarded. This implements every ls -l
invocation into a single round trip.

Recursive Deletion. Large deletions are also a common
operation in temporary storage for a computing grid, where
a workload may stage in data, work on it for a time, and
then remove it. As with a long list, the system calls required
for a delete involve listing each directory and then deleting
each item individually. To address this problem, we introduce
a new Chirp call rmall which deletes and entire directory on
a remote server in a single round trip. System calls unlink
and rmdir are mapped directly to rmall, so that existing
programs such as rm invoke it transparently.

Active Storage Operations. Checksumming of files is also
common in data intensive environments, often to provide an
end-to-end check on data delivery. Using traditional RPC,
a checksum requires the (potentially large) data to traverse
the network to meet the (small) checksum program. A more
efficient method is to move the executable to the data; this is
known as active storage [33]. To this end, we provide several
specialized active storage operations in the Chirp server. For
example, a checksum on a remote file can be invoked with a
single md5sum RPC, returning only the checksum result to
the user. As before, this functionality is invoked by providing
a modified md5sum program. Figure 7 shows the performance
of a checksum using both RPC and active storage.
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directory eliminates both wide area data movement as well as
the overhead of setting up each individual file transfer.
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Fig. 7. Active Storage Performance
The time to checksum 100 files over a 30ms wide area
networking using RPC and by invoking an active storage
procedure. Active storage eliminates both data movement as
well as multiple network round trips for each file.

Overall Performance Impact. The combined effect of each
of these improvements on daily-use workloads is significant.
To evaluate this impact, we return to the 30ms wide area
network from before, and measure the performance of a
script reflecting daily filesystem manipulations that might be
performed by an ordinary user or by a job running in a grid
computing system. The benchmark operates on a source tree
package (Chirp version 2.3.1) consisting of 40 directories and
396 files. Most files are source modules of a few KB, but a
handful of large data files bring the total amount of data to
5MB. This is the script:

cp -r /tmp/pkg /chirp/a/pkg # Copy In
mv /chirp/a/pkg /chirp/b # Move
ls -lR /chirp/b/pkg # List
md5sum /chirp/b/pkg/*/*/*.c # Checksum
cp -r /chirp/b/pkg /tmp/pkg2 # Copy Out
rm -rf /chirp/b/pkg # Delete



The two target file servers (/chirp/a and /chirp/b)
are connected to the same low latency gigabit switch, and are
separated from the client executing the script by the wide area
network. We compare the performance of the original Chirp
implementation to the improved Chirp protocol including all of
the optimizations described in this paper. The script is repeated
10 times, measuring the wall clock time in seconds for each
stage, yielding average and standard deviation:

Chirp Chirp
Stage Original Improved
Copy Out 57.64 ± 0.14 29.90 ± 0.01
Move 166.08 ± 0.77 0.82 ± 0.12
List 17.83 ± 0.32 4.89 ± 0.37
Checksum 25.12 ± 0.06 3.37 ± 0.01
Copy In 104.97 ± 1.22 19.68 ± 0.72
Delete 27.10 ± 0.14 0.06 ± 0.01
Total 398.78 ± 1.50 58.73 ± 0.66

As can be seen, the overall impact of these techniques on
ordinary scripts is significant. Operations requiring network
traffic over the wide area are improved by a factor of two,
while those that eliminate all but a single round trip (Check-
sum, Delete) improve by several orders of magnitude.

VII. CONCLUSION

Many workloads in a distributed system operate on large
numbers of small files. These workloads are poorly supported
by traditional protocols such as FTP and NFS, which were
designed with the assumption of low latency networks. In this
work, we have shown that attention to the low-level details
of I/O protocols in a grid filesystem can yield significant
performance benefits. In addition, we have demonstrated tech-
niques for transparently introducing new bulk file operations
into existing unmodified applications. With care, it is possible
to build a system that performs well for both large and small
files without requiring any change in user behavior.
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