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Troubleshooting a distributed system can be incredibly difficult. It is rarely feasible to expect a user to know the fine-grained interactions
between their system and the environment configuration of each machine used in the system. Because of this, work can grind to a
halt when a seemingly trivial detail changes. To address this, there is a plethora of state-of-the-art log analysis tools, debuggers, and
visualization suites. However, a user may be executing in an open distributed system where the placement of their components are
not known before runtime. This makes the process of tracking debug logs almost as difficult as troubleshooting the failures these
logs have recorded because the location of those logs is usually not transparent to the user (and by association the troubleshooting
tools they are using). We present TLQ, a framework designed from first principles for log discovery to enable troubleshooting of
open distributed systems. TLQ consists of a querying client and a set of servers which track relevant debug logs spread across an
open distributed system. Through a series of examples, we demonstrate how TLQ enables users to discover the locations of their
system’s debug logs and in turn use well-defined troubleshooting tools upon those logs in a distributed fashion. Both of these tasks
were previously impractical to ask of an open distributed system without significant a priori knowledge. We also concretely verify
TLQ’s effectiveness by way of a production system: a biodiversity scientific workflow. We note the potential storage and performance
overheads of TLQ compared to a centralized, closed system approach.
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1 INTRODUCTION

As computational research on complex distributed systems has more rapidly become commonplace, users have ex-
perienced growing pains. Scaling up computations and deploying large-scale systems necessitates troubleshooting
failures at scale, especially considering some faulty behaviors may not present themselves when executing on a single
machine or at a small scale. Compared to troubleshooting a failure on their workstation, it can be much more difficult
and intimidating to troubleshoot failures in a large-scale distributed system. There exist plenty of troubleshooting tools
which can perform log analysis, make connections between disparate components, and provide querying capability to
databases which ingest the various debug logs from the system. However, these tools are rendered useless if the user is
not made transparently aware where the debug output of each component (each service, computational unit, etc.) of
their system exists, how to make sense of each log, and how each component may impact the execution of others.

To provide further complication, the user may be executing in an open distributed system. We define an open
distributed system as a set of computing resources whose membership in a cluster, cloud, or grid may not be permanent,
which are assigned computations at runtime (i.e. the system and user do not know in advance which computations
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will be scheduled where), and may consist of cross-domain resources (e.g. resources coming from multiple cloud
providers, campus clusters, and national-scale infrastructures) which span independent organizational jurisdictions. It is
commonplace for a user1 to have direct knowledge of only a single component of their system which is user-facing,
however the other components of their system (e.g. worker processes, remote services, replica storage) do not need to
have a fixed location at runtime. Instead, it is up to the scheduler of the underlying cluster, cloud, or grid to determine the
placement of these computations. Between executions of a system (and during its execution), the underlying resources
may vary as machines are added or removed from membership. In addition, a system may have active components
communicating across domains which are under different jurisdictions (e.g. running and interacting concurrently on
two clusters at different research institutions).

From first principles, we have encountered the key obstacle preventing straightforward troubleshooting of open
distributed systems: the user must be notified where their components land in an open system and be given a unique
name which can be used to access the debug output of those components. A contemporary state-of-the-art approach is
to require debug output be collected at some centralized, highly performant rendezvous point which we have seen
applied to tools using the Elastic Stack (formerly ELK Stack) [14, 20]. However, this approach is not ideal for open
distributed systems since it requires the user’s knowledge a priori what debug output will be relevant and only applies
for a single domain (whereas an open distributed system may be composed of multiple domains). This state-of-the-art
approach is fantastic for large, cohesive organizations such as businesses or standalone clusters, however it falls short
when the system under test crosses barriers between domains (i.e. the system lives within and between the jurisdictions
of multiple organizations).

From this observation, we have designed from first principles TLQ (Troubleshooting via Log Query), a framework
for log discovery and troubleshooting of open distributed systems. It addresses the need to provide the user a name
and location for their components and debug output, and it emphasizes leaving debug output in place rather than
collecting it all at a single location since that approach is at best infeasible and at worst impossible for open distributed
systems. TLQ’s architecture allows troubleshooting tools to be placed atop its software stack to provide users the
troubleshooting experience they expect albeit in a distributed fashion. Broadly, TLQ’s architecture consists of two parts:
a user-end querying client and a set of log watch servers which live on the open system. The user client submits calls
to troubleshooting tools to be performed on logs tracked by the log watch servers. We demonstrate open distributed
system troubleshooting of a biodiversity scientific workflow using the Lifemapper application. We also briefly discuss
the overhead of this distributed approach as it applies to the troubleshooting experience. We conclude by providing
three critical lessons learned about distributed systems troubleshooting which became apparent after implementing
TLQ.

2 CHALLENGES OF DISTRIBUTED TROUBLESHOOTING

To demonstrate why distributed troubleshooting is so complex, consider a typical scientific workflow application.
The workflow management system is executing its workflow via a master-worker execution framework. Figure 1
demonstrates the architecture of this distributed system. The workflow manager sends tasks (i.e. definitions of work to
be done along with inputs and expected outputs) to the master process of the master-worker execution framework. This
master process then dispatches the task’s command and inputs to a chosen worker process on some other compute node.
It does this for each task the workflow manager gives it (assume some considerable scale such as 10, 000 tasks). Each

1We define users as researchers accessing distributed resources to set up their own distributed systems. However, these difficulties are also applicable for
system administrators, developers, or other support assisting these users.
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worker runs the received command which uses the inputs to (hopefully) generate the expected outputs. The specified
inputs and outputs for each task are stored in a shared cache at the worker for future use. Because the application is a
scientific workflow, there exist data dependencies between tasks, so tasks are submitted by the workflow manager only
when their respective input dependencies are satisfied.
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Fig. 1. Scientific Workflow Architecture. The workflow manager (S) submits tasks to the master process (M). The master dispatches
tasks to workers (W). Workers run tasks (T) locally. Each component writes to its own log file.

Failures can occur in a scientific workflow due to the way the workflowmanager is designed. In this notional example,
it is assumed the workflow manager dispatches new work when data dependencies are satisfied. This is determined via
file existence, a common method for doing so. Because of this design, it is not uncommon for a task to silently fail while
still producing some of its expected output. Suppose this failure occurs after the expected output has been created by a
task (task t), but that output is malformed. The tasks which depend upon the successful creation of this malformed
output would in turn fail. Because a scientific workflow is only successful when the final output is created, the entire
workflow would fail in turn.

How might the user uncover this failure? They may have some monitoring dashboard, use command line utilities
like grep, or seek through files manually. Regardless their tools, they most likely will only be given a piece of the puzzle
for finding the cause of failure. They will need to uncover more and more pieces as they dissect their system. This
becomes an intractable method at larger scales.

Beginning with the perspective of the workflow management system’s log, it would appear that task t did create its
expected output. So, the workflow management system would consider t a success. The troubleshooting tools used (or
manual inspection performed) upon the log will not detect any explicit error for task t here. The same is true of the
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worker process on which the task executed. It sees the specified output is created. According to both these logs, the
task was a success. This is because the workflow manager and worker check for file existence rather than file correctness.
It is often infeasible to require they do more than that unless the manager is written for a specific domain or narrow set
of applications. However, the workflow manager and the worker logs give only a fragment of the larger story for this
failure. These two logs, while helpful in indicating possible components to investigate, do not yield the cause of failure.

The user knows that during execution of this notional example, all of task t’s descendants fail according to the
workflow manager and worker logs. So, they would likely next investigate the explicitly failed tasks’ logs to figure out
how they may have failed. From their perspective, it is still entirely possible that the code executing on these tasks
is incorrect rather than task t (which silently failed). Upon inspection through either tools or manual scanning, they
could see that each of these tasks failed shortly after opening the malformed output file of task t.

It is at this point the user has uncovered enough evidence to go to task t’s log. Depending on their technical
knowledge, they may be able to tell from the log that task t failed silently during its execution. They may see a similar
pattern to the dependent tasks where the output file is opened for reading, then the program abruptly fails. The user can
then look at the contents of that output file to find that the data was not completely written before the task ended. At
this point, the problem is now a serial debugging issue rather than a distributed troubleshooting problem now that the
specific component at fault has been identified. The user can now run this task locally to debug the specific low-level
reasons why the program it runs fails early (and silently).

This experience is clunky to the user since the onus is on them to know which logs to read and where each log resides.
Monitoring dashboards or other commonplace tools reduce the overall time spent investigating all these logs, however
they can only enable troubleshooting if the locations of each log are known. In this notional example, we assume
the user can find each log. This is not always the case, however, since the user does not typically decide where their
components execute (e.g. using a batch system to schedule worker processes) nor may they necessarily be explicitly
told after the fact where those components were sent.

3 TROUBLESHOOTING AS DISTRIBUTED QUERYING

The notional example highlights a few key insights as to why troubleshooting distributed systems is so difficult:

• There are many logs located on many machines.
• Failures are not restricted to a single component.
• Often no single log gives all the context for failures.

In the notional example we assumed the user knew where their logs were located (or perhaps they were explicitly
transferred to a front-end machine for manual troubleshooting). However, this is not always the case. The underlying
components of the system may know where their logs are located, but this information is probably not be transparent
to the user. They may not know where their logs are located let alone how to retrieve them, or perhaps it is too
expensive to transfer all the logs to a centralized node. Further, transferring to a centralized node may be impossible
if the system executes across multiple domains, each with their own jurisdiction (e.g. a private cloud provider and a
research institution’s cluster).

We demonstrated that the silent failure of task t did not present itself until its descendants failed explicitly. Making
connections between t and its descendant tasks is difficult if the user does not know the relationship between these
tasks beforehand and if that relationship is not made clear in the logs. Moreover, finding the cause in the notional
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example was made possible because we assumed the user knew the name of the malformed output from t which
allowed them to understand the relationship between it and the failed tasks (often not the case with very large systems).

In the notional example, the user had to read three different types of logs: a workflow manager log, a worker log,
and multiple task logs. Either they or the tools they used had to understand the format of each log type in order to
comprehend the context each log presented toward finding the cause of failure. Further, each log only provided pieces
of the cause of failure until the user found task t’s log. This becomes an issue of finding the needle in the haystack as
the scale of distributed systems continues to increase.

Each of these insights translate into underlying problems with troubleshooting distributed systems as they continue to
become the commonplace method for research and industry computing: quantity of debug output scale, understanding
relationships between components, and discoverability of debug output. Each of these problems can be addressed by
providing a unique name for each log, advertising it to the user, creating a more readily queryable set of metadata about
each log, and applying the user’s troubleshooting tools in a distributed matters which sends to computation to the
data rather than the other way around. We introduce TLQ, a system which keeps debug output in place (removing
the need to transfer a large degree of data to a centralized node), allows for relationships between components to be
more transparent (so it is easier for the user to discover these connections) by parsing out metadata about each log, and
tracks where debug logs are located (leaving the user free to troubleshoot their failures without having to know which
computations happened where).

3.1 Querying Logs in Place Across Domains

Rather than transferring debug output to a centralized node as is done in current state of the art [14, 20], we keep
each log in place. This is due to both performance reasons and to enable us to troubleshoot an open distributed system.
The debug output may be too large to reasonably transfer to a centralized rendezvous node (or may cost too much to
transfer from cloud storage), but that output may also exist across autonomous domains such that transferring them all
to a single node is impossible due to policy restrictions from each domain’s administrators. Further, it is likely that
while the system knows the logs being produced, that information is not transparent to the user. Often when using a
centralized rendezvous node, the user annotates which files to transfer. If they do not know these files’ names, that is
difficult to make happen.

In TLQ, we implement a service on each node of the compute resource (i.e. machines in a cluster, cloud, or grid).
This service is called a log watch server, and it is informed which logs it should track by the various components of a
distributed system under study. In TLQ, each component is programatically wrapped by a simple script which tells the
log watcher the names of the logs that component will create. This same script also reports back to the host which
submitted the component (this is usually a front-end node of a cluster, cloud, or grid in our day-to-day experience with
users) to tell the user where it landed and how to query that log in the future. The log watcher then periodically parses
its tracked logs to draw out metadata about each log and places it as a separate JSON document which acts in part as
a metalog of the environment of that component (the files, processes, and environment variables in the log) and to
summarize the high-level status information about that component such as exit status and total runtime. This provides
an at-a-glance view of each component which helps lower the noise of the total debug log output of a distributed
system.

There are multiple log watch servers monitoring the distributed system’s logs, each representing a fraction of the
collective debug output of the whole distributed systemwhich can then be queried by the user’s choice of troubleshooting
tools. This is done through a user-end client which dispatches either a query upon the servers’ tracked logs or a request
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Fig. 2. TLQ System Architecture. TLQ queries are either invocations of a troubleshooting tool or a request for a particular log. Each
log server manages a set of parsers that consume local log files for key information and export it to JSON documents to facilitate
troubleshooting.

to transfer a specific log for manual inspection (if possible). The set of log watchers are discoverable end points for an
open system since their existence is advertised to the user. Figure 2 demonstrates the architecture of TLQ in action.

4 IMPLEMENTATION

The underlying troubleshooting system architecture is composed of four parts: a Perl log watch HTTP server, a set of
log parsers, a Perl querying client, and a wrapper script which communicates with the log watcher and user client.
Refer to Figure 2 for an expanded view of this architecture. The Perl server is designed to provide minimal HTTP
communication capabilities. Its primary function is to monitor and parse logs it is told to watch and store the parsed
content as JSON documents. These documents contain metadata about the raw logs they represent such as the exit
status, the command executed, the files accessed, etc. This functionality makes it a discoverable, queryable node in an
open system.

Each TLQ log watch server uses parsers to periodically add new records to its JSON documents. Each parser is
designed to produce records for a specific log type (e.g. ltrace-parser is responsible for parsing logs created by
ltrace to extract the processes, files, and environment variables of the component). The specific details for each parser
are largely unimportant to understanding the broader architecture. We provide a set of parsers specific to the tools
used in this work, but it is expected other developers provide the log parsers for their own software the goal being the
developer knows best how to interpret their software’s logs. TLQ needs some way to transform raw debug output into
records, in order to give users a higher level view of their components’ logging, and we have chosen to create parsers
for that task.

6



Log Discovery for Troubleshooting Open Distributed Systems with TLQ PEARC ’20, July 26–30, 2020, Portland, OR

The querying client provides the user the capability to use the troubleshooting tools of their choice upon specific
components across their system. In this work, we demonstrate how grep can be used to troubleshoot an open distributed
system. In order to use these tools, the client must be made aware of which logs it can query. The list of logs available
to the client, represented as UUIDs, is accumulated by a server running alongside the client. A wrapper shell script
is used to execute each component of the system, and it communicates with both its respective log watch server (on
whichever machine the component lands) and with the client-end server to ensure both parties know the UUID for the
component in question.

The wrapper shell script writes to a file in the log watch server’s working directory. Each line it writes describes a
log the server should watch and includes the name of the distributed system to which the log belongs, the absolute
path to the log (which may be user specified or a defined value by the component’s code), and the component type(s)
contained in the log. The server periodically checks this file, updates its list of files to watch, and writes this list to a
separate file which includes a unique ID used to identify the debug file at the client-side. The wrapper script waits
for the server to update this list with the IDs of the files the wrapper told the server to watch. The script then reports
back to the client the system name, host and port of the server, and relevant file IDs. The wrapper then executes the
command it had wrapped, starting up a component of the system.

5 EVALUATION

We demonstrate the effectiveness of TLQ for facilitating open distributed system troubleshooting by utilizing the
popular tool grep to diagnose intermittent failures encountered while executing the Lifemapper biodiversity workflow
across two separate administrative domains (in this case, two separate campus-scale clusters). TLQ provides the log
discovery mechanism and the capability to run grep at each log watcher by way of TLQ’s user client. We show that,
at Lifemapper’s scale, distributed queries with TLQ perform on par with the collect-and-query approach utilized
by centralized architectures. We further demonstrate, by way of model, the scale at which distributed querying can
outperform collect-and-query given certain conditions.

Lifemapper is a biodiversity scientific workflow executed using the Makeflow workflow management system [17].
Makeflows consist of a set of rules, like a Makefile in GNU Make. Each rule contains a set of inputs, a set of expected
outputs, and a command which utilizes the inputs to create the outputs. Through these rules, Makeflow creates a
directed acyclic graph (DAG) of data dependencies which determine both the parallelism of the workflow and whether
the workflow is complete (i.e. when the final outputs are created). Figure 3 show the DAG structure of Lifemapper at a
small scale. The Lifemapper workflow executed in this work consists of 1, 887 rules, and it has 655MB of input data. It
took approximately 45 minutes to complete the workflow from start to finish.

We made use of the Work Queue master-worker execution engine to run the Makeflow rules. Figure 1 from the
notional example demonstrates how Makeflow and Work Queue interoperate. A single master process accepts rules
from Makeflow and submits them to connected workers as tasks (a roughly equivalent definition of work to be done).
Each worker executes on a separate machine from the master and transfers input and output data to and from the master
node. Each worker also has its own data cache to avoid unnecessary duplicate transfers. The worker processes were
submitted as pilot jobs to the HTCondor batch system, which scheduled the workers onto their respective machines. In
all, the distributed system set up to run Lifemapper consists of five types of components: the workflow management
system, the master process, worker processes, the batch system interface, and the actual computations of Lifemapper
(the commands executed in each Makeflow rule). This creates a hierarchy of communication which, at scale, can become
increasingly difficult to troubleshoot when failures arise. The workflow management system, master process, and batch
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Fig. 3. Structure of Lifemapper showing data dependencies. Squares represent files, and circles represent processes. Its structure
allows for a high degree of parallelism.

system interface logs are all created at the same node the user accesses, so TLQ does not need to discover and advertise
these logs to the user. The worker logs and traces of the tasks, however, do need TLQ’s help to become transparent to
the user. We used 15 workers to execute Lifemapper (a reasonable scale given the ability of the master to feed work to
its workers [13]).

Approximately two thirds of Lifemapper’s rules execute Java code (the other third being Python). Throughout Lifemap-
per’s runtime, the system encountered intermittent unhandled exceptions (java.util.NoSuchElementException)
which led to a number of rules producing incomplete output. We ran Lifemapper five times to confirm these failures
were intermittent and not a baked-in failure to the workflow’s construction. These failures became apparent from the
STDOUT captured by the Work Queue master process (which captures forwarded console output from its workers).

From this output, we can then match the error to the command executed in Makeflow’s log. From here, we look up
that command in the collection of logs which the various log watchers are tracking (provided to us by the wrapper
script wrapped around each component in the system). We find it, and through the TLQ client we query the relevant
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Distributed Query Collect-and-Query
One Log 0.02s 2.45s
All Logs 10.30s 2.56s

Table 1. Query Roundtrip Time for Lifemapper.

log using grep. Based on the error (and unhandled exception) we would expect that a search for SIGSEGV would turn
up some useful results. From STDOUT to local higher-level logs to the raw debug logs, we have found out why certain
rules failed in Lifemapper. Indeed, we find that certain rules in Lifemapper fail early (producing only partial output)
because multiple threads of the command encountered segmentation faults due to the unhandled exception:

11026 3.629026 --- SIGSEGV (Segmentation fault) ---

11041 0.412124 --- SIGSEGV (Segmentation fault) ---

11044 0.880959 --- SIGSEGV (Segmentation fault) ---

Table 1 briefly summarizes the time taken to perform queries using TLQ and performing collect-and-query. In total,
Lifemapper produced 144MB of log data remotely. These were Work Queue worker logs and traces recorded from
running ltrace on each rule. This demonstrates the scale at which smaller workflows generate log data (roughly 22%
the size of the input dataset). We see that querying only one log (to verify the Java exception resulting in a segfault)
using TLQ outperforms the collect-and-query approach since this second method requires the transfer of all logs before
queries can occur. However, given the scale of the log data, collect-and-query performs better querying all logs once it
has collected them than TLQ does querying each log individually. This is due to the overhead of opening connections
one-by-one rather than transferring all the files en masse and performing queries locally. What these results tell us is
that the most common approach to troubleshooting (i.e. asking questions of one log at a time) provides a performance
benefit compared to the centralized collect-and-query approach. However, TLQ’s performance does not scale as well
as collect-and-query if the user needs to query each log. Conceptually, querying all the logs via TLQ is akin to the
difference between performing a SELECT * query upon a single, local database and performing a SELECT * query upon
multiple, remote databases.

5.1 DistributedQueries at Scale

Lifemapper, while a real-world example of an open distributed system, does not produce a large degree of log output data
(measuring O(100)MB) to demonstrate the performance of TLQ as compared to collect-and-query at larger scales. So,
we model and discuss the effects of distributed querying versus collect-and-query to elaborate upon initial observations
gleaned from TLQ in use. Specifically, we demonstrate the (in)efficiency of data transfers compared to the amount of
relevant data to be queried. We also look at the impact upon system throughput at the collection node when all logs are
streamed to one location.

TLQ keeps logs in place, allowing queries to be performed at each log watch server. State-of-the-art architectures
require collecting logs to a centralized node before queries can be performed. The names and locations of logs in the
centralized approach must be known before creation thus avoiding the log discovery problem at the cost of flexibility.
Figure 4 demonstrates the scale at which benefits of querying logs in place rather than collecting them at a centralized
node become apparent. We can easily model the scalability of distributed queries against the collect-and-query approach
in a waywhich is fair to bothmethods.Wemake the generous assumption that the network transfer speed is equivalent to
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Fig. 4. Cost of collecting and querying compared to distributed querying. All things being equal (communication overhead, transfer
speed, and local read speed) there is a scale at which distributed queries are faster than the collect-and-query approach used by
centralized architectures.

the local disk speed (which may be the case for a system running in a completely local network such as a supercomputer).
We also assume there is a small, fixed network communication overhead to transferring data and to performing queries.
Our final assumption is that the query execution (regardless if it is done locally or distributed) will only output either
1% or 10% of the total data queried since a user typically investigates fairly specific error messages or oddities in their
logs. Without this final assumption, the distributed query time would match quite closely with the collect-and-query
time since both would roughly measure the time taken to transfer (collect) and read (query) a file.

At small scale, the collect-and-query approach performs as well as distributed queries. In fact, when the scale is
less that 100MB of log data as was practically the case with the Lifemapper workflow, the collect-and-query approach
performs better due avoiding the communication overhead of sending over the query to the log watcher. However, as
the scale continues to increase the benefit of only transferring over the relevant parts of a log becomes apparent, and
we see that this crossover in performance occurs quite quickly. As stated previously, we assumed the best case scenario
to the benefit of both approaches. Should network performance falter due to system load, both approaches would in
turn suffer at the same rate. If local disk performance were to slow due to system load, the collect-and-query approach
would suffer most since all logs are queried locally. The same would be true for the distributed query approach is the
log watcher node’s disk was under heavy load.

Figure 5 demonstrates the effect centralizing the collection of log data has upon the distributed system under study’s
throughput (defined generally as jobs completed per second). This highlights an observation about centralization in
open distributed systems: there is some scale at which collecting more and more data in one location will bring forward
progress of the system to a halt. In this case, we denote this as system throughput (represented as jobs completed per
second). In previous work, we have found that there is some maximum effective scale of a system called its capacity [13],
and adding log data transfers further erodes the total capacity of a system. We see this in play when the system reaches
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Fig. 5. Effect of centralizing log collection on system throughput. There is some scale at which centrally collecting all logs degrades
system throughput due to unavailable bandwidth (i.e. the system spends so much time transmitting log and output data that it
cannot do anything else).

its capacity, plateaus, and then begins to decrease in throughput as the available bandwidth of the system decreases.
We can observe this effect from two perspectives: from the node collecting the logs and from the nodes sending their
logs to the centralized repository. If we centralize the collection of logs to the front-end machine (typically the machine
the user accesses), Figure 5 demonstrates the degradation of new work being submitted from the front-end machine to
other nodes in the system. Since it will be spending so much time collecting log data (along with any output data from
the computations), the front-end machine cannot submit more work. It is bogged down in file transfers which fill up
the bandwidth of the machine, preventing the dispatching of more work.

The converse is true when viewing Figure 5 from the perspective of individual nodes interacting with the front-end
(or some other specified collection node). The system will still come to a halt because the nodes doing the heavy lifting
(running components and computations) cannot receive more work because they are spending their time sending logs to
a centralized node. Further, that centralized node’s bandwidth will eventually be exceeded meaning the other machines
will have to wait to transmit their log data rather than perform more work.

A critical caveat which must be made clear for both these models is that they assume centralized log collection is
even possible in the first place. TLQ was designed, from first principles, contrary to this assumption. Open distributed
systems can function much like the World Wide Web. They can be executed on tightly coupled, highly optimized,
high locality machines like supercomputers or an organization’s data center (which do allow for centralization of logs
quite well), or they can be loosely federated, heterogeneous groups of machines out in the ether in which each group
is not aware of others’ existence unless those others’ locations have been advertised (centralization is not possible
here). In the first case, TLQ is useful out of practicality. Leaving the logs in place and advertising their location is one
less step the user needs to worry about when setting up their system, and when only investigating a small portion
of the debug output of a system TLQ provides some performance benefits at large scale. In the second case, TLQ and
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architectures like it are a necessity. They provide a mechanism for log discovery and log querying when centralization
is not a practical possibility.

6 THREE LESSONS LEARNED

We learned three critical lessons about open distributed system troubleshooting when implementing TLQ. These pertain
to how the querying experience for distributed systems troubleshooting is often only partially satisfied by current
tools, how a component of a distributed system essentially provides a scope and context for computations, and how the
differing structure of logs makes it difficult to connect one component to another explicitly (and introduces the need to
write multiple parsers for logs).

Current tools, as demonstrated with our use of grep, are typically used to investigate one context at a time. This
translates to one component or log in TLQ. However, we have shown that there are relationships between components
in distributed systems. These relationships can be uncovered and investigated with iterative queries from the client.
This would result in chaining tools together, performing successive invocations of the same tool, etc. The current state
of troubleshooting and querying tools which can be added atop TLQ’s software stack does not yet provide this, and we
see this as a potentially information-rich aspect of distributed systems troubleshooting to be explored further.

Our definition of a component also ended up being quite different at the end of this implementation of TLQ than it was
from its outset. In this work, we have presented a component as a service or computation which is an atomic definition
of work in the distributed system. It interacts with its runtime environment (i.e. files, processes, and environment
variables). It is a piece of the whole system which the user submits to a compute resource. However, after implementing
TLQ using this working definition we learned this was not sufficient in describing a component. Really, a component in
a distributed system is a (hopefully) sane environment context in addition to being the unit of work for a user. We figured
this out after running into a problem: names are hard, especially in a set of uncoordinated distributed components. We
cannot trust, even on the same machine, that component 1’s file /a/b/c is equivalent to component 2’s file /a/b/c. We
must treat all the environment used by a component to be contained within the context of that component though that
component may interact with others.

We found a significant pain point to implementing TLQ was the necessity to write a set of parsers able to read in
multiple log formats, extract the uniquely defined records from those logs, and then have the log watch server give
each of those unique records an ID. Addressing the previous lesson of how names are hard, it would be preferable
to have components name themselves in some statistically unique manner, placing this name in its own log(s) front
and center. Whenever its log(s) are read by the log watcher, the server knows exactly who it is dealing with. Further,
when one component communicates with another, it should pass along its name which should in turn be noted in the
recipient’s log (e.g. “I communicated with worker ABC-123, and it sent me the following message: ...”). This would make
relationships between components concrete rather than implied through data exploration as is done in TLQ. Further, it
allows for a straightforward implementation of tool chaining as discussed previously.

In addition, there would be no need for specialized parsing if logs shared a common, transactional format. This
format, possibly in JSON due to its ubiquity, would capture each recorded state change as a transaction listing as much
information as is relevant all on one line, with keys and values defined for the log watcher. Having a large body of
independent developers adopt a common debug log format like this, however, is wishful thinking currently.
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7 RELATEDWORK

There are perennial problems in distributed computing which make troubleshooting distributed systems more difficult
than troubleshooting their serial counterparts. There is no common time scale between compute nodes, so many
problems arise when trying to create a single history of events across a distributed system [15]. On a related note, it
is also difficult to produce a snapshot of the state of a distributed system [5]. There are many other complications to
troubleshooting distributed systems namely heterogeneity, concurrency, distributed state, and partial failures covered
in [3]. Some of these problems have been addressed in earlier works. While many focused on low-level debugging
[16, 18] of specific bugs in applications, TLQ focuses on higher-level environment interactions of a system which is
more akin to [2] while leaving the more fine-grained debugging to the user’s choice of tools.

There exist many tools to troubleshoot distributed applications. We note only a few here to capture the breadth of
the field. The Pegasus workflow management system [7] has its own native troubleshooting tools. It has a log analyzer
and web tool which can provide aggregated metrics. It can also pull up specific debug logs for the user on demand.
TLQ builds upon this kind of approach, allowing a user to query the total collection of known logs such that they do
not have to investigate debug logs one-by-one unless as a last resort. There are also network troubleshooting tools
such as [9] which proposes the tracing of packet histories much like we provide the set of environment interactions
for each component. There exist plenty of recent tools which perform low-level debugging of distributed systems and
applications [8, 11, 12]. Another tool provides troubleshooting of resource provisioning issues [13] using a dashboard.
Finally, another tool using code injection allows for the creation of a minimum set of events needed to recreate a known
state in a distributed system [19]. Each of these approaches give users different methods of diagnosing failures in their
systems, however they are not designed for open distributed systems. Invoking these tools as distributed queries with
TLQ allows their benefits to be reaped in open systems.

In addition to various monitoring dashboards and interactive debugging tools, there exists a large body of log
analyzers as well. Anomaly detection [10] is important for high-volume logging. Other works provide diagnosis
capability focusing on resource usage logs [6] and network logs [21]. TLQ adds in an emphasis on environment
interactions which can bolster the analysis of these two approaches. A particularly relevant tool is ShiViz [1, 4] which
provides vector timestamps and space-time diagrams about events which occur in a distributed application. TLQ’s JSON
metalogs provide context for how components may be related or have related environments. Invoking log analyzers
like ShiViz atop TLQ can make these relationships more concrete in terms of when relationships are formed. Most
similar to our approach in terms of architecture and capability is the Elastic Stack (formerly ELK stack) consisting of the
Elasticsearch, Logstash, and Kibana tools. Their use has been shown in [14, 20]. TLQ, while having a similarly modular
capability of adding more tools to its software stack, differs in that a distributed query does not require continuous
streaming of logs to a centralized rendezvous point as in Logstash. The query moves to the data rather than the other
way around.

8 CONCLUSIONS

We introduced TLQ, an architecture which enables log discovery for open distributed systems. Because of the complexities
of open distributed systems, it is not feasible to establish the name and location of all the debug output of that system a

priori. This information is determined at runtime. Instead, each debug log must be discovered and its existence must be
advertised to users of the system. This is made possible with TLQ. By making log locations transparent to a user, they
can analyze their logs with the troubleshooting tools of their choice which are executed as queries in TLQ’s client. We
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demonstrated the necessity of an architecture like TLQ through a notional example, a real-world scientific workflow
in action, and two models which demonstrate observations about open distributed systems which makes centralized
approaches to log collection and discovery infeasible at certain scales. We also note three key lessons learned about
troubleshooting open distributed systems which became apparent during the design and implementation of TLQ. In the
future, we plan to provide further functionality to TLQ. Namely, we seek to implement an effective JSON querying
language which will enable a user to quickly ask questions of the JSON metalogs, add interactive visualizations to a
web-based TLQ client, and to add the concept of log custody to TLQ (where the TLQ log watchers take active ownership
of the debug logs produced, thus keeping them alive after ephemeral components finish execution).
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