
Separating Abstractions from Resources
in a Tactical Storage System

Douglas Thain†, Sander Klous∗, Justin Wozniak†,
Paul Brenner†, Aaron Striegel†, Jesus Izaguirre†

† - University of Notre Dame, Department of Computer Science and Engineering

∗ - National Institute for Nuclear and High Energy Physics, The Netherlands

ABSTRACT
Sharing data and storage space in a distributed system re-
mains a difficult task for ordinary users, who are constrained
to the fixed abstractions and resources provided by admin-
istrators. To remedy this situation, we introduce the con-
cept of a tactical storage system (TSS) that separates stor-
age abstractions from storage resources, leaving users free to
create, reconfigure, and destroy abstractions as their needs
change. In this paper, we describe how a TSS can pro-
vide a variety of filesystem and database abstractions for
unmodified applications without requiring special privileges
or kernel changes. A TSS provides performance competitive
with NFS for single clients and also scales well for multiple
servers and multiple clients. A prototype TSS of 120 disks
and 6 TB of storage has been deployed at the University of
Notre Dame and used for applications in high energy physics
and bioinformatics.

1. INTRODUCTION
The user of a modern computational grid has access to an

extraordinary array of hardware. Computing centers with
hundreds or thousands of CPUs, each equipped with a pri-
vate disk and a fast network, are commonplace. Despite
this bounty of hardware, users are limited to primitive data
sharing models. Almost universally, clusters are configured
to use a distributed filesystem whereby all nodes share ac-
cess to a small number of disks on the head node. If a cluster
is part of a computational grid, the head node is usually the
only place where data can be moved via file transfer. Once
a job is running on a given cluster, gaining access to remote
data is difficult or impossible.
As people gather to accomplish work in a cluster setting,

the shared filesystem quickly becomes a policy constraint,
a capacity limitation, or a performance bottleneck, leav-
ing users unhappy and resources idle. An example of this
problem is found in Grid3, a nationwide computational grid

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
SC-05 November 12-18, 2005, Seattle, Washington, USA
Copyright 2005 ACM 1-59593-061-2/05/0011 ...$5.00.

constructed to serve the production needs of seven scien-
tific collaborations. Although Grid3 was able to harness
several thousand CPUs for the benefit of several hundred
users, nearly a third of all jobs submitted to it failed due
to exhausted storage space, usually shared disks found on
cluster head nodes [9]. This problem is not unique to Grid3:
any regular user of a cluster has a similar story to tell.
When considered from a distance, this situation is puz-

zling. Each user is stuck using only the resources arranged
by the administrator. Why can’t a user use a local idle disk
as a personal shared file system? Sharing across administra-
tive domains is limited to manually moving data from head
node to head node via a file transfer service. Why can’t a
user just access a remote archive directly from any cluster
node? Although many people have access to several com-
puting clusters, each is an island to itself. Why can’t several
clusters be used as one large logical filesystem?
We believe these problems are accidental rather than fun-

damental. Given the right tools, users should be able to cre-
ate, reconfigure, and tear down storage abstractions without
harming other users or involving an administrator. If users
have access to raw storage and network resources, they ought
to be able to build whatever abstractions they require in or-
der to accomplish real work.
Thus, we propose the concept of a tactical storage sys-

tem (TSS). In a TSS, administrators simply provide the raw
storage and networking resources, leaving users free to con-
struct the abstractions they require. Any node with a disk
can serve as a storage device, whether it be a private work-
station, a cluster node, or an archival system. From these
resources, users can build up filesystems, databases, caches,
or other structures as they see fit.
A tactical storage system draws a strong distinction be-

tween resources and abstractions. Resources are simply raw
computing and storage capability wrapped in just enough
software to allow it to be exported, controlled, and con-
sumed. Abstractions are higher-level structures that orga-
nize resources into forms suitable for use by external users.
This distinction leads us to a perennial issue in computer
systems design: the selection of the proper interface to re-
sources [16]. An interface that is too high level yields a
simple but inflexible system, while an interface that is too
low level yields a complex and unusable system. We argue
that the Unix file system interface is suitable for both re-
sources and abstractions. We call this approach recursive
storage abstraction and it is a natural fit for a TSS.
In this paper, we present a prototype TSS currently de-

file file file file file file
server server server server server server

cluster admin sets policy workstation owners control policy

catalogcatalog
A

Distributed Database Abstraction

B

discovery

periodic
updates

periodic
updates

low−level data access low−level data access

resource
layer

abstraction
layer

discoveryresource resource

App

App

AppApp

Adapter

Adapter Adapter

Adapter
Distributed−Shared Filesystem Abstraction

Central Filesystem Abstraction Central Filesystem Abstraction

Figure 1: Overview of Tactical Storage

ployed at the University of Notre Dame and supporting a
variety of research projects. The prototype currently con-
sists of 120 devices and 6 TB of storage space. The ba-
sic storage unit is a personal file server with a flexible sys-
tem for authentication and access control. The file server
is designed to be rapidly deployed by ordinary users to any
available storage space. Each file server reports to one or
more catalogs, allowing users and tools to discover available
storage at runtime. Clients communicate with file servers
using a protocol that closely resembles the Unix I/O inter-
faces. Multiple file servers may be combined into a variety
of abstractions, each recursively using and implementing the
same Unix I/O interface. An adapter is used to transpar-
ently connect applications to abstractions by capturing and
transforming system calls.
The primary value of a TSS is flexibility: any user may

create a variety of abstractions on any storage device with-
out special privileges. This flexibility comes at some cost:
the TSS charges an overhead in latency and bandwidth that
is necessarily higher than a kernel-level implementation. How-
ever, we will demonstrate that a user-level TSS has reason-
able performance and is generally limited by hardware con-
straints, not by software design.
Finally, we discuss two different scientific applications that

are making use of the TSS prototype. A high-energy physics
simulation employs a TSS to securely access its home stor-
age while deployed in a computational grid. A bioinformat-
ics research group employs a TSS to share and preserve large
amounts of simulation data. We conclude with a discussion
of further applications of tactical storage.
The contribution of this work is a discussion of how sys-

tems must be structured in order to allow ordinary users
to accomplish sophisticated work within the constraints of
resource owners. Our experience with production computer
systems is that users are constrained by the available func-
tionality, not by the available performance. Thus, this paper

does not explore the traditional distributed filesystem triad
of performance, availability, and consistency. For these con-
cerns, we choose the simplest available solutions. Rather,
this paper presents a discussion about the semantics and
interfaces necessary to make distributed systems serve the
needs of real users.
A brief note on related publications. The technical de-

tails of the Parrot adapter are described in [32]. The Chirp
protocol used by the file server was first mentioned in [31],
but is first described in detail here. The SP5 high-energy
physics application is described in [13]. The GEMS database
is described in [33].

2. ARCHITECTURE
Figure 1 shows the architecture of a TSS. The resource

layer provides storage to external users within policy con-
straints set by the owner. The abstraction layer organizes
resources into structures useful to end users. The compo-
nents are as follows:
File Servers. The basic resource is a file server which

exports a Unix-like I/O interface to external users, who then
use it to build up higher-level abstractions. A single file
server might be used simultaneously by several users and
abstractions. Each file server has an owner that controls
who may use the server and how it may be used, using a
flexible authentication and access control mechanism. The
owner could be a site-wide administrator or the user of a
workstation. A file server can be easily deployed to any
machine without special privileges.
Catalogs. Each file server periodically reports itself to

one or more catalogs, describing its current state, owner,
access controls, and other details. The catalogs in turn pub-
lish an aggregate list of the file servers in a variety of data
formats. Users and abstractions contact catalogs directly in
order to discover new storage resources. A system may have
multiple catalogs reporting on different servers.

Abstractions. Using one or more file servers, users may
create abstractions that provide enhanced semantics, per-
formance, or reliability. The simplest abstraction is the cen-
tral filesystem, which allows a user to carve out shareable
space on any device. More complex abstractions include a
distributed private filesystem, which allows a single user to
harness multiple servers; the distributed shared filesystem,
which allows multiple users to share multiple devices, and
the distributed shared database, which allows binary data
to be indexed, replicated, and searched. Each abstraction
allows independent users to organize storage for their own
purposes without requiring special privileges.
Adapters. Abstractions are useless unless they can be

easily connected to existing applications. Ideally, the oper-
ating system kernel would connect applications directly to
abstractions. However, in a TSS, it is unlikely that users will
be able to modify operating systems at will. They may be in
an institutional environment where such permissions are im-
possible. Or, they may not have the technical means or mo-
tivation. Thus, a TSS provides an adapter that securely and
transparently connects existing applications to abstractions
without special privileges or code changes. This adapter is
Parrot [32], a tool that operates by trapping system calls
through the debugging interface.

3. PRINCIPLES AND RELATED WORK
A tactical storage system has several design principles

that distinguish it from other types of distributed storage
systems: independence, virtual users, recursive abstractions,
failure coherence, direct access, and rapid deployment.
Independence. A TSS allows every participant in the

system to maintain control of the resources that they own.
One person may be willing to share storage with his organi-
zation, but not with the world at large. Another might wish
to construct a large storage system, but only from resources
provided by people that he/she knows and trusts personally.
Thus, a TSS allows owners to specify exactly who they trust
and to retract resources at any time if needed.
The principle of independence lies between two other de-

sign extremes. At one extreme is the global trust found in
parallel storage systems such as Lustre [5] or Google-FS [10].
In this model, all devices collectively work for the common
good and can be relied upon to store exactly what they are
told. This only makes sense within one administrative do-
main. At the other extreme is the notion of global distrust
found in peer to peer systems such as OceanStore [15] and
FARSITE [1]. In this model, no single device can be relied
upon, so expensive measures such as encryption and byzan-
tine agreement are required for even the simplest activity.
A TSS lies between these two extremes. Ownership is

made explicit so that users may choose resources with a
level of trust appropriate for the task at hand. One might
use borrowed resources for a cache, but only storage owned
by trusted friends (or oneself) should be used for archival.
Virtual User Space. Because a TSS facilitates shar-

ing across administrative boundaries, it must have a fully
virtual user space, meaning that notions of identity must
be technically and logically independent of the local user
namespace. This is partially because the owner of a file
server is not necessarily root and cannot create or delete
local users. But even if the owner was root, the local user
space might not be able to represent remote users identi-
fied by complex names such as network addresses or X.509

strings. Thus, each file server implements access controls on
free-form subject names derived from external authentica-
tion systems.
In contrast, most systems export an existing user space.

For example, NFS [29] assumes that all machines share a
common user database. Grid systems such as GRAM [6]
and GridFTP [2] make use of a distributed authentication
system, but require a mapping from global to local user-
names. This makes it easy to attach existing resources to
a computational grid, but requires users to have local ac-
counts on all systems. Large systems such as Grid3 have
mitigated this problem somewhat by aggregating multiple
users into shared local user names [9].
Recursive Storage Abstractions. A TSS uses the

same interface at every layer from the file server all the
way up to the user interface: a filesystem with the famil-
iar interface of open, read, rename, and so forth. Recursive
abstractions allow a TSS to easily interoperate with existing
data sources: a file server can be used to export an existing
filesystem without expensive copies or transformations. A
recursive approach was first advocated for Unix United [28],
but to our knowledge has not been employed elsewhere.
Most distributed storage systems choose to expose data

at either a block-like interface or at an object-like inter-
face. A block interface has been adopted by a number of
parallel and distributed storage systems that provide data
redundancy (RAID [25]) remote access (iSCSI [23]), or both
(Petal [17]). However, a block interface is generally not
suitable for sharing among multiple users, unless they have
complete mutual trust (i.e. VAXcluster [14].) There are two
reasons for this. First, filesystems require atomic access to
complex data structures for metadata and directory trees.
Without server support for these activities, a crashing or
malicious client can leave the filesystem in an inconsistent
state. Second, distributed systems require a large amount of
policy to be attached to storage: files and directories must
have owners, access control lists, and other data structures
that would be impractical to attach to every block. Thus, a
block interface is not the appropriate low-level interface for
tactical storage.
A more recent approach has been to use “objects” as the

low level storage interface [22, 26]. Roughly speaking, an
object is a data blob with a unique name, a known size, and
a small number of operations such as read and write. One
may then build up a filesystem using an object to repre-
sent each file and directory, or by using objects as allocation
units within files and directories. The benefit of an object
interface is that it allows the storage device to assume re-
sponsibility for disk layout and space management without
mandating a particular filesystem design. Further, objects
are of sufficient size that it becomes reasonable to attach
sharing policies to individual objects.
However, objects alone are not enough to build a filesys-

tem. One must have a different sort of service in order
to implement complex operations on metadata and direc-
tory trees. Thus, object-based systems require a second ser-
vice, more like a database, for storing metadata and directo-
ries. This approach is used in systems such as Amoeba [24],
Google [4], and Lustre [5]. Of course, just like a local filesys-
tem, the directory data may be stored in the data objects
themselves, but this still requires a distinct interface to per-
form operations atomically. One could imagine building a
TSS using both object and database servers, but two types of

servers increases the administrative burden on all involved.
Thus, a TSS uses the Unix interface to serve as both ob-

ject server and database server. We call this approach re-
cursive storage abstraction. Ordinary files are sufficient to
store data objects and the directory structure can be used as
a (limited) tree-structured database with atomic operations
for insertion, deletion, and renaming. By exporting a Unix
interface, a TSS server can serve either role to any user,
and may serve both roles to different users. Further, the
owner of a storage device can examine its contents and gain
some useful information about the users and applications to
which it is being applied. Such examination is difficult or
impossible with a block or object interface. A similar sort
of argument is made in favor of the B-tree interface in Box-
wood [18], which can be used to implement a wide variety of
data structures beyond basic filesystems. The TSS interface
is not as flexible as Boxwood, but it is sufficient for build-
ing filesystems and has the further advantage that existing
filesystems may be exported without modification.
Failure Coherence. In a large enough storage system,

hardware failures, system crashes, and network partitions
will be a persistent condition. A tactical storage system
is particularly vulnerable to failures. The set of resources
may change as users add or remove storage devices. The
components of an abstraction are not necessarily locked in
the same machine room, but may be spread over a wide
area network. Resource owners may forcibly delete data
placed by other users in order to make room for their own
needs. In such an environment, it is not reasonable to make
the survival of an abstraction dependent on the presence
or recovery of all devices at once. Thus, a TSS must have
failure coherence: the loss of a component must leave the
system in an operable, if degraded, state. In the context of
a distributed file system, failure coherence means that the
loss of a device may render some data inaccessible, but the
directory structure must remain navigable and data stored
on other devices must remain usable.
Direct Access. Each of the TSS abstractions read and

write data directly to and from file servers without any inter-
vening buffering or caching, much as in Amoeba [24]. There
are several reasons for this.
First, we assume that TSS abstractions are highly dy-

namic and are created and destroyed on a rapid basis, per-
haps even just to run a single remote process. This means
that there are fewer opportunities to take advantage of buffer-
ing and caching, and a greater opportunity to lose data if
abstractions are removed (or fail) before dirty data is writ-
ten. We also expect that a TSS will be employed over fast
networks, thus reducing the benefits of caching.
Second, our experience with grid users and applications is

that there is a high degree of mistrust for transparent buffer-
ing and caching as found in existing distributed filesystems
even when correctly implemented. Buffering and caching in
a traditional filesystem must make some semantic sacrifice
in order to improve performance: either delayed propaga-
tion (as in NFS [29]), an increased sharing granularity (as
in AFS [11]), or in unusual semantics during failures (as
in Coda [12]). A single unexpected sharing result due to
aggressive caching causes chaos in connected systems and
poisons user’s perceptions.
Finally, if users do require data to be nearby for perfor-

mance reasons, the TSS makes it easy to deploy a new file
server in order to store and use a nearby copy.

Rapid Deployment. Traditional distributed file sys-
tems are presumed to be overseen by a professional admin-
istrator in a tightly controlled setting. Consequently, such
systems are difficult to deploy: They require one to obtain
privileges, install kernel modules, edit configuration files,
generate keys and databases, perhaps reboot the system,
and other labor-intensive activities. Previous user-level file
systems [21] have improved upon this by moving the file
server out of the kernel, but still require administrator priv-
ileges in order to bind clients to servers.
In contrast, a TSS is designed to be rapidly deployable.

A basic file server can be deployed by an ordinary user, who
runs a single command with no configuration, setup, or soft-
ware installation. The deployed server is instantly and se-
curely accessible by a variety of tools. This enables ordinary
users to construct complex storage systems, even as para-
sites in existing systems. For example, a large storage pool
suitable for caching or data staging can be constructed by
simply submitting a set of file file servers into a distributed
batch system. This is similar to the concept of gliding in [8].
Related Systems. From a high level, a TSS bears a

similarity to three other complete systems: the Logistical
Networking Stack, the Self-Certifying File System, and the
Storage Resource Broker.
The Logistical Networking Stack (LNS) [26] is a distributed

storage system based on the Internet Backplane Protocol.
Both TSS and LNS build up complex distributed storage ab-
stractions on top of simple, low level servers. However, the
two systems diverge on several fundamental design decisions.
For example, the basic abstraction in LNS is a malloc-like
interface. This simplifies allocation, accounting, and revo-
cation of storage, but makes it difficult to store a filesystem
structure without adding another layer of indirection. LNS
enforces access control via capabilities rather than access
control lists. This allows a wider variety of sharing models,
but re-introduces the old problem of storing and protecting
capabilities. However, capabilities in LNS do offer the ad-
vantage of simplifying directory data transfer between two
hosts, directed by a third party. LNS provides a more gen-
eral abstraction, while TSS is specialized toward filesystems.
The Self-Certifying File System (SFS) [20] allows users

to securely deploy and access NFS-based file systems with-
out relying on an existing authentication infrastructure. To
this end, SFS encodes authentication keys into the names of
both servers and users. Superuser privileges are needed to
deploy both an SFS file server and to mount such a server
at the client side. TSS is similar to SFS in the sense that
both encourage the use of ”personal” file services. However,
TSS differs in three significant ways: it relies upon existing
authentication systems for user identification, allows the de-
ployment and use of storage without special privileges, and
allows for the construction of higher-level abstractions.
The Storage Resource Broker (SRB) [3] allows multiple

server-class data services – including filesystems, archival
systems, and databases – to be federated into a system ac-
cessible from a single client. A distinct metadata service in-
dexes data on multiple service types and locations, allowing
clients to identify and access data by semantically meaning-
ful names. The result is an integrated view of multiple data
types, regardless of the storage technique or location. TSS
is similar in the sense that it is able to federate multiple
servers, but is focused on on the problems of rapid deploy-
ment and transparent access.

4. RESOURCE LAYER
The basic resource of a TSS is a file server. Our pro-

totype employs the Chirp personal file server. The Chirp
protocol was initially designed for use by Condor [31] and
Parrot [32]. It has since evolved but retains backwards com-
patibility. Each file server exports a Unix-like protocol over
TCP to all interested parties. A flexible authentication and
access control scheme allows for controlled sharing between
multiple parties across administrative domains. Each file
server remains under the control of its owner, who is free to
admit (or even evict) data and users as they see fit.
The Chirp protocol works as follows. A client connects

to a file server via TCP and authenticates itself by one of
several methods described below. The client may then issue
remote procedure calls that correspond closely to Unix. For
example, here is a fragment of the Chirp RPC interface:

conn = chirp_connect(host, port, timeout);

chirp_open (conn, path, flags, mode, timeout);

chirp_pread (conn, fd, data, length, off, timeout);

chirp_pwrite (conn, fd, data, length, off, timeout);

chirp_close (conn, fd, timeout);

chirp_stat (conn, path, statbuf, timeout);

chirp_unlink (conn, path, timeout);

chirp_rename (conn, path, newpath, timeout);

As the interface suggests, the client must establish a con-
nection to a server before issuing I/O calls. The open call
returns a file descriptor that may be used to issue pread

and pwrite calls of arbitrary size on the file. pread and
pwrite require an explicit offset, so the client is responsi-
ble for maintaining state such as the current file descriptor
position Operations on the name space such as unlink and
rename only require filenames. In addition to the Unix-like
calls, two additional RPCs getfile and putfile allow for
entire files to be streamed over TCP. All file data is carried
over the same connection as is used for control. This allows
the underlying TCP connection to reach and maintain the
maximum needed window size. In contrast, protocols such
as FTP [27] separate data and control, resulting in multiple
TCP slow starts when multiple files must be transmitted.
From the server’s perspective, failure semantics are sim-

ple. If the client and server become disconnected, then the
server frees all resources associated with that connection,
particularly, all currently open files are closed. This means
that a file descriptor returned by open is only valid for the
duration of the connection. Clients must take responsibility
for recovering from disconnection by re-opening any needed
files. The semantics of failure recovery are controlled by the
adapter so that they may vary from user to user. Thus,
recovery is discussed below in section 6.
Files and directories are stored without transformation in

an ordinary filesystem on the host machine. The owner may
select any directory as the root of the file server, allowing any
user to export fresh space or existing data. For security, it
may be desirable to run the server in a chroot environment
to prevent escape from the server root. Because chroot

is only available to the root user, the server provides an
equivalent facility in software.
In order for the file server to allow sharing across adminis-

trative boundaries, it must provide a fully virtual user space.
That is, a file server cannot simply use the integer identities

stored in a conventional file system: they may be incon-
sistent from machine to machine, even among cooperating
users. Thus, each server manages free-form text identities
independently of the local user database. This requires some
care in both authentication and access control.
Each file server provides several authentication methods.

The simple hostname method allows a client to simply be
identified as the domain name of the connecting host. The
unix method relies on a challenge and response within the
local filesystem: the server challenges the client to touch
a file in /tmp and then infers the client’s identity from the
response. The globusmethod allows a client to authenticate
via the Globus Grid Security Infrastructure (GSI) [7]. A file
server may hold either user or host GSI credentials. The
kerberos method uses the Kerberos [30] system, but this
requires it to run as root in order to access the host key.
When connecting to a server, a client may attempt any

number of authentication methods in any order. If any
method succeeds, the client is given a subject name of the
form method:name. One user might be able to authenticate
by several methods, but only one set of credentials may be
employed in one session. This may be occasionally inconve-
nient, but simplifies troubleshooting and file ownership.
A file server enforces access control lists (ACLs) on each

directory in which data is stored. The form of ACLs should
be familiar to most readers. Each entry consists of a subject
name and a list of rights: R to read files, W to write or create
files, L to list the directory, and A to modify the ACL. For
example, in order to all machines in domain *.cse.nd.edu
and all users with GSI credentials at Notre Dame to read,
write, and list the contents of a file server, the root ACL
would be:

hostname:*.cse.nd.edu rwl

globus:/O=Notre_Dame/* rwl

However well-meaning, the ACL above is not likely to be
useful. Even if the owner intends to give access to such a
wide group of users, they will certainly not wish to share the
namespace, allowing one user’s files to be read by another.
Typically, visiting users will require a fresh namespace and
the ability to adjust the ACL in order to permit access to
their collaborators. For this purpose, an ACL may also in-
clude the reserve right (V). Consider this ACL:

hostname:*.cse.nd.edu v(rwl)

globus:/O=Notre_Dame/* v(rwla)

When a user performs a mkdir in a directory in which
he/she holds the V right, the newly-created directory is
initialized with an ACL giving only the calling user the
rights specified in the parent directory. Suppose that the
above ACL is present in the root directory when a user
hostname:laptop.cse.nd.edu calls mkdir(/backup). The
ACL in /backup would be:

hostname:laptop.cse.nd.edu rwl

This allows hostname: laptop.cse.nd.edu to read, write,
and list data in the new directory. However, note that the
user was not given the administration (A) right, because it
was omitted from the parent ACL. This prevents the user
from giving access to others. However, users presenting cre-
dentials matching the wildcard would be given the (A) right,
allowing them to extend access to others.

adapter

file
serverserverserver

filefile
serverserverserver

filefile

adapter

file
serverserverserver

filefile

adapter adapter

server

adapter adapteradapter

file file

appl

file data only

structure
directory

applappl appl

file data
only

directory

whole
filesystem

applappl appl db
server

index
file

file data only

db
query

access
data

DPFS: dist−private filesystem DSFS: dist−shared filesystem DSDB: dist−shared databaseCFS: central filesystem

Figure 2: Recursive Storage Abstractions

These combined techniques of authentication, access con-
trol, and reservation allow for secure sharing of storage be-
tween cooperating users. A file server may be established
for private purposes, for sharing within a well-defined com-
munity, or for sharing with the world at large. In all models,
authorized visiting users may create private workspaces.
Where necessary, the owner of a file server may evict users

or data by simply deleting files. No special support is needed
for this beyond the usual ACLs. The owner of a file server
retains access to all data on that server and is free to delete
it according to any policy, perhaps deleting files according
to owner, activity time, or file size. The right to delete (but
not modify) files can be given to others by granting the D
right.
To assist with the discovery, measurement, and admin-

istration of multiple file servers, each periodically reports
itself to one or more catalog servers. Each periodic report
describes the owner, status, available space, top-level ACL,
and other vital data about the server. The catalog in turn
publishes the set of available storage devices for users and
other software components to view in a variety of formats.
If a server does not report to a catalog after a configurable
timeout, it is removed from the listing.
A TSS may include several catalog servers, each collecting

reports from a different, possibly overlapping subset of the
available storage devices. Obviously, redundant catalogs can
be used for fault tolerance and load sharing. However, mul-
tiple catalogs may also be useful for reasons of policy and
organization. For example, a user creating a TSS by sub-
mitting storage servers to a grid might establish a separate
catalog server as a rendezvous for these transient servers.
All data in a catalog is necessarily stale. Any matter

reported by a file server, whether storage space or access
controls, may have changed between a query to the catalog
and a query to a file server. Thus, abstractions that rely
on the catalog for discovery must be prepared to revisit any
assumptions made using the catalog state.

5. ABSTRACTION LAYER
Using the resource layer, ordinary users may construct a

wide variety of different abstractions. Figure 2 compares
four abstractions: the centralized filesystem (CFS), the dis-

tributed private filesystem (DPFS), the distributed shared
filesystem (DSFS), and the distributed shared database
(DSDB). Each provides a different tradeoff in sharing, per-
formance, and scalability. One may easily imagine more
sophisticated abstractions built on a TSS.
CFS - The simplest abstraction is the centralized file sys-

tem (CFS). In this abstraction, the user simply accesses files
and directories on a single file server without translation. Of
course, a user must create a private directory using the re-
serve (V) right described above. All Unix operations are
carried from the application to the file server, where con-
sistency and synchronization are managed in the usual way
within the host kernel. CFS is roughly analogous to NFS,
except that it provides grid security and Unix-like consis-
tency by dispensing with buffering and caching. A typical
application of CFS is to provide secure remote access to ex-
isting filesystem data for jobs in a grid computing system.
DPFS - With a CFS, the user gets the performance of an

untranslated filesystem, but is limited to the storage capac-
ity of the single device on which the data is stored. Using
a distributed-private file system (DPFS), a user can employ
the aggregate storage of multiple file servers in one image.
In a DPFS, the file servers are used only to store file data.
The directory structure is stored in a local Unix filesystem
chosen by the user. Where the directory structure indicates
a file, it instead contains a stub file pointing to the file data
elsewhere, as shown:

host3.cse.nd.eduhost5.cse.nd.edu

root

figurespaper.txt

a.eps b.eps

host5.cse.nd.edu
/mydpfs/file596

/mydpfs/file102 /mydpfs/file35

In this example, file /paper.txt is stored in file
/mydpfs/file596 on host5, while /figures/b.eps is in
/mydpfs/file35 on host3.
From this structure, the implementation of a DPFS is

straightforward. To create a new filesystem, one must spec-
ify a list of hosts, create a new directory root, and create

new storage directories on each server. To create a new file,
a new stub entry must be created, a remote server must
be chosen, and the new file created. Once opened, a file is
accessed directly on the file server without reference to the
directory structure. Name-only operations like mkdir and
rename modify the directory tree without contacting a file
server.
The DPFS allows a user to create large file systems spread

across multiple machines without requiring special privileges
at either end. However, it does not allow multiple users to
share the same filesystem, because the metadata is contained
in a filesystem private to one user. To allow sharing, the
metadata must also be stored in the resource layer. This
approach is taken by the next abstraction:
DSFS - The distributed shared filesystem (DSFS) is cre-

ated by moving the directory tree onto a file server. Now,
multiple clients may access the directory tree and follow
pointers to file data on multiple servers. A single file server
might be dedicated for use as a DSFS directory, or it might
serve double duty as both directory and file server.
Recall from above that a TSS does not cache data, so there

are no problems of cache-coherency. However, there are
some synchronization issues common to DPFS and DSFS.
To avoid losing track of data due to a failure, file creation is
performed in the following order. 1 - A file server is chosen
and a unique data file name is generated from the client’s
IP address, current time, and a random number. 2 - A stub
entry is created in the directory tree. 3 - The corresponding
data file is actually created. Steps 2 and 3 are performed
using the “exclusive open” feature of the Unix interface (yet
another benefit of recursive abstractions.) so that in the
event of a name collision between two processes, file cre-
ation can be aborted. If a crash occurs between steps 2
and 3, the file system is left with a stub name but no data
file. (This is better than the alternative: a data file but no
stub.) An attempt to open such a file yields “file not found”.
Such a dangling stub file deviates slightly from traditional
Unix semantics, but prevents unreferenced garbage, and is
easily deleted by a user. Likewise, deletion is performed by
removing the data file, then the stub file.
Note how DSFS differs from other filesystems that follow

the object-and-directory model. Instead of designating one
type of server for file data and another type of server as
a directory database, a TSS allows any server to act in ei-
ther role. A Unix-like filesystem already has the capability
to manage file data as plain files and to manage metadata
within a filesystem structure. It is not necessary to construct
a new type of interface.
DSDB - Scientific data is often better served by a database

than by a filesystem. Researchers in many fields generate
large amounts of binary data – such as simulation outputs –
that must be indexed, sorted, searched, and viewed in many
different ways. For this purpose, we have constructed a dis-
tributed shared database. The DSDB is similar to the DSFS,
except that a database server is used to store file metadata
as well as pointers to files. A user queries the database to
yield the names of matching files, and then accesses them
directly with the adapter.
The DSDB allows for the complex forms of sharing needed

to support a scientific community. One research group may
establish a file server allowing all of its members to read and
write data, while allowing external users only to read. An-
other might support writing only by explicitly selected prin-

cipal investigators from multiple institutions. Several file
servers might set aside directories with the reserve (V) bit,
allowing remote collaborators to share space for replicating
data between groups. As new equipment is purchased, file
servers may be added and used without bringing the system
down.
Each of these abstractions are failure coherent. That is,

the loss of a storage device yields a partial, usable, system.
This is a vital property in a system with multiple devices
that is highly likely to experience a failure of some kind. If
any single file server containing file data is lost temporarily,
then only those files on that server will become unavailable.
If file data is lost permanently, then files located on those
servers will be lost, but the directory structure (or database)
remains navigable.
Of course, the directory (or database) server is still a sin-

gle point of failure, and should be placed on a sufficiently
reliable server. If the directory (or database) server is lost,
then the filesystem is no longer navigable. However, the
remaining portions of the filesystem are stored in distin-
guishable directories on each of the file servers, allowing for
either manual recovery or complete removal. In the DSDB,
the database could even be recovered automatically by res-
canning the existing file data.
We conclude by noting that these abstractions are not

presented as the final word in the design of filesystems and
databases. One can imagine a wide array of variations and
improvements upon the abstractions, such as striping each
file’s data across multiple disks, replicating files for fault
tolerance, or distributing directory structure for improved
metadata performance. Rather, we have argued that the
TSS architecture empowers users to create a variety of useful
abstractions without encountering administrative and tech-
nical barriers.

6. ADAPTERS
Finally, the various abstractions must be attached to the

applications that wish to use them. Ideally, the operating
system would perform the technical binding of filesystem
operations to the necessary code through a device driver or
kernel extension. However, as many have observed, modi-
fying the local operating system (or even requiring special
privileges) is simply not a practical requirement in a grid
computing system that is spread across multiple institutions.
Neither is it acceptable to require existing applications to be
re-written to access new storage systems.
Thus, a TSS requires adapters that can transparently con-

nect unmodified to the various abstractions. For this pur-
pose, we provide an adapter called Parrot. This adapter
connects to an application through the debugging interface
and instructs the kernel to intercept all of its system calls.
As each call is attempted, the application is halted, and the
adapter provides a new implementation. In this manner,
the adapter may provide any service that would normally
be implemented in the operating system. An earlier paper
describes Parrot in detail [32].
By default, the adapter presents each abstraction as a new

top-level entry in the directory hierarchy with the second-
level name identifying a host or volume. For example, a file
server on host shared.cse.nd.edu can be accessed under
/cfs/shared.cse.nd.edu. In addition, an application can
be given a “mountlist” that creates a private namespace by
mapping logical names to external abstractions. For exam-

ple, this mountlist would cause an application to perceive
a CFS abstraction under /usr/local and a DSFS under
/data.

/usr/local /cfs/shared.cse.nd.edu/software

/data /dsfs/archive.cse.nd.edu@run5/data

Like any distributed filesystems, a slight variation from
Unix semantics is necessary in order to support recovery
from disconnection. If the TCP connection to a server is
lost, the server closes the client’s opened files. The adapter
responds by attempting to reconnect to the server with an
exponentially increasing delay. (Users may place an upper
limit on these retries with a command-line argument.) If
the connection is re-established, then the adapter re-opens
files for the user, hiding any change in the underlying file
descriptor. In addition, it uses stat to verify that the file
has the same inode number as before. If it does not, then
the file was renamed or deleted between the first open and
the disconnection. In this case, the client receives a “stale
file handle” error as in NFS.
As stated above, the adapter performs no buffering or

caching before sending data to a file server: it sends all op-
erations to server in the order that they are issued. However,
we leave unspecified whether the server must flush newly-
written to disk before returning success. Synchronous writes
are a well-known and necessary technique for ensuring re-
liability of data across failures. Nevertheless, users often
choose performance over reliability. For example, the 30-
second lag in the traditional Unix buffer cache is widely
considered to be an acceptable risk. Thus, the adapter al-
lows users to choose synchronous or asynchronous writes via
a command line switch. Synchronous writes are easily im-
plemented by simply transparently appending the O SYNC

flag to all open calls. (Another benefit of using recursive
abstractions.) In the following performance evaluation, we
show asynchronous writes in order to evaluate maximum
performance.

7. PERFORMANCE
In this section, we demonstrate that a TSS can drive a

storage and networking system to its hardware limits, de-
spite the user-level implementation of both client and server.
We also compare TSS against NFS because NFS is the tech-
nology most accessible to end users that would otherwise
be used for “tactical” purposes, modulo the administrative
difficulties described above. Although there certainly exist
many other distributed filesystems, none are simple enough
to deploy that they would be considered for such purposes.
We also demonstrate that a TSS can provide performance
scaling with the number of servers and clients.
Our goal in this section is to evaluate the overhead of the

user-level components. Most other filesystems implement
both client and server at the kernel level, thus avoiding the
extra latency and data copy of a user/kernel context switch.
To this end, we will demonstrate that the TSS has a mea-
surable overhead at the level of individual system calls, but
can still be used to drive the storage and network systems
to maximum capacity.
Note that our goal is not to evaluate the value of caching

and buffering. We have argued that caching and buffering
introduce unacceptable semantics, regardless of the perfor-
mance benefit. Others have made the opposite argument.

Thus, comparing TSS (with no caching) against NFS (with
caching) would yield no new insight. Instead, we provide a
comparison of TSS (with no caching) against NFS (with no
caching) in order to evaluate the overhead of protocol and
implementation while holding other variables constant.
We begin by examining the overhead charged by the sys-

tem call trapping mechanism in the adapter. This mecha-
nism increases the latency of system calls due to multiple
context switches between the kernel, adapter, and applica-
tion. It also requires an extra data copy between the ker-
nel and the application. Figure 3 compares the latency of
unmodified Unix system calls against the same calls made
within Parrot. Each measurement was generated by 1000
cycles of 100,000 iterations of each call on a 2.8 GHz Pen-
tium 4 running Linux 2.4.21. Most system calls are slowed
by an order of magnitude.
However, compare this to the cost of network I/O opera-

tions shown in Figure 4. We measure the same set of system
calls in the same manner using three different filesystem ab-
stractions over a commodity 1Gb/s Ethernet. We compare
a CFS accessed via Parrot to an NFS accessed via the usual
kernel method and a DSFS via Parrot. We have turned off
caching and synchronous writes in NFS in order to create
an apples-to-apples comparison.
Note that the latency of these operations (including the in-

kernel NFS) outweigh the latency of Parrot itself by another
order of magnitude. Next, consider that Parrot+CFS has
performance quite comparable to that of Unix+NFS. CFS
has lower latency for stat and open/close, because it does not
require lookup operations to resolve names to inodes. CFS
has lower latency for the 8KB write because only one round
trip is needed to retrieve the data. As expected, DSFS has
identical performance to CFS for reads and writes, but has
twice the latency for metadata operations because it must
access the stub file as well as the data file.
The bandwidth available to a single client is shown in

Figure 5. To measure this, we copy 16 MB of data to each
target system using a varying block size, defined as the size
of each individual read or write system call. The average
and standard deviation of ten measurements is shown. The
Unix case shows the upper bound of 798 MB/s, constrained
by local system performance. The same copy through Parrot
peaks at 431 MB/s, due to the extra data copy. Again, even
this reduced bandwidth is far above the available network
bandwidth of 128 MB/s (1 Gb/s), of which Parrot+CFS is
able to use 80 MB/s. Finally, Unix+NFS is only able to
obtain 10 MB/s due to the request-response nature of the
protocol. Again, NFS is run in asynchronous mode; the low
bandwidth is due to the protocol, not due to the target disk.
DSFS (not shown) has the same behavior as CFS for a single
client. Similar results are obtained for reading data.
Next, we show that DSFS is able to provide scalable per-

formance for multiple clients and multiple servers. Server
scalability is achieved in two ways. Multiple servers in-
crease the total memory used as buffer cache on each file
server. Multiple servers also increase the aggregate band-
width between clients and storage. To explore scalability,
we establish a DSFS on a cluster where each node has a
250 GB SATA disk, 512 MB RAM, and a full-duplex giga-
bit Ethernet connection to a commodity switch. We vary
the number of server nodes and the amount of data stored
in the filesystem. Load is generated by running clients on
other cluster nodes that select large files randomly and read

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

write
8KB

write
1B

read
8KB

read
1B

open-
close

statgetpid

T
im

e
(u

s)

parrot
unix

Figure 3: System Call Latency
The overhead charged on individual system calls by the Par-
rot adapter. Most calls are slowed by an order of magnitude.
However, Figure 4 shows that this cost is overwhelmed by
network latency.

 0

 200

 400

 600

 800

 1000

write
8KB

write
1B

read
8KB

read
1B

open-
close

stat

T
im

e
(u

s)

parrot
parrot+cfs
unix+nfs
parrot+dsfs

Figure 4: I/O Call Latency
The latency of single I/O calls. Note that Parrot-based CFS
generally has lower latency than kernel-based NFS. DSFS
has slower stat and open calls because stub file lookups re-
quire multiple round trips.

 1

 10

 100

 1000

 16384 4096 1024 256 64 16 4

B
an

dw
id

th
 (

M
B

/s
)

I/O Block Size (KB)

unix

parrot
parrot+cfs

unix+nfs

Figure 5: Single Client Write Bandwidth
The maximum bandwidth achieved writing 16MB in vari-
ous block sizes. Parrot+CFS achieves higher bandwidth than
Unix+NFS because it uses variable sized messages over TCP
instead of 4KB RPC packets.

 0
 50

 100
 150

 200
 250

 300
 350

 400

 0 4 8 12 16 20

T
hr

ou
gh

pu
t (

M
B

/s
)

Number of Clients

switch bound

port bound

8
4
3
2
1

Figure 6: DSFS Scalability: Net-Bound
The scalability of a DSFS serving 128 MB from 1-8 servers
on a 1 Gb/s switch. One server saturates one port at just
over 100 MB/s. Three or more servers begin to experi-
ence queuing effects and saturate the switch backplane at
300 MB/s.

 0
 50

 100
 150

 200
 250

 300
 350

 400

 0 4 8 12 16 20

D
at

a
T

hr
ou

gh
pu

t (
M

B
/s

)

Number of Clients

switch bound

disk bound

8
4
3
2
1

Figure 7: DSFS Scalability: Mixed-Bound
The scalability of a DSFS serving 1280 MB from 1-8 servers
on a 1 Gb/s switch. With less than three servers, the system
is disk-bound. With more servers, all data fits in memory,
and the system is bound only by the switch.

 0

 20

 40

 60

 80

 100

 120

 140

 0 4 8 12 16 20

D
at

a
T

hr
ou

gh
pu

t (
M

B
/s

)

Number of Clients

8
4
3
2
1

Figure 8: DSFS Scalability: Disk-Bound
The scalability of a DSFS serving 12800 MB from 1-8
servers on a 1 Gb/s switch. In all configurations, this sys-
tem is disk bound. Note that throughput increases roughly
linearly with the number of servers.

them out of the filesystem. We use three configurations to
show that a DSFS is constrained only by hardware capacity.
Figure 6 shows a network-bound system. 128 files of 1 MB

are stored in a DSFS with 1 to 8 servers. In all configura-
tions, all data fits in the server buffer caches. One server can
transmit at 100 MB/s, near the practical limit of TCP on
a 1Gb port. Multiple servers increase the total bandwidth,
but are soon limited by the backplane of the inexpensive
commodity switch.
Figure 7 shows a mixed-bound system. 1280 files of 1 MB

are stored in a DSFS with 1 to 8 servers. With one or two
servers, not all data fits in the server buffer caches, and the
system runs at disk speeds. With three or more, the system
is constrained only by the switch backplane.
Figure 8 shows a disk bound system. 1280 files of 10 MB

are stored in a DSFS with 1 to 8 servers. In all configu-
rations, there is not enough buffer cache to keep the data
in memory. A single server is able to sustain 10 MB/s, the
raw disk throughput. As servers are added, the throughput
increases linearly.

8. APPLICATION TO
HIGH ENERGY PHYSICS

SP5 is a software component of the BaBar high-energy
physics experiment in progress at the Stanford Linear Accel-
erator Center by an international collaboration of researchers.
A large amount of simulation is needed to understand the
response of the detector apparatus. The computing needs of
the collaboration exceed the resources available at any one
of its constituent research labs and universities. However,
all bound together into a computational grid should provide
sufficient computing power.
Like many scientific applications, SP5 has a number of

complexities that make it difficult to deploy in a distributed
system. It is not a single static executable, but a collection
of scripts, executables, and dynamic libraries. The configu-
ration and output data used by SP5 are stored using a com-
mercial I/O library whose data are protected by a lock server
running on the same host. Although the data are designed
to be accessed simultaneously using a shared filesystem, it is
very difficult to deploy SP5 on a grid. Users cannot install
distributed file system clients on the nodes of a grid, nor can
SP5 be easily deployed on new nodes.
Using a TSS, we are able to deploy SP5 into a computa-

tional grid without changing any of the application code, the
installation structure, or the data organization. To achieve
this, the SP5 executable is submitted to a computational
grid along with the adapter and appropriate GSI credentials.
As SP5 runs, the adapter contacts a CFS to load dynamic
libraries and scripts and provide access to the data. Using
the virtual user space of the file server, access controls are
set so that only grid users with the appropriate credentials
may access the data.
The TSS is competitive with the performance of NFS, as

the following table shows. Each run of SP5 requires a certain
amount of initialization time, and then processes a variable
number of simulation events, typically thousands. We then
compare four different configurations that the application
may be run in. 1 - SP5 running unmodified using data on
a local filesystem. 2 - SP5 running unmodified using data
on an NFS filesystem over a 100 Mbps Ethernet. 3 - SP5
running using a TSS in the same configuration as LAN/NFS.

4 - SP5 running on a computational grid, accessing data over
a wide area link of (roughly) 100 Mbps capacity. Note that
there is no WAN/NFS case because this configuration is
both socially and technically impossible to create.

configuration init time time/event
1 Unix 446 ± 46 s 64 s
2 LAN / NFS 4464 ± 172 s 113 s
3 LAN / TSS 4505 ± 155 s 113 s
4 WAN / TSS 6275 ± 330 s 88 s
(Table reproduced from an earlier paper [13].)

As can be seen, the time to initialize SP5 increases by an
order of magnitude no matter what the connection method.
However, once initialized, simulation events (typically thou-
sands) can be processed within a factor of two performance.
If a TSS allows the user to harness more CPUs than he/she
would be able to otherwise, then overall throughput can be
increased. (Note that the WAN/TSS case processes single
events faster than LAN/TSS due to a slightly faster proces-
sor. Heterogeneity is a fact of life in a grid.)

9. APPLICATION TO BIOINFORMATICS
The field of bioinformatics is experiencing a data man-

agement crisis. A single user of a simulation tool such as
PROTOMOL [19] can easily generate so many simulation
outputs that a database is needed to simply keep track of
the work accomplished. Multiple researchers engaged in the
same area of study wish to index and share results with
each other in order to prevent duplication of effort. Results
of high value must be replicated across multiple physical
devices in order to provide performance locality fault toler-
ance. A TSS is a natural structure for supporting the needs
of this community.
To support bioinformatics, we have deployed a TSS at the

University of Notre Dame. The current system consists of
120 file servers with 6 TB of total storage on a variety of
systems including private workstations, classroom worksta-
tions, and research clusters. On this TSS, we have deployed
a distributed shared database named GEMS: Grid Enabled
Molecular Simulations. GEMS is designed to track and store
outputs from the PROTOMOL simulation toolkit. Like the
generic DSDB shown above, GEMS stores files on file servers
and indexes them with a database. In addition, GEMS dy-
namic replicates files in order to assure survival.
Two active components work in concert to maintain repli-

cas. An auditor process periodically scans the database and
then verifies the location and integrity of data on file servers.
If it discovers that files have been damaged or removed, it
makes note of these problems. A replicator process exam-
ines the notations and then repairs them by re-replicating
the remaining copies.
Figure 9 shows an example of this preservation activity.

A modest data set of 14 GB is entered into GEMS for safe-
keeping. The user specifies that up to 40 GB of space may
be used to store this dataset. Once a single copy of the data
is accepted, the replicator process then works to replicate
the data until the storage limit has been reached. At three
points during the life of this run, three failures are induced
by forcibly deleting data from one, five, and ten disks. As
the auditor process discovers the losses, the replicator brings
the system back into a desired state. (This figure is repro-
duced from an earlier paper [33].)

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10 12

S
to

ra
ge

 (
G

B
)

Time (hours)

avg replicas: 1

avg replicas: 2

avg replicas: 3
dataset limit: 40 GB

one disk lost

five disks lost

ten disks lost

data inserted

replication
in progress

replication
complete

perceived storage used
actual storage used

Figure 9: Data Preservation in the GEMS Distributed Shared Database

10. CONCLUSION
We have presented the concept of a tactical storage sys-

tem, which empowers users to create storage structures on
fly as needed within an existing distributed computing sys-
tem. This is accomplished through two novel insights:
Separation of abstractions from resources. End users and

system administrators have two distinct roles to play. Sys-
tems should provide each with the necessary tools to accom-
plish their roles, but no more. Users need to accomplish real
work by consuming resources, perhaps simultaneously from
different providers. Administrators are responsible for es-
tablishing services and controlling resource consumption by
various users. A TSS respects both roles while giving each
group technical autonomy. Users can create and destroy
abstractions as much as they like. Administrators are not
bothered or even notified of such abstractions, except to the
extent that they represent resource consumption. However,
in order to provide this clean separation, there must be a
simple, consistent interface between resources and abstrac-
tions, which is provided by:
Recursive abstractions. Most distributed storage systems

are built upon two distinct services: one for storing data,
and another for organizing directories. A TSS takes advan-
tage of the observation that a Unix filesystem already has
implemented both types of service, and can thus be used in
either role. Further, the combination of both roles simplifies
the separation of abstractions from resources. The adminis-
trator doesn’t (and shouldn’t) care to what purpose a user
is employing a file server, except to the extent that local
security and resource policies must be enforced.
Thus, the two notions are mutually supporting: separa-

tion of abstractions from resources encourages recursive ab-
stractions, and vice versa.
To demonstrate these concepts, we have presented a va-

riety of abstractions and shown two applications that make
use of them. Of course, many more variations are possible
within a TSS. One may imagine filesystems that transpar-
ently stripe, replicate, and version data. A TSS is a nat-
ural platform for distributed backups, allowing cooperating
users to easily record many backup images, thus allowing for
on-line perusal, recovery, and forensic analysis of data over
time. The flexible policies present at each storage device
will certainly lead to new modes of interaction.
These issues we leave open for future work.

11. REFERENCES
[1] A. Adya, W. J. Bolosky, M. Castro, G. Cermak,
R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch,
M. Theimer, and R. P. Wattenhofer. FARSITE:
Federated, Available, and Reliable Storage for an
Incompletely Trusted Environment. In Operating
Systems Design and Implementation, Boston, MA,
Dec. 2002.

[2] W. Allcock, A. Chervenak, I. Foster, C. Kesselman,
and S. Tuecke. Protocols and services for distributed
data-intensive science. In Proceedings of Advanced
Computing and Analysis Techniques in Physics
Research, pages 161–163, 2000.

[3] C. Baru, R. Moore, A. Rajasekar, and M. Wan. The
SDSC storage resource broker. In Proceedings of
CASCON, Toronto, Canada, 1998.

[4] S. Brin and L. Page. The anatomy of a large scale
hypertextual search engine. Computer Networks and
ISDN Systems, 30(1–7):107–117, 1998.

[5] Cluster File Systems. Lustre: A scalable, high
performance file system. white paper, November 2002.

[6] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman,
S. Martin, W. Smith, and S. Tuecke. Resource
management architecture for metacomputing systems.
In IPPS/SPDP Workshop on Job Scheduling
Strategies for Parallel Processing, pages 62–82, 1998.

[7] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A
security architecture for computational grids. In ACM
Conference on Computer and Communications
Security Conference, 1998.

[8] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and
S. Tuecke. Condor-G: A computation management
agent for multi-institutional grids. In Proceedings of
the Tenth IEEE Symposium on High Performance
Distributed Computing, pages 7–9, San Francisco,
California, August 2001.

[9] R. Gardner and et al. The Grid2003 production grid:
Principles and practice. In IEEE Symposium on High
Performance Distributed Computing, 2004.

[10] S. Ghemawat, H. Gobioff, and S. Leung. The Google
filesystem. In ACM Symposium on Operating Systems
Principles, 2003.

[11] J. Howard, M. Kazar, S. Menees, D. Nichols,
M. Satyanarayanan, R. Sidebotham, and M. West.

Scale and performance in a distributed file system.
ACM Trans. on Comp. Sys., 6(1):51–81, February
1988.

[12] J. Kistler and M. Satyanarayanan. Disconnected
operation in the Coda file system. Operating Systems
Review, 23(5):213–225, December 1989.

[13] S. Klous, J. Frey, S.-C. Son, D. Thain, A. Roy,
M. Livny, and J. van den Brand. Transparent access
to grid resources for user software. Concurrency and
Computation: Practice and Experience, to appear.

[14] N. Kronenberg, H. Levy, and W. Strecker. VAXcluster:
A closely-coupled distributed system. Transactions on
Computer Systems, 4:130–146, May 1986.

[15] J. Kubiatowicz, D. Bindel, P. Eaton, Y. Chen,
D. Geels, R. Gummadi, S. Rhea, W. Weimer,
C. Wells, H. Weatherspoon, and B. Zhao. OceanStore:
An Architecture for Global-Scale Persistent Storage.
In Architectural Support for Programming Languages
and Operating Systems, 2000.

[16] B. W. Lampson. Hints for computer system design. In
Proceedings of the Ninth ACM Symposium on
Operating Systems Principles, volume 17, pages 33–48,
1983.

[17] E. Lee and C. Thekkath. Petal: Distributed virtual
disks. In Architectural Support for Programming
Languages and Operating Systems, 1996.

[18] J. MacCormick, N. Murphy, M. Najork, C. Thekkath,
and L. Zhou. Boxwood: Abstractions as a foundation
for storage infrastructure. In Operating System Design
and Implementation, 2004.

[19] T. Matthey and J. Izaguirre. ProtoMol: A molecular
dynamic framework with incremental parallelization.
In SIAM Conference on Parallel Processing for
Scientific Computing, March 2001.

[20] D. Mazieres. Self-Certifying File System. PhD thesis,
MIT, May 2000.

[21] D. Mazieres. A toolkit for user-level file systems. In
USENIX Annual Technical Conference, June 2001.

[22] M. Mesnier, G. Ganger, and E. Riedel. Object based
storage. IEEE Communications, 41(8), August 2003.

[23] K. Z. Meth and J. Satran. Design of the iSCSI
protocol. In IEEE/NASA Goddard Conference on
Mass Storage Systems and Technologies, April 2003.

[24] S. Mullender, G. van Rossum, A. Tanenbaum, R. van
Renesse, and H. van Staveren. Amoeba: A distributed
operating system for the 1990s. IEEE Computer,
23(5):44–53, 1990.

[25] D. A. Patterson, G. Gibson, and R. Katz. A case for
redundant arrays of inexpensive disks (RAID). In
Proceedings of the ACM SIGMOD international
conference on management of data, pages 109–116,
June 1988.

[26] J. Plank, M. Beck, W. Elwasif, T. Moore, M. Swany,
and R. Wolski. The Internet Backplane Protocol:
Storage in the network. In Proceedings of the Network
Storage Symposium, 1999.

[27] J. Postel. FTP: File transfer protocol specification.
Internet Engineering Task Force Request for
Comments (RFC) 765, June 1980.

[28] B. Randell. Recursively structured distributed
computing systems. In Symposium on Reliable

Distributed Computing Systems, pages 3–11, 1983.

[29] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and
B. Lyon. Design and implementation of the Sun
network filesystem. In Proceedings of the USENIX
Summer Technical Conference, pages 119–130, 1985.

[30] J. Steiner, C. Neuman, and J. I. Schiller. Kerberos:
An authentication service for open network systems.
In Proceedings of the USENIX Winter Technical
Conference, pages 191–200, 1988.

[31] D. Thain and M. Livny. Error scope on a
computational grid. In Proceedings of the Eleventh
IEEE Symposium on High Performance Distributed
Computing, July 2002.

[32] D. Thain and M. Livny. Parrot: Transparent
user-level middleware for data-intensive computing. In
Proceedings of the Workshop on Adaptive Grid
Middleware, New Orleans, September 2003.

[33] J. Wozniak, P. Brenner, D. Thain, A. Striegel, and
J. Izaguirre. Generosity and gluttony in GEMS: Grid
enabled molecular simulations. In IEEE Symposium on
High Performance Distributed Computing, July 2005.

