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Abstract. The reproducibility of scientific results increasingly depends upon the preservation
of computational artifacts. Although preserving a computation to be used later sounds easy,
it is surprisingly difficult due to the complexity of existing software and systems. Implicit
dependencies, networked resources, and shifting compatibility all conspire to break applications
that appear to work well. To investigate these issues, we present a case study of a complex
high energy physics application. We analyze the application and attempt several methods at
extracting its dependencies for the purposes of preservation. We propose one fine-grained
dependency management toolkit to preserve the application and demonstrate its correctness in
three different environments - the original machine, one virtual machine from the Notre Dame
Cloud Platform and one virtual machine from the Amazon EC2 Platform. We report on the
completeness, performance, and efficiency of each technique, and offer some guidance for future
work in application preservation.

1. Introduction

Reproducibility is a cornerstone of the scientific process [1]. In order to understand, verify,
and build upon previous work, one must be able to first recreate previous results by applying
the same methods. Historically, reproducibility has been accomplished through painstaking
detailed documentation recorded in lab notebooks, which are then summarized in peer-reviewed
publications. But as science increasingly depends on computation, reproducibility must also
encompass the environment, data, and software involved in each result [2]. It is widely recognized
that informal descriptions of software and systems – although common – are insufficient for
reproducing a computational result accurately.

In a very abstract sense, reproducing a computation is trivial. Assuming a computation is
deterministic, one can simply preserve all the inputs to a computation, then re-run the same
code in an equivalent environment, and the same result will be produced. For a small custom
application on a modest amount of data, this could be accomplished by capturing the complete
environment, data, and software within a single virtual machine image (VMI) [3, 4], and then
depositing the image into a curated environment. The publication could then simply refer to
the identifier of the image (e.g., DOIs or Amazon Machine Images), which the interested reader
can obtain and re-use. A preserved VMI should work on any future platform which supports the
hypervisor the VMI depends on. This approach has been used to some success with systems [5].



However, this simple approach is not sufficient for large applications that run in complex
environments. There may be implicit dependencies on items that are not apparent to the user.
For example, the user may understand that his application relies on a particular data analysis
package, but would have no reason to know that the package has further dependencies on other
libraries. The granularity of the dependencies may not be well understood. For example, the
user may understand that a computation depends upon a data collection that is 1TB in overall
size, but not have detailed knowledge that it only requires three files totalling 300MB out of
that whole collection. There may be dependencies upon networked resources that are inherently
external to the system, such as a database, a code repository [6], or a scalable filesystem [7].
For such resources, it must be decided whether the dependency will simply be noted, or if it
must be incorporated whole or in part. Where common dependencies are widely used, it may
be inefficient or impossible to store one copy of each dependency for each archived object. Some
form of sharing or de-duplication is necessary in order to keep the archive to a reasonable size.

We do not claim to have solved all these problems. Rather, our aim in this paper is to
highlight the scope of the problems by presenting a case study of one complex application. The
application is presented to us first in the form of an email that describes in prose how to install
the software and run the analysis. We perform several successive refinements to convert it into
an executable and preservable object. We then develop techniques for reducing the size of the
dependencies that are necessary for the object to function, and we demonstrate the preserved
object functioning correctly in three different physical and cloud environments.

2. Case Study: TauRoast

Figure 1. Inputs to TauRoast

The application which is the study of this paper is called
TauRoast. It searches for cases where the Higgs boson
produced in association with top quarks decays to two
tau leptons. Since the tau leptons and top quarks are
very short-lived, they are not observed directly, but by
the particle decay products that they generate. So,
the analysis must search for detector events that show
a signature of decay products compatible with both
hadronic tau and top decays. Properties of such events
are used to distinguish the events of interest (Higgs
decays) from all other events and are also used in further
statistical analysis.

Figure 1 shows that both the code and data that form
TauRoast are drawn from large repositories through
multiple steps of reduction. A preservation strategy must weigh whether to store the large
repositories completely, the fragments used by an artifact, or something in between.

2.1. Code Sources of TauRoast

Like many scientific codes, the central algorithm of TauRoast is expressed in a relatively small
amount of custom code developed by the primary author. But, the code cannot run at all without
making use of an enormous collection of software dependencies. Some of these dependencies are
standard to operating systems worldwide, some are standardized across the entire high energy
physics community, some are particular to small collaborative groups, and a few are very specific
to a single researcher.

The largest of these repositories is the CMS Software Distribution (CMSSW) [8], a carefully-
curated selection of software packages which is distributed in several forms. Historically,
components of CMSSW were obtained by checking components of the source out of Concurrent
Versions System (CVS), or by installing a complete binary package on a shared filesystem within



Name Location Total Named Used

CMSSW code CVS 88.1GB 448.3MB 6.3MB
Tau source Git 73.7MB 73.7MB 6.7MB
PyYAML binaries HTTP 52MB 52MB 0KB
.h file HTTP 41KB 41KB 0KB

ROOT data HDFS 11.6TB N/A 20GB
Configuration CVMFS 7.4GB N/A 103MB
Linux commands localFS 110GB N/A 68.4MB
HOME dir AFS 12GB N/A 32MB
Misc data PanFS 155TB N/A 1.6MB
Total 166.8TB N/A 21GB

Figure 2. Data and Code Used by TauRoast

an High Performance Computing (HPC) center. In recent years, distribution has moved to an
on-demand delivery system known as CVMFS [7], which provides a filesystem interface that
transparently accesses a remote repository. The content of CMSSW is managed by a centralized
team whose main goal is to ensure that the current version of the software operates correctly on
the operating systems and architectures currently in use. However, preservation is not a specific
objective of the system, and so there is no particular guarantee that old versions of CMSSW
will continue to operate indefinitely.

2.2. Data Sources of TauRoast

The CMS collaboration provides end users with a pre-processed and reduced data format,
AOD [9], containing information for events, i.e., proton-proton collisions with a signature of
interest, in the form of reconstructed particles. This format is based on the RAW output of the
CMS detector readout electronics and reconstructed world-wide, which is then processed through
various algorithms which derive signatures of individual particles. Both real and simulated data
are available for examination.

As AOD data are too large to be iteratively processed repetitively in an analysis workflow,
they are normally reduced further to formats particular to the investigator. In this case study,
the AOD data are reduced to BEAN (Boson Exploration Analysis Ntuple) format events, which
contain only trivial data containers packed in vectors. This step is performed at Notre Dame
by the NDCMS group and is quite CPU intensive, resulting in 11.6TB to be analyzed by
TauAnalysis, a small custom code built on top of CMSSW. The BEAN format, production
code, and data are shared within the analysis group looking at Higgs production in association
with top quarks, which is formed by groups from a few American and European universities,
consisting of up to a few dozen contributors.

In the second step, the data are reduced to the ROOT files [10], which contains only events
matching basic quality criteria and fields relevant to TauRoast. Again, the NDCMS group
resources are used to perform this reduction and selection, running highly customized software,
built on CMSSW and the BEAN framework, with code written and maintained by a small group.

Once the data has been reduced to ROOT files, TauRoast can be run as a single process,
and contains a stringent event selection to look only at high quality candidate events for the
underlying physical process. Quantities from the relevant events can be both plotted and used
in multivariate analysis to determine the level of expected signal in real data. This package is
written using the CMSSW build framework, but only utilizes ROOT and a few external Python
libraries not found in CMSSW.



3. Observations

The original author of TauRoast shared his work through an email which described, in prose,
how to obtain the ROOT data through TauAnalysis, how to obtain the source code of TauRoast,
how to build the program, and run it correctly on one specific machine at Notre Dame, with no
guarantee that it would work successfully on a new machine. Although this starting point may
seem extreme, it is natural for collaborators to share configurations in this form, and to rely on
the presence of a working environment already installed.

Starting with this email, the authors of this paper assumed the role of curators, whose job is to
prepare the application for permanent archival. First, we elaborated the email instructions into
an executable script that declares the necessary environment variables, downloads and checks
out the necessary source code, builds it appropriately, calls initialization scripts and then runs
the analysis. A few rounds of correction with the original author were necessary to obtain all the
dependencies and run the artifact correctly. This process revealed a number of characteristics:

• Many Explicit External Dependencies. TauRoast depends on a large number of external
dependencies, each with a different access method and data source. While we knew in
advance that it depended upon the large CMSSW distribution, it was not apparent until
elaborating the script that it depended upon two different Github repositories [11, 12] for
the Tau source, a CVS server at CERN for some configuration information, a public website
for the PyYAML library [13], and the public home page of a Notre Dame student for one
missing header file (the latter is particularly troubling!). While, at some level, the authors
and users of these software know of these dependencies, they are often missing in informal
communications or forgotten once they are installed.

• Many Implicit Local Dependencies. A much harder problem is that the application assumed
the presence of many different components in the local filesystem hierarchy. It would be
tempting to capture all of these by simply storing a virtual machine image containing the
local filesystem. However, the application depends on no less than five networked filesystems
available on the machine the original author works on: the data to be analyzed was stored
on an HDFS [14] cluster, some configuration data was stored on a CVMFS [7] filesystem,
and a variety of software tools were on NFS [15], PanFS [16], and AFS [17] systems. The
original author was not aware of many of these dependencies, because he relied on local
system administrators to provision the machine.

• Configuration Complexity. As a means of controlling the complexity of dependent software
packages, the HEP community has developed a number of tools that perform run-time
configuration and consistency checks of the available software, such as scram which is
used by CMS. Before running any code, scram is used to setup the runtime execution
environment, check the availability of every shared library dependency, and build the code.
If the correct versions are not available, scram halts and emits an error. While this procedure
has great value for consistency, it also introduces a significant cost because it involves a large
number of nested scripts traversing a filesystem, repeatedly looking up metadata. In our
example, the time to perform this configuration check with a cold cache is about 14 minutes,
which is almost as long as the actual analysis run of 20 minutes.

• High Selectivity. The user’s program may mention lots of unused data and software. Often,
the program may name a whole data or software repository, but only a handful of items
from the repository are really used. For example, the data is stored on an HDFS filesystem
with 11.6TB of data, but only 20GB are actually consumed by the program. The reason for
this great reduction is at first each BEAN event contains a large amount of information, and
TauAnalysis throws away a lot of irrelevant event information, keeping only the relevant
bits. The CMSSW repository is 88.1GB in total but only 448.3MB of source is checked out,
and the actually used software only measures 6.3MB. In a few cases, a source of software is



Figure 3. Version Evolution

named but never actually accessed. We suspect that end users are accustomed to missing
dependencies and thus get in the habit of adding commonly used software, whether it is
needed or not.

• Rapid Changes in Dependencies. Over the process of several months from collecting the
initial email into a script until writing this paper, the computing environment continuously
changed. The CMSSW software framework released a new version, the target execution
node was upgraded to a new operating system, and the CMS community switched from
CVS to Git for the management and distribution of the source code. While users seem
to be accustomed to these constant changes, any preservation technique must be cautious
about relying upon an external service, even one that may appear to be highly stable.

4. Evolving the Artifact

It is clear that the artifact, as provided, is not in a suitable form for preservation. While it might
be technically possible to automatically capture the entire machine and all of the connected
filesystems into a virtual machine image, it would require 166.8TB of storage (Figure 2),
which would be prohibitively expensive for capturing this one application alone. Further, if
multiple similar applications are preserved, we would miss the opportunity to identify common
dependencies and store them once for multiple artifacts. A more structured approach is needed.

Figure 3 shows how we have evolved this artifact through several stages which make it more
suitable for preservation. In each step of evolution, we make the dependencies of the artifact more
explicit and available for automated processing. As noted in the previous section, the original
author provided us with prose instructions by email which we translated into an executable
script. The script has embedded in it a number of external identifiers such as URLs pointing to
repositories and paths to networked filesystems. As a general programming practice, embedding
such constants in the middle of a program is unwise, and so we extract all of those identifiers
and place them outside the script in a dependency map or just map for short. The dependency
map lists all the external dependencies of the application, indicating the type, how they are
accessed, and where they are currently located. The resulting abstract script then simply refers
to abstract file locations such as Git and CVMFS. If properly constructed, the script should not
refer to any external resource unless it is indicated in a dependency map.

By extracting the dependencies into a dependency map, we introduce great freedom for the
curator to move, transform, and manipulate the dependencies of the artifact without damaging
the artifact itself. Given an abstract script and a dependency map, it is straightforward for an
automated tool to examine the dependencies in the map, download the missing ones, and then
modify the map to point to the local copies of the dependencies. If we group the executable



Figure 4. Workflow of The Fine-Grained Dependency Management Toolkit Based on Parrot

script, dependency map, and actual dependencies into a self-contained package, we achieve an
artifact that can be moved from place to place.

This basic approach to dependency management is a step in the right direction for
dependencies that are explicit and external to the user’s native execution environment. However,
it leaves two other problems unsolved: First, the basic approach requires that someone be aware
of the dependencies, whether it be the end user, the system administrator, or the archive curator.
It seems reasonable to expect the user to be aware of a large dependency mentioned in a top-level
script. But, oftentimes the dependency is embedded invisibly deep within the software stack,
or is connected to the machine by the system administrator. No single party is likely to have
complete information about all of the dependencies. Second, the basic approach assumes that
the entire dependency is actually consumed by the artifact. As we have suggested above, this
sort of application often only consumes a small fraction of what it does declare as a dependency.

To address both of these problems, users and curators alike need tools that can automatically
observe and capture dependencies.

5. Packaging Dependencies with Parrot

We have developed a prototype tool to assist in the measurement and preservation of implicit
dependencies for complex applications. We use Parrot [18, 19] to explicitly record all of the
files accessed by our example application, allowing us to observe how much of each external
dependencies is used, and what local resources are implicitly used. Using this information, we
create a reduced package which contains only the files actually used by the application.

Parrot is a virtual filesystem access tool which has been used to attach existing programs
to a variety of remote I/O systems such as HTTP, FTP, and CVMFS. It works by trapping
an application’s system calls through the Linux ptrace debugging interface, and then replacing
them with the desired I/O operations. Parrot is already used in the HEP community to attach
applications to the CVMFS distributed filesystem.

Figure 4 illustrates the measurement process. The starting point of this toolkit is one
successful execution of an application on the original machine. First, we execute the application
under Parrot to generate a namelist. From the namelist, we construct a package containing all
the necessary data and software for the application. The package effectively becomes a private
root filesystem sufficient to run the entire application. It can be re-executed in a variety of
ways: Parrot can be used to virtually mount and run the package, chroot can be used to use
the package as a root directory, or the package can be converted into a filesystem image for use
with a container or virtual machine management system.

Parrot can also be used to track network dependencies. By observing system calls, it can at
a minimum record the IP address and port of each external network connection. In addition,
it observes the content flowing through each connection and can further infer the protocol and
target object of several commonly used protocols. For example, when an application makes
an HTTP request, Parrot can record the full URL of the object requested. (however, if the
connection is encrypted, this information is not available.)



Shallow M edium
Copy Copy

Whole Files 1632 15642
Empty Files 14273 263
Directories 1549 1549

Symbolic Links 4614 4614
Total Size 21GB 28GB

Figure 5. Package Size

Task Original Reduced
Category Script Package
Obtain Namelist N/A 28min 28s
Generate Package N/A 26min 19s
Software Acquisition 8min 11s N/A
Environment Build 5min 49s 4s
Analysis Code 20min 31s 13min 04s

Figure 6. Execution Time

M achine Type OS Version CPU Cores Mem (GB) Execution Time
Original Machine RHEL 5.10 64 125 13min 04s
KVM (Notre Dame) CentOS 5.10 4 2 21min 38s
Xen (EC2) RHEL 5.9 16 60.5 13min 30s

Figure 7. Performance Across Different Machines

For one execution of TauRoast, the generated namelist includes 132,047 accessed filenames,
along with the system calls used to access the file, such as open, stat, read, etc. With duplicate
filenames removed, the namelist is reduced to 67,168 files. Many of those entries do not exist,
because they reflect attempts by the application to search for programs and libraries in multiple
places. Only 22,068 entries reflect existing files or directories.

The packaging tool iterates over each item of the namelist, determines the process mode
and replication degree according to the file type (common files, directories, symbolic links) and
the system call type, generates one package containing the dependencies, and summarizes the
contents of the package as shown in Figure 5.

We considered several approaches to constructing the package. In a shallow copy, we only
copied the individual files in the namelist, creating only parent directories for each. Where a
directory was listed, we created the directory and populated it with empty files as placeholders
to facilitate a directory listing. In a medium copy, we copied the individual files as before.
Where a directory was listed, we created the directory and copied the contents of the files in
that directory, one level deep. A deep copy would duplicate all directories recursively, but this
would have resulted in TB-sized packages, so we did not consider it further. Generally speaking,
the deeper the copy, the larger the package, but the more likely it can be re-purposed.

We evaluated the cost of generating a package and the correctness of the package by running
the package and comparing the result to that of running the original script. The results are
shown in Figure 6 and 7.

The original script was executed on a 64-core machine running RHEL 5.10 with 125 GB
RAM and all the necessary remote filesystems mounted. We measured the time to acquire the
software, build the environment, and run the code. Then, using Parrot, we captured the namelist
associated with building the environment and running the analysis code after running software
acquisition. To verify the correctness and portability, we re-ran the package on the original
machine, then on an independent KVM virtual machine facility at Notre Dame, and again on
a Xen-based virtual machine using the Amazon EC2 platform. While performance varied, the
same output was obtained each time, without reference to anything outside the reduced package.

Figure 6 shows the time overhead of this preservation technique. Obtaining the namelist
and generating the package increase the execution time as expected, because of the overheads of
observing the system calls and copying the necessary files. But once created, the reduced package



is considerably faster than the original execution, because all of the necessary components are
on a single local disk, rather than scattered across distributed resources.

6. Conclusions and Future Work

In this paper, we explore the challenges involved in preserving complex applications by
presenting a case study of one high energy physics application, which has many explicit and
implicit dependencies and requires a complex execution environment, and propose a fine-
grained dependency management solution which can extract exactly all the dependencies of
an application and wrap them into a package to be preserved and shared. The preserved
package size in our solution is smaller than the virtual machine solution which wraps the whole
execution environment into a virtual machine image. We illustrate the feasibility of our solution
by preserving all the dependencies of a CMS application into a package and reproducing the
application through the preserved package in three different execution environments.

In the following work, we plan to explore how to preserve the input dataset which are shared
by lots of CMS applications separate from the software, avoiding preserving multiple copies of
the same data in different preserved artifacts, and how to deliver the dataset during runtime
efficiently. We also plan to make the structure of the preserved artifacts more clear to make it
easier for the new user to extend the original author’s work, like testing new input data and
adding more analysis code.
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