Techniques for Preserving Scientific Software Executions:
Preserve the Mess or Encourage Cleanliness?

Douglas Thain, Peter Ivie, and Haiyan Meng
Department of Computer Science and Engineering
University of Notre Dame
{dthain|pivie|hmeng}@nd.edu

ABSTRACT

An increasing amount of scientific work is performed in sil-
ico, such that the entire process of investigation, from ex-
periment to publication, is performed by computer. Un-
fortunately, this has made the problem of scientific repro-
ducibility even harder, due to the complexity and impre-
cision of specifying and recreating the computing environ-
ments needed to run a given piece of software. Here, we
consider from a high level what techniques and technologies
must be put in place to allow for the accurate preservation
of the execution of software. We assume that there exists
a suitable digital archive for storing digital objects; what
is missing are frameworks for precisely specifying, assem-
bling, and executing software with all of its dependencies.
We discuss the fundamental problems of managing implicit
dependencies and outline two broad approaches: preserving
the mess, and encouraging cleanliness. We introduce three
prototype tools for preserving software executions: Parrot,
Umbrella, and Prune.

General Terms

Frameworks for digital preservation

Keywords

software preservation, dependency management

1. INTRODUCTION

While it has long been common for scientific publications to
be prepared via computer, today much scientific work is now
done completely from beginning to end in a computer. An
elaborate model system may be run in simulation, generat-
ing raw data which is then processed by complex analysis
software, which produces outputs that are displayed by vi-
sualization software, which can then be included in a final
publication for dissemination and peer review.

Much early work in digital preservation from the library
community focused on preserving the final artifact of that

iPres 2015 conference proceedings will be made available under a Creative
Commons license.

With the exception of any logos, emblems, trademarks or other nomi-
nated third-party images/text, this work is available for re-use under a
Creative Commons Attribution 3.0 unported license. Authorship of this
work must be attributed. View a copy of this licence at http://
creativecommons.org/licenses/by/3.0/legalcode.

chain of effort: the publication. This includes accounting for
physical media decay and obsolescence in addition to ensur-
ing the availability of software for interpreting the data so it
can be displayed to a user|[24]. However, scientific produc-
tivity and integrity depends significantly upon our ability
to preserve, share, and use the earlier steps in that chain,
including both the software and the data. A peer-reviewer
might wish to delve into the data associated with a paper,
beyond the summary graph presented by the author. A col-
laborator might wish to pick up the current experimental
software stack and adjust some parameters in order to ob-
tain a new result. A competitor might wish to evaluate a
completely new technique and compare it with a published
technique in order to ensure that the previous technique has
been validly recreated.

Unfortunately, the current state of the art is not encourag-
ing. For example, in the biotech industry, Amgen attempted
to reproduce 53 “landmark” articles in cancer research. They
only succeeded with 10% of them [3]. In pharmaceuticals,
Bayer was only able to reproduce about 21% of published
results in 67 different projects [22]. Other efforts [25] have
pointed out that there is a clear gap between preservation
policies and practices. One can easily see why: a published
computational result may briefly state that it ran with a
certain version of software on a certain operating system,
but may fail to state critical configuration values, depen-
dent software, or even the precise inputs to the program.
It is a common tale, even in the field of computer science,
that an experiment was not published with enough details
to accurately verify the results.

In this paper, we consider from a high level what techniques
and technologies must be put in place to allow for the accu-
rate preservation of the execution of software. We assume
that there exists a suitable digital archive which can pre-
serve digital objects for the long term, as are now commonly
in place at university libraries, academic publishers, and so
forth. The challenge lies in precisely identifying what must
be preserved, naming each object appropriately, and provid-
ing a means for the consuming user to reassemble and verify
the result.

The fundamental challenge throughout is the matter of

implicit dependencies. In our current systems, it is all
too easy for the user of a computer to consume some resource
(a file, a program, a web site) without explicit knowledge
that they are doing so. This leads us to two broad ap-

http://creativecommons.org/licenses/by/3.0/legalcode
http://creativecommons.org/licenses/by/3.0/legalcode

proaches to software preservation: Preserving the mess
involves allowing the user to keep working in the current way
while supplementary tools identify dependencies automati-
cally. Encouraging cleanliness requires the user to state
more clearly in advance what they are attempting to do. As
we will show below, preserving the mess is easy but results
in preserved objects that are of little use beyond identical
verification, while encouraging cleanliness is harder but en-
courages extension and comparison.

Along the way, we give an overview of three pieces of soft-
ware that demonstrate some of these approaches to soft-
ware preservation. Parrot [I6] enables the end user to pre-
serve a mess by automatically capturing the file and net-
work dependencies that form the environment of an appli-
cation. Umbrella [I7] encourages cleanliness by providing
a precise way to specify and instantiate a software execution
environment. Prune goes further by tracking and record-
ing a software execution in the form of of individual oper-
ations that build upon each other’s outputs. Each of these
prototypes has been developed in the context of an NSF-
supported project, called Data and Software Preservation
for Open Science (DASPOS), which is examining the needs
of preservation for the high energy physics communityﬂ

2. SIMPLIFIED EXAMPLE

We consider the following simplified example in order to de-
fine some terms and highlight preservation challenges that
we have encountered in working with a variety of applica-
tions. Suppose that a user has a laptop running GreenSock
Linux 8.3 and wishes to run an open source simulation pro-
gram mysim 3.2 on a custom input file data to produce a
single output file result by typing the following command
into the terminal:

$ mysim -in data -out result

The user’s objective is now to preserve not just the software
itself, but that specific execution of the software, so that
others can verify a result and also extend and compare it to
new methods.

The diligent but naive user might attempt to preserve this
particular execution by saving the input file data in a digital
repository, then making a note of the unique identifier of the
data, and the exact version of mysim used in the published
paper. In principle, the reader of the paper must simply
install the given version of the software, download the data,
and will quickly be able to verify, extend and compare with
the published work. Unfortunately, this procedure is insuf-
ficient. The main problem is that what is visible to the user
is only the tip of the iceberg in terms of what is necessary
to actually execute the program.

Figure [gives a better sense of what may be involved in
preserving such an execution. The binary executable mysim
obviously depends upon data as an input file, but perhaps
it also reads a file of calibration data calib in the current
directory which is not mentioned on the command line, but
hard-coded into the program. Further, the executable pro-
gram itself does not stand alone, but depends upon a spe-

"http://wuw.daspos.org

command: “mysim -in data -out result” Virtual Machine

web page
config

Operating System

Package

‘ libx H libsim H liby ‘

Operating System

Operating System

Hardware

Figure 1: Preserving Implicit Dependencies
FEven the simplest of programs has both explicit and implicit
dependencies. Saving the program in a virtual machine tends
to capture unnecessary items, while automatic packaging can
identify exactly what objects are needed at runtime.

cialized library libsim that the user had to install onto the
machine at some point. What’s worse, the program itself
makes a network connection at runtime in order to down-
load some critical configuration data config from a public
web server.

Even that is not the whole story. Even the simplest soft-
ware depends on a complex stack of objects present on the
local machine, including libraries, scripts, configuration files,
and the operating system kernel. Together, these comprise
what we call the environment of the program. While these
components are of course required for the software to run,
they are not the primary interest of the user, who cares first
and foremost about the simulation and the data. In princi-
ple, the simulation should run correctly and yield the same
results when run on a different (but compatible) operating
system. In practice, it might not, and so preserving the
environment is necessary for long-term viability.

Effective preservation requires that there exist some form
of hardware capable of running the operating system and
software. This could be physical preservation of a hardware
artifact, or a compatible virtual implementation. Hardware
preservation makes it easy to reproduce an application, but
is not efficient due to the cost and space overhead for main-
taining old hardware. At some point, the preserved hard-
ware may become completely unusable due to humidity or
the lifetime of components like disks. A compatible virtual
implementation of old hardware, such as Olive [26], recreates
the original execution environment on the future platforms
through virtualization techniques [23].

An additional complication is that the different layers of the
system may be provisioned by different parties. In the case
of a personal laptop, the same person purchased the hard-
ware, installed the operating system, and ran the software.
But in a complex university computing environment, the
hardware procurement, operating system installation, and
software deployment may all be accomplished by multiple
teams of people. By the time the end user gets involved,
they may have no idea what the underlying environment

actually contains!

The essence of the software preservation problem is
that it is extremely difficult for the end user to un-
derstand the set of objects upon which an execution
depends. The visible user interface suggests that the only
required components are mysim and data, but the reality is
that the program cannot run without a complex and inter-
dependent set of invisible objects. Unless some additional
specification or restrictions are put in place, any file on the
local filesystem or any service available on the Internet could
be a potential dependency of the execution. A preservation
solution must either automatically capture what is unseen
(“capturing the mess”) or structure the user’s interactions to
make all dependencies explicit (“encourage cleanliness”).

3. PRESERVATION OBJECTIVES

(Many terms are used in the field of digital preservation,
including reproducibility, re-use, re-creation, re-purposing,
and more, each with slight variations in meaning. To avoid
confusion, we limit our terms to preservation to denote
digital preservation whose purpose includes verification of
previous results and extension to new results.)

Before posing solutions, it is useful to consider how the pre-
served software execution may be re-used in the future. It
is commonly stated that researchers wish to precisely re-
produce other’s work so as to verify the truth of published
claims [20]. In discussing the matter with a variety of re-
searchers, we have found little appetite for attempting to
prove or disprove other’s work in this way. Rather, there are
a wide variety of other motivations for precise reproducibil-
ity, most of them in the realm of reducing the amount of
labor required to continue forward from a previous result.
Examples include:

e Identical Verification. The same software executes
on the same input data in the same environment and
is repeated to verify that it produces the same result.
This is done to evaluate the soundness of the reproduc-
tion system itself before moving on to other matters.

e New Environment Verification. The same soft-
ware executes on the same input data in a new en-
vironment to verify that it produces the same result.
This approach is taken to evaluate the soundness of
new libraries, operating systems, hardware, and other
parts of the environment as they evolve independently
of the scientific objectives.

e New Software Verification. A new version of the
same software executes on the same input data in the
same environment, so as to verify that an improved
implementation of the same algorithm yields the same
results as the old.

o Extension to New Data. The same software ex-
ecutes on new data in the same environment. This
allows previously published techniques to be extended
to new data sets with confidence that new results are
not affected by changes to the software or environment.

e Extension to New Software. Completely different
software executes on the same data in the same envi-

ronment. This allows for the direct comparison of dif-
ferent or competing algorithms on identical data, with
confidence that the new publication has accurately re-
produced the competing result.

Each of these use cases (except the first) requires a clear sep-
aration between the scientific software, the scientific data,
and the computing environment, so that each can be evolved
independently without accidentally modifying the other.

4. PRESERVING THE MESS

We first consider “preserving the mess” approaches, in which
we attempt to capture exactly what the user attempted,
without interfering in the setup of their work.

4.1 Virtual Machine Technology

A commonly-proposed solution is that software executions
should be preserved by placing the software, data, and en-
vironment within a single virtual machine, then preserving
the machine image in a repository either before or after the
execution. This is a relatively easy technique for the user
to apply, as long as the boundaries of the application corre-
spond to the boundaries of a single machine and filesystem.
If the application only depends upon objects in the local
filesystem, each will be preserved at the bit-level in a pre-
cise way. Virtual machine preservation is effective and is
already being used today at a small scale to capture indi-
vidual complex systems [12].

However, when we consider preserving a large number of
results that may evolve over time, virtual machine preserva-
tion has some significant limitations:

e Imprecise Capture. A virtual machine image will
almost certainly contain items that are irrelevant to
the task at hand. For example, a standard operating
system contains a wide variety of software to handle
many different user needs, most of which are not used
by a given execution. Even worse, if the user preserves
the image of their personal laptop, it could be all to
easy to accidentally preserve personal data or legally
sensitive information. On the other hand, the machine
image by itself may fail to capture external dependen-
cies (such as the config file on the web server) that
are not strictly within the image, causing re-use to fail
if the external dependency is not present.

e Rigid Composition. A virtual machine image inter-
mixes the various components of the system in ways
that are difficult to undo automatically. Absent some
additional specification, there is no automatic way to
distinguish the inputs to the simulation from the files
comprising the application or the operating system.
Manual effort to browse the image is the only way by
which items can be extracted from the machine image.

e Inefficient Storage. It is rare for a single software ex-
ecution to have scientific validity on its own. Rather, it
is common for a researcher to run thousands to millions
of instances of an application on a high-throughput
computing system, each one using a slightly different
input file or parameters. If we attempt to preserve each

Original Execute Dependency Reduced Execute
Program Program List Package Package
web page
config e VMWare
L oot
mysim
data Docker
calib — | data |
| libx | | libsim | | liby | libsi
ibsim
libsim Parrot
i http://server.com/config -
Operating System
Operating System
chroot
Hardware

Figure 2: Packaging an Application with Parrot
Parrot can be used to trace the files and network objects used by a conventional program, and produce a listing of the items on
which it depends. This listing is used to create a reduced package that can be re-executed by multiple technologies.

instance of the application in its own virtual machine,
an enormous amount of storage will be consumed by
duplicating the software, environment, and other com-
ponents that are common to each instance.

e Huge Image Size. Data-intensive applications may
have enormous input data sizes, measured in terabytes
to petabytes. At this scale, the input data may be
too large to store on a local disk, or to fit within a
single virtual machine image. Large data sources are
typically handled by purpose-built archives, and it is
more effective for the virtual machine to refer to the
archive than to duplicate its functionality.

e Inefficient Execution. There is sometimes an as-
sumption that with a virtual machine “performance is
of secondary importance” [I4]. While this can be ap-
propriate in some cases, users tend to stretch the lim-
its of the available hardware to perform increasingly
complex analyses. If a preservation method causes too
much of a performance hit users will be unlikely to
consider it until after getting their work done, if ever.

We conclude that the simple method of capturing a virtual
machine image — while it may be useful — will not be an
effective long-term strategy for preserving scientific software
and data in a way that facilitates verification and extension.

4.2 Container Technology

Container technology is a growing alternative to hardware
virtualization. Multiple containers can execute simultane-
ously on a single operating system kernel, and have lower
execution overhead because they run directly on the CPU
without translation or interception. Linux Containers (LXC),
Rocket [T] and Docker [I8] are examples of current systems
that use this technology.

The stored image of a container is merely a stored filesystem
tree. it may be stored as a disk image for efficiency, but can
easily be exported in a portable, shareable format such as
tar or zip. A container image can be a large, completely
functional operating system with multiple applications, but
users of container systems are encouraged to make small,

minimal container images that support a single application
at a time. However, the user must have enough understand-
ing of the underlying application in order to construct the
minimal image.

Although containers differ from virtual machines in the tech-
nology of execution, the container images themselves have
the same problems as saving a filesystem image in a virtual
machine, specifically imprecise capture, rigid composition,
and inefficient storage. To use either technology effectively,
the user needs additional help to identify dependencies.

4.3 Package Reduction with Parrot

Tracing techniques can be used to determine the minimal
set of objects needed to support an application, and then
use that information to construct an appropriate package
of actual dependencies in either a virtual machine image or
container image. A monitor process can run alongside an ex-
ecuting instance of an application, observe its interactions
with the environment, and then save only those elements of
the environment into a new package. A variety of technolo-
gies can then be used to re-execute the software.

Parrot [I6] is an example of this technique, which is also
employed by CDE [I0], and PTU [2I]. Parrot was origi-
nally designed to be a remote filesystem access tool which
connects conventional applications to remote I/O systems
such as HTTP and FTP. It works by trapping system calls
through the ptrace interface and replacing selected opera-
tions with remote accesses. Through this technique, Parrot
is able to modify the filesystem namespace in arbitrary ways
according to user needs. Parrot is particularly used in the
high energy physics community to provide remote access to
application software via the CVMFS [file system.

To support package creation, we made small modifications
to Parrot to record the logical name of every file accessed
by an application into an external dependency list. After
execution is complete, a second tool is used to copy all of
the named dependencies into a package. In addition, Parrot
tracks the network operations of an application and the data
passing through them. It records the address, port number,
and protocol of each connection. In addition, it examines

each connection for known protocol signatures and can de-
termine the protocol-level endpoint of the connection. For
example, if the application connects to a webserver, Parrot
can record not only the address of the webserver, but also
the URL which the application accessed for common proto-
cols such as HTTP, SVN, and GIT. (Parrot is limited in that
it cannot inspect encrypted data, beyond indicating that a
TLS/SSL connection was made.)

Figure @ gives an overview of how a package is made. First,
the user executes the program in the normal way, using Par-
rot. The application runs to completion while Parrot collects
the files and URLs accessed into a dependency list. All
the accessed files are copied into a package so that the file
system structure (relevant paths between files, and symbolic
links) is kept within the package. The package is a simple
tar archive that can be recorded in any digital repository
and then re-executed by a variety of techniques. For ex-
ample, the package can be converted into a virtual machine
image and executed by VMWare [23], or it can be converted
into a container image and executed by Docker [I8]. Parrot
itself can also be used to re-execute the package by mounting
the package directory as the application’s root directory.

The reduced package is certainly smaller than the entire vir-
tual machine image, but can still be astonishingly compli-
cated. As shown in Figure B} all the file dependencies, in-
cluding files from the root filesystem like /bin and files from
the network filesystems like AFS and CVMFS, are denoted
as file paths within the dependency list. The distinction
between input data and software is lost, which makes ex-
tensions based on a preserved package difficult. In addition,
common library dependencies will be wrapped into different
packages multiple times, which increases the storage over-
head of the remote archive. In an earlier work, we used
Parrot to preserve a simple high energy physics application
called TauRoast. The reduced package contained 22,068 files
and directories totaling 21 GB of data and software drawn
from 8 different filesystems. Virtually all of this detail was
unknown to the invoking user.

Based on this experience, we believe that these approaches
are ultimately limited. While “preserving the mess” is bet-
ter than not preserving at all, the resulting packages are
extraordinarily complicated, and provide the end user with
little traction for understanding the behavior well enough to
extend the software. Preserving the mess is inherently retro-
spective — it involves observing an execution after it executes
to infer what resources were consumed. A more structured
approach is needed for extending the original work.

5. ENCOURAGING CLEANLINESS

In contrast to preserving the mess, “encouraging cleanliness”
is a forward-looking approach. Cleanliness is accomplished
by encouraging everyone to name and preserve objects be-
fore they are used, then to combine the objects at runtime
in a way that clearly distinguishes the reusable layers of the
application. To support cleanliness, an archive is needed to
maintain the OS images, software, and data for each soft-
ware execution. A specification should be created to de-
scribe the execution environment for each execution with
the help of the system administrator and the original au-
thor.

OS Repository

Software Repository Data Repository

EAlE .

s dependencies,

4. Umbrella recreates
the mysim app

2. Umbrella parses

specification

Umbrella

l libx l l libsim l l liby l

1. User starts Umbrella: ’

Operating System ‘
$ umbrella run mysim.json
[oo |

Figure 3: Overview of Umbrella
Umbrella is used to execute a specification of an application
which describes precisely how the operating system, software,
and data are combined at runtime.

Here, we demonstrate two approaches to cleanliness: Um-
brella preserves the execution of a single software execution
by precisely naming the hardware, operating system, soft-
ware, and data necessary to carry it out. PRUNE preserves
the execution of a workflow of software executions by pre-
serving multiple software executions independently, then us-
ing Umbrella to execute each one precisely.

5.1 Precise Execution with Umbrella
Umbrella [I7] is designed to enable the precise construction
of an execution environment for software. Figure B gives an
overview of the system. The user gives a declarative specifi-
cation of the desired execution environment, encompassing
the hardware, kernel, OS, software, data, and environment
variables, without being tied down to a single virtualiza-
tion technology. Umbrella considers each of the elements of
the specification, downloads the files needed, constructs the
complete environment by combining the components, then
runs the program.

Figure H gives a possible Umbrella specification for our ex-
ample program. The hardware section indicates the re-
quired CPU architecture, the CPU model, the CPU flags,
the number of cores, and the amount of memory, disk and
other hardware requirements. The kernel section defines
the type and version of the operating system kernel, which
may be a single value or a range. The os section provides
the name and version information of the operating system,
which includes the system software in the root filesystem,
apart from the kernel. The software section provides the
software name, version, and platform of each required soft-
ware package. The data section indicates the necessary data
dependencies, and their mount points. The environ sec-
tion sets the environment variables for an application. For
each category, a variety of methods of naming the object are
available, ranging from unique identifiers (id="e5f3cd")
to abstract attribute values (version="6.5"), depend-
ing on what is most appropriate for the user. The user may
select whichever method best meets their needs. We discuss
tradeoffs in naming schemes at length below.

Note that Umbrella requires the user to be explicit about
external dependencies. As our example shows, the exter-

"hardware": {
"platform": "x86_64",
"cpu cores": "1",
"memory": "1 GB",
"disk": "4 GB"

},
"kernel": {
"type": "Linux",
"release": "2.6.32"
},
||osll: {
"name": "GreenSock",
"version": "8.3"
},
"software": {
"mysim": {
"id": "f6e17cc80...",
"mountpoint": "/software/mysim",
"version" : "3.2"
}
},
"data": {
"config": {
"url" : "http://server.com/config",
"mountpoint": "/etc/mysim/config"
},
"data": {
"id": "cb9878132...",
"mountpoint": "/home/test_user/mysim/data"
}
},
},

"environ": {

"HOME": "/home/test_user",

"PATH": "/usr/bin:/software/mysim/bin"
},

"command": "mysim -in data -out result"

Figure 4: Example Umbrella Specification
This example of an Umbrella specification indicates exactly
how the components of mysim come together to form a com-
plete execution.

nal web page containing config is explicitly mentioned, so
that Umbrella itself will download the data and provide it
to the application. The user may make a value judgement
about the long-term availability of the external dependency.
To avoid data loss, config should be archived into the data
repository, together with its metadata including its check-
sum, size, authorship, access permission and usage. The
specification of mysim should include config as one of its
data dependencies through its unique identifier or attribute
list. Similarly, the stability and persistency of all the third-
party dependencies should be evaluated, and the unstable
ones should be ingested into the archive if access permission
is allowed. Once all items are archived, then the specifica-
tion itself is a (compact) archivable object that completely
describes the execution.

The Umbrella specification is deliberately silent about the

specific mechanism by which the program will be re-executed.

This gives the implementation freedom to make use of new
technologies as they are developed, or to harness whatever
resources are available at the moment of execution. For ex-
ample, if Umbrella is invoked on a machine that already has
the desired operating system on compatible hardware, then
it can simply run the software directly. If the hardware is
compatible but the OS is not, then Umbrella can attempt
to use a container to deploy the desired OS. If not even the
hardware is compatible, then Umbrella can instantiate a vir-

tual machine or contact a commercial cloud service to create
the desired environment.

The specification is inherently efficient in both use of stor-
age space, and in construction of the desired environment.
Each of the components in the specification is assumed to be
preserved in an external digital repository, then downloaded
and cached at the execution site as needed. Obviously, if
multiple executions use the same operating system or the
same dataset, it is only necessary to keep one copy in the
archive and share it at runtime among multiple executions.

Previous approaches to the provisioning of virtual machines,
such as V-MCS [28], FutureGrid [B0], Grid’5000 [6], and
VMPlants [I3], achieve various environments by applying
executable scripts to base virtual machines. While effec-
tive, this can be quite slow while data is copied or updated
in place. In contrast, Umbrella mounts each object in the
filesystem namespace, so that at runtime, the collection of
objects is effectively instantaneous.

5.2 Preserving Workflows with PRUNE

While Umbrella describes how to precisely perform a single
software execution, PRUNE describes how to connect mul-
tiple executions together, such that entire workflows can be
preserved, verified and extended. The key idea of PRUNE is
to represent every invocation of a program as the evaluation
of a function on immutable digital objects. In PRUNE, our
example program would be invoked as a function call:

Result = MySim(Config, Data)

In this example, Config and Data refer to data items stored
in “PRUNE-space”, a local repository of immutable objects.
mysim consists of an Umbrella specification of how to execute
the program in a precise environment, while Result refers
to the output file, which is moved into PRUNE-space when
the program completes.

Over time, as the user runs a large number of programs,
they conceptually build up a large graph of objects, each
related to each other by function invocations. If an object
was created by a chained series of function calls, PRUNE
retains enough information to accurately describe the steps
necessary to create that object from beginning to end. The
user who wishes to publish a paper depending upon a result
can ask PRUNE to produce a package containing every de-
pendency needed for that result, which can then be archived
along with the scientific publication.

Of course, accumulating those objects over time will exhaust
disk storage, or the user’s budget for cloud storage. To this
end, PRUNE can safely delete the binary form of any object
in PRUNE-space, because it retains enough information to
re-create it, should the user require that it be produced. In
this way, storage costs can be traded for computation costs
as needed.

PRUNE gives all objects a uuid, but managing a large num-
ber uuids manually would quickly become cumbersome. So
each repository in PRUNE has it’s own namespace on top
of the uuids such that a name points to a uuid, and both
the name and uuid are preserved. A collaborating reposi-

PRUNE space

User space

| PRUNE$ ENV physics.spec WITH Umbrella

| PRUNE$ PUT config AS Config |

| PRUNE$ PUT data AS Data

A

| 5 N

| | PRUNE$ PUT mysim AS MySim IN (file, file) OUT (result.dat)

* -

|PRUNE$ Result = MySim(Config, Data) | Y

| PRUNE$ PUT Observed.dat AS Obs

E=8TeV,L=19.61

| | PRUNE$ PUT Analyze.sh AS Analyze IN (file) OUT (result.dat)

| PRUNE$ AnaSim = Analyze(Result) | *

| PRUNE$ AnaObs = Analyze(Obs) |

| PRUNE$ PUT Plot.dat AS Plot IN (file, file) OUT (result.jpg) |

| |PRUNE$ FinalPlot = Plot(AnaSim, AnaObs) |$ﬁr

Data/Sim.
N

[———p——y, ¢

T 2 T B
.

|PRUNE$ GET FinalPlot AS Plot.jpg I* \ 98 06 04 02 0 02 04 06 08
BDT output

Figure 5: PRUNE overview
Prune represents each invocation of a program as a function call on immutable archived objects. As the user invokes more
and more functions, a tree of archived objects accumulates. Each execution is made precisely reproducible via Umbrella.

tory can choose to use the same name, or not, but uuids are
immutable across repositories.

In PRUNE, a distinction is made between operations which
are specified programmatically, and edits that are transfor-
mations performed manually and might not even have a de-
tailed description. Precise reproducibility is possible in all
cases, but including an edit in the workflow could leave a gap
in the provenance and make it difficult for a collaborator to
reproduce an edit on a file if the original file has changed.

An edit which does not leave a gap in the provenance is
shown in Figure B from object 4 to 12. This edit allows
to user to easily manage minor evolutionary changes to the
workflow without harming the ability to preserve the work-
flow for collaborators. Notice that tracing 11 or 15 back to
their original source files does not require passing through
the edit.

6. PRESERVATION CONSIDERATIONS

Within the overall strategies outlined above, a number of
tradeoffs become apparent between user effort, preservation
cost and complexity, and the generality of the artifacts for
re-use over the long term. Here we give some overview of
these tradeoffs and suggest when one approach or the other
(or both) may be appropriate.

6.1 Source vs. Binary Code

Should we preserve the source form or the binary form of
compiled programs?

By design, source code in a high level language such as C is
designed for human consumption and is the preferred form
for understanding and modifying the program. The binary
form produced by the compiler can be directly executed but
is of little use for analysis and may not function in even a
slightly different environment. Source code is obviously the
preferred form in which software itself achieves longevity as
an independent entity.

However, if our goal is to preserve an instance of executed
software, the answer is not so clear. If only the source code
is preserved, then re-use requires that a suitable compiler,
linker, and other supporting tools be present at re-use time.
Languages are not always forward compatible, which re-
quires us to preserve the actual compiler used in addition
to the software. Moreover, the source code for the compiler
also needs to be preserved, and so on. As the dependency
chain increases, the cost of re-execution increases, as well as
the risk of failing to build a usable binary.

Thus, the comprehensive approach is to preserve both the
source code and the resulting binary, so that they are mutu-
ally verifiable. If the surrounding environment is faithfully
preserved, then the binary will remain usable. If it is desired
to rebuild the software from source, the correctness of the
rebuild can be confirmed by comparing its outputs against
those generated by the preserved binary. Similar arguments
apply to any complex object constructed from text instruc-
tions, such as an RPM package from a rpmbuild script or a
Docker image from a Dockerfile.

6.2 Manual vs. Automatic Preservation
Should preservation be performed automatically, or only at
the user’s request?

Automatic preservation does not need lots of involvement
from the user, but can be very messy. Since everything is
recorded, irrelevant operations become part of the preserved
data, which are difficult to distinguish from the relevant op-
erations. The irrelevant operations may include listing files
in a directory or iterations that failed to produce the desired
results and had to be modified and re-run. Operations at
lower levels may be difficult to decipher for even the original
researcher. It is nearly impossible for another researcher to
use this type of data to do extension work.

Automatic preservation may also cause privacy issues for the
researcher. A preservation tool which is allowed to track the
software execution may preserve the researcher’s ssh private
key and private key file including his Amazon EC2 key pair.
Distributing the preserved execution may leak the private
information of the researcher to unintended targets.

At the other extreme, manual preservation places the entire
burden of reproducibility on the researcher. The researcher
might create a script that includes the final list of operations
they used to produce the experimental results. Or the re-
searcher might create documentations explaining each step
with details about why certain decisions were made. Or the
user might include very little information about how the
results were obtained, making the preservation ineffective.

6.3 Pre vs. Post Preservation
Should the burden of preservation come before or after the
user’s work is completed?

Most researchers choose to wait until they have their full
results before preserving their methods. Unfortunately, by
the time the results are available, other factors come into
play which make this approach unlikely to succeed. There
is little motivation to put in the extra effort to identify how
results were obtained since it does not appear to be a factor
in whether or not a paper is accepted. The researcher typi-
cally gets busier as a deadline approaches and preservation
has a low priority. In addition, sometimes important details
are forgotten or only known by system administrators. In
a collaborative effort, students who were involved may have
moved on by that time. Also, the original execution envi-
ronment may have changed, and the original operations no
longer work.

An alternative approach is to require the researcher to pre-
serve every step along the way before it is even executed.
This would require more work for the researcher up-front,
but has a much higher likelihood of resulting in a preserved
software execution. However, this approach would also in-
clude failed attempts or extraneous commands that occur as
the research evolves. This extra data puts additional load
on resources used to capture and store the information.

A middle ground can be found by provisionally preserving
everything in a local repository, and then enabling the user
to identify (at a later time) what objects should be retained
permanently. This requires more effort from the researcher

both before and after the execution, but provides a clean
description of how the research can be verified, extended
and compared. Furthermore, the extra burden on the user
might be offset by providing some additional tools with con-
venience features.

6.4 Unique ldentifiers vs. Attributes

How should preserved software components be identified?

Each component of a software execution should allow the
user to refer and verify its integrity. There are two broad
approaches for this: unique identifiers or attribute de-
scriptions. The following are examples of each type.

Unique Identifiers:
doi = "10.7274/ROC24TCG";
checksum = "f6e17cc80...";
url = "http://server.com/config";

Attribute Descriptions:
name = "mysim";
version = "3.2";
architecture = "x86_64";

Unique identifiers provide an unmistakable reference to a
single binary object. A Digital Object Identifier (DOI) [19]
is an example that names a publisher, then an object, which
can be resolved by the Handle System [27] to a current loca-
tion of the desired object, in the form of a Uniform Resource
Locator (URL). DOIs are widely used by digital libraries to
identify published documents, and to a lesser extent, other
kinds of digital objects. However, the DOI system recom-
mends, but does not force, the objects referred by a DOI
name to be persistent or immutable. For example, the DOI
name 10.1000/182 always refers to the latest version of the
DOI handbook, which is the primary source of information
about the DOI system. A

Attribute descriptions describe essential properties of the
software but do not necessarily uniquely identify a image.
A suitable set of attribute-value pairs can be used to search
a known repository for corresponding images that satisfy the
given requirements, and are likely to resolve to a small set
of compatible objects.

It seems that despite all of the advances that an internet con-
nected research community provides, the question of archiv-
ing identification information is an issue yet to be resolved |29].
As long as the unique identifiers are kept immutable, they
could be used as persistent identifiers in a global system of
identifiers [2]. And a similar system focused on the evolving
translations could provide both user friendliness and repro-
ducibility.

2 As an aside, the DOI infrastructure is almost, but not quite,
suitable for naming software components. The main prob-
lem is that DOIs generally resolve to a web page that de-
scribes the “concept” of the object for a human reader, rather
than resolving to the binary object itself. What is needed
is a unique name that resolves directly to the object, or a
convention for resolving the object from the concept page
itself.

7. RELATED WORK

The problem of software verification is not new. As far
back as 1984 [f|, efforts were made to encourage verifica-
tion that design specifications matched the actual behavior
of software. However, the paper demonstrated that when
the guidelines are followed, deviations from the specifica-
tions can be detected earlier, saving time in the overall soft-
ware development. This tight coupling of specification and
implementation has benefits for preservation also.

Dendro [8] has the user do some work as early as possible
in order to preserve the provenance. For example, rather
than just providing a link to a website, a triple is used to
describe that the URL is the creator’s web page. Using this
ontology based data model rather than relying on a rela-
tional database, the preservation becomes self-documenting.
A system called dataref versuchung [9] also requires some
upfront work by the researcher. But once the researcher has
properly created a figure for a LaTeX document, the system
automatically includes a datagraphy that includes informa-
tion about how the figures were created.

Unlike the above approaches which require significant user
intervention, the PERICLES Extraction Tool [is initiated
at runtime and attempts to automatically detect all implicit
dependencies on the system environment and convert them
to explicit dependencies. It also attempts to rank significant
events to make the result more organized. However, it is
still possible that this tool may miss implicit dependencies
introduced by the extension work.

Matthews [I5] proposes a conceptual framework for soft-
ware preservation which includes a performance model of
software and its input data, a model of software compo-
nents, and the categories of preservation properties of soft-
ware such as functionality, composition, provenance, owner-
ship, execution environment and so on. Hong [I1] proposes
a benefits framework for software preservation which enu-
merates different purposes of software preservation and its
benefits, analyzes the pros and cons of integrating software
preservation measures into software development processes
and preserving legacy software separately, and provides dif-
ferent options for software preservation. In contrast to this
research on software preservation, our work considers the
preservation of scientific software executions systematically,
which includes data, software, and execution environments.

8. OPEN PROBLEMS

In this paper, we have outlined what we see as the most
pressing problems of digital preservation and outlined broad
strategies for solving them. There remain many hard prob-
lems to consider:

Preservation of Distributed Applications. Compared
with single-machine applications, the preservation of dis-
tributed applications is more challenging due to the follow-
ing facts: First, a distributed system is often composed of
multiple computer nodes, each has its own software stack.
Second, the distributed model and the network configura-
tion must be maintained to reconstruct the distributed sys-
tems. Third, some distributed systems like HTCondor are
dynamic, in that nodes can join and leave the Condor pool
at any time. Should we preserve distributed applications

including software and hardware completely? Should we
just preserve the detailed configuration of distributed appli-
cations? Should we only preserve the working principle of
distributed applications?

Preservation Granularity. To preserve applications, there
are three different kinds of packages involved in an archive:
Submission Information Packages (SIPs), Archive Informa-
tion Packages (AIPs) and Dissemination Information Pack-
ages (DIPs) [B1]. The granularity for these packages may
be different. For example, an archive may choose to split
submission packages into smaller pieces to fit its underly-
ing storage architecture. The choice of granularity depends
on the overhead of metadata management, storage overhead,
the time overhead of submission, storage and reconstruction,
and user-friendliness.

Preserving Preservation Tools. Emulation, as an im-
portant preservation approach, emulates the original exe-
cution environment of an application to allow the applica-
tion to execute without modification. Compared with mi-
gration, where every preserved application needs to be some-
how modified to fit the new environment, emulation keeps
all the applications unchanged, and emulates the previous
execution environment [I4] 24].

Commercial Software and Sensitive Data. Preserving
both the source code and binary code can help the new users
extend the work easily. However, sometimes it is difficult to
get the source code of software, especially commercial soft-
ware. The preservation policy for this type of software must
take copying and distribution conditions into consideration.
On the other hand, trapping system calls may expose some
sensitive data, which should require special access permis-
sions. Before wrapping all these data into a reduced package,
the sensitivity of the preserved data should be considered.

Acknowledgements

This work was supported in part by National Science Foun-
dation grant PHY-1247316, Data and Software Preservation
for Open Science (DASPOS).

9. REFERENCES

[1] CoreOS is building a container runtime, Rocket.
https://coreos.com/blog/rocket/, 2015.

[2] B. Bazzanella. A persistent identifier e-infrastructure.
IPRES 2014 proceedings, page 118, 2014.

[3] C. G. Begley and L. M. Ellis. Drug development:
Raise standards for preclinical cancer research.
Nature, 483(7391):531-533, 2012.

[4] J. Blomer, P. Buncic, and T. Fuhrmann. CernVM-FS:
delivering scientific software to globally distributed
computing resources. In Proceedings of the first
international workshop on Network-aware data
management, pages 49-56. ACM, 2011.

[5] B. W. Boehm. Verifying and validating software
requirements and design specifications. In IEEE
software. Citeseer, 1984.

[6] R. Bolze, F. Cappello, E. Caron, M. Daydé,

F. Desprez, E. Jeannot, Y. Jégou, S. Lanteri,
J. Leduc, N. Melab, et al. Grid’5000: a large scale and
highly reconfigurable experimental grid testbed.

https://coreos.com/blog/rocket/

International Journal of High Performance Computing

Applications, 20(4):481-494, 2006.
[7] F. Corubolo, A. Eggers, A. Hasan, M. Hedges,

S. Waddington, and J. Ludwig. A pragmatic approach

to significant environment information collection to

support object reuse. IPRES 2014 proceedings, page

249, 2014.

[8] J. R. da Silva, J. A. Castro, C. Ribeiro, and J. C.
Lopes. The dendro research data management
platform. IPRES 201/ proceedings, page 189, 2014.

[9] C. Dietrich and D. Lohmann. The dataref versuchung:

Saving time through better internal repeatability.
ACM SIGOPS Operating Systems Review,
49(1):51-60, 2015.

[10] P. J. Guo and D. R. Engler. CDE: Using System Call

Interposition to Automatically Create Portable
Software Packages. In USENIX Annual Technical
Conference, 2011.

[11] N. C. Hong, S. Crouch, S. Hettrick, T. Parkinson, and
M. Shreeve. Software preservation benefits framework.

Software Sustainability Institute Technical Report,
2010.

[12] G. Juve, E. Deelman, K. Vahi, G. Mehta,
B. Berriman, B. P. Berman, and P. Maechling.

Scientific workflow applications on Amazon EC2. In
E-Science Workshops, 2009 5th IEEE International

Conference on, pages 59-66. IEEE, 2009.

[13] I. Krsul, A. Ganguly, J. Zhang, J. A. Fortes, and R. J.

Figueiredo. Vmplants: Providing and managing
virtual machine execution environments for grid

computing. In Supercomputing, 2004. Proceedings of
the ACM/IEEE SC2004 Conference, pages 7-7. IEEE,

2004.

[14] R. A. Lorie and R. J. van Diessen. UVC: A universal
virtual computer for long-term preservation of digital

information. IBM Res. rep. RJ, 10338, 2005.

[15] B. Matthews, A. Shaon, J. Bicarregui, and C. Jones.
A framework for software preservation. International

Journal of Digital Curation, 5(1):91-105, 2010.
[16] H. Meng, R. Kommineni, Q. Pham, R. Gardner,

T. Malik, and D. Thain. An invariant framework for

conducting reproducible computational science.
Journal of Computational Science, 9:137-142, 2015.

[17] H. Meng and D. Thain. Umbrella: A portable
environment creator for reproducible computing on

clusters, clouds, and grids. In Proceedings of the 8th
International Workshop on Virtualization Technologies

in Distributed Computing, VITDC ’15. ACM, 2015.
[18] D. Merkel. Docker: lightweight linux containers for

25]

(26]

27]

(28]

29]

(30]

consistent development and deployment. Linuz
Journal, 2014(239):2, 2014.

N. Paskin. Digital object identifier (DOI) system.
Encyclopedia of library and information sciences,
3:1586-1592, 2008.

R. D. Peng. Reproducible research in computational
science. Science (New York, Ny), 334(6060):1226,
2011.

Q. Pham, T. Malik, and I. T. Foster. Using provenance
for repeatability. In USENIX NSDI Workshop on
Theory and Practice of Provenance (TaPP), 2013.

F. Prinz, T. Schlange, and K. Asadullah. Believe it or

not: how much can we rely on published data on
potential drug targets? Nature reviews Drug
discovery, 10(9):712-712, 2011.

M. Rosenblum. Vmware?s virtual platform? In
Proceedings of hot chips, volume 1999, pages 185-196,
1999.

J. Rothenberg. Avoiding Technological Quicksand:
Finding a Viable Technical Foundation for Digital
Preservation. A Report to the Council on Library and
Information Resources. ERIC, 1999.

B. Sierman. The scape policy framework, maturity
levels and the need for realistic preservation policies.
IPRES 2014 proceedings, page 259, 2014.

G. St Clair and D. Ryan. Olive: A digital archive for
executable content. Coalition for Networked
Information, 2011.

S. Sun, L. Lannom, and B. Boesch. Handle system
overview. Technical report, RFC 3650, November,
2003.

X.-H. Sun, C. Du, H. Zou, Y. Chen, and P. Shukla.
V-mcs: A configuration system for virtual machines.
In Cluster Computing and Workshops, 2009.
CLUSTER’09. IEEE International Conference on,
pages 1-7. IEEE, 2009.

H. Van de Sompel and A. Treloar. A perspective on
archiving the scholarly web. IPRES 201/ proceedings,
page 194, 2014.

G. Von Laszewski, G. C. Fox, F. Wang, A. J. Younge,
A. Kulshrestha, G. G. Pike, W. Smith, J. Voeckler,
R. J. Figueiredo, J. Fortes, et al. Design of the
futuregrid experiment management framework. In
Gateway computing environments workshop (GCE),
pages 1-10, 2010.

E. Zierau and N. Y. McGovern. Supporting the
analysis and audit of collaborative oais?s using an

outer oais-inner oais (00-io) model. Preservation
(DDP), 9:5.

	Introduction
	Simplified Example
	Preservation Objectives
	Preserving the Mess
	Virtual Machine Technology
	Container Technology
	Package Reduction with Parrot

	Encouraging Cleanliness
	Precise Execution with Umbrella
	Preserving Workflows with PRUNE

	Preservation Considerations
	Source vs. Binary Code
	Manual vs. Automatic Preservation
	Pre vs. Post Preservation
	Unique Identifiers vs. Attributes

	Related Work
	Open Problems
	References

