Barry Sly-Delgado
University of Notre Dame
South Bend, Indiana, USA

David Simonetti
University of Notre Dame
South Bend, Indiana, USA

Thanh Son Phung
University of Notre Dame
South Bend, Indiana, USA

Andrew Hennessee
University of Notre Dame
South Bend, Indiana, USA

Douglas Thain
University of Notre Dame
South Bend, Indiana, USA

TaskVine: Managing In-Cluster Storage for High-Throughput
Data Intensive Workflows

Colin Thomas
University of Notre Dame
South Bend, Indiana, USA

Ben Tovar
University of Notre Dame
South Bend, Indiana, USA

ABSTRACT

Many scientific applications are expressed as high-throughput
workflows that consist of large graphs of data assets and tasks
to be executed on large parallel and distributed systems. A chal-
lenge in executing these workflows is managing data: both datasets
and software must be efficiently distributed to cluster nodes; inter-
mediate data must be conveyed between tasks; output data must
be delivered to its destination. Scaling problems result when these
actions are performed in an uncoordinated manner on a shared
filesystem. To address this problem, we introduce TaskVine: a sys-
tem for exploiting the aggregate local storage and network capacity
of a large cluster. TaskVine tracks the lifetime of data in a workflow
—from archival sources to final outputs— making use of local storage
to distribute, and re-use data wherever possible. We describe the
architecture and novel capabilities of TaskVine, and demonstrate its
use with applications in genomics, high energy physics, molecular
dynamics, and machine learning.

ACM Reference Format:

Barry Sly-Delgado, Thanh Son Phung, Colin Thomas, David Simonetti,
Andrew Hennessee, Ben Tovar, and Douglas Thain. 2023. TaskVine: Man-
aging In-Cluster Storage for High-Throughput Data Intensive Workflows.
In Workshops of The International Conference on High Performance Com-
puting, Network, Storage, and Analysis (SC-W 2023), November 1217, 2023,
Denver, CO, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3624062.3624277

1 INTRODUCTION

Many scientific applications can be expressed as high-throughput
workflows that combine data assets and executable tasks into large
graphs that can be executed in parallel on distributed systems
such as university clusters, commercial clouds, and leadership HPC
machines. A wide variety of workflow management systems [2, 5,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SC-W 2023, November 12—17, 2023, Denver, CO, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0785-8/23/11...$15.00
https://doi.org/10.1145/3624062.3624277

7,13, 26, 28] have arisen to express workflows in various domains
and programming languages.

For many such workflows, the primary limitation is not the peak
performance of computation at steady state, but rather the costs
of managing data throughout execution. This includes the startup
cost of deploying the assets needed for execution at scale, man-
aging intermediate data generated between task execution, and
retaining reusable data at the site of execution. A simple applica-
tion written in a dynamic programming language may require a
specific language runtime, a fleet of supporting libraries, and vari-
ous configuration files that tie the bundle together. More complex
applications may tie together scripts, executables, and libraries
drawn from multiple language environments. These may come in
the form of containers [22, 25] or shared packages in the filesystem
[14, 17, 21]. Datasets to be consumed by the application must be
downloaded, uncompressed, prepared, and arranged for distribu-
tion or partitioning as required. These intermediate steps present a
usability problem because end users must struggle to identify and
deploy the needed assets at every new site. But they also present a
performance and resource management problem because the distri-
bution of such assets may be a significant fraction of the time and
resources needed to execute the application itself.

A more global approach is needed to address such data-intensive
workflows. To improve usability and portability, a complete work-
flow should encompass the original archival data sources of data
and software and the preparatory steps needed to put them into
action. Doing so should not require continuous communication
with the archive, but rather the system should be capable of cap-
turing and naming external data assets in a reproducible way. To
improve deployment performance, the internal storage resources
of cluster nodes can be harnessed to share and distribute common
assets in a scalable way, instead of depending on a single shared
filesystem which may present a bottleneck at scale. Finally, the
limited resources of local storage and network bandwidth must be
carefully managed to ensure that parallel actions do not overwhelm
the available capacity.

TaskVine is a workflow execution system that puts these con-
cepts into practice. A TaskVine workflow consists of a dynamic
graph of data items which are mounted into a private namespace
for each task. The initial inputs of a workflow are best expressed


https://doi.org/10.1145/3624062.3624277
https://doi.org/10.1145/3624062.3624277
https://doi.org/10.1145/3624062.3624277

SC-W 2023, November 12-17, 2023, Denver, CO, USA Barry Sly-Delgado, Thanh Son Phung, Colin Thomas, David Simonetti, Andrew Hennessee, Ben Tovar, and Douglas Thain

TaskVine TaskVine

Application
L 1=

TaskVine Mgr

Shared
Filesystem

Figure 1: TaskVine Architecture
An application uses the TaskVine API to specify the relationships of
tasks and data. The TaskVine Manager program coordinates multiple
workers running in a cluster to manage local storage, send and receive
files, execute tasks, and report completion.

as archival sources of software and data, which are transformed as
needed until ready for task consumption. A TaskVine workflow is
executed on a set of workers that exploit the local storage, mem-
ory, and compute capabilities of cluster nodes. A manager process
schedules data items and tasks to the workers, seeking to carefully
manage the limited storage and network resources of the cluster.
Frequently used items such as software packages and reference
datasets are kept within the cluster for reuse across similar work-
flows, thus removing substantial load from the shared filesystem.

In this paper, we present the architecture and programming
model of TaskVine, and detail the key mechanisms and strategies
for managing data assets within the cluster: data transformation
from archival sources, storage management on worker nodes, net-
work management across the cluster, and the serverless computing
model. We describe how TaskVine has been applied to four dis-
tinct applications: high throughput genome search (BLAST), data
analysis in high energy physics (TopEFT), Al-guided molecular
simulation (Colmena), and machine learning model optimization
(BGD). In each case, we demonstrate how these workflows exploit
the TaskVine mechanisms to make effective use of in-cluster storage
resources.

2 ARCHITECTURE
2.1 Overview

Figure 1 shows the general architecture of TaskVine. TaskVine
seeks to effectively manage the local storage on each node in a
cluster, arranging for tasks to execute in close proximity to the
data that they consume and produce. From a user’s perspective,
they declare the data objects and tasks that comprise a workflow,
and they are notified as tasks complete and outputs are produced.
Wherever possible, data is left in place where it is created, moved
only as needed to satisfy replication or output constraints, and
reused between common tasks as much as possible. The scheduling
objective is to replicate and place data first, and then schedule tasks
within the constraints of available data.

Each TaskVine worker is responsible for managing the resources
on a single node: CPUs, GPUs, memory, and storage. Worker storage
(whether HDD, SSD, or NVMe) is organized as a flat cache of data

Figure 2: Example Workflow
A TaskVine workflow consumes input datasets from archival sources
or a shared filesystem, produces outputs to be consumed by other
tasks, and then only places final outputs back in a reliable shared
filesystem. Common inputs (like software S) are efficiently replicated
while intermediate files (like file T) exist only in ephemeral storage.

objects, each with a unique name assigned by the manager. The
worker tracks the size and resources available in the cache, and
informs the manager of every status change of interest. To prevent
cached files from using up all the disk space of a worker’s local
filesystem, the manager tracks which data belongs to which task
and can either delete or relocate that data to another worker, if
appropriate. The worker also manages a queue of pending transfers
assigned by the manager and can either fetch data from remote
data services or from peer workers. Transfers are supervised by the
manager to avoid contention. Distributing assets between nodes
resembles the construction of a peer-to-peer network. File transfer
protocols such as BitTorrent have been evaluated on HPC clusters
with mixed results [16]. One conclusion from this study is that
the unmanaged transfers lead to hot spots in the network, while
"fairness" measures make little sense in a cluster of cooperative
nodes. As we will show, managed peer-to-peer transfers result in a
stable and performant TaskVine system.

Each task in TaskVine represents a unit of execution that must be
scheduled with respect to the data that it consumes and produces.
To manage these relationships, TaskVine requires users to explic-
itly bind each task to its inputs and outputs. When data sources
are used repeatedly by similar tasks, multiple immutable replicas
are made across workers, and then implicitly shared by all tasks
within a given worker. Tasks come in several varieties: A plain
Task indicates a Unix command line executed in a private sandbox
directory; a PythonTask indicates an invocation of a function
accompanied by a self-contained execution environment; a server-
less FunctionCall indicates a remote invocation of a separately
defined and executed LibraryTask. Each of these task modalities
may be mixed within a single workflow. As we show below, an
application can combine together traditional executable programs
with lightweight serverless invocations in one workflow.

Reliable high-throughput execution of large workflows requires
efficient resource management. Each task is defined to consume a
fixed quantity of resources (cores, memory, disk) which are moni-
tored and enforced at execution time. If a task exceeds the declared
allocation, it is returned to the manager. Depending on the user’s
configuration, the manager will either execute it elsewhere with a
larger allocation, or return it to the user as a failure. This permits
the worker to reliably "pack" a large number of small concurrent
tasks on to a node at once without overcommitting and risking the
failure of all tasks. In a similar way, storage resources are enforced



TaskVine: Managing In-Cluster Storage for High-Throughput Data Intensive Workflows

import taskvine as vine

m = vine.Manager()

blast_url = m.declare_url("https://.../blast.tar.gz")
blast = m.declare_untar(blast_url,cache=worker)

land_url = m.declare_url("https://.../landmark.tar.gz")
land = m.declare_untar(land_url,cache=workflow)

for i in range(1000):
query = m.declare_buffer(make_query(i),cache=task)
t = vine.Task("blast/bin/blast -db landmark -q query")

t.add_input(query, "query")
t.add_input(blast, "blast")
t.add_input(land, "landmark™)
t.add_env("BLASTDB", "landmark")
m.submit(t)

Figure 3: Example TaskVine Application
A brief example in which 1000 tasks are generated. Each task shares
a common software package (blast) and dataset (land) provided by
archival sources, and also has a unique buffer input (query) provided
by the manager. All three are presented as files in the task sandbox.

at the worker and controlled by the manager, including the distri-
bution and assignment of data, cache admittance and eviction of a
worker’s persistent cache.

2.2 Components

Figure 2 shows an example of a TaskVine workflow, which con-
sists of an application submitting tasks to be deployed by a single
manager and executed on a pool of workers.

The application is a program written using the TaskVine API
which declares the files and tasks that form the workflow. Each
source data item must be declared to the manager, indicating its
original source. Each task to be executed must also be declared
to the manager with the necessary input and output files to be
attached to the task. Figure 3 shows an example of constructing
a simple workflow consisting of software and data drawn from
an archival source in order to run 1000 tasks that each perform
queries against a BLAST [24] genomics database. If known, the
entire workflow can be stated by the user all at once, or the task
graph can be built incrementally, based on outside information
or results returned from completed tasks. The TaskVine API can
be used to write custom applications in C or Python or as a lower
execution layer for a higher level workflow system, such as Parsl [7]
or Coffea [31].

The manager directs the overall execution by accepting the
workflow definition, dispatching tasks to workers, directing file
transfers to/from workers, collecting results, and performing garbage
collection. As a general rule, the manager directs all policy deci-
sions, while the worker provides the mechanisms for execution.
For example, the manager dispatches tasks to specific workers,
which execute them asynchronously; the manager directs files to
specific workers, but the workers transfer them asynchronously.
The manager collects reports from each worker about its available
resources, running tasks, cached data, and status of file transfers. As
a result, the manager has a detailed picture of the distributed state

SC-W 2023, November 12-17, 2023, Denver, CO, USA

TaskVine Worker

——

: url : url file file

: wq73dv | EEELEEEL su3g2n r223cdf
_________ |

data.tar.gz

=
I
1
I
I
: input.txt config
I
1
1
I
I
1
1
I
I

e e —— — ¢

output.txt -=

output.txt

Figure 4: Worker Storage Management
Each worker maintains a cache of stored objects, each with a
unique generated name. Remote assets are downloaded on demand
when a task requires them. Each task is executed in a sandbox
that maps unique names into a local namespace. Task T; reads
url-sd698d as data.tar.gz and produces output.txt which be-
comes temp-xyz123. Task T later consumes that files as input . txt.

of the system to make informed decisions, such as placing tasks
based on data locality, scheduling transfers to avoid contention,
and duplicating items for reliability.

The worker receives instructions from the manager to execute
tasks in isolation, manage local storage, and perform file transfers
asynchronously. Figure 4 shows the basic structure of a worker. A
cache directory contains all of the data objects stored on local disk,
each with a unique cache name is generated by the manager. Files
to be transferred from remote sources are held in a pending state
and downloaded by the worker to satisfy task needs. Each task is
executed in a sandbox with a private namespace, with each input
and output file linked in using a user-readable name. The sandbox is
deleted when the task completes, so the only persistent data objects
are those explicitly extracted from the completed task. Commonly
used and shared data items may persist in the cache to be used
by future task executions, and are only deleted at the manager’s
direction. Workers may join and leave the system dynamically as
cluster resources change availability.

2.3 Data Definitions

All data accessed or produced by a TaskVine workflow must be
explicitly declared by the application, so that it can be properly
transferred and presented to each task. For brevity, each named
data object in TaskVine is known as a File, whether it is a single
file, a large container image, or a directory hierarchy with millions
of entries. A File may be one of several subtypes: a LocalFile which
names a file or directory in the shared filesystem of the cluster; a
BufferFile which is a (typically) small unit of literal data in the
application’s memory space; a URLFile which is a reference to a
remote data object; a TempFile which names an ephemeral file that
exists only temporarily within the cluster and is never materialized
outside. In the case of remote files such as URLFiles and TempFiles,



SC-W 2023, November 12-17, 2023, Denver, CO, USA Barry Sly-Delgado, Thanh Son Phung, Colin Thomas, David Simonetti, Andrew Hennessee, Ben Tovar, and Douglas Thain

1 = m.create_library("/path/to/opt.py", "optimizer")
m.install_library(1l)

for i in range(1000):
t = vine.FunctionCall("optimizer", "gradient", i)
m.submit(t)

Figure 5: Serverless Task Declaration
This application creates a Library object by giving the path to a
Python module and naming it optmizer. A FunctionCall task names
the Library, a function within the library, and the arguments. The
task is then dispatch to invoke the deployed Library on a worker.

def declare_xrootd( url, proxy ):
t = vine.Task("xrdcp {3} output".format(url))
t.add_input(proxy, "proxy509.pem")
t.set_env("X509_USER_PROXY", "proxy509.pem")
t.add_output(m.declare_temp(), "output"))
return m.declare_mini_task(t)

p = declare_file("proxy.file", cache=task)
f = declare_xrootd("xrootd://server/path",p)

Figure 6: MiniTask Definition
A MiniTask defines a program to be executed on demand to generate
a file at the worker. This example shows a MiniTask defined to add
support for XRootD data transfers with user provided credentials.

simply declaring the file does not mean it exists yet at the worker. In
these cases, the worker must fetch the URL or create the temporary
file sometime after the task is sent by the manager. Therefore, when
the worker does acquire the file, it will send an asynchronous cache-
update message to inform the manager that the file is present for
scheduling purposes.

TaskVine files are immutable: once created (or transferred), their
contents do not change, thus allowing file replication to needed
tasks without further consistency checks. A given file may exist
on multiple workers simultaneously as needed to satisfy tasks. As
described below, the manager generates a unique name for each
file to ensure that common files are discoverable and reusable. The
application may offer the manager cache hints about the expected
lifetime of each file. A cache lifetime of task indicates that the
file will not be consumed after the task completes, and it can be
discarded immediately. A cache lifetime of workflow (the default)
indicates that the file may be re-used multiple times during the
current workflow run, but may be deleted at its conclusion. A
cache lifetime of worker indicates that the file will be used again
by future workflows, and may be kept on the worker as long as
resources are available. This is typically used for common software
packages and reference datasets, and requires additional effort by
the manager to generate persistent names. In Figure 3, note that
the blast software has a cache hint of worker because it can be
used by many different workflows, while the per-task query text is
task, because it is needed by that task only.

2.4 Task Definitions

A plain Task describes a Unix program and command line argu-
ments to be executed in a private namespace by a worker. All data
needed by the task must be explicitly described: each input file that
it requires must be added with add_input and connected to a data
source. Every output file that it produces must be described with
add_output and connected to a data sink. The executable program
and any libraries or other dependencies needed must be delivered
explicitly via input files. (For example, see the invocation of blast
in Figure 3.) If known, the resources needed by the task (cores,
memory, gpus) should also be described so that the manager can
make appropriate placements. A variety of optional details may be
given to each task to modify fault-tolerance, error propagation, re-
source management and monitoring. Several specialized task types
are then derived from this basic abstraction.

A PythonTask is a specialization of a plain Task to execute a self-
contained Python code. Rather than invoking a Unix command line,
a PythonTask names a function (in the body of the application) and
arguments to that function. The function code is serialized along
with the needed Python dependencies, which are sent as inputs for
the task. From there, the PythonTask invokes the python interpreter,
loads the necessary data and function code, and executes it. This
relieves the user of some of the complexities of managing the library
environment, keeps them within the Python programming space,
and still makes available all of the other features surrounding task
management.

For many data analysis applications, the overhead of packing,
sending, and setting up execution environments at a worker node
may be a significant fraction of the total runtime. TaskVine ad-
dresses this overhead by providing a serverless computing model
that allows the reuse of execution environments over many short
running tasks. This model consists of two parts: a LibraryTask and
a FunctionCall. A LibraryTask contains arbitrary user-defined
functions, and is "installed" once by the application, and then trans-
parently deployed to workers where it runs continuously. To invoke
the functions in the Library, a FunctionCall is used which replaces
the UNIX command of a regular task with the name of a Library
function to run. Figure 5 shows an example manager program us-
ing the serverless model by creating LibraryTask from a executable
and then creating FunctionCall Tasks to run a function called func-
tion_name included in that Library.

In many cases data and software needs to be prepared or con-
figured in some way on the worker prior to direct use by a task.
This might be as simple as uncompressing a stream with gzip or as
complex as recompiling a package to take advantage of local accel-
erator architectures. We observe that such transformations require
all the abstractions of a task: a command, input files, output files,
and time and resources needed to perform the transformation. And
so, we define a MiniTask to be a task definition that is executed
on demand in order to produce a File object on a worker as needed.
TaskVine provides wrappers for built-in MiniTasks that perform
common operations such as packaging and compression. For ex-
ample, in Figure 3, the declare_untar call indicates a MiniTask
which unpacks the given url and returns the uncompressed output.

MiniTasks provide a natural way of expanding the capabilities
of TaskVine in a precise manner. Figure 6 shows how to define



TaskVine: Managing In-Cluster Storage for High-Throughput Data Intensive Workflows

b3cebe3,
Checksum(| bbdja7w, ) Checksum( )

fbcf53a,
= huje16a = b3cebe3
Checksum( | f06da39, |y

w3y3s3l Checksum( )
= bbdj37w

= f06da39

H Checksum( )

= w3y3s3l
Checksum( )

= fbcf53a

Figure 7: Directory Cache Name Merkle Tree
Cache names for files are generated by hashing the contents of a
file. For a directory, we recursively hash the contents of the directory.
A directory’s cache name is generated by its content’s cache names

a MiniTask that adds the capability to transfer input data via the
XRootD [15] system used in high energy physics. A transfer requires
the xrdcp executable to be invoked, along with an X509 proxy
credential provided by the user, and an environment variable set
appropriately. The user naturally desires that the credential should
not be cached indefinitely, but the data so obtained may be. Once
defined this way, the transfer method becomes a precise component
of the workflow: data produced is assigned a unique name, cached
at workers, and shared among tasks like any other file.

3 TASKVINE IMPLEMENTATION

3.1 Environment Management

TaskVine provides the ability for users to provide and manage vary-
ing execution environments at the task level. Task environments
may include specific libraries, containers, databases and more. En-
vironments often require some startup cost usually in the form of
staging files, or linking libraries. In the scenario where tasks are
not sharing environments, this cost of setup becomes a sizeable
amount of the total runtime of a workflow. From TaskVine’s per-
spective, the necessary steps to setup a task’s environment can be
seen as a task itself. This task has a explicit input requirement such
as a tarball or a container. It also requires the command detailing
how the inputs should be prepared. The resulting output is a ready
environment that can be used by multiple tasks. MiniTasks address
this need for an abstraction that properly stages data for tasks.
Aside from TaskVine’s built-in MiniTasks, user’s can declare their
own MiniTasks which sits in a space in between a task and a file.
MiniTasks require users to explicitly detail its command, input files,
and output files. The value returned by a MiniTask is a standard
file object that can be used as an input.

3.2 Storage Management and Naming

Effective storage management is key to the performance of TaskVine.

In many workflows the same data items will be reused many times,
both within the same workflow and across multiple workflow ex-
ecutions. Reuse is both spatial and temporal. Spatially, multiple
tasks running concurrently on the same worker should share the
same immutable input files, thus avoiding unnecessary transfers

SC-W 2023, November 12-17, 2023, Denver, CO, USA

and duplicate storage. Temporally, subsequent tasks running on the
same worker should be able to share the prior input files, and where
possible, consume the outputs of prior tasks. Thus, the worker must
have a persistent storage cache that can serve multiple workflows
and minimize the movement of data to/from the worker.

To implement a persistent cache that will serve multiple work-
flows, files within the cache must be named consistently to ensure
the accurate execution of an application. Simple user-visible file
names are not enough: it is all too easy for two applications to give
the name data. txt to different content. Instead, the manager is
responsible for giving a unique cache name to each file. The scope
of this name depends upon the maximum lifetime of the file stated
by the application. Files with cache lifetime of task or workflow
are only visible within the context of a single workflow and will
never be reused across workflows. In this case, the manager inter-
nally generates a random name, and ensures that no two names
within a single run of a workflow collide. These files are automat-
ically deleted at the conclusion of a workflow, thus avoiding the
possibility of polluting a future run that might choose the same
random names. However, files with the cache lifetime of worker
need a perpetually unique cache name, because they are retained
by the worker when a workflow completes, and may be shared
across multiple workflows controlled by distinct managers. Our
general approach is to use content addressable names that are
computed from the content of a file, and therefore consistent across
workflow executions. However, there is some expense to producing
such names, and thus some variation across file types.

A LocalFile sends a local file or directory as input. A plain
file is hashed using the standard MD5 checksum to create a cache
name. For directories, the contents of the directory must be hashed
recursively to create a cache name, as shown in Figure 7. Each file in
the tree is hashed as normal using the MD5 algorithm. Then, each
directory is treated as a small document consisting of the names
of files (and directories) and their metadata. This document is then
hashed to produce a single name for the entire directory.

A BufferFile consists of the content of a memory buffer in the
manager to be sent as an input file. This cache name is computed
by hashing the buffer contents when it is attached to a task.

A URLFile represents a remote URL for the worker to download
asynchronously and make available to a task when needed. This
presents a naming problem because the manager does not have
direct access to the contents of the file, and downloading for that
purpose would harm performance at workflow construction time.
However, the manager is able to retrieve the HTTP header from
the URL and use the file metadata to generate a strong cache name.
In the ideal case, the header already contain an MD5 or SHA-1
checksum and the manager can employ this as the stable cache
name. However, this is common only for libraries and other archival
institutions. Alternatively, the manager will construct a cachename
by combining the URL address with the E-Tag and Last-Modified
elements of the header, and hash those to produce a cache name.
While this does not produce a true content-derived name, these
header elements are guaranteed to change if the content of the URL
changes, and thus avoid any problem of stale data. In the unlikely
event that none of these header fields are present, the manager will
download the file content, and generate a hash from the local copy.



SC-W 2023, November 12-17, 2023, Denver, CO, USA Barry Sly-Delgado, Thanh Son Phung, Colin Thomas, David Simonetti, Andrew Hennessee, Ben Tovar, and Douglas Thain

A MiniTask is a file produced on demand by a task specifica-
tion. Because the content of a MiniTask is unknown prior to its
execution, it cannot simply be named by its content. Instead, its
cachename is computed from the Merkle tree of the task specifi-
cation, encompassing the task’s command, resources, and cache
names of its input files computed recursively. In a similar way, A
TempFile is an ephemeral file that is the output of a normal task,
and is also named by computing the hash of the producing task.

3.3 Transfer Management

Decisions about transfer methods and data distribution have a
profound effect on the outcome of a workflow, especially in cold-
start situations where caching cannot yet be utilized. Since data
movement is a direct consequence of scheduling tasks, transfer
management is tightly coupled with the TaskVine scheduler.

In order to provide coordination, the manager must be able to
locate files in the cluster and track the movement of data. Files
are located at workers by the manager through the internal File
Replica Table, which presents a unified view of the cluster stor-
age consisting of the files present at all connected workers. The
movement of data is monitored through the manager’s Current
Transfer Table. Each scheduled file transfer is stored at the man-
ager with a UUID that the worker will respond with in its cache
update message, indicating the transfer has completed. This al-
lows the scheduler to observe how many concurrent connections a
source is supporting, in turn allowing the use of defined scheduling
limits to avoid hotspots.

The user initiates the management of data as soon as they declare
data dependencies for a task. Each declaration creates a type of file
that may be attached to a task. Before the manager dispatches a task
to a worker, it must know the worker is in possession of any input
file dependencies. The manager will send the file to the worker,
or instruct the worker on how to obtain it. It is in this period of
time that the scheduler is offered decisions over task placement
and transfer management.

An effective scheduler in this context must assign data and tasks
to workers while considering several issues that are in inherent
tension. We aim to efficiently reuse data, however we also wish
to duplicate data to increase concurrency. We provide the ability
to use workers as sources of shared input files, yet we must not
abuse a specific source. To address these considerations, we have
developed a conservative scheduling strategy that respects the basic
system design principles as follows:

Tasks are scheduled primarily to match the cached files present at
each worker, where a worker who possesses the most dependencies
for a task will be chosen to receive the task. In the case where an
optimal worker is not available, we assign the task to an arbitrary
worker, and move on to scheduling file transfers.

In the case where files are not present on the worker, file trans-
fers are scheduled by the manager shortly before task dispatch. A
task will have a "fixed" source for its input files, such as a remote-
URL or the manager. For every input file in the task, the manager
will consider where the file is currently replicated at other workers
in the system using the File Replica Table. If the file is located on
another worker, and this worker is not currently over the provided

TaskVine Worker

url ’

8p3qge2

file
247rlz

Figure 8: Serverless Execution
A normal task Ty executes alongside a Library Instance Ls and
FunctionCall Fg. Library Instance Fs is a Task that brings data assets as
normal, but runs continuously, waiting for invocations. FunctionCall
Fy is invoked by the worker sending the function arguments to Library
Instance Ls, which forks and then begins running the already-loaded
code. The results of Fs are returned as a normal Task.

transfer limit, the manager will modify the task description, direct-
ing the target worker to retrieve the file from the new source. This
conservative approach always prioritizes worker transfers over the
original task description. In the case where there is no opportunity
to schedule a worker transfer, we consult the defined limit on con-
current transfers from the original source, being the remote-URL
or the manager. The limits defined on concurrent transfers from
the original source and each worker are configurable by the user.

Future considerations for scheduling optimization include deci-
sions based on task execution time, bandwidth at specific workers,
and the corresponding cost of transferring a dependency over the
network. If a task is short-running, yet it depends on a complex
environment that is created on the worker, it may be better to wait
for a worker to become available that has the dependencies already
in its cache. While scheduling files, we may be presented with a
set of workers who are available to share an input file. Rather than
choosing the first available worker, it may benefit us to collect some
information about previous interactions to select a source that has
a history of high-bandwidth transfers.

3.4 Serverless Computing

In many scientific workflows, similar tasks are executed many
times with slight variations in input parameters. This can result
in an excessive duplication of the same initialization work, such
as starting a container, loading common libraries, or reading a
dataset from storage. In extreme cases, the initialization overhead
can become a significant portion of the overall workflow, as seen
in Figure 9. This problem is amplified on a shared file system when
many tasks access the same files and everything slows to a crawl.

Figure 8 shows the TaskVine serverless [6, 11, 18, 19] computing
model, which enables low latency function invocations alongside
regular tasks. Serverless tasks prevent repeatedly performing ini-
tialization work by creating persistent processes on a worker that
exist over the course of a workflow. The persistent processes mean



TaskVine: Managing In-Cluster Storage for High-Throughput Data Intensive Workflows

that expensive operations, like reading a data set into memory, only
need to be performed once per worker, and then future invocations
of that task can be performed without that overhead.

This requires coordinating two specialized task types: Library-
Tasks and FunctionCall tasks. A LibraryTask is a task which runs
a Library, which is an arbitrary program containing a collection
of functions which can be invoked by the worker. The manager in-
stalls a Library onto a worker by sending out a LibraryTask, which
may be accompanied by dependent files and other resources like
any other task. After receiving the LibraryTask, the worker creates
a pipe to communicate with the Library and forks to start it. The
worker then waits for the Library to send a JSON initialization mes-
sage describing its functions and capabilities.. Once this is complete,
the process that is running the Library is called a Library Instance,
and this Library Instance passively waits to receive messages from
the worker. In order to invoke one of the functions on the Library,
the worker uses the Library protocol, which involves sending a
JSON invocation message describing the name of the function to
execute as well as the arguments for that invocation.

FunctionCall tasks are used to perform these invocations. Func-
tionCall tasks are like regular tasks but name function to run with
serialized arguments, instead of a having command line with argu-
ments. FunctionCall tasks are sent to a worker like normal tasks,
but after the worker receives a FunctionCall Task it communicates
with the LibraryInstance using the Library protocol to invoke the
specified function. Once the Library Instance receives the invoca-
tion, the Library Instance forks to run that function with the given
arguments. The forked process completes the task and returns the
result to the Library Instance over a pipe. The Library Instance then
passes that task output back to the worker, and this is used as the
output for the FunctionCall Task. After completing the Function-
Call Task, the Library Instance returns to passively waiting for the
next invocation request from the worker.

The creation and installation of Libraries is handled by the man-
ager. The manager creates LibraryTasks given a name and a regular
task, where the command line executable of the task is the Library.
LibraryTasks can also be created from a list of Python functions
which are packed into a Library along with all of their dependen-
cies. LibraryTasks can be installed after creation, which begins the
process of distributing LibraryTasks to workers. The manager will
continue sending LibraryTasks to workers until each worker has
been sent the Library. These Library Instances exist on the workers
until the LibraryTask is removed or the workflow ends.

Resource management for LibraryTasks and FunctionCalls is
handled largely the same as conventional tasks, allowing them to
co-exist with other task types. Each Library instances consumes
a static resource allocation (CPUs, GPUs, memory, storage) on
each worker it runs on defined by the resource allocations for the
LibraryTask. The worker has those resources set aside for running
the Library Instance until it is removed. Each FunctionCall task also
consumes a set of resources in addition to the LibraryTask. Tasks
of all types can then be packed into a worker in the same way.

4 EVALUATION

We evaluate the effectiveness of the TaskVine mechanisms first
through targeted experiments on the key features, and then by

SC-W 2023, November 12-17, 2023, Denver, CO, USA

lGU?
= EEE tasks executing
80 B results waiting retrieval

worker transfers

0 40 80 120 160 0 40 80 120 160
time(s) time(s)

a. Cold Cache b. Hot Cache

Figure 9: Blast Workflow Cold and Hot Caches
Execution of the BLAST workflow from a worker’s perspective. During
a cold start, there is substantial overhead due to transferring and
staging data. This overhead is removed on subsequent runs.

demonstrating four complete scientific applications. All evaluations
are performed on a 20K-core shared university cluster managed by
HTCondor. Cluster nodes are a mixture of hardware types, ranging
from 12-64 cores, 16-256 GB RAM, and 50GB-2TB of local SSD
storage. 10Gb Ethernet is used throughout. The shared filesystem
is a Panasas [36] cluster consisting of 3 metadata nodes and 12
storage nodes providing 912TB storage with 30K metadata ops/s,
and 5GB/s data throughput. Workflows are executed by submitting
TaskVine workers of the desired size as batch jobs, and then starting
the manager and application on the cluster head node.

4.1 Performance Evaluation

Persistent Caching. Persistent caching reduces startup overhead
on subsequent executions when objects are cached between work-
flows. Thus, performing input transfers via the manager or other
workers is not necessary. Figure 9 shows the execution the BLAST
workflow from Figure 3 first with a cold cluster cache on 100 4-core
workers, and then a second time with a hot cache. Startup time
dramatically improves.

Shared Mini-Tasks. The addition of features for environment
management allows tasks to reuse environments that have already
been set up at the worker. This is in opposition to tasks bringing
their own environment for each execution. Tasks that share envi-
ronments can reuse environments left on a worker. With TaskVine,
a worker will need to unpack a package once where it can then
be used for multiple tasks. This reduces the amount of redundant
data that needs to be sent to workers and reduces the execution
time for tasks, as a large overhead comes from unpacking the en-
vironment. To demonstrate this difference, we ran the same task
for both scenarios using 1000 tasks and 50 4-core workers. The
task is a minimal task that sleeps for 10 seconds but depends on
a 610MB Python package that must be transferred to the worker.
Figure 10 shows the difference from tasks reusing an unpacked
environment and each tasks unpacking an environment on their
own. The environment tarball is transferred to each worker via the
manager. Each task using the unpacked environment substantially
reduces the time for task execution.

Worker-to-Worker Transfers. Worker-to-Worker transfers
were evaluated by measuring the performance of consuming a file
at a large number of nodes. Figure 11 compares the distribution of a
200MB file to 500 worker nodes. As a baseline, Figure 11a shows the



SC-W 2023, November 12-17, 2023, Denver, CO, USA Barry Sly-Delgado, Thanh Son Phung, Colin Thomas, David Simonetti, Andrew Hennessee, Ben Tovar, and Douglas Thain

1000 1000

800 800

600 600

tasks
tasks

400 400

Il tasks executing

200 200 B results waiting retrieval
worker transfers
1 1-
0 2 4 6 8 0 2 4 6 8
time(m) time(m)

a. Independent Tasks b. Shared Mini-Tasks
Figure 10: Independent Tasks vs Shared Mini-Tasks
Mini Tasks enable tasks to share staged data, even when it requires
some transformation following transfer. a. Each task expands the
environment itself as part of its own task definition. b. Each task

shares an expanded environment defined by a shared mini-task.

result of a worker-to-URL workflow, where a single remote-URL
is the source of the input file. Figure 11b shows the importance of
the manager in transfer scheduling decisions. Without deliberate
usage limits set, the manager will overload a worker and cause
performance to suffer. Figure 11c shows the same workflow using
worker-to-worker transfers with an imposed concurrent transfer
limit of 3, which was found to perform slightly better than two
and four. With worker transfers and proper management, the file
distribution workflow was complete in approximately half of the
original time.

4.2 Example Applications

BLAST [24] is a heuristic DNA text-matching algorithm used
within the field of bioinformatics. Given a nucleotide or protein
sequence, BLAST is used to search a target database for similar se-
quences. A typical workflow consists of a large number of query se-
quences generated by a DNA sequencing device, all being compared
against a target database. The primary performance constraint is
the distribution of the database replicas and the query software
across the system: the more copies available, the higher the sus-
tained query throughput. We constructed a complete workflow in
87 lines of Python, consisting of 2000 tasks on 400 nodes, with the
essential elements already shown in Figure 3. Each task receives a
query string generated by the manager to search the database. Both
the executable and the database are compressed and must first be
unpacked by the worker before tasks can be executed. Retrieval
and decompression of the remote assets result in significant startup
cost, but TaskVine’s persistent caching allows these resources to
be safely and persistently shared for repeated workflows. Figure
9a shows an execution of the BLAST workflow from the worker’s
perspective. During a cold start, roughly a quarter of the total exe-
cution time is dominated by transferring the necessary assets and
staging them. 9b shows the workflow in a subsequent run. Caching
these objects on-site minimizes the startup cost.

Conclusion: Persistent caching via content-addressable cache
names, substantially reduces startup costs for applications with
large shared data assets.

TopEFT [8] is a data analysis application in High Energy Physics
used to process particle data from the CMS detector at the CERN
Large Hadron Collider (LHC), which accelerates protons to nearly

the speed of light, producing 40 million collisions per second. The
analysis workflows for TopEFT process billions of collision events to
calculate and summarize the relevant physics properties. A TopEFT
workflow is defined by the datasets of collision events to be ana-
lyzed, preprocessor functions that collect metadata from the datasets,
processor functions that generate partial histograms to summarize
properties of subsets of collisions, and accumulator functions that
merge subsets of partial histograms. TopEFT is written on top of
Coffea [31], a framework for physics data analysis in python. Cof-
fea prepares the functions to be executed and dispatches them to
an executor for completion. We added TaskVine as an execution
module for Coffea in about 1300 lines of Python. TopEFT benefits
from the use of local temporary files used for partial histograms
that remain at the worker storage to be accumulated rather than
transferred back and forth to the filesystem. It also makes use of
persistent caching of Python environments. Figure 12a displays the
completion of tasks with time in the execution of a typical TopEFT
workflow processing 0.31 TB of real data collected from the LHC
and 1.4 TB of Monte Carlo simulated data. Figure 12d displays the
worker view of the run. The number of available workers increases
gradually, due to the shared nature of the cluster. In both figures,
notice a stall in execution at the 30-minute mark, showing a shift
from processing real collisions to processing simulated collisions,
which generally require more resources per subset. The output
histograms of accumulations grow exponentially in size, and final
accumulations produce files in the order of gigabytes.

To visualize the impact of growing accumulations, Figure 13
displays a side-by-side comparison of two TopEFT runs with about
27K tasks. Figure 13a depicts a run in which all output files are
brought back to the manager before accumulation. The repeated
transfer of large results bottlenecks the system, especially near
the end of execution where we observe a delay in data retrieval.
The run displayed in Figure 13b takes advantage of TaskVine to
keep histograms as ephemeral temporary files that do not leave
the workers. Notice the rapid conclusion of the workflow without
delays.

Conclusion: TaskVine’s ability to manage data locally within
the cluster eliminates the overhead associated with transferring
hundreds of gigabytes of data to and from the manager.

ColmenaXTB [35] is a dynamic workflow that combines neural
network inferences with molecular dynamics simulations to drive
large campaigns of molecular search, and is built on top of the
Parsl[7] workflow system. This workflow consists of 228 inference
tasks and 1000 simulation tasks, and each task in the workflow
displays a complex software dependency and requires 301 software
packages (aggregated to 1.4 GB of storage when compressed and
archived). We wrote a Parsl module (1036 LOCs in Python) to enable
execution of Parsl workflows using TaskVine as a backend system.
Without changing the top level workflow, this allows Parsl to ex-
ploit TaskVine’s worker-to-worker transfer feature to efficiently
distribute software packages and share deployments on worker
nodes. Figures 12b and 12e displays tasks and workers through the
workflow execution, respectively. Notice in Figure 12e that only
a small amount of workers receive the tarball of software depen-
dencies from the shared file system in the beginning. They then
efficiently distribute copies of the tarball to other workers in the
system (3 transfers/worker at any given time), thus reducing the



TaskVine: Managing In-Cluster Storage for High-Throughput Data Intensive Workflows SC-W 2023, November 12-17, 2023, Denver, CO, USA

500 500
400 400
300 300
£ =6
[ wn
© ©
200 200
Bl tasks executing
100 100 B results waiting retrieval
1 1 - worker transfers
20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
time(s) time(s) time(s)
a. Worker-URL b. Worker-to-Worker Without Supervision ¢. Worker-to-Worker limited by Manager

Figure 11: Comparison of Transfer Methods for Common Data
a. 500 tasks each independently download input data from a URL. b. Worker-to-Worker transfers are utilized, yet the manager does not limit
concurrent transfers. ¢. With a concurrent transfer limit of 3 per source, an equitable division of bandwidth is achieved.

B tasks executing
Bl results waiting retrieval
m worker transfers

27109 1228 2199 Library Tasks->
21680 <-Accumulation Tasks 960 1720
v 16260 w 720 1290
3 '<-Processing Tasks < %
S S S
10840 tasks executing 480 <-Simulation Tasks 860
5420 Bl results waiting retrieval 240 430
/ mm worker transfers ﬁefence Tasks
1/<-Preprocessing 1 1
0 20 40 60 80 100 0 6 12 18 24 30 0 2 4 6 8 10
time(m) time(m) time(m)
a. TopEFT Tasks b. Colmena-XTB Tasks c. BGD Tasks
‘ 402
‘ 320
" n 240
4 | ¢
I=} | o
8 ‘ ©160

0 20 40 60 80 100 0 6 12 18 24 30 0 2 4 6 8 10

time(m) time(m) time(m)
d. TopEFT Workers e. Colmena-XTB Workers f. BGD Workers

Figure 12: Taskvine Application Evaluation
Three example workflow runs. The top three graphs show activity of each task, sorted by start time. Each row shows the interval of time in which
that task was executing. The bottom row of three graphs shows the same execution from the perspective of the workers. Each row indicates that
activity of that worker over time. Dark blue indicates a task running, orange indicates data transfer, and light gray indicates an idle worker.

number of queries for the software tarball from the workers to the APL This workflow runs 2000 BGD tasks to minimize final model
shared file system from 108 to 3 (the remaining 105 are transfers error, and exploits serverless functions to reduce total task overhead
between workers) without and with worker-to-worker transfers. throughout the workflow. Each task must create an environment,

Conclusion: TaskVine’s worker-to-worker transfer feature sub- initialize Python, and resolve imports before actually running BGD.
stantially reduces the load on the shared file system. Instead of paying this startup cost once per task, using a Library

BGD. Batch gradient descent (BGD) is an algorithm which is containing the BGD function allows us to only pay the startup cost
commonly used to optimize machine learning models during train- once per worker. To start this LibraryTask, the worker requires the
ing. The algorithm consists of computing the error of a model on the high level algorithm code in addition to an environment tarball
entire input and adjusting the weights of the model accordingly for that is 89 MB. MiniTasks are used to deploy the environment for
a number of iterations. Running many different instances of BGD the Library Instance at the worker. After Library setup, each Func-
with different initial models can improve the final error. We have tionCall task can then run BDG on a randomized model with little

created a BGD workflow in 163 lines of Python using the TaskVine overhead. Each FunctionCall task takes roughly 50-100 seconds to



SC-W 2023, November 12-17, 2023, Denver, CO, USA Barry Sly-Delgado, Thanh Son Phung, Colin Thomas, David Simonetti, Andrew Hennessee, Ben Tovar, and Douglas Thain

1008

840

630

cores

420

Il tasks executing
B results waiting retrieval
worker transfers

210

60 0 20 40 60 80 100
time(m) time(m)

a. Shared Storage b. In-Cluster Storage
Figure 13: Comparison of TopEFT Execution Modes

a. Executed on shared storage, resulting in under-utilization at startup

and completion. b. Using shared storage on TaskVine.

complete. The TaskVine workflow creates 2000 BDG FunctionCall
tasks, and then begins installing Libraries on 200 workers. Func-
tionCall tasks can be sent to workers as soon as their LibraryTask is
deployed. This is seen in Figure 12c, as the LibraryTasks are being
deployed on the top section of the graph, with the FunctionCall
tasks growing from the bottom upwards. The exponential increase
in FunctionCall throughput from minute 0 to 5 is due to workers
finishing the deployment of their LibraryTask and beginning to
run FunctionCalls. After minute 5 is reached, almost all workers
have their Libraries deployed, so the FunctionCall throughput of
the workflow has peaked as seen by the slope of the task view. This
can also be seen in Figure 12f, where almost all workers are running
the Library and a FunctionCall by minute 5. This illustrates how the
serverless model decreases overall workflow overhead as workers
can run many FunctionCalls per LibraryInstance.

Conclusion: The serverless model in TaskVine can improve work-
flow task throughput by changing task overheads to be performed
once per worker instead of once per task.

5 RELATED WORK

Batch and Workflow Systems: HTCondor[32], Slurm[38], LSF[20],
and AGE[4] all offer a clean and efficient way to manage shared

computing resources on clusters, but lack the ability to manage

persistent storage on cluster nodes. TaskVine cooperates with these

systems by functioning as an overlay that can run within an exist-
ing batch system and manage local storage on behalf of the user.
Workflow systems like Kepler[23], Nextflow[13], Pegasus[26], and

Galaxy[1] allow direct management of tasks and workers through

the use of static DAGs specified in advance of execution. More

dynamic workflow systems such as Parsl[7] and Dask[28] instead

focus on the problem of distributing tasks to clusters on-the-fly.
Parsl targets compute-intensive applications with support for elas-
tic and scalable computation and usability by providing an intuitive

Pythonic interface. Dask supports data transfers between workers

on demand, but only for data that are results of previous computa-
tions. Modern software packages can easily amount to GBs of data,

and if unmanaged, will put a large load and bandwidth pressure

on external data servers and/or shared file systems. In contrast,

TaskVine transfers and distributes the I/O pressure from external

data servers to the workers and the local clusters’ network through

a myriad of techniques, including worker storage management,

data-aware scheduling, and general data transfers on-demand be-
tween workers.

Startup Time: A number of contemporary works tackle the
problem of minimization of startup/re-invocation time of tasks,
containers, or function invocations by speeding up the costly I/O
operations. Burst buffers provide a high-bandwidth storage plat-
form where checkpoints and output data may be written, so the
computation may resume at the node and the data may be asyn-
chronously transferred to the slower parallel file system at the
same time [9]. [37] [33] [27] extend the focus of burst buffers to
include input data dependencies to expedite job startup. [34] [16]
performs an evaluation of BitTorrent on HPC clusters for the pur-
pose of distributing shared libraries among workers and finds that
the performance of BitTorrent on an HPC system is affected by
issues related to timeouts, as well as the unmanaged nature of the
protocol itself. Our work proposes a combination of peer-to-peer
file distribution and a data-aware scheduler to avoid contention.

Data Management: Many research groups have mapped out
common problems that arise when managing data on systems used
for scientific computing. [39] discusses the common conventions
for managing and loading package dependencies across HPC sys-
tems and presents Shrinkwrap, a tool for resolving such dependen-
cies. [12] documents the need to retrieve and stage data onto the
necessary resources for computation. Parallel file systems such as
Lustre[10], GPFS[29], and PVFS[30] have been provided as dedi-
cated solutions to the I/O bottleneck problem. I/O forwarding is
another approach to the bottleneck problem which restricts I/O
operations on compute nodes and forwards them to dedicated I/O
nodes[3]. TaskVine avoids bottlenecks by minimizing data move-
ment and exploiting the cluster’s bandwidth and storage capacity.

6 FUTURE WORK

Several avenues of future work are possible with TaskVine. In some
preliminary work, we have prototyped how Parsl [7] and Dask [28]
workflows can execute using TaskVine by simply mapping each
high-level task into one low-level TaskVine task, which allows these
systems to take advantage of efficient data distribution. But more
performance gains are possible when there is a high degree of simi-
larity in the code and data needs that can be distributed once and
then invoked multiple times. Future work will explore the automatic
transformation of these workflow models into serverless-style com-
putations. A second challenge is the efficiency of scheduling at
very large scales. Dynamic workflows that consist of millions of
short-running tasks must not only make high quality placement
decisions, but also reach those decisions quickly in order to run
efficiently: at even one millisecond per task, it would still take a
thousand seconds to dispatch a million tasks. This places a funda-
mental tension between scheduling tasks to necessary data and
simply making placements as quickly as possible.

7 CONCLUSIONS

TaskVine is a workflow execution system that seeks to manage data
efficiently by exploiting the memory, storage, and network capabil-
ities of cluster nodes. To maintain performance, TaskVine monitors
and enforces storage usage and network bandwidth. Experimental
results show the improved startup capabilities in high throughput
genomics, high energy physics, molecular dynamics and machine
learning.



TaskVine: Managing In-Cluster Storage for High-Throughput Data Intensive Workflows

AVAILABILITY

TaskVine is open source software available at:
http://ccl.cse.nd.edu/software/taskvine.

ACKNOWLEDGMENTS
This work was supported in part by NSF grant OCI-1931348.

REFERENCES

(1]

&

>
&

[9

=

[10]

[11

[12]

[13

[14]

[15

[16]

[17

(18]

Enis Afgan, Dannon Baker, Bérénice Batut, Marius Van Den Beek, Dave Bouvier,
Martin Cech, John Chilton, Dave Clements, Nate Coraor, Bjérn A Griining, et al.
2018. The Galaxy platform for accessible, reproducible and collaborative biomed-
ical analyses: 2018 update. Nucleic acids research 46, W1 (2018), W537-W544.
Michael Albrecht, Patrick Donnelly, Peter Bui, and Douglas Thain. 2012. Make-
flow: A Portable Abstraction for Data Intensive Computing on Clusters, Clouds,
and Grids. In Workshop on Scalable Workflow Enactment Engines and Technologies
(SWEET) at ACM SIGMOD. doi: 10.1145/2443416.2443417.

Nawab Ali, Philip Carns, Kamil Iskra, Dries Kimpe, Samuel Lang, Robert Latham,
Robert Ross, Lee Ward, and Ponnuswamy Sadayappan. 2009. Scalable I/O for-
warding framework for high-performance computing systems. In 2009 IEEE
International Conference on Cluster Computing and Workshops. IEEE, 1-10.
Altair. [n.d.]. Altair Grid Engine. https://altair.com/grid-engine. Accessed:
2023-03-24.

Ilkay Altintas, Chad Berkley, Efrat Jaeger, Matthew Jones, Bertram Ludéscher,
and Stephen Mock. 2004. Kepler: An Extensible System for Design and Execution
of Scientific Workflows. In Proceedings of the International Conference on Scientific
and Statistical Database Management, SSDBM, Vol. 16. 423 - 424. https://doi.org/
10.1109/SSDBM.2004.44

Inc Amazon.com. [n.d.]. Amazon Lambda. https://aws.amazon.com/lambda/
Yadu Babuji, Anna Woodard, Zhuozhao Li, Daniel S. Katz, Ben Clifford, Rohan
Kumar, Lukasz Lacinski, Ryan Chard, Justin M. Wozniak, Ian Foster, Michael
Wilde, and Kyle Chard. 2019. Parsl: Pervasive Parallel Programming in Python.
In Proceedings of the 28th International Symposium on High-Performance Parallel
and Distributed Computing (Phoenix, AZ, USA) (HPDC ’19). Association for
Computing Machinery, New York, NY, USA, 25-36. https://doi.org/10.1145/
3307681.3325400

Aashwin Basnet, Kenneth Bloom, Florencia Canelli, Sergio Sanchez Cruz, Jose
Enrique Palencia Cortezon, Juan Rodrigo Gonzalez Fernandez, Andrea Trapote
Fernandez, Reza Goldouzian, Barbara Alvarez Gonzalez, Michael Hildreth, Kevin
Lannon, John Lawrence, Sascha Pascal Liechti, Christopher Edward Mcgrady,
Kelci Mohrman, Hannah Nelson, Benjamin Tovar, Yuyi Wan, Andrew Wightman,
Brian Winer, Furong Yan, Brent R. Yates, Henry Yockey, and Mateusz Zarucki.
2021. TopEFT/topcoffea: TopCoffea 0.1. https://doi.org/10.5281/zenodo.5258003.
https://doi.org/10.5281/zenodo.5258003

Source code: https://github.com/TopEFT/topcoffea.

Lei Cao, Bradley W. Settlemyer, and John Bent. 2017. To Share or Not to Share:
Comparing Burst Buffer Architectures. In Proceedings of the 25th High Performance
Computing Symposium (Virginia Beach, Virginia) (HPC ’17). Society for Computer
Simulation International, San Diego, CA, USA, Article 4, 10 pages.

Sean Cochrane, Ken Kutzer, and L McIntosh. 2009. Solving the HPCI/O bottleneck:
Sun™ Lustre™ storage system. Sun BluePrints™ Online, Sun Microsystems (2009).
Microsoft Corporation. [n.d.]. Microsoft Azure. https://azure.microsoft.com/en-
us

Ewa Deelman and Ann Chervenak. 2008. Data management challenges of data-
intensive scientific workflows. In 2008 Eighth IEEE International Symposium on
Cluster Computing and the Grid (CCGRID). IEEE, 687-692.

Paolo Di Tommaso, Maria Chatzou, Evan W Floden, Pablo Prieto Barja, Emilio
Palumbo, and Cedric Notredame. 2017. Nextflow enables reproducible computa-
tional workflows. Nature biotechnology 35, 4 (2017), 316-319.

Eelco Dolstra, Merijn De Jonge, Eelco Visser, et al. 2004. Nix: A Safe and Policy-
Free System for Software Deployment.. In LISA, Vol. 4. 79-92.

Alvise Dorigo, Peter Elmer, Fabrizio Furano, and Andrew Hanushevsky. 2005.
XROOTD-A Highly scalable architecture for data access. WSEAS Transactions on
Computers 1, 4.3 (2005), 348-353.

Matthew G. F. Dosanjh, Patrick G. Bridges, Suzanne M. Kelly, James H. Laros, and
Courtenay T. Vaughan. 2014. An Evaluation of BitTorrent’s Performance in HPC
Environments. In Proceedings of the 4th International Workshop on Runtime and
Operating Systems for Supercomputers (Munich, Germany) (ROSS ’14). Association
for Computing Machinery, New York, NY, USA, Article 8, 8 pages. https://doi.
org/10.1145/2612262.2612269

Python Software Foundation. 2008.
https://pypi.org/.

The Apache Software Foundation. [n.d.].
//openwhisk.apache.org/

Python Package Index - PyPL

Apache OpenWhisk. https:

[19

[20

[21

[22

[23

[24

[25

[26

[27

w
—

[32

@
&

(34

[35

[36

@
=

(38]

[39

SC-W 2023, November 12-17, 2023, Denver, CO, USA

Geoffrey C Fox, Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski.
2017. Status of serverless computing and function-as-a-service (faas) in industry
and research. arXiv preprint arXiv:1708.08028 (2017).

IBM. [n. d.]. Load Sharing Facility. https://www.ibm.com/products/hpc-workload-
management. Accessed: 2023-03-24.
Anaconda  Inc.  2020.
https://docs.anaconda.com/.
Gregory M Kurtzer, Vanessa Sochat, and Michael W Bauer. 2017. Singularity:
Scientific containers for mobility of compute. PloS one 12, 5 (2017), e0177459.
Bertram Ludascher, Ilkay Altintas, Chad Berkley, Dan Higgins, Efrat Jaeger,
Matthew Jones, Edward A Lee, Jing Tao, and Yang Zhao. 2006. Scientific workflow
management and the Kepler system. Concurrency and computation: Practice and
experience 18, 10 (2006), 1039-1065.

Tom Madden. 2003. The BLAST sequence analysis tool. The NCBI handbook
(2003).

Dirk Merkel et al. 2014. Docker: lightweight linux containers for consistent
development and deployment. Linux j 239, 2 (2014), 2.

Suraj Pandey, Karan Vahi, Rafael Ferreira da Silva, and Ewa Deelman. 2018.
Event-Based Triggering and Management of Scientific Workflow Ensembles. In
HPCAsia.

Loic Pottier, Rafael Ferreira da Silva, Henri Casanova, and Ewa Deelman. 2020.
Modeling the Performance of Scientific Workflow Executions on HPC Platforms
with Burst Buffers. In 2020 IEEE International Conference on Cluster Computing
(CLUSTER). 92-103. https://doi.org/10.1109/CLUSTER49012.2020.00019
Matthew Rocklin. 2015. Dask: Parallel Computation with Blocked algorithms
and Task Scheduling. In SciPy.

Robert B Ross, Rajeev Thakur, et al. 2000. PVFS: A parallel file system for Linux
clusters. In Proceedings of the 4th annual Linux showcase and conference. 391-430.
Frank B Schmuck and Roger L Haskin. 2002. GPFS: A Shared-Disk File System
for Large Computing Clusters. FAST 2, 19 (2002).

Nicholas Smith, Lindsey Gray, Matteo Cremonesi, Bo Jayatilaka, Oliver Gutsche,
Allison Hall, Kevin Pedro, Maria Acosta Flechas, Andrew Melo, Stefano Belforte,
and Jim Pivarski. 2020. Coffea - Columnar Object Framework For Effective
Analysis. CoRR abs/2008.12712 (2020). arXiv:2008.12712 https://arxiv.org/abs/
2008.12712

Source code: https://github.com/CoffeaTeam/coffea.git.

Douglas Thain, Todd Tannenbaum, and Miron Livny. 2005. Distributed Comput-
ing in Practice: The Condor Experience. Concurrency and Computation: Practice
and Experience 17, 2-4 (2005), 323-356. doi: 10.1002/cpe.v17:2/4.

Sagar Thapaliya, Purushotham Bangalore, Jay Lofstead, Kathryn Mohror, and
Adam Moody. 2016. Managing I/O Interference in a Shared Burst Buffer System.
In 2016 45th International Conference on Parallel Processing (ICPP). 416-425. https:
//doi.org/10.1109/ICPP.2016.54

Shivaram Venkataraman, Aurojit Panda, Ganesh Ananthanarayanan, Michael J.
Franklin, and Ion Stoica. 2014. The Power of Choice in Data-Aware Cluster
Scheduling. In Proceedings of the 11th USENIX Conference on Operating Systems
Design and Implementation (Broomfield, CO) (OSDI’'14). USENIX Association,
USA, 301-316.

Logan Ward. 2021 [Online]. Colmena. ExaLearn and Parsl Teams. Available:
https://

colmena.readthedocs.io/en/latest/index.html.

Brent Welch, Marc Unangst, Zainul Abbasi, Garth A Gibson, Brian Mueller, Jason
Small, Jim Zelenka, and Bin Zhou. 2008. Scalable Performance of the Panasas
Parallel File System.. In FAST, Vol. 8. 1-17.

Orcun Yildiz, Amelie Chi Zhou, and Shadi Ibrahim. 2017. Eley: On the Ef-
fectiveness of Burst Buffers for Big Data Processing in HPC Systems. In 2017
IEEE International Conference on Cluster Computing (CLUSTER). 87-91. https:
//doi.org/10.1109/CLUSTER.2017.73

Andy B. Yoo, Morris A. Jette, and Mark Grondona. 2003. SLURM: Simple Linux
Utility for Resource Management. In Job Scheduling Strategies for Parallel Pro-
cessing.

Farid Zakaria, Thomas RW Scogland, Todd Gamblin, and Carlos Maltzahn. 2022.
Mapping out the HPC dependency chaos. In SC22: International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE, 1-12.

Anaconda  Software  Distribution.


https://altair.com/grid-engine
https://doi.org/10.1109/SSDBM.2004.44
https://doi.org/10.1109/SSDBM.2004.44
https://aws.amazon.com/lambda/
https://doi.org/10.1145/3307681.3325400
https://doi.org/10.1145/3307681.3325400
https://doi.org/10.5281/zenodo.5258003
https://azure.microsoft.com/en-us
https://azure.microsoft.com/en-us
https://doi.org/10.1145/2612262.2612269
https://doi.org/10.1145/2612262.2612269
https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://www.ibm.com/products/hpc-workload-management
https://www.ibm.com/products/hpc-workload-management
https://doi.org/10.1109/CLUSTER49012.2020.00019
https://arxiv.org/abs/2008.12712
https://arxiv.org/abs/2008.12712
https://arxiv.org/abs/2008.12712
https://doi.org/10.1109/ICPP.2016.54
https://doi.org/10.1109/ICPP.2016.54
https://doi.org/10.1109/CLUSTER.2017.73
https://doi.org/10.1109/CLUSTER.2017.73

	Abstract
	1 Introduction
	2 Architecture
	2.1 Overview
	2.2 Components
	2.3 Data Definitions
	2.4 Task Definitions

	3 TaskVine Implementation
	3.1 Environment Management 
	3.2 Storage Management and Naming
	3.3 Transfer Management
	3.4 Serverless Computing

	4 Evaluation
	4.1 Performance Evaluation
	4.2 Example Applications

	5 Related Work
	6 Future Work
	7 Conclusions
	Acknowledgments
	References

