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Abstract—In this paper we discuss challenges of common cise implementation of many common distributed computing
bioinformatics applications when deployed outside their nitial patterns. Weaver programs are compiled into make-like low
development environments. We propose a three-tiered appeeh |o\e| workflow descriptions that can be executed through the

to mitigate some of these issues by leveraging an encapsitdet . . .
tool, a high-level workflow language, and a portable intermdiary. highly portable Makeflow workflow engine. In Section VI

As a case Study, we app|y this approach to refactor a custom and VII we IeVerage these tools to refactor an interna”y
EST analysis pipeline. The Starch tool encapsulates progm developed EST analysis pipeline into a maintainable anityeas

dependencies to simplify task specification and deploymenThe  deployed workflow, and compare this refactored pipelindgo i

Weaver language provides abstractions f_ordistributed comuting predecessor with respect to its conciseness, maintaityabil
and naturally encourages code modularity. The Makeflow work i !
robustness, and portability.

flow engine provides a batch system agnostic engine to exeeut
compiled Weaver code. To illustrate the benefits of our frame

work, we compare implementations, show their performanceand Il. COMMON CHALLENGES IN BIOINFORMATICS

discuss benefits derived from our new workflow approach reldve APPLICATIONS
to traditional bioinformatics development. A. Portability
|, INTRODUCTION When leveraging the parallelism in their software, many

development sites focus on a particular distributed resour

The rapid production of Bioinformatics applications byhecayse it is the only resource accessible to them, and they
academic institutions has led to the development of many poyg 't possess the resources or expertise to develop inesrfa
erful and useful tools. Many of these tools require significasor more systems. As a result, few applications are develope
computational resources for any nontrivial task. Further, ith the flexibility to utilize a variety of distributed reseces.
creasing numbers of research groups are deploying exlgrnalhs introduces serious challenges when organizatioeswtt
developed bioinformatics applications in their own conipait deploy computationally intensive tools without accesthe

environments and modifying or building upon them. same computing resources as the original developers.
Unfortunately, deployment and modification of bioinformat

ics applications has proven challenging. Commonly encouB- Software Maintainability

tered challenges (Section Il) include dependence on specifi Bioinformatics users often need to handle hypotheses and
distributed computing resources, complex program dependejata outside of the application’s original scope. Such -diffi
cies, and intermingling of conceptually distinct taskshivit culties are particularly pronounced in code bases that lack
code. The first two problems severely impede deploymegiodularity, implement their control logic at very low lesel
efforts, while the third undermines customization, debogg (rather than describing it through higher level work pater
and code maintenance. or abstractions), or perform their function indirectly dlugh
Here, we propose to separate these problems and addgggsruntime generation of code. Some programs achieve a
each with a different layer of a software stack. Using sodest degree of modularity, but are implemented with low

production pipeline described in Section Ill, we implem#t® |evel control and programmatically-generated intermisdéx-
three tiers described in Section IV: an encapsulation lagyer ecutables [1], [2].

reduce complex webs of coordinated programs and libraries,

a high level workflow language to concisely and intuitively=- Dependency Management

describe this pipeline, and a portable low level workflow Many bioinformatics applications feature tasks with a high
language and execution environment. degree natural parallelism. Naturally, biocinformatigafpeo-

In Section V, we describe three tools developed by the Umte developing tools for biologists) take advantage of thjs
versity of Notre Dame’s Cooperative Computing Lab whichunning work on many nodes, often in grid or cloud settings.
mitigate the previously mentioned problems. Starch presidThe execution of such workloads depends on the ability to
a method for packaging complex program dependencies intansport the required dependencies for each task to each
a single executable archive. Weaver is a Python-based higbrker node. However, many bioinformatics tools rely on
level workflow description language with support for conthird-party applications and libraries to function. Thésdls to



difficulty in adapting them to run in distributed environnmgn Starch Archives
especially heterogeneous systems such as Condor. It is typi SAAs organized by
cally impractical to guarantee the existence of requireftt so Weaver

ware on all computation nodes because of diverse execution

. . . .. . ) Compile
environments. As a result, inconsistencies in availablaties
and applications among worker nodes often lead to failures Makeflow
when attempting to run distributed bioinformatics appiicas. | All-Pairs | [Map-Redude| Wavefront|
/ l \ Distributed Computatiot
IIl. EST PIPELINE DESCRIPTION ‘ Condor ‘ ‘ SGE ‘ ‘ work Q“e“e‘

. Fig. 1. Stack of applications.
Expressed Sequence Tags (ESTs) are an important source

of bioinformatics data. EST sequencing involves extragtin
and sequencing representatives of the mRNA of a cell, which IV. SOLUTION STRATEGY

represent the expressed portion of an organism's genese Sin Based on these limitations we explored an alternative frame

ESTs capture the ex_pre;;ed genes of an o_rganism., biolog\i/%s'.k, using a layered approach (Figure 1) to address each
are able to glean significant amounts of information frong¢ - hroblems separately. The clearest challenge we were
diverse species, including organisms where whole-gen@me éxperiencing was that of dependency management, but we

que;w(img rﬁsgl:rces are nﬁt yet avallak(JjIeI. This IS a p"j?im"b;“(lj_had already suffered from coding errors because of the @atur
usetu met od for research on non-modeforganisms, incl lof our wrapper script. Further, we hoped to expand to more
those important in studying ecological and env'ronment%mputational resources

questions [3].

Due to the effectiveness of these data for ecological qués- Portable low level workflow engine
tions, we created specialized tools for analyzing EST datawe required the ability to execute our workflows on a
from natural populations of butterflies [4]. These tools &efariety of systems. To achieve this we needed an engine that
created to be run as a pipeline of custom Ruby scripg®uld support execution of the same workflow in multiple
written by a member of the Notre Dame Bioinformatics Lalatch execution environments. Such an engine would ideally
however, each step in the analysis reported in [4] (inclgdirprovide us with execution robustness and detailed logs of

several large BLAST jobs) was run individually and manuallyuntime behaviors to increase reliability and ease delnggi
These scripts have many dependencies in the form of Ruby

libraries, both custom and public. These dependencies mdteHigh level workflow specification language
the subtasks of this workflow difficult to run on the various While the low level language of Makeflow provided the
resources available, or even to share among research&se Thjesired portability and logging, we knew from our initial
challenges were exacerbated when analysts attempted to gigeline that the Perl wrapper script necessary to generate
independent components in parallel. makeflows was difficult to understand and modify. A high
Our initial efforts began with a step familiar to manylevel workflow language that would express the structure of
bioinformatics developers—the creation of a wrapper Pdhe workflow programmatically, modularly describe units of
script. Because of our previous experience, we chose to useark, and provide abstractions for common patterns of work
Perl wrapper script to generate a Makeflow [5], and throughould greatly increase the transparency and maintairtgloii
it execute tasks. This process is similar to the mechanism e code.
which InterproScan [2] generates makefile descriptiongof i .
workflows. However, this particular workflow was based 09 - Encapsulation
Ruby and specific Ruby libraries such as BioRuby, which We quickly recognized that our dependency problems could
were not available on many of the machines available in obe resolved with some sort of encapsulation strategy. To be
distributed system (Condor). To overcome this, cumbersoraffective, such a strategy needed to reduce the entire web of
rules were written to specify library dependencies, and tistependencies to a single package. Additionally, the ei@cut
workflow subtasks could only be executed on machines wid that package needed to be as simple as possible. Such a
access to the Ruby interpreter. Furthermore, the wrappigtscchange would also conveniently simplify the specificatién o
was hard to read and modify because the functionality it w&gsks in a workflow specification language.
providing was buried in the print statements it used to gateer
the workflow.

In our experience many pipelined bioinformatics tools ard: Makeflow
released as such: functional but inelegant. They work on aMakeflow [6] is a workflow engine targeted at execution
single system, rely heavily on custom wrapper scripts, amh clusters, grids and clouds. It accepts a specification of
have complex dependencies and specifications. a workflow and parallelizes the execution on multiple cores

V. SOLUTION TOOLS
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Fig. 2. The EST pipeline takes an AMOS bank from an assemhdytlaree BLAST databases.

or machines whenever possible. The syntax of a Makefld®v Weaver
workflow specification is similar to the traditional UNIX

Make program. It consists of a list of rules where each ruH“Ications such as DAGman) are relatively straightforwand t

contains a set of source files, a set of target files and g, ot for small applications, they can be cumbersome

command to gef‘erate those target files frgm t.h? source f'lgﬁ' difficult to program and maintain for the large pipelines
The dependencies among the rules are implicitly express monly found in bioinformatics. Rather than generating

|nf thel szur_ce ?nd tartget flt|ef§|. Fofr eﬁamelet,hlf a’\jmlir(]:c'e fi akeflows manually or using ad-hoc scripts, we utilize the
ot ru'e IS also a larget e ot rule b, then MakeloWeaver distributed computing framework that allows us to
would know that rule A depends on rule B. Thus, all th

o . . ) " hg velop workflows in the Python programming language [7].
dependencies in the workflow can be visualized in a dwectegWhiIe many workflow-type languages enforce a graph-

atcycltlc gra;pm (DA?OZ" Be_fause Mg.lrel:;oiv knpws rt]heh D'T‘%ased or agent-based programming paradigm, Weaver allows
structure ot the worktiow, It can readily determine whichasil: o o4 program in a variety of common styles such as

have had their dependencies satisfied thus far, and exemite s . : ; : . ;
imperative, functional, and object-oriented while expagsa

gimple programming model consisting of datasets, funstion
and abstractions. In Weaver, datasets are simply collestio
of input files. These can be a Python list of file names, a
generator function, or even a SQL query. Functions in the
The Makeflow specification can work on different computeffeaver programming model are formal specifications of the
systems, such as multicore machines, Condor and Sun Griterface of executables. Weaver functions may be external
Engine (SGE) batch systems, and the bundled Work Quep@grams or they may be inlined Python code. To develop with
system. For example, a user can combine some numbeV#aver, the user simply specifies their datasets and fursctio
Condor nodes with some number of SGE nodes to work @md then organize them into pipelines using Weaver’s featur
the same workflow using Work Queue. As a workflow engine By default, Weaver also includes the following abstraciion
that drives various parallel systems, Makeflow providedtfauMap, All-Pairs [6], Wavefront [6], and Map-Reduce [8]. User
tolerance across all the underlying systems that it supptrt may combine any of these abstractions in their workflows to
a workflow fails or stops during the execution, Makeflow wilkconstruct sophisticated pipelines.
continue from where it left off upon resuming. To run a workflow written in Weaver, the programmer must

Although makeflows (and other DAG-based workflow spec-

EST analysis pipeline is shown in Figure 2.



command.
The benefit of using Starch to package applications is three-

| Exccutables E Tomplate fold: First, it allows for complex applications with multgp

Shell Seript

dependencies to be bundled as a single self-contained exe-

R —
I

Standalone

Application cutable. This is important for bioinformatics workflows whe
Libraries L Archive . . . . . .
— Application a single application may require a wrapper script and mieltip
" Archive external programs and libraries to execute properly. Sgécon
Environment because Starch produces a standalone application artihéve,
L Starch individual application component is naturally versionedd

easier to test and share among researchers. Finally, the sel

o3 . . bles. librari " . contained nature of the SAAs also facilitates deployment in
Flg. . Users provide a set of executables, libraries, ang@mment settings H : s H H
to Starch, which internally produces an application arehifhis is then distributed systems where it is not known if the target an(l

appended to a template shell script to produce a standafiplieation archive €nvironment contains all the necessary libraries and progr
that can be executed as a normal application. This clearly satisfies our encapsulation needs.

VI. FINAL ESTPIPELINE

first compile it using the Weaver compiler. The user consgsruc  We used these tools to implement the final version of our
the workflow as a Python script and passes it to Weavé&ST pipeline. Starch enabled us to encapsulate large cample
which then compiles the code into a workflow sandbox. Thi&eps into more convenient archives that are easy to digib
sandbox encapsulates the Makeflow DAG file and any inpdfe used Weaver rather than Perl to express our workflow. This
data and executables specified in the Weaver script. To ein tompiled into a Makeflow program capable of running on a
workflow, the user simply executes Makeflow from inside theariety of batch systems.
sandbox. Figure 4 is an excerpt of Weaver code for running the
Weaver provides a high-level language in which to specifgST pipeline. It is compiled into Makeflow code describing
our workflow. It possesses the necessary abstractions dhe DAG shown in Figure 2. From the figure, we notice
modularity support to create transparent and maintainatiemediately that there are several steps that can be run in

code. parallel. Each of the rurblast mf.pl steps generates several
thousand intermediate steps as they run BLAST subjobs in
C. Starch parallel.
A common problem in large distributed applications is the VIl. PIPELINE CHARACTERISTICS

packaging and management of individual application compo-
nents. While Weaver and the underlying Makeflow syste
support specifying dependent files and environmental vafi-
ables, it is often necessary to test these individual apfitin  A. Provenance

f:omponents independently. To solve this problem, Wgavnghi|e they do not support provenance queries, Starch,
includes a tool named Starch to create standalone appliicatjyeayer, and Makeflow provide a powerful tool for gathering
archives (SAA). . - . provenance information.

To create a SAA, the user simply specifies a list of executa-first Starch naturally provides versioning and encapsula
bles and libraries to include in the execution image alorth Wition, Once a Starch archive is created, it remains the same
the command run when the SAA is executed by the user. J@yardless of changes to the source executables, providing
aid in packaging, Starch will automatically search for ayy d \yorking frozen copy of a program. This facilitates debuggin
namically linked libraries required by the executablesctied  3nq helps users avoid many of the problems associated with
and include those in the list of libraries to embed in the SA’%:pgrades and updates in complex dependency environments.
If the application requires any special input data filesytim@y  Each run of a Weaver program produces a different make-
also be included. Likewise, for special environmentalatales fioy, describing the specific steps about to be executed and
and other runtime configuration options, Starch allows sisehe fy|l set of dependencies for each step. Further, upon
to include environment scripts that will be imported befdte  execution, a makeflow can generate a great deal of provenance
application’s command is executed. information, including the node of execution, start and end

The general process for creating a SAA is shown in Figime, and exit status of each substep of the makeflow. Exgistin

ure 3. Once the user specifies all of the necessary optiods, {§ols for analyzing and displaying runtime have been adhpte
executables, libraries, and environment scripts are cesged o Makeflow logs (Figure 5).

and archived as a UNIX tarball. This application archive .

is then appended to a template shell script to generatd3a Encapsulation

standalone application archive. When the SAA is executed th Starch takes only two minutes to create the packages
wrapper shell script will automatically extract the embedd required for running this EST pipeline. One such archive-con
archive, configure the environment, and run the user spdcifimins 14519 files, clearly motivating the need for encapmra

The final pipeline demonstrates the promising technical
aracteristics of workflows implemented using this stack.



def run_blast _nf(r):

run = Function(’ run_blast_nf.pl") g 10000 ¢ 1 ittee——— 10000
run.output_string = | anbda i: i g 1000 C'E‘ri]”p'}'entg 1 1000
run. command_string = lanbda i, o: \ 8 / 2
"LOCAL ./run_blast _nf.pl ' +r 3 3 £
Dol — L T — ] 3
run. add_functions(’ bl ast w apper. pl’) 2 100 Ny 100 g
run. add_functions(’'tee’) g ! S
_ ' S 10 kb * {1 10 i
run. add_functions(’'blastall’) o b
return run g i
S N . S I
def i SNPs(r) 0 0.10.20.30.4050.60.70.80.9
ef uni geneSNPs(r): .
. . Elapsed Time (hours
run = Function(’ uni geneSNPs. sfx’) P ( )
run.output _string = lanbda i: i
run. command_string = | anbda i o\ Fig. 5. EST pipeline runtime graph that can be generated fraog output
, . - , ! ’ of Makeflow.
./uni geneSNPs. sfx > + 0
run. add_functi ons(bank+ .sfx’) TABLE |
return run RESULTS FROM RUNS OF TWO DIFFERENT APPLICATIONS USINWEAVER
AND USING PERL.
def uni geneLenCov(r): Application | Weaver | Non-Weaver
run = Function(’ uni geneLenCov. sfx’) EST pipeline| 2,529s 2,882s
run.output_string = lanbda i: i BLAST 665s 677s
run. command_string = lanbda i, o: \
"./unigeneLenCov.sfx >’ + o _
run. add_f uncti ons(bank+ .sfx’) tolerance. In the worst case, Makeflow can emit both regular
return run and debugging output. This assists the programmer, or user,
in investigating the causes of failure. It also contributeshe
Fig. 4. Excerpt from the Weaver EST pipeline code. body of provenance information generated by the system.

VIIl. DISCUSSION

C. Performance We see a number of improvements related to the develop-

Weaver also generates makeflows, so we did not expeeént, use, and maintenance of our pipeline.
performance gains relative to our original Perl. As expécte \We have found our Weaver scripts to be both more concise
a Weaver makeflow executes in approximately the same tifggd understandable. For example, our Weaver implementatio
as a Perl-generated makeflow (Table I). of BLAST is approximately one-third shorter than our Perl

The EST pipeline, however, provided significant advantag@fiplementation. More importantly, Weaver more closely re-
over its manual incarnation. Even with the assistance &émbles general purpose programming languages, whiclrin ou
campus computing resources for BLAST the pipeline sufferegperience has helped development and maintenance of bioin
from turnaround times of approximately one work weekormatics tools. This advantage is increased by the avitiiiab
With the creation of an automated pipeline aided by Starchf built-in abstractions, which in our experience has restlic
turnaround time for previous data has been reduced to undetle volume and increased readability as MapReduce [8] has
an hour. for other applications.

Weaver enables programmers to take advantage of nativerhe object oriented nature of Weaver helps bioinformatics
abstractions. For BLAST (Table I), the Weaver map varigrrogrammers to write modular code, as individual makeflow
tion is slightly faster than a highly optimized non-Weavesteps are coded as functions that run on objects. Unlike
implementation [5]. Other programs may see more pronouncefny typical bioinformatics applications, bioinformadios
performance gains from abstractions [7]. are encouraged to create sets of objects and functionsahat ¢

. be reused. This also enables many different types of asalysi
D. Portability to be performed or updated from these core sets of functions

We have run our pipeline using a variety of batch systemsnd objects.
and even by combining multiple systems (SGE and Condor).In addition to making our workflow-description code more
This flexibility is derived from the technical characteigstof concise, the use of Starch reduces the overall size by a third
Makeflow (see Section V). (and as a result reduces complexity) while still producimg t
same correct output. By packaging programs that depend on
many libraries or subprograms into a Starch archive, we can

In a distributed system, there are numerous ways a tasiknply specify the archive and then execute it on a remote
can fail. Makeflow provides batch system-independent fauttachine.

E. Fault Tolerance



This increased level of software engineering should help toMakeflow collects much provenance data. It would be
alleviate some of the issues currently associated withingnn extremely useful to develop a system to query this data as
bioinformatics applications. Weaver applications tendb® suggested in the First Provenance Challenge [15]. Makeflow
more readable than corresponding Perl scripts. This alfows is already able to emit the DAG that it constructs so the user
easier modification and maintenance of existing software. can see the steps that lead to each output.

Weaver does not necessarily provide any direct performance
benefit. These makeflows, however, can by executed in mul-
tiple distributed environments at the same time and built- This work is supported by the University of Notre Dames
in abstractions are also available. Traditiona”y’ prognzers StrategiC investment in Global Health, Genomics and Bioin-
have had to imp'ement abstractions to take advantage fgfmatiCS and and the National |nStituteS Of Health NIAID
the parallelism available or use specific abstractions sschcontract HHSN272200900039C. The authors would also like
MapReduce [8]. With Weaver, the programmer can simply cdf thank Shawn O'Neil for his original EST pipeline scripts
multiple abstractions as needed to achieve parallelisth wifat formed the foundation for this study.
relative ease.
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