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Abstract—With the rapid growth of online social media and
ubiquitous Internet connectivity, social sensing has emerged
as a new crowdsourcing application paradigm of collecting
observations (often called claims) about the physical environment
from humans or devices on their behalf. A fundamental problem
in social sensing applications lies in effectively ascertaining the
correctness of claims and the reliability of data sources without
knowing either of them a priori, which is referred to as truth
discovery. While significant progress has been made to solve the
truth discovery problem, some important challenges have not
been well addressed yet. First, existing truth discovery solutions
did not fully solve the dynamic truth discovery problem where
the ground truth of claims changes over time. Second, many
current solutions are not scalable to large-scale social sensing
events because of the centralized nature of their truth discovery
algorithms. Third, the heterogeneity and unpredictability of the
social sensing data traffic pose additional challenges to the
resource allocation and system responsiveness. In this paper, we
developed a Scalable Streaming Truth Discovery (SSTD) solution
to address the above challenges. In particular, we first developed
a dynamic truth discovery scheme based on Hidden Markov
Models (HMM) to effectively infer the evolving truth of reported
claims. We further developed a distributed framework to imple-
ment the dynamic truth discovery scheme using Work Queue in
HTCondor system. We also integrated the SSTD scheme with an
optimal workload allocation mechanism to dynamically allocate
the resources (e.g., cores, memories) to the truth discovery tasks
based on their computation requirements. We evaluated SSTD
through real world social sensing applications using Twitter data
feeds. The evaluation results on three real-world data traces (i.e.,
Boston Bombing, Paris Shooting and College Football) show that
the SSTD scheme is scalable and outperforms the state-of-the-
art truth discovery methods in terms of both effectiveness and
efficiency.

Index Terms—Crowdsourcing, Socical Sensing, Truth Discov-
ery, Distributed Computing, Control Theory, Hidden Markov
Model

I. INTRODUCTION

This paper presents a scalable streaming truth discovery

scheme for social sensing applications. Social sensing has

emerged as a new paradigm of crowdsourcing applications

where humans are used as ubiquitous, versatile and inexpen-

sive sensors to report their observations (often called claims)

about the physical world [35]. This paradigm is motivated

by the proliferation of portable data collection devices (e.g.,

smartphones), the wide adaptation of online social media (e.g.,

Twitter, Facebook) and the ubiquitous Internet connectivity

(e.g., WiFi, 4G/5G). Examples of social sensing include ob-

taining real-time situation awareness in disaster and emergency

response scenarios [34], intelligent transportation system ap-

plications using location based social network services [1],

geotagging and urban sensing applications using inputs from

common citizens [40]. A critical challenge in social sensing is

referred to as truth discovery where the goal is to identify the

reliability of the sources and the truthfulness of claims they

make without the prior knowledge on either of them.

Consider a campus attack scenario (e.g., OSU attack in

Nov. 2016) as an example. A significant amount of reports

about the current situation of the attack (e.g., the number

of casualties, the escape path of suspects and safety alerts)

are available from the social sensors (e.g., news reporters

and common citizens on social media). However, those social

sensors may not always generate reliable claims and some

of their claims may even contradict with each other. Table I

shows some example tweets collected in the OSU attack. We

observe the first two tweets report that there was a shooting

happening at OSU campus while the third one report it was

false news. In general, it is very challenging to identify the

truthfulness of the claims without knowing the reliability of

the individual sources who make them a priori. Additionally,

sources could also intentionally or unintentionally propagate

the misinformation through their social networks [38]. All

these complexities make the truth discovery in social sensing

a non-trivial task to accomplish.

TABLE I
EXAMPLE TWEETS ON CONTRADICTING CLAIMS IN OSU CAMPUS

ATTACK, NOVEMBER, 2016

Tweet Timestamp
OSU POSSIBLE SHOOTING: I am on campus
near @OSUengineering TONS of police.

28 Nov 2016,
7:23 AM

There was a shooting at Ohio state please pray
for people’s safety #osu

28 Nov 2016,
7:47 AM EST

Liberals putting out fake claims about the ter-
rorist attack. 1st not a shooting, 2nd not an
American, 3rd not nazi but Islamic #osushooting

28 Nov 2016,
11:37 AM EST

A rich set of solutions have been proposed in network

sensing, data mining, machine learning communities to solve

the truth discovery problem [7], [14], [17], [25], [37], [39],
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[41]. However, several significant challenges have not been

well addressed by the state-of-the-art solutions. First, existing

solutions did not fully solve the dynamic truth discovery

problem where the ground truth of claims changes over time.

There are two critical tasks in addressing the dynamic truth

challenge. The first is to capture the transition of truth in a

timely manner and the second one is to be robust against

noisy data that may lead to the incorrect detection of the truth

transition. Only a small number of schemes been proposed to

solve the dynamic truth discovery problem. For example, Pal

et. al considered the evolving information of objects and esti-

mated the truth of variables in current time interval based on

sources’ historical claims [24]. Li et al. proposed a Maximum

A Posterior based real-time algorithm to solve the dynamic

truth discovery problem [9]. However, these approaches could

be unresponsive when the amount of social sensing data is

large or the amount of resources on the deployed system

are limited. Moreover, their solutions are not robust in noisy

and sparse social sensing scenarios since their truth discovery

accuracy is sensitive to the quality and quantity of the sensing

data.

Second, existing truth discovery solutions did not fully

explore the scalability aspect of the truth discovery problem.

Social sensing applications often generate large amounts of

data during some important events (e.g., disasters, sports,

unrests) [27]. For example, 3.8 million people have generated

a total of 16.9 million tweets with tweet per minute peaked

at a rate of over 152,000 in Super Bowl 2016 [22]. However,

current centralized truth discovery solutions are incapable of

handling such large volume of social sensing data due to the

resource limitation on a single computing device. A limited

number of distributed solutions have been developed to address

the scalability issue of the truth discovery problem. Both

Ouyang et al. [23] proposed a distributed solution based on

Hadoop system, but there are several non-trivial drawbacks.

First, Hadoop is a heavy-weight solution in the sense that it

requires a long start up time. Second, Hadoop is designed

as a batch processing system that is most suitable for data

of very large volume (e.g., Petabytes of data) and may not

be the best solution for the size of datasets collected in many

social sensing events (e.g., GB to TB). Third, Hadoop assumes

homogeneity of the underlying computing nodes [29], which

ignores the heterogeneity of the computational resources we

have in real distributed systems.

The third challenge lies in the heterogeneity and unpre-

dictability of the streaming data traffic. First, different topics

or events are likely to generate different amounts of social

sensing data (e.g., Hurricane Matthew generates way more

tweets than a local traffic accident) [31]. Second, the traffic

volume of the same event is not constant over time (e.g.,

there is often a spike in the number of tweets when there’s

a touchdown in a football game). Such heterogeneity needs

to be appropriately handled by the social sensing system

to provide reliable and responsive truth discovery results.

Previous truth discovery solutions assumed the datasets can

be evenly partitioned into chunks of similar sizes and all

partitions can be processed in a synchronized manner [23].

However, such strong homogeneity assumption on the data

streams barely holds in real world social sensing applications.

In this paper, we develop a Scalable Streaming Truth

Discovery (SSTD) scheme to address the above challenges.

To address the dynamic truth discovery challenge, we develop

a Hidden Markov Model based solution to dynamically es-

timate the true value of claims based on the observations

reported by social sensors. To address the scalability challenge,

we developed a light-weight distributed framework that is

both scalable and efficient to solve the truth discovery problem

using Work Queue and HTCondor system. To address the data

heterogeneity challenge, we integrated the SSTD scheme with

an optimal workload allocation mechanism using feedback

control (i.e., Proportional Integral Derivative (PID) controller)

to dynamically allocate the resources (e.g., cores, memories)

to the truth discovery tasks. We evaluated the SSTD scheme in

comparison with the state-of-the-art truth discovery baselines

using three real-world social sensing data traces (i.e., Boston

Bombing, Paris Shooting and College Football) collected from

Twitter. The evaluation results show that our SSTD scheme

significantly outperforms the compared baselines in terms of

truth discovery accuracy and computational efficiency.

In summary, the contributions of this paper are as follows:

• This paper addresses three fundamental challenges in

truth discovery problem in social sensing: dynamic truth,

scalability and heterogeneity of streaming data.

• We develop the SSTD scheme that incorporates the

Hidden Markov Model (HMM) to effectively address the

dynamic truth discovery challenge.

• We develop a light-weight distributed framework based

on Work Queue and HTCondor system to address the

scalability challenge.

• We integrate the SSTD scheme with an optimal workload

allocation mechanism to address the heterogeneity of the

streaming social sensing data.

• We evaluate the performance of the SSTD scheme and

compare it with the state-of-the-art truth discovery so-

lutions through real-world case studies. The evaluation

results demonstrate the effectiveness and significant per-

formance gains achieved by our scheme.

II. PROBLEM FORMULATION

Consider a social sensing application where a group of M
sources S = (S1, S2, ..., SM ) report a set of N claims C =
(C1, C2, ..., CN ). Let Si denote the i-th source and Cu denote

the u-th claim. We define Rt
i,u to be the report made by source

Si on claim Cu at time t. In this paper, we focus on binary

claims and sources can report a claim to be either true or false.

Twitter, for example, can be considered as a social sensing

application where observations from average people are used

to obtain the real-time situation awareness of disaster events

(e.g., earthquake, hurricane). A source represents a Twitter

user and a claim is a statement of an event, topic or object that

is derived from his/her tweet. For example, a tweet “The USC-

Notre Dame game is close and the Irish have the lead.” can be

24442441967
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considered as a report to a claim “Notre Dame is leading the

football game”. To model the dynamics of claim truthfulness,

we assume the truthfulness of the claim changes over time.

Therefore, we use Cu,t = T and Cu,t = F to represent a

claim Cu is true or false at time t respectively. We assume a

claim cannot be both true and false at the same time.

One key challenge in social sensing applications lies in the

fact that sources are often unvetted and they may not always

report truthful claims. Therefore, we need to explicitly model

the reliability of data sources. However, data sparsity is a

common problem in social sensing applications where most

sources only contribute a small number of claims [46]. It is

challenging to accurately estimate the reliability of sources

due to the lack of sufficient evidence. Fortunately, the reports

themselves often contain extra evidence and information to

infer the truthfulness of a claim. In the Twitter example, the

text, pictures, URL links and geotags contained in the tweet

can all be considered as extra evidence of the report. To

leverage such evidence in our model, we define a contribution
score for each report to represent how much the report

contributes to the belief in the truthfulness of a claim. We

first define the following terms related to contribution score.

DEFINITION 1: Attitude Score (ρti,u) : a score represents
whether a source believes the claim is true, false or does not
provide any report. We use 1, -1 and 0 to represent these
attitudes respectively.

DEFINITION 2: Uncertainty Score (κt
i,u): a score in the

range of (0,1) that measures the uncertainty of a report.
A higher score is assigned to a report that expresses more
uncertainty.

DEFINITION 3: Independent Score: (ηti,u): a score in the
range of (0,1) that measures whether the report Ri,u is
made independently or copied from other sources. A higher
score is assigned to a report that is more likely to be made
independently.

Combining the above terms, we formally define Contribu-
tion Score as:

CSt
i,u = ρti,u × (1− κt

i,u)× ηti,u (1)

Furthermore, we define the estimated truth of the u-th claim

at time t as x̂u,t and the ground truth label of claim Cu at

time t as xu,t. Given the sources, claims and reports in social

sensing applications, the objective of dynamic truth discovery

is to correctly estimate the truthfulness of claims at each time

instant. In particular, for each claim Cu at time instant t, our

goal is to derive the estimate x̂u,t that is as close as possible

to the ground truth xu,t, which is given by:

argmax
x̂u,t

P (x̂u,t = xu,t|S,C,R) (2)

The above problem is more challenging when the com-

putational resources needed to solve the problem are taken

into consideration. On one hand, many current truth discovery

solutions developed batch algorithms that are shown to achieve

reasonable estimation accuracy at the cost of high computa-

tional complexity and incapability to scale to large-scale social

sensing events [11], [25], [45]. On the other hand, simple

heuristic algorithms such as Majority Voting and Median are

very fast but the truth discovery accuracy is quite low [9].

Additionally, the available computational resources (e.g., disk,

memory, cores) on the deployed systems are often limited,

which pose extra constraints to the dynamic truth discovery

problem. Therefore, the goal of this paper is to optimize both

the estimation accuracy and computational efficiency of the

SSTD scheme while meeting all resource constraints of the

deployed systems.

To model the system aspect of the problem, we define a

few additional terms to be used in our problem formulation.

First, we use DΔt to represent the total amount of data that is

generated by the social sensing application for a given time in-

terval Δt. We have a set of jobs TD = {TD1, TD2, ..., TDJ}
that run on a distributed system to solve the dynamic truth

discovery problem. We refer to these jobs as Truth Discovery

(TD) jobs. For each job, we define the Worse Case Execution

Time (WCET) as the maximum running time for that job

to finish the truth discovery task. In particular, we denote

wΔt
j as the WCET for processing DΔt by job TDj . For the

deployed system, we consider a computer cluster of K nodes

Nodes = {N1, N2, ..., NK}. For each node Nk, it has a set

of Z resource constraints RCk = RCk
1 , RCk

2 , ..., RCk
Z where

each constraint defines the maximum availability of a specific

system resource (e.g., memory, disk space, CPU). Further-

more, we define a set of soft deadlines dl = dl1, dl2, ..., dlJ
to specify the expected finishing time of the TD jobs in order

to optimize the responsiveness of the system.

With the above definitions, we can formulate the dynamic

and distributed truth discovery problem with resource con-

straints as a constrained optimization problem. Formally, we

want to achieve:

maximize P (x̂u,t = xu,t|S,C,R), ∀t > 0 (3)

and P (wΔt
j ≤ dlj), ∀1 ≤ j ≤ J

s.t. RCk is satisfied ∀1 ≤ k ≤ K

III. SCALABLE AND STREAMING TRUTH DISCOVERY

In this section, we develop the Scalable and Streaming Truth

Discovery (SSTD) scheme to solve the problem formulated

in the previous section. In particular, we propose a Hidden

Markov Model (HMM) based solution to decode the streaming

social sensing data and output the corresponding truth values

of claims in real time. This solution can be implemented in

a distributed system where multiple truth discovery jobs can

run in parallel to address the scalability challenge in social

sensing applications.

A. Overview of Hidden Markov Model

A Hidden Markov Model (HMM) is a stochastic state

transition model that is commonly used to model systems with

unobserved (hidden) states and it has been commonly used in

applications such as speech recognition, activity recognition

and intrusion detection [28]. The HMM contains a set of

24452442968
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hidden states States = {s1, s2, ..., sX} and a set of obser-

vation symbols Obs = {o1, o2, ..., oY }. At each time instant

t, the model is in a hidden state st ∈ States and we observe

an observation symbol ot ∈ Obs. The HMM is particularly

suitable to handle time series data and capture the dynamics

of state change in real time. In particular, given a series of

observations, it can decode the hidden states that generated

those observations at each time instant. In this paper, we

develop a HMM based streaming truth discovery model to

address the dynamic truth challenge.

B. Deriving Hidden States and Observation Sequence

Our goal is to estimate the true values of the claims and such

true values are often not directly observable and constantly

changing (e.g., the location of a terrorist suspect, the number

of casualties during a natural disaster). We define the evolving

truth of a claim as the hidden states for HMM. We formally

define hidden states of truth as:

DEFINITION 4: Hidden States of Truth: the true value for
the claim at a given time instant that is not directly observable.

We assume that the sequence of truth values can be modeled

as a Markov chain in which each single state of truth is

assumed to be related to its previous state. The inference of

such hidden states requires a visible observation sequence that

can be directly observed from data sources. In our HMM

model, we define our observation sequence as a vector of

Aggregated Contribution Scores (ACS).

DEFINITION 5: Aggregated Contribution Score (ACS): the
sum of contribution scores on the true values of the claim
during a time interval.

The ACS for a claim Cu at time instant t is calculated as:

ACSt
u =

t∑

t−sw

CSt
i,u (4)

where CSt
i,u is the contribution score of report Rt

i,u (made by

Si on Cu at time instant t). We use a sliding window (i.e., sw)

to control the time period of historical contribution scores we

want to consider for calculating ACS. The size of the sliding

window is decided based on the expected change frequency

of the truth from the observed event.

For claim Cu, we use a sequence of ACS (i.e., F (u) =
(ACS1

u, ACS2
u, ..., ACST

u )) as the input for the HMM model.

The output of the model is the corresponding sequence of

estimated truth (x̂1,u, x̂2,u, ..., x̂T,u) for Cu. The HMM based

truth discovery model is shown in Figure 1.

C. Estimating Parameters of the HMM Model

We now define the estimation parameters in our model.

• Truth Value Vector V : a set of possible true values for

claims. Here we only consider two values: true and false.

• Truth Transition Probability Au: a 2 by 2 matrix where

each element au,i,j is the probability of the true value of

Cu transits from value Vi to value Vj .

• Emission Probability Bu: a sequence of generation like-

lihood with each element bu,i,t denoting the probability

of observing ACSt
u while the true value of Cu is Vi.

Fig. 1. HMM Based Truth Discovery Model

• Initial State Distribution πu: each element πu,i represents

the probability of the initial true value of Cu being Vi.

• λu = (Au, Bu, πu): the set of parameters that define the

HMM model of claim Cu.

We train our HMM models offline to find the set of

parameters that maximize the probability of the observation

sequence F (u) = {ACS1
u, ACS2

u, ..., ACST
u } for each claim

Cu. Formally, our goal is to find:

λ∗u = argmax
λu

P (F (u)|λu) for u ∈ N

= argmax
λu

P ({ACS1
u, ACS2

u, ..., ACST
u }|λu)

(5)

We solve this problem by using an unsupervised expectation

maximization (EM) based algorithm [4].

D. Decoding State Sequence

Finally, we estimate the true value of each claim at every

time instant. This is done by the decoding step where the goal

is to find the sequence of true values that is most likely to

generate the observed sequence. Formally, it is given by:

(x̂1,u, x̂2,u, ..., x̂T,u) = argmax
V Tu

P ((ACS1
u, ..., ACST

u )|V Tu)

(6)

where V Tu = (V 1
u , V

2
u , ..., V

T
u ) is the hidden sequence of

the true values. We apply the Viterbi Algorithm [33] to solve

the above truth decoding problem. Given the corresponding

observation sequence of F (u) = (ACS1
u, ACS2

u, ..., ACST
u )

of claim Cu and the estimated parameters λu of our HMM

model, we can infer the corresponding hidden true value

sequence V Tu that is most likely to generate the observations.

It is solved recursively as follows:

δt(u, i) = max
V 1
u ,V 2

u ,...,V t−1
u

P (V 1
u , V

2
u , ..., V

t−1
u , ACS1

u, ACS2
u,

..., ACSt
u, V

t
u = Vi|λu)

δt+1(u, i) = bu,i,t max
1≤i≤2

δt(u, i)au,i,j

(7)

δt(u, i) represents the probability that the HMM’s current true

value is Vi after seeing the first t observations and passing

through the most probable true value sequence V 1
u , ..., V

t−1
u ,

given the estimated parameter set λu. The initialization is:

24462443969
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δt+1(u, i) = πu,i∗bu,i,1. The estimated index of the true value

at time t can be calculated as:

l = argmax
1≤i≤2

δt(u, i) (8)

The estimated true value of Cu at time t is: x̂t,u = Vl.

E. Scalability of HMM based Truth Discovery Scheme

The HMM based model allows us to divide the social

sensing data stream into multiple sub-streams based on claims

and develop a distributed solution to solve the truth discovery

problem in a scalable way. This scalable feature of our solution

comes from the fact that the HMM based model relies on

the ACS rather than individual source reliability to infer

the truthfulness of claims. The ACS reflects the aggregated

evidence from the collective observations of social sensors.

In the SSTD scheme, for a claim Cu, we assign it to a

TD job TDu. The job implements a data preprocessing step

(discussed in details in V-A) and the truth discovery step (i.e.,

HMM based solution) to decode truth from the data stream

for Cu. All TD jobs are running in parallel and new TD jobs

will be dynamically spawned when new claims are generated.

The implementation of SSTD in a distributed framework is

discussed in details in the next section.

IV. IMPLEMENTATION ON A DISTRIBUTED COMPUTING

FRAMEWORK

In this section, we present a distributed implementation of

the SSTD system using HTCondor and Work Queue. We also

develop an optimal task allocation mechanism to optimize the

system performance using the control theory.

A. Background

1) HTCondor: We use the HTCondor from University

of Notre Dame as the underlying distribute system for the

implementation of SSTD scheme. The system consists of over

1,900 machines and over 14,700 cores at the time of writing.

HTCondor has been used by hundreds of organizations in

industry, government, and academia to manage computing

clusters ranging from a handful to many thousands of work-

stations cores [18]. The HTCondor system at University of

Notre Dame is deployed to all available machines, including

desktop workstations, classroom machines, and server clusters,

all of which are typically idle 90% of the day. Users send

their computation jobs to run in the HTCondor system, and

the system allocates the jobs to run on machines that would

otherwise go unused.

2) Work Queue: Work Queue is a lightweight user-level

execution engine for constructing large scale distributed im-

plementations [5]. The system consists of a master process

and a large number of worker processes that can be deployed

across heterogeneous cluster, cloud, and grid infrastructures.

Work Queue allows the master process to define a set of

tasks (i.e., Task Pool), submit them to the queue, and wait

for completion. It also defines a Worker Pool, which is a set

of workers that can run on any machines. A Worker is defined

as a process that performs specific computational functions

described by the tasks. Once running, each worker calls back

to the master process, arranges for data transfer, and executes

the tasks. Work Queue maintains an elastic worker pool that

allows users to scale the number of workers up or down as

required by their applications. We use Work Queue on top of

HTCondor system to take advantage of its dynamic resource

allocation mechanism for TD job allocations.

B. Overview of SSTD Architecture
The architecture of the SSTD system implementation is

shown in Figure 2. A key component is the Dynamic Task

Manager (DTM) which is implemented as a master process for

Work Queue that initializes a Worker Pool and dynamically

spawns new tasks into the Task Pool. The DTM divides

the TD jobs into multiple tasks that run in parallel on the

HTCondor system. A feedback control system is integrated

with SSTD scheme to monitor the current execution speed of

each TD job and estimate its expected finish time. The control

system emits the control signals and feeds them back to the

DTM by comparing the expected finish time of TD jobs with

corresponding deadlines specified by the applications. DTM

then dynamically adjusts the priorities of TD jobs based on

the control signals.

Fig. 2. SSTD Implementation Architecture

C. Dynamic Task Management and Feedback Control System
In this subsection, we discuss the implementation details

of Dynamic Task Manager (DTM). The DTM is designed

to dynamically manage the tasks and resources in order to

optimize the system performance.
1) Deadline Driven System Optimization: In DTM, we de-

signed a deadline driven optimization scheme to optimize the

system performance and address data heterogeneity problem

of the streaming social sensing data. The goal of deadline

driven optimization is mainly twofold. First, the SSTD scheme

should be able to meet the real-time Quality of Service (QoS)

requirements from various social sensing applications. Second,

the SSTD scheme should accommodate the heterogeneity of

data streams from different TD jobs. In particular, the SSTD

scheme will maximize the probability for all TD jobs to finish

before their deadlines. In this paper, we develop a dynamic

feedback control system to achieve the above goal.

24472444970
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2) Dynamic Feedback Control System: The architecture of

the dynamic feedback control system is shown in Figure 3.

It consists of three key components: Proportional Integral

Derivative (PID) feedback controller, Local Control Knob

(LCK) and a Global Control Knob (GCK). The LCK refers to

a local control variable that is used to tune the performance of

a particular TD job. In SSTD scheme, the LCK is the priority

assignment of each TD job. The GCK refers to a global control

variable that is used to tune the performance of all TD jobs

in the system. In SSTD scheme, we use the total number of

workers in the Worker Pool as the GCK.

Fig. 3. Dynamic Feedback Control System

3) Feedback Control Mechanism: PID is a feedback control

mechanism that is commonly used in industrial control sys-

tems. A PID controller continuously calculates an error value

as the difference between the desired value (setpoint) and a

measured process variable and applies a correction based on

proportional, integral, and derivative terms of the error [30].

The advantage of using PID is that it provides a simple and

flexible controller without requiring precise modeling of the

system. In our SSTD scheme, we use the deadline of each TD

job as the setpoint and compare it with the actual execution

time of the job. The execution time is obtained by continuously

monitoring the timestamps of the output files of the TD job.

The error value e(k, u) denotes the difference between the

current execution time and the deadline for TDu. Here k
denotes the k-th sample. We use a sampling rate of 1 second

and the control signal y(k, u) for TDu is calculated as:

y(k, u) = Kpe(k, u) +Ki

k∑

0

e(k, u)Δt+Kd
Δe(k, u)

Δt
(9)

where Kp,Ki,Kd are the coefficients for the proportional,

integral, and derivative terms in the PID controller respectively.

We heuristically tune these parameters by picking the set

of values when the tasks in the system the meet the most

deadlines. Details of parameter tuning can be found in V-A.

4) WCET Calculation and Control Knob Tuning: The DTM

dynamically adjusts control knobs to optimize system perfor-

mance based on the control signals from the PID controller. In

particular, the DTM adjusts both the job priority assignments

(LCK) and the number of workers in the Worker Pool (GCK).

The job priority reflects the probability that a TD job

acquires system resource and gets processed by workers in the

system. A higher priority job is more likely to be processed

earlier than a low priority job. Each TD jobs can be split into

multiple TD tasks in Work Queue system where each task has

the same probability of being processed by the worker. The

priority of job TDu is defined as Pu =
Tu∑N
u=1 Tu

where Tu

is the total number of tasks for TDu. We divide the data of

each TD job equally between its tasks. The execution time

ETu for each task in TDu is calculated as:

ETu = TI +DΔt
u ∗ θ1 (10)

where TI is the initialization time for each task, θ1 is a

constant and DΔt
u is the size of data for job TDu in time

interval Δt. We assume the WECT of a TD job is inversely

proportional to its priority and the size of the worker pool. We

can derive the WECT for job TDu as:

WCETT
u = TI ∗ Tu +

DΔt
u ∗ θ2

WK ∗ Pu

= TI ∗ Tu +
DΔt

u ∗ θ2 ∗
∑N

u=1 Tu

WK ∗ Tu

(11)

where WK is the number of workers and θ2 is a constant.

We observe the data initialization cost increases quickly when

the number of tasks is large. To minimize the initialization

overhead, we keep the number of tasks in each TD job small

and WECT can be simplified as:

WCETT
u ≈

DΔt
u ∗ θ2

WK ∗ Pu
(12)

Based on Equation (12), we may improve each TD job’s

WECT by increasing either its job priority or the number of

workers. To optimize system performance, The execution time

of TD jobs is used to generate the PID control signals defined

in Equation (9) in the system. The system then tunes both

LCK and GCK based on the control signals to i) synchronize

the local execution speed of each TD job by tuning LCKs

and ii) scale up/down the GLK depend on the global system

performance.

V. EVALUATION

In this section, we evaluate the performance of the SSTD

scheme and compare it with the state-of-the-art truth discovery

baselines on three real-world data traces collected from social

sensing applications. The results show that the SSTD scheme

outperforms the compared baselines in terms of both truth

discovery accuracy and computational efficiency.

A. Experimental Setups

1) Baseline Methods: We chose the following six represen-

tative truth discovery solutions as the baselines.

• TruthFinder: It uses a pseudo-probabilistic function to

estimate source reliability and claim truthfulness using an

iterative algorithm [45].

• RTD: A truth discovery scheme that is robust against

misinformation in social media applications [46]. It lever-

ages the historical claims of each source to detect widely

spread misinformation.
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• CATD: It provides confidence interval estimators for

source reliability using sparse data. The proposed method

can effectively estimate the reliability of sources with

various levels of data contribution from sources [8].

• Invest: Invest algorithm “invests” source reliability

among their claims and the truthfulness for each claim

can be obtained by using a non-linear function [25].

• 3-Estimate: It identifies the truth of a claim by estimating

the three defined parameters in their models related with

source reliability and claim truthfulness [11].

• DynaTD: A dynamic truth discovery algorithm using

Maximum A Posteriori Estimation to dynamically esti-

mate source reliability and truth of claims in real time [9].

2) Data Collection and Pre-Processing: We collected three

real-world data traces from Twitter in the aftermath of emer-

gency events and major sporting events for the purpose of

evaluation. Twitter has emerged as a new social sensing

experiment platform where massive observations are uploaded

voluntarily from human sensors to report the events happened

in the physical world. We noted conflicting information is

common to observe on Twitter due to the open data collection

environment and unvetted nature of data source. We found

the truth of the claims on Twitter change dynamically. In the

emergency events, for example, the location of the affected

area, the number of death are changing dynamically. During a

sporting event, the scores and leading status of the game also

change over time. This noisy and dynamic nature of Twitter

provides us a good opportunity to investigate the performance

of the SSTD scheme in a real world social sensing scenario.

The collected traces are summarized in Table II.
Boston Bombing Trace & Paris Shooting Trace : We col-

lected Twitter data related to the 2013 Boston Bombing event

and 2015 Paris Shooting event through Twitter open search

API (using the query terms such as “Boston”, “Marathon”,

“Bombing”, “Paris”, “Shooting”) and specified geographic

regions related to the event (using a circular region centered

at event location within a radius of 100 miles).
Data Pre-processing: To derive claims of the dataset, we

implemented a simple claim generator based on keywords

filtering and clustering techniques. In particular, we first used

a set of pre-specified keywords to filter out tweets that are

irrelevant to the event of interests for the truth discovery task.

We then use a variant of K-means clustering algorithm and a

commonly used distance metric for micro-blog data clustering

(i.e.,Jaccard distance) [32] to cluster tweets of similar content

into the same cluster. The clustering algorithm is an online

algorithm for the streaming social sensing data. In particular,

a newly arrived tweet will be clustered into one of the existing

clusters based the computed Jaccard distance and a cluster will

be broken into two clusters if the diameter of the cluster is

larger than some pre-specified threshold learned from previous

case studies [41]. We treat a topic directly related to the

terrorist attack events in each cluster as a claim (e.g., the

location of the suspect, bomb threat in JFK library, whether

an arrest has been made, etc.).
In order to compute the Contribution Score, we first cal-

culate the Attitude Score using a heuristic method based

mainly on the content of the tweet to classify it as “agree”

or “disagree” (e.g., whether a tweet contains certain negative

words such as “false”, “fake”, “rumor”, “debunked”, “not

true”). We assign a score of “1” and “-1” respectively.

We then calculate the Uncertainty Score by implementing

a simple text classifier using skit-learn and trained it with the

training data provided by CoNLL-2010 Shared Task [10]. To

compute the Independent Score, we classified the retweets or

tweets that are significantly similar to the previous tweets

within a time interval as repeated claims and assign them

relatively low independent scores.

Labeling Ground Truth: We manually verified the ground

truth of the claims using the historical facts about the Boston

Bombing and Paris Shooting events.

College Football Trace: We collected Twitter data from five

US college football games in the weekend of Sept 29, 2016.

These data traces were collected through Twitter Streaming

API using query terms related to the names of the teams and

schools (e.g., “Fighting Irish”, “Buckeyes”, “Notre Dame”)

and specified geographic regions of the game (e.g., within 30

miles radius from the stadium).

Data Pre-processing: For each game, the change of score is

treated as the claim, therefore, we consider the binary value of

either score changes or no score change. We calculate the At-
titude Score based on keyword matching. For example, tweets

containing “taking the lead”, “score”, “tied” are considered

supportive attitude of score change and it is assigned a score

of 1 while the rest of the tweets are assigned a score of “-

1”. For the Uncertainty Score, Independent Score and Source
Attitude, we use the same approach as we discuss in the Boston

data trace.

Labeling Ground Truth: We manually label the ground truth

of the game status based on credible post-game statistics from

ESPN.com1 and FCS2.

3) System Setup: We implemented the master program of

SSTD on a single HTCondor node of 4 processors and 8G of

RAM. On this node, the DTM is written as a Work Queue

master script and it is connected to the data crawler which

continuously fetches the social sensing data. Both programs

are written in Python. The node is connected to the Notre

Dame Condor Cluster which executes all TD jobs. For all

compared baselines, we run them on the same HTCondor

node separately to ensure fairness in the comparison. However,

they are not executed in the HTCondor cluster since they are

not designed as distributed schemes. To tune the PID control

system, we increase each coefficient from 0.0 to 3.0 by 0.1
. We pick the set of coefficients that maximize the number

of jobs that can meet their deadlines. The coefficients we use

for our SSTD system are 1.2, 0.3 and 0.2 for Kp,Ki and Kd

respectively. We also set θ3 and θ4 as 2 and 1.5 for tuning

control knobs using similar heuristics.

B. Evaluation on Real World Data Traces

1http://www.espn.com/college-football
2http://www.fcs.football/cfb
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TABLE II
DATA TRACE STATISTICS

Data Trace Paris (Charlie Hebdo) Shooting Boston Bombing College Football
Start Date Jan. 1 2015 Apr. 15 2013 Sep. 30 2016

Time Duration 3 days 4 days 3 days
Search Keywords Paris, Shooting, Charlie Hebdo Bombing, Marathon, Attack Team/College names
# of Reports 253,798 553,609 429,019
# of Sources 217,718 493,855 413,782

1) Evaluation Metrics: We evaluate the performance of

SSTD scheme in comparison with state-of-the-art solutions

from the following perspectives: (i) effectiveness: the accuracy

of the truth discovery solutions (i.e., Accuracy, Precision, Re-
call and F1-Score); (ii) efficiency: the time to finish execution

of the truth discovery tasks; (iii) controllability: the percentage

of truth discovery tasks that meet the specified deadlines.
2) Evaluation Results: We first evaluate the effectiveness of

all compared truth discovery schemes. The evaluation results

on the three data traces are shown in Table III, IV and

V respectively. We observe that SSTD scheme outperforms

compared baselines on all four metrics of the effectiveness.

In particular, the performance gain achieved by SSTD scheme

compared to the best performed baseline on accuracy, preci-

sion, recall and F1-Score is 6.5%, 2.3%, 0.7% and 4.9% on the

Boston Bombing data trace; 4.9%, 1.1%, 8.2% and 6.6% on

the Paris Shooting data trace and 3.6%, 10.6%, 2.8% and 8.9%
on the College Football data trace. The performance gain of the

SSTD scheme is achieved by explicitly modeling the dynamic

truth of the claims and incorporating contribution scores of

reports to compensate the sparsity of the social sensing data.

TABLE III
TRUTH DISCOVERY RESULTS - BOSTON BOMBING

Method Accuracy Precision Recall F1-Score

SSTD 0.828 0.834 0.831 0.833
DynaTD 0.722 0.811 0.756 0.783
TruthFinder 0.653 0.689 0.787 0.734
RTD 0.763 0.748 0.824 0.784
CATD 0.667 0.764 0.748 0.751
Invest 0.609 0.639 0.626 0.632
3-Estimates 0.616 0.626 0.807 0.705

TABLE IV
TRUTH DISCOVERY RESULTS - PARIS SHOOTING

Method Accuracy Precision Recall F1-Score

SSTD 0.802 0.834 0.905 0.872
DynaTD 0.731 0.822 0.788 0.805
TruthFinder 0.616 0.653 0.806 0.721
RTD 0.753 0.791 0.823 0.807
CATD 0.669 0.689 0.760 0.723
Invest 0.661 0.722 0.780 0.750
3-Estimates 0.647 0.704 0.765 0.733

To evaluate the efficiency, we compare the execution time

of all compared schemes. We run SSTD on the Notre Dame

HTCondor cluster with a maximum number of workers as

4. We use such a small number of workers in favor to

other centralized baselines that are not designed to run in

TABLE V
TRUTH DISCOVERY RESULTS - COLLEGE FOOTBALL

Method Accuracy Precision Recall F1-Score

SSTD 0.801 0.661 0.792 0.723
DynaTD 0.765 0.471 0.570 0.515
TruthFinder 0.612 0.542 0.455 0.495
RTD 0.752 0.555 0.649 0.598
CATD 0.736 0.542 0.764 0.634
Invest 0.722 0.478 0.716 0.574
3-Estimates 0.674 0.396 0.677 0.501

a cluster. We run all other baselines on a single node of

4 processors and 8G of RAM. The results are reported in

Figure 4. The results show that our scheme outperforms all

other baselines by having a shorter execution time to finish

the truth discovery task. We also observe that the performance

gain achieved by SSTD becomes more significant when data

size becomes larger, which demonstrates the scalability of our

scheme on large data traces in social sensing applications.

We also envision the performance gain of SSTD over other

baselines would be much larger if we run it in a larger cluster

with more nodes.

We also study the effect of the streaming speed (mea-

sured by the number of tweets per second) on the execution

time of all schemes. In particular, we stream the data into

compared schemes at different speed for a duration of 100

seconds. The batch (static) truth discovery schemes (e.g.,

CATD, TruthFinder, RTD) retrieve and process 5 seconds

of data each time periodically. The streaming schemes (e.g.,

SSTD, DynaTD), on the other hand, keep reading new data

and process them as they arrive. The results are shown in

Figure 5. We observe that batch schemes can hardly catch up

with the streaming data updates, especially when the streaming

speed is high. The results suggest the batched schemes are not

suitable to solve the dynamic truth discovery problems with

streaming data. In contrast, the execution time of the streaming

schemes are close to the streaming duration, which verifies the

real-time feature of these streaming truth discovery algorithms.

The SSTD is the fastest between all streaming schemes and

is also least sensitive to the changes of the streaming speed.

We then evaluate the contrallability of SSTD scheme. We

divide each data trace into 100 equal time intervals based on

the timestamps of tweets. For each time interval, we record

the total execution time to process all the tweets in that time

interval. We compare the execution with the deadline and we

record the percentage of intervals where the execution time is

less than the deadline (i.e., hit rate). The result are reported
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(a) Boston Bombing Trace (b) Paris Shooting Trace (c) College Football Trace

Fig. 4. Execution Time of All Compared Schemes

(a) Boston Bombing Trace (b) Paris Shooting Trace (c) College Football Trace

Fig. 5. Total Running Time vs. # of tweets per Sec of All Compared Schemes

(a) Boston Bombing Trace (b) Paris Shooting Trace (c) College Football Trace

Fig. 6. Deadline Hitting Rates of All Compared Schemes

in Figure 6. We observe that SSTD consistently outperforms

other baselines by meeting more deadlines. Specifically, the

performance gains are very significant when the deadline is

tight. This is because SSTD dynamically adjusts its resource

and task assignment by monitoring the execution status of jobs

in the system. The deadline driven control loop makes real-

time adjustments to maximize the opportunity for TD jobs to

meet their deadlines, which is one of the optimization goals

we discussed in Section II.

Fig. 7. Scalability of SSTD Scheme
Finally, we evaluate the scalability of SSTD scheme. We

generate synthetic data traces of different sizes as the input to

the SSTD scheme. We use the metric speedup to evaluate the

performance gain achieved by SSTD scheme with different

number of workers in the system. The Speedup (N) is defined

as ratio of serial execution time to execution time on N

workers. The ideal Speedup (N) is simply N which is not

possible to achieve in practice due to the overhead cost in

distributed systems (e.g., communication and I/O overhead).

The results are reported in Figure 7. The size of the data trace

is measured in terms of number of tweets. We observe that the

speedup ratio improves as the size of the data trace increases.

In our evaluation, we push the limit on the size of data traces

to be larger than the actual data volume of some extremely

large-scale social sensing event in real world applications (e.g.,

16.9 million tweets from Super Bowl 2016). The above results

demonstrate the scalability of the SSTD scheme.

VI. RELATED WORK

Truth discovery is a critical challenge in social sensing

and previous studies have made a significant progress to

address this problem [7], [16], [20], [25], [41], [45]. The truth

discovery problem is first formally formulated by Yin et al.

[45], in which a Bayesian based heuristic algorithm, Truth
Finder, is proposed. Pasternack et al. proposed extended mod-

els (e.g., AVGLog, Invest and PooledInvest) to incorporate

24512448974

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 19,2021 at 12:55:02 UTC from IEEE Xplore.  Restrictions apply. 



prior knowledge such as constraints on truth and background

information into truth discovery solutions [25]. Dong et al.

proposed algorithms to handle the source dependency in truth

discovery problem [7]. Wang et al. proposed a maximum-

likelihood estimation approach that offers a joint estimation

on source reliability and claim correctness [41]. Huang et al.

further explored the spatial-temporal constraint of the truth

discovery problem [13], [15], [16]. Marshall et al. developed

a set of semantic aware truth discovery solutions to explicitly

consider the semantic aspects of the claims [19]–[21]. In

contrast, we focus on the three emerging challenges (i.e.,

dynamic truth, scalability and heterogeneity of streaming
data) that have not been well addressed by current truth

discovery solutions.

There exist some similarities between our work and some

previous studies on the topic of dynamic truth. For example,

the method proposed in [24] takes into account the evolving

information of objects and estimates the truths of variables in

current time interval based on the historical claims of sources.

Li et al. proposed a Maximum A Posterior based real-time

algorithm to explicitly address the evolving truth problem [9].

Wang et al. proposed a method to model time-varying truth

using a recursive EM approach [36]. A single-pass truth dis-

covery method was also proposed to handle streaming data [6].

However, none of the above studies consider the scalability and

data heterogeneity issues in social sensing, which may cause

these schemes to be unscalable and inefficient to large scale

social sensing events.

Our work also bears some resemblance to a few distributed

system implementations for social sensing applications. For

example, Ouyang et al. developed a parallel algorithm for

quantitative truth discovery applications to handle big stream-

ing data by exploring MapReduce framework in Hadoop [23].

Yerva et al. developed a cloud-serving system for fusing the

social and sensor data to deal with massive data streams

[44]. Xue et al. introduced a cloud based system for large

scale social network analysis using the Hadoop framework

[43] as well. However, Hadoop based approaches assume data

can be split into chunks of similar sizes based on topics (or

claims), which is barely true due to the heterogeneity feature

of social sensing data. Second, Hadoop is too heavy weight

for time-critical applications that deal with real-time streaming

data [23]. In this work, we developed a light-weight distributed

framework using Work Queue and HTCondor to improve the

efficiency of our truth discovery scheme.

VII. LIMITATIONS AND FUTURE WORK

First, we assume no dependency between claims. There

may be cases, however, where claims are not completely

independent. For example, weather conditions at city A may

be related to weather condition at city B when A and B

are close in distance. Incorporating such dependency into

our model can be an interesting topic for future research.

In particular, we need to explicitly model the correlation

between different claims and incorporate such correlation into

the HMM based model. The key challenge is to maintain the

correlation between claims when the truth discovery task is

implemented on a distributed framework.

Second, our scheme requires the labeling of semantic fea-

tures of the claims, namely the coherence score, independent

score and attitude score. In our evaluation, we use heuristic

based methods to perform a rough labeling of these scores. We

plan to develop accurate classifiers to scale the labeling process

by leveraging more refined techniques from Natural Language

Processing (NLP) and text mining [2], [3]. For example, the

polarity analysis is often used to automatically decide whether

a tweet is expressing negative or positive feelings towards a

claim. We should note that the SSTD is designed as a general

framework where one can easily update or replace components

like uncertainty classifier as a plugin of the system.

Third, we use some heuristic rules to control the GCK

and LCK in the PID controller. One reason for doing that is

finding optimized control solution can be time-consuming and

inappropriate for streaming social sensing applications [26].

We plan to explore real-time optimization (RTO) techniques to

optimize resource allocation based on control signals. Specif-

ically, we are planning to formulate the system optimization

as an integer linear programming (ILP) problem that targets at

finding the optimal integer values for the number of workers

and the number of tasks for each job in real time [12], [42].

VIII. CONCLUSION

This paper presents an effective and efficient scheme (i.e.,

SSTD) to solve the truth discovery problem in social sensing

applications. The SSTD scheme addresses the dynamic truth

challenge by explicitly modeling the truth transition using a

HMM based model. It provides a scalable implementation

framework using a distributed system based on HTCondor and

Work Queue. SSTD also effectively addresses the heterogene-

ity of the streaming data by integrating a feedback controller

for dynamic task allocation and resource management. We

evaluate the SSTD scheme using three real world data traces.

The results demonstrate that our solution achieved significant

performance gains compared to the state-of-the-art baselines.
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