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Many scientific applications are expressed as high-throughput
workflows that consist of large graphs of data assets and tasks to P
be executed on large parallel and distributed systems. A challenge pplication

in executing these workflows is managing data: both datasets \ - ‘L[[ )

# Example of key TaskVine operaitons
import taskvine as vine
m = vine.Manager(9123)
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and software must be efficiently distributed to cluster nodes; results | # File objects are first class citizens.
intermediate data must be conveyed between tasks; output data : TaskVine file = m.declareFile( mydata.t).(t )
must be delivered to its destination. Scaling problems result Ll KrOTsoi FYOTKOrg buffer = m.declareBuffer("Some literal data")
. . . url = m.declareURL("https://nd.edu/data.tar.gz")

when these aFtlons are perfor.meq in an uncoordmateo! .manner T s maraoer discis temp = m.declareTemp():
on a shared filesystem. TaskVine is a system for exploiting the warkers:to:read dsls from:remois
aggregate local storage and network capacity of a large cluster. Sgurcej, run .t?f‘ks Ohn thhat data, and Ramote # Peform a standard transformation on a file
TaskVine tracks the lifetime of data in a workflow — from archival share data with each other. Services da’;a m.declareUntar( url )
sources to final outputs-- making use of local storage to | TaskVine leaves data on workers in software = m.declarePoncho( package )

et ) : the cluster wherever possible! .
distribute, and re-use data wherever possible. N # Submit a standard executable task .

task = vine.Task("mysim.exe -p 50 input.data -o
output.data")

CMS open data 2.26 fb~1, 2015 (13 TeV)
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.add_input(url, "input.data")
.add_output(temp, "output.data")
.set_cores(4)

.set_memory(2048)
.set_disk(100)

b askid = m.submit(t)

url file
sd698d 3q2 . . .
- m m ; # Submit a Python function execution

t = vine.PythonTask(
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data.tar.gz simulate_func,molecule, parameters)
taskid = m.submit(t)
Files are immutable and given a
unique cache name. :
Worker Worker Worker @ # Wait fqr any task to complete.
Each task runs in a sandbox t = m.wait()
with a private namespace and tout txt T - rint( t.output
an allocation of cores, memory, | / P ( P )
Compute Cluster disk, and gpus. b V9 -
Task 1 Sandbox Task 2 Sandbox
TopEFT Physics Data Analysis Application TaskVine Storage vs Shared Filesystem Multi-Modal Serverless Workflows
y . | Effect of TaskVine’s data management and distribution method Simply converting "import tensorflow" into the preamble of a Library
TopEFT C —:> access units storage units _ . . . . .
;Appﬁcaﬁon - -~ | BN 2 P [ = F ﬂ ) compared to relying on a shared filesystem for data staging. task saves 1.2GB of Python libraries, 30K metadata system calls, and
Framework T T8l 5 _f}.\,/L L ey Workflow: Training 2048 NN configurations, each 2 cores/2GB, 5-10s latency per FunctionCall. We can mix standard Tasks, Libraries,
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| e || (e < Poe - SES WA SO with 8 tasks Workflow execution time and FunctionCalls into a multi-modal workflow:
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TaskVine for LibraryTask for inference.
data mgmt. 2000° = Submit 10x FunctionCalls
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Software deps 2000+ to invoke each LibraryTask. ]
C 480 are 4.4GB of 1000 - Application gradually
240 Python libraries 0 - o accelerates as Libraries 14
RN I K 100 per node! Number of workers become available to invoke. * e
Dask.Distributed vs. Dask.TaskVine TaskVine Scheduler Scaling Barry Sly-Delgado, Thanh Son Phung, Colin Thomas, David Simonetti, Andrew

For some workflows, TaskVine significantly outperforms Dask The TaskVine scheduler must consider a number of aspects while Hennesse, Ben Tovar, and Douglas Thain, "TaskVine: Managing In-Cluster
native distributed workers. The following workflow performs a making task placement and data movement decisions without Storage for High Throughput Data Intensive Workflows", WORKS Workshop
series of matrix multiplication tasks forming a tree of task compromising high-throughput task dispatch capabilities, at Scupercomputing, November 2023.
executions. 256 |n|t|§I mul.tlpllcatlo.n tasks feed |.ntf) new tasks especially for serverless applications. As the waiting queue Cooperative Computing Lab at the University of Notre Dame
and son on, generating a final matrix. Each matrix is 1.2MB grows, scheduling BTG GG
which is transferred between workers when needed. complexity can easily — Fixed Location
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TaskVine become an exponential B el
T function. Through o
= several techniques we
S—— have improved to linear
performance, and made
====== greater scale possible. ey
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