‘}fi‘ TaskVine

http://cctools.readthedocs.io

Many scientific applications are expressed as high-throughput
workflows that consist of large graphs of data assets and tasks to P
be executed on large parallel and distributed systems. A challenge pplication

in executing these workflows is managing data: both datasets \ - ‘L[[)

Example of key TaskVine operaitons
import taskvine as vine
m = vine.Manager(9123)

TaskVine TaskVine \

Workeree

B

and software must be efficiently distributed to cluster nodes; results | # File objects are first class citizens.
intermediate data must be conveyed between tasks; output data : TaskVine file = m.declareFile(mydata.t).(t)
must be delivered to its destination. Scaling problems result Ll KrOTsoi FYOTKOrg buffer = m.declareBuffer("Some literal data")
. . . url = m.declareURL("https://nd.edu/data.tar.gz")

when these aFtlons are perfor.meq in an uncoordmateo! .manner T s maraoer discis temp = m.declareTemp():
on a shared filesystem. TaskVine is a system for exploiting the warkers:to:read dsls from:remois
aggregate local storage and network capacity of a large cluster. Sgurcej, run .t?f‘ks Ohn thhat data, and Ramote # Peform a standard transformation on a file
TaskVine tracks the lifetime of data in a workflow — from archival share data with each other. Services da’;a m.declareUntar(url)
sources to final outputs-- making use of local storage to | TaskVine leaves data on workers in software = m.declarePoncho(package)

et) : the cluster wherever possible! .
distribute, and re-use data wherever possible. N # Submit a standard executable task .

task = vine.Task("mysim.exe -p 50 input.data -o
output.data")

CMS open data 2.26 fb~1, 2015 (13 TeV)
[T T T T T]

.add_input(url, "input.data")
.add_output(temp, "output.data")
.set_cores(4)

.set_memory(2048)
.set_disk(100)

b askid = m.submit(t)

url file
sd698d 3q2 . . .
- m m ; # Submit a Python function execution

t = vine.PythonTask(

Application TaskVine Worker
Mark JULTTJM T Assemble "' "' l TLL[Ny 02 e - \
cPU | | cPU GPU GPU
7 i T s V" It
=) | e | e
) S

Qe
m \

File = Single file or complex dir.

TaskVine Manager i sn O

N

T
T
T
T
T
T

sk || st || Makefiow

y 2
data.tar.gz simulate_func,molecule, parameters)
taskid = m.submit(t)
Files are immutable and given a
unique cache name. :
Worker Worker Worker @ # Wait fqr any task to complete.
Each task runs in a sandbox t = m.wait()
with a private namespace and tout txt T - rint(t.output
an allocation of cores, memory, | / P (P)
Compute Cluster disk, and gpus. b V9 -
Task 1 Sandbox Task 2 Sandbox
TopEFT Physics Data Analysis Application TaskVine Storage vs Shared Filesystem Multi-Modal Serverless Workflows
y . | Effect of TaskVine’s data management and distribution method Simply converting "import tensorflow" into the preamble of a Library
TopEFT C —:> access units storage units _
;Appﬁcaﬁon - -~ | BN 2 P [= F ﬂ) compared to relying on a shared filesystem for data staging. task saves 1.2GB of Python libraries, 30K metadata system calls, and
Framework T T8l 5 _f}.\,/L L ey Workflow: Training 2048 NN configurations, each 2 cores/2GB, 5-10s latency per FunctionCall. We can mix standard Tasks, Libraries,
-) -
| e || (e < Poe - SES WA SO with 8 tasks Workflow execution time and FunctionCalls into a multi-modal workflow:
" 7 - XRootD XRootD er worker on an | i
M:]:,deer Storage Aeeisiine YKo Proxy(/)gache Data Feoc?eration p 7000 - i e et VI iiliiciidede 1142 { e ﬁ,xsetc:;iz?scohnecﬁon
: HTCondor pool o 100x Tasks build model .
_ using either from MNIST data. For each
Old: Work Queue New: TaskVine 5 5000 -
Panasas or model, deploy serverless

510)/ 1 ——

Al e EE
E i NAEANNRE AR

1008; 4000 -

TaskVine for LibraryTask for inference.
data mgmt. 2000° = Submit 10x FunctionCalls

Time (s)

640 [s e sxax saraaias

P e W

i BRELBRRARBRRAELE —
EnEFimEni nai i

960

7201

Software deps 2000+ to invoke each LibraryTask.]
C 480 are 4.4GB of 1000 - Application gradually
240 Python libraries 0 - o accelerates as Libraries 14
RN I K 100 per node! Number of workers become available to invoke. * e
Dask.Distributed vs. Dask.TaskVine TaskVine Scheduler Scaling Barry Sly-Delgado, Thanh Son Phung, Colin Thomas, David Simonetti, Andrew

For some workflows, TaskVine significantly outperforms Dask The TaskVine scheduler must consider a number of aspects while Hennesse, Ben Tovar, and Douglas Thain, "TaskVine: Managing In-Cluster
native distributed workers. The following workflow performs a making task placement and data movement decisions without Storage for High Throughput Data Intensive Workflows", WORKS Workshop
series of matrix multiplication tasks forming a tree of task compromising high-throughput task dispatch capabilities, at Scupercomputing, November 2023.
executions. 256 |n|t|§I mul.tlpllcatlo.n tasks feed |.ntf) new tasks especially for serverless applications. As the waiting queue Cooperative Computing Lab at the University of Notre Dame
and son on, generating a final matrix. Each matrix is 1.2MB grows, scheduling BTG GG
which is transferred between workers when needed. complexity can easily — Fixed Location

| —— Current
—— Binary Operations

TaskVine become an exponential B el
T function. Through o
= several techniques we
S—— have improved to linear
performance, and made
====== greater scale possible. ey

(a

Douglas Thain Benjamin Tovar Thanh Son Phung Barry Sly Delgado Colin Thomas Md Saiful Islam
Director Research Ph.D. Student Ph.D. Student Ph.D. Student Ph.D. Student
Soft. Engineer

workers

time 10000 15000 20000 25000 30000 35000 40000 45000 50000
Tasks in Queue

od

Jin Zhou David Simonetti Andrew Hennessee Jachob Dolak Jon Brockett Thomas Hieber

Ph.D. Student Undergraduate Undergraduate Undergraduate Undergraduate Undergraduate

http://cctools.readthedocs.io

