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Abstract—Distributed data analysis frameworks are widely
used for processing large datasets generated by instruments
in scientific fields such as astronomy, genomics, and particle
physics. Such frameworks partition petabyte-size datasets into
chunks and execute many parallel tasks to search for common
patterns, locate unusual signals, or compute aggregate properties.
When well-configured, such frameworks make it easy to churn
through large quantities of data on large clusters. However,
configuring frameworks presents a challenge for end users, who
must select a variety of parameters such as the blocking of
the input data, the number of tasks, the resources allocated
to each task, and the size of nodes on which they run. If
poorly configured, the result may perform many orders of
magnitude worse than optimal, or the application may even fail
to make progress at all. Even if a good configuration is found
through painstaking observations, the performance may change
drastically when the input data or analysis kernel changes.
This paper considers the problem of automatically configuring
a data analysis application for high energy physics (TopEFT)
built upon standard frameworks for physics analysis (Coffea)
and distributed tasking (Work Queue). We observe the inherent
variability within the application, demonstrate the problems
of poor configuration, and then develop several techniques for
automatically sizing tasks to meet goals of resource consumption,
and overall application completion.

I. INTRODUCTION

Large scale scientific instruments today routinely produce
petabytes worth of data that must be searched, analyzed,
and reduced in order to produce new insights. Distributed
data analysis frameworks are a key tool to processing and
understanding these large quantities of data. Typically, the end
user writes a processing function that consumes a discrete unit
of data in the dataset, whether a single image of the sky, a
single particle collision event, or a single genome sequence.
This function is given to the framework, which then arranges
to divide the dataset into suitable pieces, apply the processing
function to all of the items, distribute the work to many nodes
of a cluster, and retrieve the results, and then summarize them
in some way, typically with the help of a reduction function
provided by the end user. This pattern is found with some
variation in a wide variety of frameworks, such as Dask [6],

Hadoop [19], Parsl [2], Spark [27], Work Queue [5], and
others.

A central problem in the use of these frameworks is con-
figuration. The end user is responsible for selecting a wide
variety of parameters that affect the behavior and performance
of the system: the number and size of cluster nodes to use,
the blocking of data units into tasks, the quantity of resources
(cores, memory, disk) needed by each task, the number of
concurrent tasks of each type, and so on. Each of these
parameters may have a drastic (and non-obvious) effect on
the performance of the system. In this paper we focus on just
two critical parameters: (1) the size of each task, measured
in the number of data items that it consumes; and (2) the
resources (cores and memory) assigned to each task. If the
task size is chosen to be too small, performance may suffer as
the overhead in the software stack for setting and managing
tasks dominates the work actually done, and the scheduler may
be overwhelmed with the sheer quantity of tasks. On the other
hand, if the task size is too large, then tasks may fail to execute
at all as they overwhelm the resources available at a node.

The typical advice given to end users is to adjust the controls
manually for each run until a minimum is found. But this is
not particularly helpful advice: once a workload is completed
and the results obtained, the end user may have no reason to
execute the same thing again for the sake of improving perfor-
mance. Even if a given run is successful, little information is
available to understand whether the configuration was near or
far from optimal. Further, the next run of the framework may
differ in essential ways: the next dataset may have different
size and properties, the analysis kernel may change in ways
that affect runtime and resources, or the system itself may
have changed in scale or performance. This renders many
approaches to autotuning [13] ineffective, because one run of
the framework is unlikely to behave like another run. A more
fine-grained, online approach is needed.

We explore this problem in the context of data analysis
workflows for high energy physics. The Large Hadron Collider
(LHC) produces petabytes of data each year via its four main
experimental detectors — ALICE, ATLAS, CMS, LHCb — each



recording collisions between fundamental particles that may
reveal new physical interactions. Coffea [21] is an emerging
tool for performing late-stage analysis of high energy physics
data using Python-native constructs. In its current form, Coffea
performs a complete partitioning of a dataset into fixed size
pieces and dispatches it to a distributed computing framework
(e.g. Dask, Spark, Work Queue). This requires that the user
select the framework configuration once prior to execution, and
then either accept a complete execution or cancel it outright.

In this work, we develop a strategy for dynamic run-time
task-shaping in Coffea. First, every task is executed under
the care of a lightweight function monitor [14] that observes
and enforces its resource consumption. Second, if the task
is unable to execute within the assigned resources at all,
then it is split into multiple tasks and reassigned. Third, the
framework manager observes the time and resources taken by
each task and incrementally builds a predictive model. Finally,
the framework is re-worked to partition the input dataset
incrementally on-demand, so that tasks may be of variable
size. The manager chooses task sizes to achieve a performance
policy, either for individual tasks or for the whole workload.

We have implemented this technique in the Coffea data
analysis framework, making use of the Work Queue distributed
execution system. Our implementation avoids the dual perils
of too-small tasks making little progress and too-large tasks
making no progress. We show that the dynamic approach
converges quickly on effective task sizes and resource allo-
cations. When considered in the context of an entire run, the
automatic approach achieves performance very close to the
ideal configuration selected statically. This technique has been
deployed in the open-source Coffea framework and is now in
production use by CMS data analysis teams.

II. APPLICATION ARCHITECTURE

TopEFT Application. The TopEFT application is designed
to analyze particle physics data collected by the CMS exper-
iment [22] at the CERN LHC. Stretching 27km in circum-
ference, the LHC is the largest and most powerful particle
accelerator in the world. Two counter-rotating beams of pro-
tons are accelerated to nearly the speed of light before being
made to cross at four interaction points around the accelerator
ring, producing collisions approximately 40 million times per
second. A particle detector is located at each interaction point;
designed to measure the properties of the particles produced in
the high-energy collisions, the detectors record approximately
90 petabytes of data per year. The CMS detector is one of
the two general-purpose detectors at the LHC. A worldwide
collaboration of more than 5000 physicists and engineers
operate the CMS experiment and analyze data it collects in
order to gain novel insights into the physics that governs
fundamental particles and their interactions.

Some of these teams, including members of the CMS
collaboration at the University of Notre Dame, the University
of Nebraska, Ohio State University, the University of Oviedo,
and the University of Zurich are searching for new physics that
impacts interactions involving top quarks and heavy bosons,

and has developed the TopEFT [3] application to perform this
analysis. The analysis utilizes a flexible, model-independent
mathematical framework known as effective field theory (EFT)
to parametrize potential new physics effects associated with
top quarks. Significantly heavier than all other known quarks,
the top may have a unique relationship with yet-undiscovered
phenomena; furthermore, interactions between the top quark
and heavy bosons are very rare and difficult to produce. These
elusive processes consequently represent an interesting probe
of new physics at the energy frontier.

The inputs to the analysis are a set of data files containing
information about each particle collision event to be analyzed.
Comprising both real events recorded by the CMS detector
and simulated collision events produced via Monte Carlo
simulation, several billion collision events will be analyzed
in total. The analysis workflow consists of reading the input
data, processing the collision events to calculate relevant
properties of the events, and producing output histograms
with the relevant physics properties summarized. Though the
number of collision events to be analyzed is large, each event
is completely independent of the others, thus representing an
optimal scenario in which to apply a parallel computational
approach.

Coffea Framework. TopEFT is built upon the more general
Coffea [21] framework for physics data analysis. A Coffea
workflow is specified by a dataset to be analyzed, a pro-
cessor function, and an accumulator function. In its original
implementation, Coffea divides the dataset into static work
units that have approximately the same number of events.
The maximum number of events per work unit is called the
chunksize, and it is a manual parameter provided by the user.
As events are processed, their results are merged together
by a second function, called the accumulator function. The
accumulator function is fully commutative and associative,
and so the results can be merged in any order, or in parallel
via a reduction tree. There is also as part of the workflow,
a preprocessing step in which metadata about the input is
collected, but this step does not change across applications,
and its only purpose is to collect metadata of the input files.
Figure 2 shows the phases of a typical Coffea application.
The preprocessing tasks are executed first, the bulk of the
workflow consists of processing tasks, and accumulation tasks
are created as processing tasks finish.

The memory resource is of special consideration in a
TopEFT workflow. In order to exploit various vectorization
optimizations, a processing function loads all events in a work
unit simultaneously into memory, and the larger the work
unit, the larger its memory usage. Further, for accumulator
functions, the output of the TopEFT application is a collection
of histogram-like data structures that summarize the relevant
physics information about the full set of processed events. A
trivial histogram would be quite small, consisting of a count of
events at each scalar value. However, in the TopEFT approach,
the weight of each signal event generated through Monte Carlo
simulation is parameterized by an n-dimensional second-order
polynomial, where n is the number of EFT parameters studied
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Fig. 1. Architecture of TopEFT Analysis Application. The TopEFT Application defines analysis and accumulator functions as native Python code, and passes
them to the Coffea Framework, which arranges for the partitioning of the dataset into tasks. Tasks are given to Work Queue for scheduling to available
workers, where they run under the control of lightweight function monitors. Data is delivered from the wide area XRootD federation to a local proxy, where it
is accessed in smaller transfer units appropriate for each task. Temporary output is produced on local storage, and then summarized by accumulator functions

to produce a final output, which is loaded back into the TopEFT application.
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Fig. 2. Phases of a typical Coffea application using the Work Queue executor.
One preprocessing task is created per input file, in which each file contains
a number of events to process. Processing tasks are created by splitting the
input files according to a given number of events, called the chunksize. As
processing tasks finish, accumulation tasks are created that reduce the partial
results into a final histogram.

in the analysis. TopEFT explores 26 EFT parameters, meaning
that 378 quadratic fit coefficients are required to parameterize
the 26-dimensional quadratic function for each event. There-
fore, each bin of the histograms accumulated by TopEFT
cannot be described by a single number; rather, each bin is
described by the sum of the quadratic parameterizations of all
of the events that fall into the given bin. These quadratically
parameterized histograms are much larger than conventional
histograms, and since the TopEFT processing tasks fill many
such histograms, the memory usage in the accumulation stage
can be a serious consideration.

Coffea applies the preprocessor, processor and accumulator
functions using one of several provided executor modules.
An executor is responsible for carrying out the execution of
the workflow efficiently and reliably. A number of executor
modules are provided with Coffea: a local executor simply
spawns local threads on a single machine, while executors

for distributed systems such as Spark, Dask, and Work Queue
must arrange for data transfer, parallel execution, and the other
issues that arise in distributed systems. Coffea defines each
task to be run, in terms of the data to be processed and
the functions to execute, and passes them to the underlying
executor for completion.

Work Queue Executor. This work focuses on the use of
Work Queue as the distributed execution system. Work Queue
is a system for creating and managing scalable manager-
worker style programs that scale up to tens of thousands of
cores on clusters, clouds, and grids. A Work Queue manager
accepts task definitions from Coffea and schedules the tasks
to a fleet of remote shared-nothing workers. In this case, the
tasks are Python functions, and so the manager must send
to the worker the function itself, the function arguments, and
perhaps the Python environment, and any other assets needed
to execute. Each worker manages the resources available on a
machine (e.g. cores, memory, disk) and will run as many tasks
as can fit into those resources. For example, a 16-core worker
could run two 4-core tasks and one 8-core task concurrently.

On the workers, each function invocation is executed within
a lightweight function monitor (LFM) [14] to ensure that the
function does not exceed its assigned resources. The LFM
observes the utilization of cores, memory, disk, and other
resources and reports these values back to the scheduler
on completion. If the function should exceed its assigned
resources, the task is terminated and returned to the scheduler
for reconsideration, which is described below.

Dataflow. The total data managed by the CMS experiment
is far too large for any one analysis site to store in its entirety,
and so the data is distributed across a wide-area federation
of universities, making use of the XRootD file service. A
local site typically operates an XRootD proxy/cache which
provides an interface to the system. Each task requests data
from the federation, where it is divided into storage units of
files approximately 1 to 2 GB each. Tasks may request any
subset of this data from the proxy/cache, which will deliver
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Fig. 3. Dataflow of TopEFT Application. The application writer provides
two functions: a processing function is applied to an (arbitrary) partition
of the input data, and produces an output histogram summarizing relevant
properties. An accumulation function is used to perform a tree-reduce on
multiple histograms and produces a final output.

only the portion of the requested file: these (access units) are
correlated to the chunksize selected by the application. As
processing tasks produce output histograms, these are returned
to the manager node, and then consumed again by a tree of
accumulator tasks, until the final output is produced, as shown
in Figure 3.

III. THE CONFIGURATION CHALLENGE

In the default configuration, the end user of TopEFT must
select two interacting configuration parameters: the chunksize
of each task, and the resources allocated to each task.

The chunksize is the maximum number of events to be pro-
cessed in each processing task. Coffea divides the number of
events per file into the smallest equally sized number of work
units such that no work unit has more than chunksize events. If
the chunksize is chosen to be very small, then the total number
of tasks will be large, creating opportunity for parallelism,
but the scheduler will be dominated by the overheads of
dispatching and managing tasks, while the proxy/cache will
be overwhelmed by a large number of small file requests. If
it is chosen to be very large, then the overall parallelism is
reduced, and the runtime of outliers will dominate the overall
execution time.

The resources are the quantity of cores, memory, and disk
needed by each task. If the resources selected are too small,
then tasks will fail as they exceed the allocation, and must be
retried elsewhere with a larger allocation. On the other hand, if
the resources selected are too large, then tasks are guaranteed
to succeed, but concurrency at each worker will be reduced
because fewer tasks will be packed into a given worker, and
resources are left unused.
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Fig. 4. Resources measured processing a whole file per task. The chunksize
set so large that all events in a file are processed together. (a) Tasks memory
distribution. (b) Tasks runtime distribution. These distributions show the
opportunity for parallelism by judiciously shaping the tasks so that they
require less time and memory so that the system can run more of them
simultaneously.
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Fig. 5. Memory and wall time vs number of events per task. Chunksize chosen
randomly for each task. In Coffea, all the events in a work unit are loaded
simultaneously into memory. Even though the relationships are noisy, there
is a strong correlation between resources needed (e.g. memory and compute
time) and the number of events. We take advantage of this correlation to
automatically find appropriate chunksizes given the resources available.

Figure 4 shows the inherent variation in the data. Using the
existing Coffea implementation, we executed one task for each
of 21 files in a standard TopEFT Monte Carlo signal samples
dataset and observed the runtime and memory consumption
using the LFM. The Monte Carlo datasets used for the studies
in this paper consist of simulated proton-proton collision
events, produced to simulate the geometry and conditions
of the CMS detector during the 2017 and 2018 data-taking
periods. While most tasks (note the log scale) consumed about
1.5GB RAM, there are many outliers ranging up to 4GB and
down to 128MB. In a similar way, execution time varies from
a few seconds to over 500 seconds. The problem is further
complicated in two ways. First, there is a coupling between
the number of events and the resources needed: larger tasks
are likely to consume more memory, either by piling up larger
histograms or by encountering more complex events. Second,
the behavior of individual tasks can vary considerably because
of the heterogeneous nature of the input data: physical events
in the stream vary in complexity, as shown in Figure 5.

Figure 6 demonstrates the importance of an appropriately
configured workflow. When there are few resources allocated
per task and a very small chunksize, each task is fairly short
but the overall workflow runtime increases because of the
I/O associated with sending/receiving a task. When there are
too few resources per task and a very large chunksize, some
tasks may not be able to complete because they require more
resources than they have been allocated. There are problems
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Conf | Chunksize | Resources Avg Task Total Tasks | Concurrent Tasks Total Workflow
Runtime (s) per Worker Runtime (s)
A 128K | 1 core, 4GB RAM 181.73 803 4 1066.49
B 512K | 4 core, 8GB RAM 409.68 219 1 2674.87
C IK | 1 core, 2GB RAM 23.76 49784 4 9374.88
D 1K | 4 core, 8GB RAM 20.91 49784 1 29350.68
E 512K | 1 core, 2GB RAM Failed 219 1 Failed

Fig. 6. Impact of bad configurations. The diagrams above indicate the packing of tasks into resource allocations and workers at various configurations, and the
performance observed when running on 40 workers of 4 cores and 16GB RAM each. A: The optimal case with proper chunksize and resource allocation. B:
High resources per task and large chunksize. This does not maximize concurrency. C: Low resources per task, low chunksize. Does not utilize full resources
of the worker. D: High resources per task, low chunksize. Each worker can only fit one task and the task is small. E: Low resources per task, high chunksize.
The task is too large so it cannot fit the resources allocated: the entire workflow fails.

with allocating too many resources per task as well. If coupled
with a very small chunksize, the workers waste resources that
could be used for other tasks. If the chunksize is too large,
then each worker may only be able to run one large task as
opposed to multiple tasks concurrently. Each of these poor
configurations yields runtimes far worse than optimal.

For the end user who is interested in analysing physics
data, the behaviour of turning these knobs is a distraction
that sometimes may result in outright failure. We seek a
more automated approach in which the end user starts a
workload with minimal information, and the framework seeks
its own configuration to achieve acceptable performance while
avoiding disasters.

IV. DYNAMIC CONFIGURATION TECHNIQUES

The existing implementation of Coffea statically divides the
events in each file into equally sized work units given the
chunksize parameter. The chunksize dictates the maximum
number of events per work unit. Each work unit is given a
fixed resource allocation (cores, memory, disk), where both
parameters are given manually by the user. We have developed
a more dynamic implementation via the following techniques.

A. Measuring Task Resources

To start our discussion, we add two simplifying assumptions
which we will later remove. First, we assume that the chunk-
size is fixed, and that the resources required of any task fit
the resources available for execution. The objective here is to
determine how many resources should be allocated per work
unit to pack as many as possible in the resources available and
increase parallelism.

To this end, we exploit the resource management capabil-
ities already present in Work Queue. Workers measure how

many cores, memory, and disk they have available and report
this to the manager. In the steady state, tasks are labelled
with the maximum resources that they expect to use. The
manager then packs as many tasks per worker as resources
allow. Each function evaluation on a worker is measured by the
LFM, which continuously measures the resources used by each
task[14]. If the task exceeds the assigned resources, then it is
terminated and returned to the manager for reconsideration.

However, as the workflow starts, the resources needed for
each task are unknown. The manager will conservatively
assign a single task to use all the resources available at a
worker, striving for task completion rather than task efficiency.
As each task completes, the actual consumption is recorded
at the manager. Once a threshold number of tasks (default
5) in a given category are completed, the manager begins
to predict the resources needed for future tasks based on
prior completions. If a task exceeds its predicted resource
consumption, it is tried a second time using the conservative
assumption of all resources on a worker. If that fails, it is
tried yet again using the largest available worker, after which
it is deemed to have permanently failed in its current shape.
Note that since the runtime of tasks is measured in seconds
to minutes, the cost/complexity of checkpointing tasks that
exhaust resources so that they can be restarted in a larger
allocation would likely exceed the benefit.

Work Queue may use strategies for predicting task re-
source consumption from prior behavior, including maximiz-
ing throughput, minimizing resource waste, or minimizing
number of retries[23]. In general, minimizing number of retries
works better for short running workflows (e.g. running less
than 30 minutes) which consist of a few thousands tasks.
Coffea, and thus TopEFT, are geared to interactive investiga-
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Fig. 7. Reallocating and splitting tasks. All measured values of tasks are shown in the order that tasks were created, rather than on completion. In (a), the
allocation given to future tasks is adjusted as tasks complete and report their usage. Tasks with resource exhaustion are retried using the largest allocation
possible (shown with a gray line). In (b) and (c) the allocation is fixed, and tasks that exhaust resources are split (shown with a gray line). Without updating
task allocations (a) would run inefficiently, and without task splitting (b) and (c) would not complete at all.

tion, and therefore match this application profile. Work Queue
minimizes task retries by keeping track of the largest resource
measured and allocating this maximum when submitting new
tasks to workers.

B. Splitting Failed Tasks

Once we have established resources for a given task size,
we modified Coffea to change a task’s size when needed. In
particular, if a processing task should permanently fail due to
resource exhaustion, the manager then splits the failed task
by dividing it into two tasks, each with an equal number of
events. These tasks are resubmitted to the queue, their resource
consumption is predicted using the smaller number of events,
and they eventually run on workers using smaller resource
allocations. Tasks with unusually large resource consumption
might end up being split multiple times before succeeding.

Splitting of processing tasks is safe because the computation
performed on each event is independent, and therefore the
computation of histograms is commutative. It doesn’t matter
what order events are analyzed in, since they will end up
in the same histogram buckets regardless. However, this only
applies to processing tasks. Preprocessing tasks cannot be split,
because each one measure the metadata of one file. As for
accumulation tasks, Work Queue executes them such that only
the accumulated result and the next result to be accumulated
are kept in memory. Therefore, should an accumulation task
exhaust resources, it may be retried elsewhere with more
resources, but cannot be split.

By default, tasks will only be split if they exhaust resources
when running by themselves using a whole worker. However,
maximum resources can also be set such that a task is split
before they use a whole worker. This is useful when workers
are run in large compute nodes with tens of cores, such as in
HPC centers, or when an expert user has a precise idea of the
resources needed per task.

C. Dynamically Sizing Tasks

While splitting tasks is an acceptable reactive strategy for
dealing with failures, it would clearly be more efficient if tasks
had the proper size to begin with. To allow this, we must
structure the application so that the size of a task may change

over the lifetime of a run. Instead of a priori splitting the
whole workload into an array of tasks, we modified Coffea to
construct tasks according to previous resource measurements.
Based on observations such as shown in Figure 5, we take
advantage of the strong correlation between the chunksize and
the resources needed to complete a work unit successfully.

In the absence of any information, the first tasks are
constructed using a chunksize guess that allows us to explore
the relationship between resources consumed and the task size.
Further workflow runs can run with a previously discovered
chunksize size. As the workflow executes and we gather
more data, we further refine the task sizes to match a given
resource consumption. In the current implementation we use a
linear progression, but more sophisticated methods are worth
exploring. The space of the relationship between chunksize
and resources used is sampled by taking advantage of the way
Coffea constructs work units. Coffea almost never constructs
work units with the given chunksize, as this only occurs if the
number of events in a file is a multiple of it. Instead, the events
in a file are partitioned in the smallest number of work units
so that no group is larger than the given chunksize. With this,
once we compute a chunksize c for a target resource usage, we
eliminate noisy fluctuations by rounding down to the closest
power of 2, ¢, and then randomly use ¢ or ¢ — 1 to avoid
the pathological case where all the files have a multiple of ¢
events.

V. PERFORMANCE EVALUATION

In this section we present the results of applying the
different strategies presented in Section IV. For each of these
experiments, we evaluate the performance of a TopEFT run
that analyzes 219 files totalling 203 GB of data, 51 million
events with 30 hours of total CPU consumption, resulting
in 412 MB in the final (uncompressed) histogram output.
These input files are live production data from the CMS
experiment. We make use of 40 workers allocated from a
shared university cluster, each one providing 4 cores and
8GB of RAM, for a total of 160 cores and 320GB RAM.
This scale was chosen to correspond to a typical end-user
configuration that offers substantial parallelism for real work,
without requiring extraordinary efforts to request (and wait for)
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Fig. 8. Dynamic chunksize. All measured values of tasks are shown in the order that tasks were created, rather than on completion. In (a) we show the
evolution of the dynamic chunksize, memory, and runtime when targeting a 2GB usage per task starting from a very small chunksize value running topEFT
with the default parameters. In (b) the target usage is changed to 1GB, and the starting chunksize is set to too large, which causes all the first tasks submitted
to be split up to three times (number of splits as tasks are created is shown in gray). Finally, in (c) for a target of 2GB per task, we show the effect of turning
on one of the topEFT analysis option that greatly increases the memory consumption per task, with the corresponding decrease in the chunksize computed.

additional resources. While a real run would draw data over the
wide area network, we have temporarily moved the input data
for the run into a local Panasas shared filesystem, to eliminate
performance variations due to congestion and uncoordinated
outsider users.

The techniques described here have been incorporated to the
stable versions, and have been tested with Coffea [21] commit
fec5f645, topEFT [3] commit 8c64a6a8, and Work Queue [5]
commit 9bled9db.

A. Dynamically Sizing Allocations

Our first result comes from just measuring the resources
used per task, and adjusting the allocations accordingly. This is
shown in Figure 7.(a) using a fixed chunksize of 128K events,
and using 40 workers with 4 cores and 2GB of memory per
core. Initially tasks are given all the resources of a worker,
and as they return, future tasks are allocated the maximum
value so far seen, 2.1GB plus some margin (e.g. round up to
the next multiple of 250MB).

Since the memory requirement per task is very close to 2GB,
ideally, we would wish to have each core to run a task in these
4 core 8GB workers, as this would divide the memory evenly
among the cores. However, in this run the maximum memory
value was 2.1GB, which just barely causes the concurrency per
worker to be 3 instead of 4. We specify that a processing task
cannot use more than 2GB to equally divide memory among
the cores, and any task that goes above the limit is split and
retried. An example run is shown in Figure 7.(b). Since there
are two splits, this means that 4 more tasks were created as
compared to Figure 7.(a).

The example in Figure 7.(b) shows a best case scenario
where just a handful of splits lead to an efficient run. However,
different worker configurations and workflows may produce a
high number of splits. As we show in Figure 7.(c), tasks are
limited to use less than 1GB each, which quickly increases
the number of splits needed.

The previous examples assumed that the chunksize was
fixed for the given resources. However, as we described
in Section IV, an adequate chunksize depends both on the



workflow and the resources available. In Figure 8.(a), we
show a run for adapting a very small chunksize (1K events)
for our sample workflow to the previous configuration of 40
workers with 4 cores, 2GB per core. As tasks return and
report their memory usage, the chunksize is updated to target a
memory usage of 2GB for maximum concurrency per worker.
Figure 8.(a) shows the evolution of the maximum chunksize,
with the corresponding changes in memory and runtime per
task. As before, tasks that would go above 2GB of memory
would be split, but in this run that was not necessary. Note that
even when the maximum chunksize stabilizes, the actual size
of the work units varies greatly because different files contain
different number of events.

B. Splitting Large Tasks

In Figure 8.(b) we show the effect of choosing a chunksize
that is too large for the resources available. For this run,
for processing tasks, we use 40 workers with only 1 core
and 1GB of memory. These workers are too small to run
accumulation tasks, and therefore an extra worker with 1 core
and 2GB of memory was also deployed to process them, with
Work Queue automatically sending accumulation tasks to it as
needed. Setting the initial chunksize to 512K all of the first
tasks submitted fail, and they are split until they complete
under the memory constraint. In fact, task splitting completely
dominates the initial part of the workflow, and no real work is
completed until about 1/5 of the workload has been submitted,
when a more adequate chunksize for the remaining tasks is
used. Note that even when a chunksize has been found that
achieves the target memory usage, the relationship between
chunksize and memory is noisy, and some tasks are still split
because they exceed the worker size. Further, considering all
the execution time provided by the workers, 19% was lost in
tasks that needed to be split, which indicates opportunities for
improvement, such as a better initial chunksize guess from
historical data.

Finally, in Figure 8.(c) we show the drastic effects in re-
source consumption that the different topEFT analysis options
have. Simply turning one of this option, greatly increased the
memory consumption per task, and for a target of 2GB, the
chunksize found is only 16K. Given the stringent memory
target and the large difference between the initial guess and
the final chunksize, workers wasted 32% of the time in tasks
that needed to be split. This example shows why we decided
to compute the chunksize dynamically, rather than with an
offline model, as there is wide variability in applications and
the arguments used.

C. End to End Performance

In a production setting, it is rarely the case that the desired
number of workers are instantly available. Instead, the cluster
batch system may deliver a variable number of workers over
time, depending on the offered load and other users. Figure 9
shows a run that highlights the resilience of TopEFT under
these conditions. 10 workers arrive at first, followed by 40
more. All workers are removed around 1000s (perhaps a higher

priority user preempted) and then 30 of them return a few
minutes later, until the entire workflow is done. Note that the
task allocation adjusts at several points early in the workflow.

Figure 10 shows the end-to-end performance of TopEFT
across a varying number of workers, with ten runs at each
point. The auto mode uses the previously described techniques
to converge to the optimal resource allocation during a single
run. The fixed mode runs with the optimal setting found from a
previous run of the auto mode from the start. All configurations
pull the environment from a shared filesystem. Generally, the
total runtimes decrease as more workers are added. The curve
eventually flattens out, which can be attributed to the load
placed on the shared filesystem where the data is stored. The
figure shows that dynamic task sizing and automatic resource
allocation performs similarly to fixing the allocation to the
best setting in advance.

Note that for Figure 10, given the overlap of the error
bars, we do not conclude that the auto mode is “faster”,
simply that it is no worse than the fixed manual configuration.
The variance in performance shown by the error bars has
several contributions, primarily due to the non-determinism
in a distributed systems: tasks can be scheduled in different
orders, concurrent tasks may compete for network bandwidth,
etc. Further, our tests were made at our university cluster
where they competed for resources against other applications.

D. Delivering the Environment

When executing TopEFT tasks we need to ensure that
the correct python environment is available on the remote
resources. If a shared filesystem is available, then the envi-
ronment can be configured in a location that all workers can
access. In the more general case, however, we need to deploy
the correct environment to workers that do not have a shared
filesystem, and that cannot be configured ahead of time.

TopEFT was modified to automatically construct a tarball
with the correct python environment. The tarball construction
is done by installing required packages based on an environ-
ment specification[20], which is then transformed into a single
file using conda-pack [1]. Once the environment file is
ready, a wrapper script unpacks and activates it as needed.
The environment created is 260MB compressed, 85S0MB un-
compressed, and its activation takes around 10s.

We tested four methods of delivering the environment:
1) via the shared filesystem, 2) with a factory that creates
workers that also run inside the wrapper script, 3) sending
and setting up the environment with the first task that executes
in a worker, and 4) setting up the environment per task. As
we present in Figure 11, activating the environment once
per task does noticeably worse than the other methods, but
such a delivery method may still be useful for one-shot long
running functions with special environment requirements. We
found the per worker method to be most useful for rapid
developing of TopEFT code, while the factory method to be
more adequate for production runs as it minimizes data transfer
to the workers.
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VI. RELATED WORK

A variety of approaches have been explored for auto-
configuring distributed applications by predicting end-to-end
performance metrics such as execution time and cost from
input features such as data size and function properties.
Hadoop [19] is a particularly popular target for such stud-
ies. [13]. For example AROMA [16] demonstrates autocon-
figuration of Hadoop applications in the cloud by observing
many prior runs, and then predicting that the current run will
exhibit behavior similar to that of its neighbors in the label
space. In a similar way, Morpheus [15] observes multiple
runs of periodic data analysis jobs, considering the “’skyline”
of jobs running over time, in order to predict a in order to
predict a future Server Level Objective (SLO) for that job.
As noted above, this work does point out that user-defined-
functions experience substantial churn over the course of a
month, and so performance predictions must allow for code
and resource evolution. Wang et al [24] compare the use
of genetic algorithms (GA) and particle swarm optimization
(PSO) for autotuning Spark applications; but once again are
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evaluating multiple runs of the entire MROnline [17] takes
a different approach, focusing on a number of controls that
can be adjusted for individual tasks within a run, however,
these are limited to selecting the resources available for a
given task, rather than reshaping the tasks themselves in order
to meet the available resources. Our work differs from these
prior approaches by performing autotuning during the course
of a single run and taking advantage of the ability to resize
individual tasks, change resource allocations for tasks, and deal
with the unavoidable outliers in a heterogeneous application.

Many data analysis workflows are a special case of mal-
leable applications [11], [12], which can scale up or down,
even as they run, by adding or removing workers, taking into
account observed performance or competition for resources.
In this case, the individual tasks comprising the workflow
are moldable [9], [26], meaning that their size can be chosen
arbitrarily prior to (but not during) execution. The combination
of a malleable workflow composed of moldable tasks gives
a large number of degrees of freedom, which, depending on
your view, make the application capable of executing almost
anywhere, or make it difficult to configure.



Members of the CMS collaboration have developed generic
tools for distributed analysis of physics data. For example,
CRAB [4], and LOBSTER [25] have been used to execute
workflows on thousands of cores in opportunistic resources.
Unlike Coffea, in which the user analysis is written in Python
assuming columnar data, they are mostly written in C++ and
assume that each event is processed at a time.

The computing model used here is similar to map-reduce,
however, unlike technologies such as MapReduce [7] or
Hadoop [19], note that the computation is not moved to where
the data is located, but rather, data comes from the repositories
of the XRootD [8] federation. This allows to run workflows
on generic resources without any previous setup, but does not
take advantage of any data locality. To attack this problem,
new approaches, such as ServiceX [10], aim to enable on-
demand data delivery tailored for nearly-interactive vectorized
analysis. In ServiceX, a user gives transformations (e.g. filters)
to extract just the data required when querying events. These
transformations are colocated with the data, which gives the
potential of greatly reducing the amount of data transferred.

In the current implementation work units may only have
events from the same file. As files vary in the number
of events, this makes the size of the work units variable
and the resource usage less uniform, which leads to a less
efficient resource utilization. Approaches such as lazy arrays
in uproot [18] (the backend that Coffea uses to read files
from XRootD) or ServiceX [10], are promising alternatives
for considering all the workload as a single stream of events
that can be more uniformly partitioned.

VII. CONCLUSION AND FUTURE WORK

In this paper we have demonstrated techniques for the
automated shaping of both task size and resources allocated to
tasks inside the run of a single application. This differs from
prior auto-configuration approaches in that it applies to the
execution of a single workflow, building up information from
prior tasks, rather than relying upon the complete execution
of prior workflows. Of course, this work has been deliberately
limited to only two key parameters, and the problem becomes
more challenging as the number of adjustable parameters
increases: more samples are needed to build a suitable model,
resulting in more time before effective actions can be taken. At
some level, human design expertise is needed to identify the
essential parameters to be turned over to automatic techniques.

Our technique relies upon the ability to construct (simple)
performance models for tasks based on their input parameters.
Ideally, every task behaves independently of the others. How-
ever, data delivery is an inherent bottleneck in this system:
at large scales, task runtime will increase as a function of
concurrency, due to competition for data bandwidth. We would
like to close this loop and make the number of workers also a
function of the network capacity as a resource. For example, if
the bandwidth reported by tasks go below a given minimum,
then the manager can reduce the number of concurrent tasks.

Looking forward, there are opportunities to study the three-
way interactions between task sizing, task resources, and

resource provisioning. In production, end users are confronted
not only with the question of how to size tasks to the available
resources, but also what resources to obtain: both university
clusters and cloud providers offer machines of different capa-
bilities. Should one acquire resources, and then configure the
application to the resources? Or is it better to configure the
application, and then acquire resources to meet it? It remains
to be seen whether these high level approaches are equivalent,
or even whether the solution space is convergent.
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