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Abstract

Much research in mobile networks relies on the use of
simulations for evaluation purposes. While a number of
powerful simulation tools have been developed for this pur-
pose, only recently has the need for physical implementa-
tions of mobile systems and applications been widely ac-
cepted in the literature. In recognition of this need, and to
further our research objectives in the area of wireless sen-
sor networks and mobile cooperative systems, we have built
the TeamTrak mobile testbed, which gives us real-world ex-
perience with research concepts as we develop them. Addi-
tionally, results from outdoor field tests are used to further
enhance the capabilities of the testbed itself.

1 Introduction

The study of mobile networks has become very popu-
lar over the last several years, with an abundance of pub-
lished work in the area of routing protocols, energy conser-
vation, peer-to-peer searching algorithms, and other related
areas. Most of this research relies on the use of modeling
and simulation for evaluation. While simulations are valu-
able for demonstrating proof of concept and testing prop-
erties such as scalability, real-word tests often expose mis-
taken assumptions. To facilitate evaluation of wireless net-
works, we are developing the TeamTrak mobile testbed.
Users carry TeamTrak devices enabled with various sensors
and collect data which is then used to improve system de-
sign and implementation. While currently used for several
ongoing research efforts at the University of Notre Dame,
TeamTrak continues to evolve, and empirical data directly
contributes to advancing the platform’s capabilities.

TeamTrak consists of a heterogeneous collection of com-
modity laptop computers and PDAs connected over a wire-
less ad hoc network and able to receive positioning data
through portable GPS receivers. Sharing of sensor data,
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to include GPS position, is a fundamental part of the un-
derlying network protocol, so every connected node in the
system can determine the location of any other by exam-
ining routing information, and allows cooperating users to
share data and network services without the benefit of fixed
infrastructure.

2 TeamTrak Components

TeamTrak is a standalone application designed to build
and run on multiple platforms. Our goal is to evaluate re-
search ideas in mobile distributed computing without spe-
cialized or custom fabricated hardware, so we use inex-
pensive commodity equipment as much as possible. Our
research prototype consists of 32 Lenovo X41 Thinkpad
tablet computers running Windows XP and eight HP iPAQ
hx2795b PDAs running Windows Mobile. A standard
ANSI Z89.1 Class C safety helmet provides a convenient
platform for mounting mobile sensor equipment.

The communication medium is wireless ethernet (IEEE
802.11b) in ad hoc mode (no base station). The standard
Windows IP configuration is used: each node detects a net-
work, then negotiates a link local RFC 3927 IP address. Al-
though wireless ethernet is not optimized for outdoor peer-
to-peer communication, it is supported by standard con-
sumer electronics, and thus needs no specialized hardware.

Data sharing in TeamTrak is accomplished through the
use of a simple distance-vector routing protocol similar to
RIP [9]. At 1-second intervals, each node broadcasts the
contents of its routing table, including sensor data for each
entry, to all other connected nodes. The selection of a proac-
tive routing protocol is primarily for simplicity and is not
without some consequences of which we were aware when
building the prototype. We also do not employ the multiple
packet types found in DSDV [11]. Stabilizing the routing
table initially requires some time as the data must prop-
agate through the network using a flood-like mechanism.
This further implies that clearing stale data involves delays
as well, which leads to the well-known counting to infinity
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Figure 1. The TeamTrak Hardware Testbed

TeamTrak consists of 32 fully-instrumented tablet kits and 8 lightweight kits. Each tablet kit consists of a Lenovo tablet
connected to a helmet-mounted GPS, camera, and compass, and a foot-mounted accelerometer. Each lightweight kit consists
of an HP PDA and Bluetooth GPS. Both run nearly identical software and interoperate via wireless Ethernet and Bluetooth.
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Figure 2. TeamTrak Display Modes

TeamTrak has several display modes that present state information about network. The scope display shows the current GPS
location of the device on a map, its physical relation to other connected nodes, and the links between nodes. Figures 2(a), 2(b),
and 2(c) show the scope display with an active GPS signal, the last-known location of disconnected nodes, and physical
locations set manually, respectively. Figure 2(d) shows the routing table, and 2(e) the current status of the local device.

problem [7]. Our approach to handling stale data is to make
it persistent until cleared from memory by the operator.

Augmenting the basic hardware platform are sensors
connected by USB or serial port. GPS data are provided
through Garmin GPS-18 USB GPS receivers, or in the case
of the PDAs, an HP Bluetooth GPS receiver. In addition
to GPS, the platform includes the PNI V2Xe digital 2-axis
compass, the Watchport/V2 digital camera, and SparkFun
SerAccel v5 digital accelerometer. As we continue to gain
experience with sensor devices, we add them to the overall
system architecture and incorporate the sensor data of in-
terest into the communication protocol. Figure 1 shows the
devices that comprise each TeamTrak node.

TeamTrak has several location modes, depending on
availability of live GPS data or the specific application. If

a GPS receiver is connected and receiving a live signal, the
display indicates such in the lower left corner, as shown in
Figure 2(a). If the GPS signal is lost, the display shows
the node at its most recent known location, as shown in
Figure 2(b). Similarly, as nodes move and become discon-
nected, the display will continue to show their last known
location, but changes the symbol used to represent each and
also indicates the length of time since a packet was last re-
ceived from each. Where no GPS signal can be obtained,
a node may approximate its own location by averaging live
GPS information from its neighbors within a single hop.
Location may also be set manually for testing purposes or
correcting GPS error in cases where the exact location of a
node is known. In this case, the display indicates the loca-
tion is fixed, as shown in Figure 2(c). Additionally, the dis-
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Figure 3. Challenges of Sensors: Obstructed GPS Measurements

These graphs show the distribution of positions computed by a GPS device once per second over three days. The device
had a clear view of the southern sky, but the northern sky was blocked by a building. Note that the device computes several
“excursions” that deviate from the average by several hundred meters.

play shows compass heading for each node and is capable
of displaying live video imagery from the digital camera.

3 Experience with Sensor Measurements

When we first embarked on TeamTrak, we quickly dis-
covered that each sensor presented its own set of distinct
problems in measurement and interpretation. In this sec-
tion, we describe some of the practical difficulties of using
commodity sensors.

Global Positioning System. While initially testing the
GPS device by simply walking around campus, we ob-
served several anecdotal problems. First, the GPS is very
sensitive to its placement relative to the body. A signal
could not be obtained if the device was placed in a pocket
or even held close to the laptop or handheld. Only by plac-
ing the device on the shoulder or on top of the head could
a signal be obtained. Second, because nearby buildings in-
terfere with signal reception despite having a clear view of
most of the sky, an obstruction of part of the horizon would
cause delays of 5-10 minutes in obtaining a GPS fix. Fi-
nally, while moving around campus with a GPS fix, the de-
vice would occasionally “jump” to locations as much as a
kilometer away, and wander in that region for seconds or
even minutes before returning to the proper location. Each
of these problems occurred with both the Garmin GPS-18
and the HP iPAQ Navigation System designed for an auto-
mobile windshield.

To get a more quantifiable understanding of GPS vari-
ance under non-ideal conditions, we recorded the behavior
of a GPS-18 unit once per second over three days. The unit
was placed in the window of a building with a clear view of
the southern sky, but, completely blocked from the northern
sky; a view that would be common in an urban setting.

The results of this experiment are shown in Figure 3.
The left graph shows a scatter plot of every position mea-

surement taken, centered on the mean (the absolute accu-
racy of the average measurement is unknown). The most
striking feature of this plot is that the data are by no means
distributed evenly. Large sequences of measurements drift
across the average position, mostly in the north-south direc-
tion. In extreme cases, measurements are as much as 500m
off of the average. Inspection of the data shows that these
are not individual exceptions, but rather the measurement
drifts to an extreme value, then drifts back to the average.

The center graph in Figure 3 shows the cumulative prob-
ability of a measurement’s distance from the mean (the right
graph shows the same data at extreme ranges). As can be
seen, a wide range of measurements are common. About
35% of measurements are within 10 meters, 90% within
50m, 98% within 100m, 99% within 150m, and 99.5%
within 200m. Although most measurements are reasonably
accurate, the fraction of seriously diverging measurements
is large enough that it cannot be ignored. In a sufficiently
large network of devices in non-ideal conditions, we must
assume that perhaps 1-2% report an inaccurate GPS fix.

Accelerometer. Regardless of the accuracy or price of a
GPS, it cannot be used in locations with no view of the sky,
such as very dense urban areas or indoors. Previous work
has suggested the use of accelerometers mounted on the
surface of mobile robots, with the output integrated to give
current velocity and change in position, which is then used
for fine location. This works acceptably on a robot [8, 10],
which has relatively consistent acceleration patterns. Initial
testing of the accelerometer in this fashion for humans was
not encouraging. Humans have no solid platform on which
to mount the device, leaving an uncertain axis of motion.
In addition, humans have “noisy” motions that lead to ex-
traordinary integration errors. Even in controlled situations,
computing position from the accelerometer for more than a
few seconds results in errors on the order of kilometers.

However, the accelerometer can be used to detect spe-
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Figure 4. Challenges of Sensors: Compass and Accelerometer

The left graph shows the variation in compass reading as the compass is tilted through a range of angles without changing
the heading. The right graph shows the reading from an accelerometer affixed to the shoe of a person walking.
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Figure 5. Time Lapse Display of a TeamTrak Network
A time-lapse display of a field test by an undergraduate class. Each box shows the system state at 2-minute intervals. Dots
indicate mobile nodes. Heavy lines indicate nodes that are in direct contact via wireless ethernet. Lighter lines indicate
campus landmarks. The scale of each box is about lkm on each side. Initially, all nodes are searching for the “rabbit”
indicated by a triangle in the upper left corner. By 15:32:00, all have found the rabbit, either directly or indirectly. At this
point, they attempt to form the longest unbroken chain possible, extending south.



cific motions of the body. Attached to a person’s shoelaces
it can be used to measure individual steps. Coupled with a
compass (next section), we are optimistic that accelerome-
ters can be used to provide location updates when GPS is
not available. This will be explored in future work.

Digital Compass. While the GPS device provides posi-
tion data, it does not determine the direction a unit is facing.
Using a digital compass, we may determine direction, and
use this along with the accelerometer to compute position
changes. In addition, direction data can be collected and
used to infer areas of focus, annotate camera images, or in-
form wireless coverage areas. Unlike the GPS signal, mag-
netic heading is detectable in nearly any indoor or outdoor
situation.

When held in a stable flat position at various angles, the
V2Xe compass was found to have a measurement error of
about one degree. The difficulty comes in the measurement
stability with respect to rolling motions that do not affect
heading. A two-axis compass will register an error as it is
rolled. Figure 4 shows the magnitude of this roll when held
at a heading of 45 degrees. Rolling motion must be kept to
10 degrees or less, otherwise the error is considerable.

4 Experience with Field Tests

Based on common positive experience with wireless
access using infrastructure networks, we were optimistic
about the possibility of ad hoc networks. In initial tests
with two participants, we achieved ranges of about 100m
between hosts. However, these ranges were not consistent:
sometimes a nodes could communicate at a distance around
the corner of a building, while sometimes two nodes stand-
ing together could not communicate.

We conducted a series of field tests with an undergrad-
uate distributed systems class, described in [6]. Note that
our goal in these tests is not a systematic study of any one
component, but rather to gain experience with the system,
uncover practical implementation issues, and suggest prob-
lems for further study.

Figure 5 shows a time-lapse display of a recent test. In
the figure, each node is shown as a dot, the target as a trian-
gle, and active network connections as heavy lines between
nodes. Lighter lines indicate buildings and roads. We asked
12 participants to perform a simple activity: find a “rabbit”
node hidden on campus, and communicate its geographic
location to the rest of the group via the routing protocol. As
each participant found the rabbit, they were instructed to
form the longest unbroken chain possible, extending south.

e 15:18:00 - The searchers were dispatched from the
southeast corner of the map a few minutes earlier. Al-
though in a relatively compact group, the network has
already partitioned. Some proximate nodes are parti-
tioned, while others farther apart can communicate.

e 15:22:00 - The network briefly becomes whole, then
partitioned again. The western group has discovered
the rabbit, while the eastern group continues northeast.

e 15:28:00 - Most nodes have discovered the rabbit,
some indirectly. Note that one node has a very long
network connection; in this case, the person in ques-
tion was actually close to the rabbit, but the GPS was
reporting an incorrect position until 15:36:00.

e 15:34:00 - All nodes have begun forming a long chain.
e 15:38:00 - The network is very strongly connected.

e 15:44:00 - The network has stretched into a chain. Var-
ious links in the chain connect and disconnect. Most
people are standing in place and turning in either direc-
tion to look at their peers. Due to asymmetric network
coverage, turning causes breaks in the network.

From this exercise, we may draw several observations:

e Despite the practical problems of wireless ethernet ob-
served above, it can be used for a complex network of
a fairly large geographic scale. The final network state
at 15:46:00 is about 750m long.

e The relationship between wireless connectivity and
distance is nontrivial. Connections can sometimes be
made between widely separated nodes, and sometimes
cannot between adjacent nodes, which poses problems
for routing or location algorithms that assume a rela-
tionship between connection and location.

e Network partitions are even more common than we ex-
pected. Obviously, the network will partition when
a group splits to undertake a search. However, even
when standing in a line with the explicit goal of stay-
ing connected, we observed rapid partitions and recon-
nects occurring in several different ways. Any network
protocol should be highly responsive to changes.

5 Lessons Learned and Future Work

Based on our experiences building, testing, and deploy-
ing TeamTrak, we identify and discuss three areas requiring
further study and development of novel protocols and tech-
niques that go beyond the state of the art.

GPS Needs Assistance in Urban Environments at Human
Scale. Positioning with commodity GPS receivers alone
is probably inadequate for most urban applications due to
the limitations of the environment and the inherent capabil-
ity of commercial receivers. Our test location is a univer-
sity campus with buildings spaced much farther apart than
one finds in dense urban settings, and we found numerous



places in which obtaining a GPS fix was practically impos-
sible. Attempting to obtain a fix in specific areas at differ-
ent times and days produced similarly poor results. Once a
fix was obtained, our testers experienced no significant dif-
ficulty maintaining it, generally only losing signal due to
movement around obstructions or other ephemeral factors.
However, initially acquiring a fix may prove unacceptably
lengthy for many applications.

Location awareness is exploited to improve application
performance, reliability, or usability [12, 4, 5] in wireless
and mobile systems, and GPS is commonly used to identify
a mobile device’s location. The experiments executed with
the TeamTrak testbed indicate that GPS information is both
unreliable and inaccurate (see Figure 3 in Section 3), which
has been addressed in previous work on robust location and
navigation systems [1, 3, 2]. However, we believe that exist-
ing location-aware devices can benefit from not only know-
ing current position but also direction and speed of them-
selves and other devices. For example, in military or rescue
operations, users might enter critical zones, such as areas
of increased risk to humans and/or mobile devices. Here,
it may be desirable to offload important information from a
mobile device to (a) protect information from capture and
(b) prevent loss in case of device failure.

Human Operators Play an Important Role. Human op-
erators can partially compensate for poor network connec-
tivity for some applications. In our rabbit chase exercise,
users tended to prefer maintaining connectivity with other
users, and they frequently would move towards other nodes
to reestablish lost connections. Behavior such as this can be
exploited in mobile applications to augment network proto-
cols, although much work remains to be done.

Sensors Can Compensate for Poor Network Connectiv-
ity. Consistency of ad hoc network connectivity proved to
be much worse than originally anticipated. Using standard
wireless ethernet, connectivity between nodes is at best hap-
hazard. Despite the network limitations, displaying the last
known locations of nodes proved helpful when trying to lo-
cate a particular node. Even a very transient connection
in which few routing packets are exchanged is sufficient
for determining locations. Since each node propagates in-
formation for all nodes with which it has connected, users
working in concert can quickly converge on a particular lo-
cation. How long stale data should be maintained is unclear,
but users may remove it if the display becomes cluttered.

To account for variations in connectivity and signal
strengths, we need wireless communication and routing
protocols that are aware of the limitations of reduced cov-
erage. Predictors, such as the current position and bearing
of users of mobile devices, can be used to provide coverage
maps on the fly, which in turn can adapt communications to
account for predicted increases or decreases in connectivity.
Additional sensor data can be used to achieve this.

6 Conclusions

The TeamTrak mobile testbed is our first step in build-
ing cooperative mobile systems and researching the use of
various sensor data in such an environment. During the
course of system development, we have made a number of
observations about the use of off-the-shelf sensor devices,
software, and hardware platforms that both pose significant
challenges yet offer exciting possibilities for future expan-
sion and integration. In many cases, empirical evaluation of
components has changed our assumptions about the capa-
bilities of such hardware and the feasibility of capturing and
sharing meaningful sensor data in a mobile environment,
and led us to identify open research problems and areas for
future direction.
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