
TopEFT Physics Data Analysis Application

Compute Cluster

CSSI Element: DataSwarm: TaskVine: A User-Level
Framework for Data Intensive Scientific Applications
PI: Douglas Thain, University of Notre Dame, Award #: 1931348

Many scientific applications are expressed as high-throughput
workflows that consist of large graphs of data assets and tasks to
be executed on large parallel and distributed systems. A challenge
in executing these workflows is managing data: both datasets
and software must be efficiently distributed to cluster nodes;
intermediate data must be conveyed between tasks; output data
must be delivered to its destination. Scaling problems result
when these actions are performed in an uncoordinated manner
on a shared filesystem. TaskVine is a system for exploiting the
aggregate local storage and network capacity of a large cluster.
TaskVine tracks the lifetime of data in a workflow – from archival
sources to final outputs-- making use of local storage to
distribute, and re-use data wherever possible.

TaskVine Scheduler Scaling
The TaskVine scheduler must consider a number of aspects while
making task placement and data movement decisions without
compromising high-throughput task dispatch capabilities,
especially for serverless applications. As the waiting queue
grows, scheduling
complexity can easily
become an exponential
function. Through
several techniques we
have improved to linear
performance, and made
greater scale possible.

Multi-Modal Serverless Workflows
Simply converting "import tensorflow" into the preamble of a Library
task saves 1.2GB of Python libraries, 30K metadata system calls, and
5-10s latency per FunctionCall. We can mix standard Tasks, Libraries,
and FunctionCalls into a multi-modal workflow:

100x Tasks build model
from MNIST data. For each
model, deploy serverless
LibraryTask for inference.
Submit 10x FunctionCalls
to invoke each LibraryTask.
Application gradually
accelerates as Libraries
become available to invoke.

Dask.Distributed vs. Dask.TaskVine
For some workflows, TaskVine significantly outperforms Dask
native distributed workers. The following workflow performs a
series of matrix multiplication tasks forming a tree of task
executions. 256 initial multiplication tasks feed into new tasks
and son on, generating a final matrix. Each matrix is 1.2MB
which is transferred between workers when needed.

TaskVine Storage vs Shared Filesystem
Effect of TaskVine’s data management and distribution method
compared to relying on a shared filesystem for data staging.
Workflow: Training 2048 NN configurations, each 2 cores/2GB,
with 8 tasks
per worker on an
HTCondor pool
using either
Panasas or
TaskVine for
data mgmt.
Software deps
are 4.4GB of
Python libraries
per node!

http://cctools.readthedocs.io

Example of key TaskVine operaitons
import taskvine as vine
m = vine.Manager(9123)

File objects are first class citizens.
file = m.declareFile("mydata.txt")
buffer = m.declareBuffer("Some literal data")
url = m.declareURL("https://nd.edu/data.tar.gz")
temp = m.declareTemp();

Peform a standard transformation on a file
data = m.declareUntar(url)
software = m.declarePoncho(package)

Submit a standard executable task.
task = vine.Task("mysim.exe -p 50 input.data -o
output.data")

t.add_input(url,"input.data")
t.add_output(temp,"output.data")
t.set_cores(4)
t.set_memory(2048)
t.set_disk(100)
taskid = m.submit(t)

Submit a Python function execution
t = vine.PythonTask(
 simulate_func,molecule,parameters)
taskid = m.submit(t)

Wait for any task to complete.
t = m.wait()
print(t.output)

TaskVine Manager

 Worker Worker Worker

Dask Parsl Makeflow

Barry Sly-Delgado, Thanh Son Phung, Colin Thomas, David Simonetti, Andrew
Hennesse, Ben Tovar, and Douglas Thain, "TaskVine: Managing In-Cluster
Storage for High Throughput Data Intensive Workflows", WORKS Workshop
at Scupercomputing, November 2023.

Cooperative Computing Lab at the University of Notre Dame

Old: Work Queue New: TaskVine

http://cctools.readthedocs.io

