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Abstract—With the rapid growth of online social media and
ubiquitous Internet connectivity, social sensing has emerged
as a new crowdsourcing application paradigm of collecting
observations (often called claims) about the physical environment
from humans or devices on their behalf. A fundamental problem
in social sensing applications lies in effectively ascertaining the
correctness of claims and the reliability of data sources without
knowing either of them a priori, which is referred to as truth
discovery. While significant progress has been made to solve the
truth discovery problem, some important challenges have not
been well addressed yet. First, existing truth discovery solutions
did not fully solve the dynamic truth discovery problem where
the ground truth of claims changes over time. Second, many
current solutions are not scalable to large-scale social sensing
events because of the centralized nature of their truth discovery
algorithms. Third, the heterogeneity and unpredictability of the
social sensing data traffic pose additional challenges to the
resource allocation and system responsiveness. In this paper, we
developed a Scalable Streaming Truth Discovery (SSTD) solution
to address the above challenges. In particular, we first developed
a dynamic truth discovery scheme based on Hidden Markov
Models (HMM) to effectively infer the evolving truth of reported
claims. We further developed a distributed framework to imple-
ment the dynamic truth discovery scheme using Work Queue in
HTCondor system. We also integrated the SSTD scheme with an
optimal workload allocation mechanism to dynamically allocate
the resources (e.g., cores, memories) to the truth discovery tasks
based on their computation requirements. We evaluated SSTD
through real world social sensing applications using Twitter data
feeds. The evaluation results on three real-world data traces (i.e.,
Boston Bombing, Paris Shooting and College Football) show that
the SSTD scheme is scalable and outperforms the state-of-the-
art truth discovery methods in terms of both effectiveness and
efficiency.

Index Terms—Crowdsourcing, Socical Sensing, Truth Discov-
ery, Distributed Computing, Control Theory, Hidden Markov
Model

I. INTRODUCTION

This paper presents a scalable streaming truth discovery
scheme for social sensing applications. Social sensing has
emerged as a new paradigm of crowdsourcing applications
where humans are used as ubiquitous, versatile and inexpen-
sive sensors to report their observations (often called claims)
about the physical world [35]. This paradigm is motivated
by the proliferation of portable data collection devices (e.g.,
smartphones), the wide adaptation of online social media (e.g.,
Twitter, Facebook) and the ubiquitous Internet connectivity

(e.g., WiFi, 4G/5G). Examples of social sensing include ob-
taining real-time situation awareness in disaster and emergency
response scenarios [34], intelligent transportation system ap-
plications using location based social network services [1],
geotagging and urban sensing applications using inputs from
common citizens [40]. A critical challenge in social sensing is
referred to as truth discovery where the goal is to identify the
reliability of the sources and the truthfulness of claims they
make without the prior knowledge on either of them.

Consider a campus attack scenario (e.g., OSU attack in
Nov. 2016) as an example. A significant amount of reports
about the current situation of the attack (e.g., the number
of casualties, the escape path of suspects and safety alerts)
are available from the social sensors (e.g., news reporters
and common citizens on social media). However, those social
sensors may not always generate reliable claims and some
of their claims may even contradict with each other. Table I
shows some example tweets collected in the OSU attack. We
observe the first two tweets report that there was a shooting
happening at OSU campus while the third one report it was
false news. In general, it is very challenging to identify the
truthfulness of the claims without knowing the reliability of
the individual sources who make them a priori. Additionally,
sources could also intentionally or unintentionally propagate
the misinformation through their social networks [38]. All
these complexities make the truth discovery in social sensing
a non-trivial task to accomplish.

TABLE I
EXAMPLE TWEETS ON CONTRADICTING CLAIMS IN OSU CAMPUS

ATTACK, NOVEMBER, 2016
Tweet Timestamp
OSU POSSIBLE SHOOTING: I am on campus
near @OSUengineering TONS of police.

28 Nov 2016,
7:23 AM

There was a shooting at Ohio state please pray
for people’s safety #osu

28 Nov 2016,
7:47 AM EST

Liberals putting out fake claims about the ter-
rorist attack. 1st not a shooting, 2nd not an
American, 3rd not nazi but Islamic #osushooting

28 Nov 2016,
11:37 AM EST

A rich set of solutions have been proposed in network
sensing, data mining, machine learning communities to solve
the truth discovery problem [7], [14], [17], [25], [37], [39],



[41]. However, several significant challenges have not been
well addressed by the state-of-the-art solutions. First, existing
solutions did not fully solve the dynamic truth discovery
problem where the ground truth of claims changes over time.
There are two critical tasks in addressing the dynamic truth
challenge. The first is to capture the transition of truth in a
timely manner and the second one is to be robust against
noisy data that may lead to the incorrect detection of the truth
transition. Only a small number of schemes been proposed to
solve the dynamic truth discovery problem. For example, Pal
et. al considered the evolving information of objects and esti-
mated the truth of variables in current time interval based on
sources’ historical claims [24]. Li et al. proposed a Maximum
A Posterior based real-time algorithm to solve the dynamic
truth discovery problem [9]. However, these approaches could
be unresponsive when the amount of social sensing data is
large or the amount of resources on the deployed system
are limited. Moreover, their solutions are not robust in noisy
and sparse social sensing scenarios since their truth discovery
accuracy is sensitive to the quality and quantity of the sensing
data.

Second, existing truth discovery solutions did not fully
explore the scalability aspect of the truth discovery problem.
Social sensing applications often generate large amounts of
data during some important events (e.g., disasters, sports,
unrests) [27]. For example, 3.8 million people have generated
a total of 16.9 million tweets with tweet per minute peaked
at a rate of over 152,000 in Super Bowl 2016 [22]. However,
current centralized truth discovery solutions are incapable of
handling such large volume of social sensing data due to the
resource limitation on a single computing device. A limited
number of distributed solutions have been developed to address
the scalability issue of the truth discovery problem. Both
Ouyang et al. [23] proposed a distributed solution based on
Hadoop system, but there are several non-trivial drawbacks.
First, Hadoop is a heavy-weight solution in the sense that it
requires a long start up time. Second, Hadoop is designed
as a batch processing system that is most suitable for data
of very large volume (e.g., Petabytes of data) and may not
be the best solution for the size of datasets collected in many
social sensing events (e.g., GB to TB). Third, Hadoop assumes
homogeneity of the underlying computing nodes [29], which
ignores the heterogeneity of the computational resources we
have in real distributed systems.

The third challenge lies in the heterogeneity and unpre-
dictability of the streaming data traffic. First, different topics
or events are likely to generate different amounts of social
sensing data (e.g., Hurricane Matthew generates way more
tweets than a local traffic accident) [31]. Second, the traffic
volume of the same event is not constant over time (e.g.,
there is often a spike in the number of tweets when there’s
a touchdown in a football game). Such heterogeneity needs
to be appropriately handled by the social sensing system
to provide reliable and responsive truth discovery results.
Previous truth discovery solutions assumed the datasets can
be evenly partitioned into chunks of similar sizes and all

partitions can be processed in a synchronized manner [23].
However, such strong homogeneity assumption on the data
streams barely holds in real world social sensing applications.

In this paper, we develop a Scalable Streaming Truth
Discovery (SSTD) scheme to address the above challenges.
To address the dynamic truth discovery challenge, we develop
a Hidden Markov Model based solution to dynamically es-
timate the true value of claims based on the observations
reported by social sensors. To address the scalability challenge,
we developed a light-weight distributed framework that is
both scalable and efficient to solve the truth discovery problem
using Work Queue and HTCondor system. To address the data
heterogeneity challenge, we integrated the SSTD scheme with
an optimal workload allocation mechanism using feedback
control (i.e., Proportional Integral Derivative (PID) controller)
to dynamically allocate the resources (e.g., cores, memories)
to the truth discovery tasks. We evaluated the SSTD scheme in
comparison with the state-of-the-art truth discovery baselines
using three real-world social sensing data traces (i.e., Boston
Bombing, Paris Shooting and College Football) collected from
Twitter. The evaluation results show that our SSTD scheme
significantly outperforms the compared baselines in terms of
truth discovery accuracy and computational efficiency.

In summary, the contributions of this paper are as follows:
• This paper addresses three fundamental challenges in

truth discovery problem in social sensing: dynamic truth,
scalability and heterogeneity of streaming data.

• We develop the SSTD scheme that incorporates the
Hidden Markov Model (HMM) to effectively address the
dynamic truth discovery challenge.

• We develop a light-weight distributed framework based
on Work Queue and HTCondor system to address the
scalability challenge.

• We integrate the SSTD scheme with an optimal workload
allocation mechanism to address the heterogeneity of the
streaming social sensing data.

• We evaluate the performance of the SSTD scheme and
compare it with the state-of-the-art truth discovery so-
lutions through real-world case studies. The evaluation
results demonstrate the effectiveness and significant per-
formance gains achieved by our scheme.

II. PROBLEM FORMULATION

Consider a social sensing application where a group of M
sources S = (S1, S2, ..., SM ) report a set of N claims C =
(C1, C2, ..., CN ). Let Si denote the i-th source and Cu denote
the u-th claim. We define Rti,u to be the report made by source
Si on claim Cu at time t. In this paper, we focus on binary
claims and sources can report a claim to be either true or false.
Twitter, for example, can be considered as a social sensing
application where observations from average people are used
to obtain the real-time situation awareness of disaster events
(e.g., earthquake, hurricane). A source represents a Twitter
user and a claim is a statement of an event, topic or object that
is derived from his/her tweet. For example, a tweet “The USC-
Notre Dame game is close and the Irish have the lead.” can be



considered as a report to a claim “Notre Dame is leading the
football game”. To model the dynamics of claim truthfulness,
we assume the truthfulness of the claim changes over time.
Therefore, we use Cu,t = T and Cu,t = F to represent a
claim Cu is true or false at time t respectively. We assume a
claim cannot be both true and false at the same time.

One key challenge in social sensing applications lies in the
fact that sources are often unvetted and they may not always
report truthful claims. Therefore, we need to explicitly model
the reliability of data sources. However, data sparsity is a
common problem in social sensing applications where most
sources only contribute a small number of claims [46]. It is
challenging to accurately estimate the reliability of sources
due to the lack of sufficient evidence. Fortunately, the reports
themselves often contain extra evidence and information to
infer the truthfulness of a claim. In the Twitter example, the
text, pictures, URL links and geotags contained in the tweet
can all be considered as extra evidence of the report. To
leverage such evidence in our model, we define a contribution
score for each report to represent how much the report
contributes to the belief in the truthfulness of a claim. We
first define the following terms related to contribution score.

DEFINITION 1: Attitude Score (ρti,u) : a score represents
whether a source believes the claim is true, false or does not
provide any report. We use 1, -1 and 0 to represent these
attitudes respectively.

DEFINITION 2: Uncertainty Score (κti,u): a score in the
range of (0,1) that measures the uncertainty of a report.
A higher score is assigned to a report that expresses more
uncertainty.

DEFINITION 3: Independent Score: (ηti,u): a score in the
range of (0,1) that measures whether the report Ri,u is
made independently or copied from other sources. A higher
score is assigned to a report that is more likely to be made
independently.

Combining the above terms, we formally define Contribu-
tion Score as:

CSti,u = ρti,u × (1− κti,u)× ηti,u (1)

Furthermore, we define the estimated truth of the u-th claim
at time t as x̂u,t and the ground truth label of claim Cu at
time t as xu,t. Given the sources, claims and reports in social
sensing applications, the objective of dynamic truth discovery
is to correctly estimate the truthfulness of claims at each time
instant. In particular, for each claim Cu at time instant t, our
goal is to derive the estimate x̂u,t that is as close as possible
to the ground truth xu,t, which is given by:

arg max
x̂u,t

P (x̂u,t = xu,t|S,C,R) (2)

The above problem is more challenging when the com-
putational resources needed to solve the problem are taken
into consideration. On one hand, many current truth discovery
solutions developed batch algorithms that are shown to achieve
reasonable estimation accuracy at the cost of high computa-
tional complexity and incapability to scale to large-scale social

sensing events [11], [25], [45]. On the other hand, simple
heuristic algorithms such as Majority Voting and Median are
very fast but the truth discovery accuracy is quite low [9].
Additionally, the available computational resources (e.g., disk,
memory, cores) on the deployed systems are often limited,
which pose extra constraints to the dynamic truth discovery
problem. Therefore, the goal of this paper is to optimize both
the estimation accuracy and computational efficiency of the
SSTD scheme while meeting all resource constraints of the
deployed systems.

To model the system aspect of the problem, we define a
few additional terms to be used in our problem formulation.
First, we use D∆t to represent the total amount of data that is
generated by the social sensing application for a given time in-
terval ∆t. We have a set of jobs TD = {TD1, TD2, ..., TDJ}
that run on a distributed system to solve the dynamic truth
discovery problem. We refer to these jobs as Truth Discovery
(TD) jobs. For each job, we define the Worse Case Execution
Time (WCET) as the maximum running time for that job
to finish the truth discovery task. In particular, we denote
w∆t
j as the WCET for processing D∆t by job TDj . For the

deployed system, we consider a computer cluster of K nodes
Nodes = {N1, N2, ..., NK}. For each node Nk, it has a set
of Z resource constraints RCk = RCk1 , RC

k
2 , ..., RC

k
Z where

each constraint defines the maximum availability of a specific
system resource (e.g., memory, disk space, CPU). Further-
more, we define a set of soft deadlines dl = dl1, dl2, ..., dlJ
to specify the expected finishing time of the TD jobs in order
to optimize the responsiveness of the system.

With the above definitions, we can formulate the dynamic
and distributed truth discovery problem with resource con-
straints as a constrained optimization problem. Formally, we
want to achieve:

maximize P (x̂u,t = xu,t|S,C,R),∀t > 0 (3)

and P (w∆t
j ≤ dlj),∀1 ≤ j ≤ J

s.t. RCk is satisfied ∀1 ≤ k ≤ K

III. SCALABLE AND STREAMING TRUTH DISCOVERY

In this section, we develop the Scalable and Streaming Truth
Discovery (SSTD) scheme to solve the problem formulated
in the previous section. In particular, we propose a Hidden
Markov Model (HMM) based solution to decode the streaming
social sensing data and output the corresponding truth values
of claims in real time. This solution can be implemented in
a distributed system where multiple truth discovery jobs can
run in parallel to address the scalability challenge in social
sensing applications.

A. Overview of Hidden Markov Model

A Hidden Markov Model (HMM) is a stochastic state
transition model that is commonly used to model systems with
unobserved (hidden) states and it has been commonly used in
applications such as speech recognition, activity recognition
and intrusion detection [28]. The HMM contains a set of



hidden states States = {s1, s2, ..., sX} and a set of obser-
vation symbols Obs = {o1, o2, ..., oY }. At each time instant
t, the model is in a hidden state st ∈ States and we observe
an observation symbol ot ∈ Obs. The HMM is particularly
suitable to handle time series data and capture the dynamics
of state change in real time. In particular, given a series of
observations, it can decode the hidden states that generated
those observations at each time instant. In this paper, we
develop a HMM based streaming truth discovery model to
address the dynamic truth challenge.

B. Deriving Hidden States and Observation Sequence

Our goal is to estimate the true values of the claims and such
true values are often not directly observable and constantly
changing (e.g., the location of a terrorist suspect, the number
of casualties during a natural disaster). We define the evolving
truth of a claim as the hidden states for HMM. We formally
define hidden states of truth as:

DEFINITION 4: Hidden States of Truth: the true value for
the claim at a given time instant that is not directly observable.

We assume that the sequence of truth values can be modeled
as a Markov chain in which each single state of truth is
assumed to be related to its previous state. The inference of
such hidden states requires a visible observation sequence that
can be directly observed from data sources. In our HMM
model, we define our observation sequence as a vector of
Aggregated Contribution Scores (ACS).

DEFINITION 5: Aggregated Contribution Score (ACS): the
sum of contribution scores on the true values of the claim
during a time interval.

The ACS for a claim Cu at time instant t is calculated as:

ACStu =

t∑
t−sw

CSti,u (4)

where CSti,u is the contribution score of report Rti,u (made by
Si on Cu at time instant t). We use a sliding window (i.e., sw)
to control the time period of historical contribution scores we
want to consider for calculating ACS. The size of the sliding
window is decided based on the expected change frequency
of the truth from the observed event.

For claim Cu, we use a sequence of ACS (i.e., F (u) =
(ACS1

u, ACS
2
u, ..., ACS

T
u )) as the input for the HMM model.

The output of the model is the corresponding sequence of
estimated truth (x̂1,u, x̂2,u, ..., x̂T,u) for Cu. The HMM based
truth discovery model is shown in Figure 1.

C. Estimating Parameters of the HMM Model

We now define the estimation parameters in our model.
• Truth Value Vector V : a set of possible true values for

claims. Here we only consider two values: true and false.
• Truth Transition Probability Au: a 2 by 2 matrix where

each element au,i,j is the probability of the true value of
Cu transits from value Vi to value Vj .

• Emission Probability Bu: a sequence of generation like-
lihood with each element bu,i,t denoting the probability
of observing ACStu while the true value of Cu is Vi.

Fig. 1. HMM Based Truth Discovery Model

• Initial State Distribution πu: each element πu,i represents
the probability of the initial true value of Cu being Vi.

• λu = (Au, Bu, πu): the set of parameters that define the
HMM model of claim Cu.

We train our HMM models offline to find the set of
parameters that maximize the probability of the observation
sequence F (u) = {ACS1

u, ACS
2
u, ..., ACS

T
u } for each claim

Cu. Formally, our goal is to find:

λ∗u = arg max
λu

P (F (u)|λu) for u ∈ N

= arg max
λu

P ({ACS1
u, ACS

2
u, ..., ACS

T
u }|λu)

(5)

We solve this problem by using an unsupervised expectation
maximization (EM) based algorithm [4].

D. Decoding State Sequence

Finally, we estimate the true value of each claim at every
time instant. This is done by the decoding step where the goal
is to find the sequence of true values that is most likely to
generate the observed sequence. Formally, it is given by:

(x̂1,u, x̂2,u, ..., x̂T,u) = arg max
V Tu

P ((ACS1
u, ..., ACS

T
u )|V Tu)

(6)
where V Tu = (V 1

u , V
2
u , ..., V

T
u ) is the hidden sequence of

the true values. We apply the Viterbi Algorithm [33] to solve
the above truth decoding problem. Given the corresponding
observation sequence of F (u) = (ACS1

u, ACS
2
u, ..., ACS

T
u )

of claim Cu and the estimated parameters λu of our HMM
model, we can infer the corresponding hidden true value
sequence V Tu that is most likely to generate the observations.
It is solved recursively as follows:

δt(u, i) = max
V 1
u ,V

2
u ,...,V

t−1
u

P (V 1
u , V

2
u , ..., V

t−1
u , ACS1

u, ACS
2
u,

..., ACStu, V
t
u = Vi|λu)

δt+1(u, i) = bu,i,t max
1≤i≤2

δt(u, i)au,i,j

(7)

δt(u, i) represents the probability that the HMM’s current true
value is Vi after seeing the first t observations and passing
through the most probable true value sequence V 1

u , ..., V
t−1
u ,

given the estimated parameter set λu. The initialization is:



δt+1(u, i) = πu,i∗bu,i,1. The estimated index of the true value
at time t can be calculated as:

l = arg max
1≤i≤2

δt(u, i) (8)

The estimated true value of Cu at time t is: x̂t,u = Vl.

E. Scalability of HMM based Truth Discovery Scheme

The HMM based model allows us to divide the social
sensing data stream into multiple sub-streams based on claims
and develop a distributed solution to solve the truth discovery
problem in a scalable way. This scalable feature of our solution
comes from the fact that the HMM based model relies on
the ACS rather than individual source reliability to infer
the truthfulness of claims. The ACS reflects the aggregated
evidence from the collective observations of social sensors.
In the SSTD scheme, for a claim Cu, we assign it to a
TD job TDu. The job implements a data preprocessing step
(discussed in details in V-A) and the truth discovery step (i.e.,
HMM based solution) to decode truth from the data stream
for Cu. All TD jobs are running in parallel and new TD jobs
will be dynamically spawned when new claims are generated.
The implementation of SSTD in a distributed framework is
discussed in details in the next section.

IV. IMPLEMENTATION ON A DISTRIBUTED COMPUTING
FRAMEWORK

In this section, we present a distributed implementation of
the SSTD system using HTCondor and Work Queue. We also
develop an optimal task allocation mechanism to optimize the
system performance using the control theory.

A. Background

1) HTCondor: We use the HTCondor from University
of Notre Dame as the underlying distribute system for the
implementation of SSTD scheme. The system consists of over
1,900 machines and over 14,700 cores at the time of writing.
HTCondor has been used by hundreds of organizations in
industry, government, and academia to manage computing
clusters ranging from a handful to many thousands of work-
stations cores [18]. The HTCondor system at University of
Notre Dame is deployed to all available machines, including
desktop workstations, classroom machines, and server clusters,
all of which are typically idle 90% of the day. Users send
their computation jobs to run in the HTCondor system, and
the system allocates the jobs to run on machines that would
otherwise go unused.

2) Work Queue: Work Queue is a lightweight user-level
execution engine for constructing large scale distributed im-
plementations [5]. The system consists of a master process
and a large number of worker processes that can be deployed
across heterogeneous cluster, cloud, and grid infrastructures.
Work Queue allows the master process to define a set of
tasks (i.e., Task Pool), submit them to the queue, and wait
for completion. It also defines a Worker Pool, which is a set
of workers that can run on any machines. A Worker is defined
as a process that performs specific computational functions

described by the tasks. Once running, each worker calls back
to the master process, arranges for data transfer, and executes
the tasks. Work Queue maintains an elastic worker pool that
allows users to scale the number of workers up or down as
required by their applications. We use Work Queue on top of
HTCondor system to take advantage of its dynamic resource
allocation mechanism for TD job allocations.

B. Overview of SSTD Architecture
The architecture of the SSTD system implementation is

shown in Figure 2. A key component is the Dynamic Task
Manager (DTM) which is implemented as a master process for
Work Queue that initializes a Worker Pool and dynamically
spawns new tasks into the Task Pool. The DTM divides
the TD jobs into multiple tasks that run in parallel on the
HTCondor system. A feedback control system is integrated
with SSTD scheme to monitor the current execution speed of
each TD job and estimate its expected finish time. The control
system emits the control signals and feeds them back to the
DTM by comparing the expected finish time of TD jobs with
corresponding deadlines specified by the applications. DTM
then dynamically adjusts the priorities of TD jobs based on
the control signals.

Fig. 2. SSTD Implementation Architecture

C. Dynamic Task Management and Feedback Control System
In this subsection, we discuss the implementation details

of Dynamic Task Manager (DTM). The DTM is designed
to dynamically manage the tasks and resources in order to
optimize the system performance.

1) Deadline Driven System Optimization: In DTM, we de-
signed a deadline driven optimization scheme to optimize the
system performance and address data heterogeneity problem
of the streaming social sensing data. The goal of deadline
driven optimization is mainly twofold. First, the SSTD scheme
should be able to meet the real-time Quality of Service (QoS)
requirements from various social sensing applications. Second,
the SSTD scheme should accommodate the heterogeneity of
data streams from different TD jobs. In particular, the SSTD
scheme will maximize the probability for all TD jobs to finish
before their deadlines. In this paper, we develop a dynamic
feedback control system to achieve the above goal.



2) Dynamic Feedback Control System: The architecture of
the dynamic feedback control system is shown in Figure 3.
It consists of three key components: Proportional Integral
Derivative (PID) feedback controller, Local Control Knob
(LCK) and a Global Control Knob (GCK). The LCK refers to
a local control variable that is used to tune the performance of
a particular TD job. In SSTD scheme, the LCK is the priority
assignment of each TD job. The GCK refers to a global control
variable that is used to tune the performance of all TD jobs
in the system. In SSTD scheme, we use the total number of
workers in the Worker Pool as the GCK.

Fig. 3. Dynamic Feedback Control System

3) Feedback Control Mechanism: PID is a feedback control
mechanism that is commonly used in industrial control sys-
tems. A PID controller continuously calculates an error value
as the difference between the desired value (setpoint) and a
measured process variable and applies a correction based on
proportional, integral, and derivative terms of the error [30].
The advantage of using PID is that it provides a simple and
flexible controller without requiring precise modeling of the
system. In our SSTD scheme, we use the deadline of each TD
job as the setpoint and compare it with the actual execution
time of the job. The execution time is obtained by continuously
monitoring the timestamps of the output files of the TD job.
The error value e(k, u) denotes the difference between the
current execution time and the deadline for TDu. Here k
denotes the k-th sample. We use a sampling rate of 1 second
and the control signal y(k, u) for TDu is calculated as:

y(k, u) = Kpe(k, u) +Ki

k∑
0

e(k, u)∆t+Kd
∆e(k, u)

∆t
(9)

where Kp,Ki,Kd are the coefficients for the proportional,
integral, and derivative terms in the PID controller respectively.
We heuristically tune these parameters by picking the set
of values when the tasks in the system the meet the most
deadlines. Details of parameter tuning can be found in V-A.

4) WCET Calculation and Control Knob Tuning: The DTM
dynamically adjusts control knobs to optimize system perfor-
mance based on the control signals from the PID controller. In
particular, the DTM adjusts both the job priority assignments
(LCK) and the number of workers in the Worker Pool (GCK).

The job priority reflects the probability that a TD job
acquires system resource and gets processed by workers in the
system. A higher priority job is more likely to be processed

earlier than a low priority job. Each TD jobs can be split into
multiple TD tasks in Work Queue system where each task has
the same probability of being processed by the worker. The

priority of job TDu is defined as Pu =
Tu∑N
u=1 Tu

where Tu

is the total number of tasks for TDu. We divide the data of
each TD job equally between its tasks. The execution time
ETu for each task in TDu is calculated as:

ETu = TI +D∆t
u ∗ θ1 (10)

where TI is the initialization time for each task, θ1 is a
constant and D∆t

u is the size of data for job TDu in time
interval ∆t. We assume the WECT of a TD job is inversely
proportional to its priority and the size of the worker pool. We
can derive the WECT for job TDu as:

WCETTu = TI ∗ Tu +
D∆t
u ∗ θ2

WK ∗ Pu

= TI ∗ Tu +
D∆t
u ∗ θ2 ∗

∑N
u=1 Tu

WK ∗ Tu

(11)

where WK is the number of workers and θ2 is a constant.
We observe the data initialization cost increases quickly when
the number of tasks is large. To minimize the initialization
overhead, we keep the number of tasks in each TD job small
and WECT can be simplified as:

WCETTu ≈
D∆t
u ∗ θ2

WK ∗ Pu
(12)

Based on Equation (12), we may improve each TD job’s
WECT by increasing either its job priority or the number of
workers. To optimize system performance, The execution time
of TD jobs is used to generate the PID control signals defined
in Equation (9) in the system. The system then tunes both
LCK and GCK based on the control signals to i) synchronize
the local execution speed of each TD job by tuning LCKs
and ii) scale up/down the GLK depend on the global system
performance.

V. EVALUATION

In this section, we evaluate the performance of the SSTD
scheme and compare it with the state-of-the-art truth discovery
baselines on three real-world data traces collected from social
sensing applications. The results show that the SSTD scheme
outperforms the compared baselines in terms of both truth
discovery accuracy and computational efficiency.

A. Experimental Setups

1) Baseline Methods: We chose the following six represen-
tative truth discovery solutions as the baselines.

• TruthFinder: It uses a pseudo-probabilistic function to
estimate source reliability and claim truthfulness using an
iterative algorithm [45].

• RTD: A truth discovery scheme that is robust against
misinformation in social media applications [46]. It lever-
ages the historical claims of each source to detect widely
spread misinformation.



• CATD: It provides confidence interval estimators for
source reliability using sparse data. The proposed method
can effectively estimate the reliability of sources with
various levels of data contribution from sources [8].

• Invest: Invest algorithm “invests” source reliability
among their claims and the truthfulness for each claim
can be obtained by using a non-linear function [25].

• 3-Estimate: It identifies the truth of a claim by estimating
the three defined parameters in their models related with
source reliability and claim truthfulness [11].

• DynaTD: A dynamic truth discovery algorithm using
Maximum A Posteriori Estimation to dynamically esti-
mate source reliability and truth of claims in real time [9].

2) Data Collection and Pre-Processing: We collected three
real-world data traces from Twitter in the aftermath of emer-
gency events and major sporting events for the purpose of
evaluation. Twitter has emerged as a new social sensing
experiment platform where massive observations are uploaded
voluntarily from human sensors to report the events happened
in the physical world. We noted conflicting information is
common to observe on Twitter due to the open data collection
environment and unvetted nature of data source. We found
the truth of the claims on Twitter change dynamically. In the
emergency events, for example, the location of the affected
area, the number of death are changing dynamically. During a
sporting event, the scores and leading status of the game also
change over time. This noisy and dynamic nature of Twitter
provides us a good opportunity to investigate the performance
of the SSTD scheme in a real world social sensing scenario.
The collected traces are summarized in Table II.

Boston Bombing Trace & Paris Shooting Trace : We col-
lected Twitter data related to the 2013 Boston Bombing event
and 2015 Paris Shooting event through Twitter open search
API (using the query terms such as “Boston”, “Marathon”,
“Bombing”, “Paris”, “Shooting”) and specified geographic
regions related to the event (using a circular region centered
at event location within a radius of 100 miles).

Data Pre-processing: To derive claims of the dataset, we
implemented a simple claim generator based on keywords
filtering and clustering techniques. In particular, we first used
a set of pre-specified keywords to filter out tweets that are
irrelevant to the event of interests for the truth discovery task.
We then use a variant of K-means clustering algorithm and a
commonly used distance metric for micro-blog data clustering
(i.e.,Jaccard distance) [32] to cluster tweets of similar content
into the same cluster. The clustering algorithm is an online
algorithm for the streaming social sensing data. In particular,
a newly arrived tweet will be clustered into one of the existing
clusters based the computed Jaccard distance and a cluster will
be broken into two clusters if the diameter of the cluster is
larger than some pre-specified threshold learned from previous
case studies [41]. We treat a topic directly related to the
terrorist attack events in each cluster as a claim (e.g., the
location of the suspect, bomb threat in JFK library, whether
an arrest has been made, etc.).

In order to compute the Contribution Score, we first cal-

culate the Attitude Score using a heuristic method based
mainly on the content of the tweet to classify it as “agree”
or “disagree” (e.g., whether a tweet contains certain negative
words such as “false”, “fake”, “rumor”, “debunked”, “not
true”). We assign a score of “1” and “-1” respectively.

We then calculate the Uncertainty Score by implementing
a simple text classifier using skit-learn and trained it with the
training data provided by CoNLL-2010 Shared Task [10]. To
compute the Independent Score, we classified the retweets or
tweets that are significantly similar to the previous tweets
within a time interval as repeated claims and assign them
relatively low independent scores.

Labeling Ground Truth: We manually verified the ground
truth of the claims using the historical facts about the Boston
Bombing and Paris Shooting events.

College Football Trace: We collected Twitter data from five
US college football games in the weekend of Sept 29, 2016.
These data traces were collected through Twitter Streaming
API using query terms related to the names of the teams and
schools (e.g., “Fighting Irish”, “Buckeyes”, “Notre Dame”)
and specified geographic regions of the game (e.g., within 30
miles radius from the stadium).

Data Pre-processing: For each game, the change of score is
treated as the claim, therefore, we consider the binary value of
either score changes or no score change. We calculate the At-
titude Score based on keyword matching. For example, tweets
containing “taking the lead”, “score”, “tied” are considered
supportive attitude of score change and it is assigned a score
of 1 while the rest of the tweets are assigned a score of “-
1”. For the Uncertainty Score, Independent Score and Source
Attitude, we use the same approach as we discuss in the Boston
data trace.

Labeling Ground Truth: We manually label the ground truth
of the game status based on credible post-game statistics from
ESPN.com1 and FCS2.

3) System Setup: We implemented the master program of
SSTD on a single HTCondor node of 4 processors and 8G of
RAM. On this node, the DTM is written as a Work Queue
master script and it is connected to the data crawler which
continuously fetches the social sensing data. Both programs
are written in Python. The node is connected to the Notre
Dame Condor Cluster which executes all TD jobs. For all
compared baselines, we run them on the same HTCondor
node separately to ensure fairness in the comparison. However,
they are not executed in the HTCondor cluster since they are
not designed as distributed schemes. To tune the PID control
system, we increase each coefficient from 0.0 to 3.0 by 0.1
. We pick the set of coefficients that maximize the number
of jobs that can meet their deadlines. The coefficients we use
for our SSTD system are 1.2, 0.3 and 0.2 for Kp,Ki and Kd

respectively. We also set θ3 and θ4 as 2 and 1.5 for tuning
control knobs using similar heuristics.

B. Evaluation on Real World Data Traces

1http://www.espn.com/college-football
2http://www.fcs.football/cfb



TABLE II
DATA TRACE STATISTICS

Data Trace Paris (Charlie Hebdo) Shooting Boston Bombing College Football
Start Date Jan. 1 2015 Apr. 15 2013 Sep. 30 2016

Time Duration 3 days 4 days 3 days
Search Keywords Paris, Shooting, Charlie Hebdo Bombing, Marathon, Attack Team/College names
# of Reports 253,798 553,609 429,019
# of Sources 217,718 493,855 413,782

1) Evaluation Metrics: We evaluate the performance of
SSTD scheme in comparison with state-of-the-art solutions
from the following perspectives: (i) effectiveness: the accuracy
of the truth discovery solutions (i.e., Accuracy, Precision, Re-
call and F1-Score); (ii) efficiency: the time to finish execution
of the truth discovery tasks; (iii) controllability: the percentage
of truth discovery tasks that meet the specified deadlines.

2) Evaluation Results: We first evaluate the effectiveness of
all compared truth discovery schemes. The evaluation results
on the three data traces are shown in Table III, IV and
V respectively. We observe that SSTD scheme outperforms
compared baselines on all four metrics of the effectiveness.
In particular, the performance gain achieved by SSTD scheme
compared to the best performed baseline on accuracy, preci-
sion, recall and F1-Score is 6.5%, 2.3%, 0.7% and 4.9% on the
Boston Bombing data trace; 4.9%, 1.1%, 8.2% and 6.6% on
the Paris Shooting data trace and 3.6%, 10.6%, 2.8% and 8.9%
on the College Football data trace. The performance gain of the
SSTD scheme is achieved by explicitly modeling the dynamic
truth of the claims and incorporating contribution scores of
reports to compensate the sparsity of the social sensing data.

TABLE III
TRUTH DISCOVERY RESULTS - BOSTON BOMBING

Method Accuracy Precision Recall F1-Score

SSTD 0.828 0.834 0.831 0.833
DynaTD 0.722 0.811 0.756 0.783
TruthFinder 0.653 0.689 0.787 0.734
RTD 0.763 0.748 0.824 0.784
CATD 0.667 0.764 0.748 0.751
Invest 0.609 0.639 0.626 0.632
3-Estimates 0.616 0.626 0.807 0.705

TABLE IV
TRUTH DISCOVERY RESULTS - PARIS SHOOTING

Method Accuracy Precision Recall F1-Score

SSTD 0.802 0.834 0.905 0.872
DynaTD 0.731 0.822 0.788 0.805
TruthFinder 0.616 0.653 0.806 0.721
RTD 0.753 0.791 0.823 0.807
CATD 0.669 0.689 0.760 0.723
Invest 0.661 0.722 0.780 0.750
3-Estimates 0.647 0.704 0.765 0.733

To evaluate the efficiency, we compare the execution time
of all compared schemes. We run SSTD on the Notre Dame
HTCondor cluster with a maximum number of workers as
4. We use such a small number of workers in favor to
other centralized baselines that are not designed to run in

TABLE V
TRUTH DISCOVERY RESULTS - COLLEGE FOOTBALL

Method Accuracy Precision Recall F1-Score

SSTD 0.801 0.661 0.792 0.723
DynaTD 0.765 0.471 0.570 0.515
TruthFinder 0.612 0.542 0.455 0.495
RTD 0.752 0.555 0.649 0.598
CATD 0.736 0.542 0.764 0.634
Invest 0.722 0.478 0.716 0.574
3-Estimates 0.674 0.396 0.677 0.501

a cluster. We run all other baselines on a single node of
4 processors and 8G of RAM. The results are reported in
Figure 4. The results show that our scheme outperforms all
other baselines by having a shorter execution time to finish
the truth discovery task. We also observe that the performance
gain achieved by SSTD becomes more significant when data
size becomes larger, which demonstrates the scalability of our
scheme on large data traces in social sensing applications.
We also envision the performance gain of SSTD over other
baselines would be much larger if we run it in a larger cluster
with more nodes.

We also study the effect of the streaming speed (mea-
sured by the number of tweets per second) on the execution
time of all schemes. In particular, we stream the data into
compared schemes at different speed for a duration of 100
seconds. The batch (static) truth discovery schemes (e.g.,
CATD, TruthFinder, RTD) retrieve and process 5 seconds
of data each time periodically. The streaming schemes (e.g.,
SSTD, DynaTD), on the other hand, keep reading new data
and process them as they arrive. The results are shown in
Figure 5. We observe that batch schemes can hardly catch up
with the streaming data updates, especially when the streaming
speed is high. The results suggest the batched schemes are not
suitable to solve the dynamic truth discovery problems with
streaming data. In contrast, the execution time of the streaming
schemes are close to the streaming duration, which verifies the
real-time feature of these streaming truth discovery algorithms.
The SSTD is the fastest between all streaming schemes and
is also least sensitive to the changes of the streaming speed.

We then evaluate the contrallability of SSTD scheme. We
divide each data trace into 100 equal time intervals based on
the timestamps of tweets. For each time interval, we record
the total execution time to process all the tweets in that time
interval. We compare the execution with the deadline and we
record the percentage of intervals where the execution time is
less than the deadline (i.e., hit rate). The result are reported



(a) Boston Bombing Trace (b) Paris Shooting Trace (c) College Football Trace

Fig. 4. Execution Time of All Compared Schemes

(a) Boston Bombing Trace (b) Paris Shooting Trace (c) College Football Trace

Fig. 5. Total Running Time vs. # of tweets per Sec of All Compared Schemes

(a) Boston Bombing Trace (b) Paris Shooting Trace (c) College Football Trace

Fig. 6. Deadline Hitting Rates of All Compared Schemes

in Figure 6. We observe that SSTD consistently outperforms
other baselines by meeting more deadlines. Specifically, the
performance gains are very significant when the deadline is
tight. This is because SSTD dynamically adjusts its resource
and task assignment by monitoring the execution status of jobs
in the system. The deadline driven control loop makes real-
time adjustments to maximize the opportunity for TD jobs to
meet their deadlines, which is one of the optimization goals
we discussed in Section II.

Fig. 7. Scalability of SSTD Scheme
Finally, we evaluate the scalability of SSTD scheme. We

generate synthetic data traces of different sizes as the input to

the SSTD scheme. We use the metric speedup to evaluate the
performance gain achieved by SSTD scheme with different
number of workers in the system. The Speedup (N) is defined
as ratio of serial execution time to execution time on N
workers. The ideal Speedup (N) is simply N which is not
possible to achieve in practice due to the overhead cost in
distributed systems (e.g., communication and I/O overhead).
The results are reported in Figure 7. The size of the data trace
is measured in terms of number of tweets. We observe that the
speedup ratio improves as the size of the data trace increases.
In our evaluation, we push the limit on the size of data traces
to be larger than the actual data volume of some extremely
large-scale social sensing event in real world applications (e.g.,
16.9 million tweets from Super Bowl 2016). The above results
demonstrate the scalability of the SSTD scheme.

VI. RELATED WORK

Truth discovery is a critical challenge in social sensing
and previous studies have made a significant progress to
address this problem [7], [16], [20], [25], [41], [45]. The truth
discovery problem is first formally formulated by Yin et al.
[45], in which a Bayesian based heuristic algorithm, Truth
Finder, is proposed. Pasternack et al. proposed extended mod-
els (e.g., AVGLog, Invest and PooledInvest) to incorporate



prior knowledge such as constraints on truth and background
information into truth discovery solutions [25]. Dong et al.
proposed algorithms to handle the source dependency in truth
discovery problem [7]. Wang et al. proposed a maximum-
likelihood estimation approach that offers a joint estimation
on source reliability and claim correctness [41]. Huang et al.
further explored the spatial-temporal constraint of the truth
discovery problem [13], [15], [16]. Marshall et al. developed
a set of semantic aware truth discovery solutions to explicitly
consider the semantic aspects of the claims [19]–[21]. In
contrast, we focus on the three emerging challenges (i.e.,
dynamic truth, scalability and heterogeneity of streaming
data) that have not been well addressed by current truth
discovery solutions.

There exist some similarities between our work and some
previous studies on the topic of dynamic truth. For example,
the method proposed in [24] takes into account the evolving
information of objects and estimates the truths of variables in
current time interval based on the historical claims of sources.
Li et al. proposed a Maximum A Posterior based real-time
algorithm to explicitly address the evolving truth problem [9].
Wang et al. proposed a method to model time-varying truth
using a recursive EM approach [36]. A single-pass truth dis-
covery method was also proposed to handle streaming data [6].
However, none of the above studies consider the scalability and
data heterogeneity issues in social sensing, which may cause
these schemes to be unscalable and inefficient to large scale
social sensing events.

Our work also bears some resemblance to a few distributed
system implementations for social sensing applications. For
example, Ouyang et al. developed a parallel algorithm for
quantitative truth discovery applications to handle big stream-
ing data by exploring MapReduce framework in Hadoop [23].
Yerva et al. developed a cloud-serving system for fusing the
social and sensor data to deal with massive data streams
[44]. Xue et al. introduced a cloud based system for large
scale social network analysis using the Hadoop framework
[43] as well. However, Hadoop based approaches assume data
can be split into chunks of similar sizes based on topics (or
claims), which is barely true due to the heterogeneity feature
of social sensing data. Second, Hadoop is too heavy weight
for time-critical applications that deal with real-time streaming
data [23]. In this work, we developed a light-weight distributed
framework using Work Queue and HTCondor to improve the
efficiency of our truth discovery scheme.

VII. LIMITATIONS AND FUTURE WORK

First, we assume no dependency between claims. There
may be cases, however, where claims are not completely
independent. For example, weather conditions at city A may
be related to weather condition at city B when A and B
are close in distance. Incorporating such dependency into
our model can be an interesting topic for future research.
In particular, we need to explicitly model the correlation
between different claims and incorporate such correlation into
the HMM based model. The key challenge is to maintain the

correlation between claims when the truth discovery task is
implemented on a distributed framework.

Second, our scheme requires the labeling of semantic fea-
tures of the claims, namely the coherence score, independent
score and attitude score. In our evaluation, we use heuristic
based methods to perform a rough labeling of these scores. We
plan to develop accurate classifiers to scale the labeling process
by leveraging more refined techniques from Natural Language
Processing (NLP) and text mining [2], [3]. For example, the
polarity analysis is often used to automatically decide whether
a tweet is expressing negative or positive feelings towards a
claim. We should note that the SSTD is designed as a general
framework where one can easily update or replace components
like uncertainty classifier as a plugin of the system.

Third, we use some heuristic rules to control the GCK
and LCK in the PID controller. One reason for doing that is
finding optimized control solution can be time-consuming and
inappropriate for streaming social sensing applications [26].
We plan to explore real-time optimization (RTO) techniques to
optimize resource allocation based on control signals. Specif-
ically, we are planning to formulate the system optimization
as an integer linear programming (ILP) problem that targets at
finding the optimal integer values for the number of workers
and the number of tasks for each job in real time [12], [42].

VIII. CONCLUSION

This paper presents an effective and efficient scheme (i.e.,
SSTD) to solve the truth discovery problem in social sensing
applications. The SSTD scheme addresses the dynamic truth
challenge by explicitly modeling the truth transition using a
HMM based model. It provides a scalable implementation
framework using a distributed system based on HTCondor and
Work Queue. SSTD also effectively addresses the heterogene-
ity of the streaming data by integrating a feedback controller
for dynamic task allocation and resource management. We
evaluate the SSTD scheme using three real world data traces.
The results demonstrate that our solution achieved significant
performance gains compared to the state-of-the-art baselines.
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