
2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2415780, IEEE Transactions on Cloud Computing

D. RAJAN AND D. THAIN, DESIGNING SELF-TUNING SPLIT-MAP-MERGE APPLICATIONS FOR HIGH COST-EFFICIENCY IN THE CLOUD 1

Designing Self-Tuning Split-Map-Merge Applications for High
Cost-Efficiency in the Cloud

Dinesh Rajan and Douglas Thain
Department of Computer Science and Engineering

University of Notre Dame
Notre Dame, Indiana 46556

Email:{dpandiar, dthain}@nd.edu

Abstract—Cloud platforms are attractive for executing large concurrent applications that require access to a pool of resources for
concurrently executing the partitions of their workloads. Historically, application designers have tuned concurrent applications for
specific hardware and platforms. But such approaches are not viable in cloud platforms as applications can be deployed on a variety
of platforms and the operating environments can vary in each deployment. In this work, we argue and demonstrate that concurrent
applications in cloud platforms must be self-tuning. First, we show that applications must incorporate a model of the overheads of
operation. Second, we show that applications must determine their resource requirements and tune their operation to the operating
conditions using estimations from the model. We build two self-tuning applications, E-Sort and E-MAKER, and demonstrate their ability
to achieve high cost-efficiency by determining the right scale of partitions and resources to use for operation and adapting their behavior
according to the characteristics of the deployed environment.

Index Terms—Cloud Computing, Distributed Execution, Scientific Applications, Data-intensive Applications, Data Partitioning, Work-
load Decomposition, Resource Provisioning.

✦

1 INTRODUCTION

Resource- and data-intensive applications, such as data
processing, bioinformatics, and molecular simulations
typically run by partitioning their workloads into in-
dependent tasks, distributing the tasks for concurrent
execution, and gathering the outputs to produce the
final results [1]–[3]. The execution of such applications
requires access to dedicated infrastructure, often at large
scales, to achieve reasonable completion times. Previ-
ously, such modes of execution were only available in
restricted, proprietary, and expensive setups, such as
high-performance clusters and supercomputers.

Cloud platforms have alleviated these limitations by
offering public and on-demand access to resources at
scale. As a result, several resource- and data-intensive
applications have been built or ported to run on cloud
platforms [4]–[6]. These applications are deployed and
run by the users or operators interested in harnessing
their functions and capabilities. The operators deploy the
applications to operate on the desired inputs using the
resources they provision from cloud platforms.

The deployment of applications on cloud platforms
incurs monetary costs and demands cost-efficient oper-
ation. In this work, we consider cost-efficiency in terms
of the time and monetary cost of operation. Further, we
consider the deployment and execution of applications
using resources exclusively dedicated to each instance
of the applications. Such deployments are common in
research and scientific communities where the operators
independently and directly run the applications using
the on-demand access to resources [5], [7]. The appli-

cations can be deployed and executed in any of the
cloud platforms accessible to the operators. As a result,
the characteristics of the target operating environment
(such as execution speed and network bandwidth) are
unknown and unpredictable prior to deployment.
In the past, application designers would tune a con-

current application for specific hardware and operating
environment (such as supercomputers and high perfor-
mance clusters) and require the application to be exe-
cuted in those environments. But if the target hardware
is unknown or variable when the application is designed,
the application must be self-tuning at runtime. In other
words, concurrent applications in cloud environments
must be self-tuning to be cost-efficient.
The performance and costs of concurrent applications

is determined by the (logical) expression and (physical)
realization of concurrency during their execution. The
expression of concurrency pertains to the number of
partitions of the workload while its realization involves
the simultaneous execution of the partitions. In this
work, we argue that applications must be self-modeling
in order to determine and tune their logical and physical
concurrency at runtime. The applications must incorpo-
rate a model of their execution formulating the gains
and overheads of concurrency. We also argue that cost-
efficient operation requires applications to explicitly ex-
ert control of the partitioning of the workload to tasks,
the binding of data to tasks, and the submission of tasks
for simultaneous execution.
Using the model and control of the parameters of

concurrent execution, the applications tune and adapt
their execution according to the characteristics of the

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2415780, IEEE Transactions on Cloud Computing

D. RAJAN AND D. THAIN, DESIGNING SELF-TUNING SPLIT-MAP-MERGE APPLICATIONS FOR HIGH COST-EFFICIENCY IN THE CLOUD 2

deployed environment. The applications first measure
the characteristics of the environment that influence
their transfer overheads, processing overheads, and I/O
overheads, and thereby, their cost-efficiency. The mea-
surements are applied in the model to estimate the
overheads of executing the defined workload under
the current operating conditions. Using these estimates,
the applications determine and adapt their logical and
physical concurrency during runtime to achieve cost-
efficient operation in the deployed environment.
We demonstrate the application-level modeling, con-

trol, and adaptations of concurrent execution in two
applications - Elastic (E-Sort) and Elastic Maker (E-
MAKER). E-Sort is a representative data processing
application while E-Maker is a bioinformatics tool for
annotating genomes. We evaluate the effectiveness of the
techniques by considering their impact in minimizing
the time and monetary cost of execution under various
operating conditions. We demonstrate the application-
level adaptations based on estimations derived from the
model using measurements of the operating environ-
ment achieve higher cost-efficiency when compared to
approaches that assume certain operating conditions or
sample the environment once before execution.
The paper is organized as follows: Section 2 describes

the architecture and construction of concurrent applica-
tions. Section 3 discusses the deployment of applications
in the cloud and the challenges in achieving cost-efficient
operation. Section 4 presents the application-level mod-
eling, control, and adaptation techniques to overcome
the challenges. Section 5 demonstrates and studies the
techniques in E-Sort and E-MAKER. Section 6 reviews
related work and Section 7 presents the conclusion.

2 PROGRAMMING MODEL

In this work, we consider workloads that are built and
executed using the paradigm of split-map-merge. This
paradigm encompasses the bag-of-tasks [8], bulk syn-
chronous parallel [9], scatter-gather [2], and the popular
Map-Reduce [1] (where the split is done during the ini-
tial upload of the data to the filesystem of the execution
framework) models of concurrent programming.
In the split-map-merge paradigm, the workload of the

application is run by splitting the input into multiple
partitions. Each partition is applied with a map function
to produce their output. The individual outputs are then
merged to produce the final result or output. A number
of large-scale workloads are expressed and executed us-
ing the split-map-merge paradigm [10]–[12]. We provide
a formal expression for the paradigm below.

Workload : f(N) → O, (1)

Split(N, k) : N → {s1, s2, . . . , sk}, (2)

Map(k) : f(si) → Oi for i = 1, 2, . . . , k, (3)

Merge(k) : {O1, O2, . . . , Ok} → O. (4)

Equation 1 describes the overall execution of the work-
load which performs a transformation on input N to
produce output O. The split step in Equation 2 takes
a parameter k and splits N into k partitions. The map
step runs the transformation on each of the k partitions
as shown in Equation 3. Finally, the merge step in
Equation 4 aggregates the outputs of the individual map
functions to produce the final output O. The merge
function could be a simple concatenation of the outputs
or a sophisticated function (e.g., merge of values in
sorted order) depending on the workload. It is important
to note the value of O is not affected by the choice of k.
The concurrency in split-map-merge workloads results
from the simultaneous execution of the map operations.

2.1 Architecture

We define applications that adapt their execution to the
characteristics of the deployed environment as elastic
applications [13], [14]. These applications are character-
ized by their flexibility in the partitioning of the work-
load, tolerance to failures, adaptability to the resources
available for operation, and portability across different
platforms. In this work, we implement the split-map-
merge workloads as elastic applications. The workload
of elastic applications can consist of a single, multiple,
or iterative split-map-merge phases1.
Elastic applications are typically implemented as a

master-coordinator that describes and coordinates the
concurrent execution of the workload. The coordinator
partitions the defined workload into self-contained tasks
that are described by their execution command, input
files, and output files. The coordinator then submits the
tasks for execution. The submitted tasks are dispatched
to the provisioned instances for concurrent execution
and retrieved on their completion. The dispatch of tasks
includes the transfer of their input files and execution
commands. Similarly, the retrieval of completed tasks
includes the transfer of output data and files.
In summary, the execution of split-map-merge work-

loads in elastic applications has four components: parti-
tioning of workload into tasks, transfer of input and output
data of tasks, execution of tasks, and merging of task outputs.
Several middleware and execution frameworks are

available for building and deploying elastic applica-
tions [15]–[17]. The challenges in determining the num-
ber of partitions of the workload and resources to pro-
vision exist in deployments using any of these frame-
works. In this work, we chose the Work Queue frame-
work [18] since it allows applications to select the par-
titioning of their workload and direct their concurrent
execution, unlike other frameworks.

1. The presence of multiple or iterative split-map-merge phases does
not impact the function or utility of the application-level techniques
presented in this work. Rather, as we show in Section 4.3, they can
be helpful in enabling the application-level techniques to measure the
operating environment in each phase and apply the measurements to
achieve efficient execution in the next phase.

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2415780, IEEE Transactions on Cloud Computing

D. RAJAN AND D. THAIN, DESIGNING SELF-TUNING SPLIT-MAP-MERGE APPLICATIONS FOR HIGH COST-EFFICIENCY IN THE CLOUD 3

2.2 Construction and deployment

We use the Work Queue [18] framework to implement
the master-coordinator of elastic applications. Work
Queue provides interfaces for describing the tasks of
a workload, submitting the tasks for execution, and
retrieving the results of the executions. Work Queue has
been used to build a number of elastic applications in
fields such as molecular dynamics, data mining, bioin-
formatics, and fluid dynamics [11]–[14], [19].

Fig. 1: Overview of the construction and operation of elastic
applications using the Work Queue framework. The code on
the left is an outline of an elastic application.

The Work Queue framework is based on a master-
worker execution model. The applications use its API
- in C, Perl, or Python - to build the master-coordinator
that describes, submits, and aggregates tasks. The Work
Queue library handles the scheduling and mapping of
tasks onto workers, transfer of data to workers, and
rescheduling of failed tasks. Figure 1 presents the outline
of applications typically constructed using Work Queue.
The submitted tasks are executed by the Work Queue

workers. The workers are lightweight standalone pro-
cesses run on the provisioned instances. They connect to
a specified master and perform actions dictated by the
master, such as transferring data and executing tasks.
Work Queue requires applications to explicitly specify

the software and data dependencies for the tasks so the
environment needed for execution can be created at the
workers without concern for the native execution envi-
ronment. This also enables Work Queue to provide data
management facilities, such as caching and scheduling
policies that favor workers with cached data.

3 CHALLENGES IN CLOUD ENVIRONMENTS

The time and cost of operation of elastic applications are
determined by the gains achieved in the concurrent ex-
ecution of tasks and the overheads incurred in the split,
merge, and data transfer phases. The gains and over-
heads are determined by the number of partitions and
resources chosen for operation. They are also influenced

by the characteristics of the operating environment. For
instance, the network bandwidth influences the transfer
overheads while the size of the RAM at the provisioned
instances influences the overheads of executing the map
functions on the partitions.
In this work, we focus on operation using the on-

demand instances in cloud platforms. These instances
can be provisioned and terminated at convenience and
are metered to incur charges only for the duration of
use. To simplify exposition, we assume the instances cost
$1 per hour and incur $0.01 for every gigabyte of data
transferred to and from the instances2. Like many cloud
platforms, we compute the operating costs by rounding
the operating times to the nearest hour.
Figure 2 illustrates the impact of the partitions and

the characteristics of the operating environment on the
time and costs of running E-MAKER on the Anopheles
Agambiae genome. The estimations plotted in the figure
are derived using the model described in Section 4.1. The
plots assume the number of partitions and the instances
provisioned for operation are equivalent. From Figure 2,
we observe the running time and operating costs exhibit
varying trends for different network bandwidth. Further,
Figure 2b shows the operating costs for various parti-
tions exhibit irregular patterns due to the effects from
the use of the hourly boundaries for calculating costs.
The operating costs drop at partitions where the time of
operation falls to the next lowest hourly boundary. In
summary, Figure 2 shows that the choice of the number
of partitions and instances to provision are critical to the
cost-efficient operation of applications.

 0

 20

 40

 60

 80

T $ T $ T $ T $ T $ T $

O
pt

im
al

 P
ar

tit
io

ns

10000Mbps1000Mbps500Mbps100Mbps50Mbps10Mbps

Fig. 3: Illustration of the optimal partitions that achieve min-
imum running time (denoted by T) and operating costs (de-
noted by $) for annotating the Anopheles Agambiae genome
under different network bandwidth values.

Figure 3 plots the partitions that achieve the minimal
operating time and the lowest operating costs in Fig-
ure 2. It shows the optimal partitions to vary with net-
work bandwidth. This demonstrates that performance
and cost cannot always be optimized simultaneously,
and so the partitioning must take into account the dif-
fering objectives of each user.

3.1 Common approaches

A common approach to run concurrent applications
is to delegate the partitioning and submission of the

2. Our observations remain the same with the prices in commercial
platforms such as Amazon EC2.

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2415780, IEEE Transactions on Cloud Computing

D. RAJAN AND D. THAIN, DESIGNING SELF-TUNING SPLIT-MAP-MERGE APPLICATIONS FOR HIGH COST-EFFICIENCY IN THE CLOUD 4

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10 20 30 40 50 60

R
un

ni
ng

 ti
m

e
(m

)

Partitions

10 Mbps
50 Mbps

100 Mbps
200 Mbps

500 Mbps
1000 Mbps

(a) Running time (T)

 0

 25

 50

 75

 100

 125

 150

 0 10 20 30 40 50 60

O
pe

ra
tin

g
co

st
 (

$)

Partitions

10 Mbps
50 Mbps

100 Mbps
200 Mbps

500 Mbps
1000 Mbps

(b) Operating costs ($)

Fig. 2: Estimated running time (in minutes) and operating costs (in $) of E-MAKER for annotating the Anopheles Agambiae
genome. The estimations are shown for different network bandwidth. The operating costs exhibit irregular patterns due to the
use of hourly boundaries in determining the cost of use.

partitions for execution to the underlying middleware.
Consider Hadoop [15], a widely adopted middleware
for executing concurrent and data-intensive workloads
expressed using the MapReduce paradigm [1]. Hadoop
relies on a distributed file system, such as Hadoop
Distributed File System (HDFS) [20], for managing data
during operation. HDFS partitions the input data and
stores the partitions across the nodes provisioned for op-
eration. HDFS arbitrarily partitions the data into blocks
(default size of 128 MB) regardless of the workload
and the concurrency feasible during its operation. HDFS
leaves the optimal tuning of the block sizes to the
operators (and not the users) of the cluster and does not
provide guidance on an optimal partitioning strategy for
executing the defined workload.
In summary, the partitioning strategy is fixed and

globally enforced on every application executed in
Hadoop. Such strategies are common in shared environ-
ments where resources are provisioned and maintained
to support a single instance of the application that runs
multiple workloads and serves the needs of multiple
users over a prolonged duration. The pool of resources
in such environments is centrally controlled and admin-
istered by the middleware, and the costs of maintaining
the resources are shared among the operators and users.
The use of arbitrary and global policies for operation

results in cost-inefficiencies in environments where each
instance of the application is deployed on resources
exclusively dedicated for their operation. This effect can
be inferred from Figure 3 where the partitions that
achieve minimal operating costs vary depending on the
operating environment. To achieve cost-efficiency, the
workloads must be partitioned and the resource require-
ments must be estimated according to the characteristics
of the deployed operating environment. These decisions
must be made in every deployment of the application
since the operating environment can vary between de-
ployments. Further, these decisions must be revised and
adapted during operation since the characteristics of the
operating environment, such as network bandwidth, are
liable to dynamically change.

3.2 Solutions

The cost-efficient operation of concurrent applications
demands well-informed choices on the number of par-
titions and simultaneous executions of the partitions.
Previously, these decisions were made during applica-
tion design by benchmarking performance on specific
hardware and operating environments [21], [22]. These
techniques proved successful when the operation of
the applications were restricted to the hardware and
operating environments considered during design.

The access to a variety of cloud platforms and types of
resources offered in these platforms implies that appli-
cations cannot be built and tuned for specific operating
environments. In addition, the use of commodity hard-
ware and the sharing of the hardware among multiple
users often leads to variations in the characteristics of
the operating environments in cloud platforms [23]. In
other words, the operating environment is unknown
and unpredictable when the application is designed.
Therefore, the operating parameters, such as the number
of partitions and instances to provision, that achieve
cost-efficient operation must be determined at runtime.

To correctly determine the parameters for cost-efficient
operation, we argue and demonstrate the following prin-
ciples as solutions:

1. Applications must be self-modeling by formulating
and incorporating a model of the performance and
overheads of their runtime components.

2. Applications must be self-tuning by exerting control
over the partitioning and concurrent execution of the
workload and dynamically adapting the execution
according to the observed operating environment.

4 TECHNIQUES

We now describe the techniques to realize self-modeling
and self-tuning applications. The techniques model, con-
trol, and adapt the logical and physical concurrency of
the applications during operation.

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2415780, IEEE Transactions on Cloud Computing

D. RAJAN AND D. THAIN, DESIGNING SELF-TUNING SPLIT-MAP-MERGE APPLICATIONS FOR HIGH COST-EFFICIENCY IN THE CLOUD 5

4.1 Application-level modeling
The runtime performance of elastic applications is deter-
mined by the partitioning, task execution, data transfer,
and merge components described in Section 2.1. Accord-
ingly, we model the operating time of elastic applications
as follows:

Toperation = Tpartition + Ttasks + Tdata + Tmerge. (5)

Note this model of the running time differs from
Amdahl’s law [24] in that Tpartition and/or Tmerge at the
coordinator increases with the number of partitions.
The overheads of the partition Tpartition depend on the

size of the input data N and the number of partitions
K . We model this as a linear relationship:

Tpartition = (a ∗N) + (b ∗K), (6)

where a and b are constants that reflect the costs of
reading (input) data and creating a partition respectively.
As we noted in Section 2, the merge overheads Tmerge

can vary based on the implementation and character-
istics of the workload. Therefore, these overheads are
formulated and discussed individually in Section 5.2.
The execution time of the tasks Ttasks is determined

by the size of the input and the partitions. If input N is
partitioned into K tasks, the execution time of a task is

Ttask = T (
N

K
). (7)

If R is the number of instances provisioned for opera-
tion, the execution of K tasks is prolonged by a factor of
⌈K/R⌉ (as only R tasks can be executed simultaneously).
Thus, the total execution time of tasks is

Ttasks = Ttask ∗ ⌈
K

R
⌉. (8)

The data overheads Tdata collectively represents the
input Tinputs and output Toutputs transfer overheads. The
inputs consists of the software and unique data depen-
dencies of the tasks. The software dependencies include
executables, scripts, and libraries are required for execu-
tion and are common across tasks. These dependencies
can be transfered once and cached for subsequent tasks.
In contrast, the unique data dependencies are specific to
each task and must be transferred for every execution.
These dependencies specify the configurations and data
for operation in each task.

Tdata = (Datain +Dataout)/BW, (9)

Datain = size(N) +R ∗ size(software), (10)

Dataout = size(N), (11)

where BW represents the available network bandwidth.
The model in Equation 5 is applied to determine the

number of partitions K and the number of instances R
to provision for executing the defined workload. Further,
the estimations from the model enable the applications
to tune and adapt the partitions according to the charac-
teristics of the deployed environment, such as network
bandwidth, physical memory allocated at the resources,
and the processing capacity for operation.

4.1.1 Assumptions

The model in Equation 5 assumes a scheduling strategy
that operates in the following order: dispatch the tasks
submitted for execution to the provisioned instances
(this includes transfer of the inputs), wait for the tasks to
finish execution, retrieve the outputs and results of the
executions, and so forth. It is also assumed that all the
instances for operation are provisioned at the same time
and the workers running on them are connected to the
master before the dispatch of tasks begins.

The model for task executions in Equation 8 assumes
the instances provisioned for operation are homoge-
neous in their hardware and processing capabilities. In
cloud platforms, this assumption is satisfied by provi-
sioning instances of the same size. Further, it assumes
that each task consumes a single CPU core.
Finally, the model of the data overheads in Equa-

tion 9 assumes single-threaded communication where
data is transferred to one worker at a time. A multi-
threaded mode is helpful when communicating with
heterogeneous instances with wide differences in their
processing capabilities. Otherwise, we expect the impact
from multi-threaded communication on the estimations
to be minimal since the bandwidth remains the same
while being shared across multiple threads.

4.1.2 Cost-efficiency metrics

We formulate the operating cost C$ of the applications
using the time of operation modeled in Equation 5,
the instances provisioned for operation R, and the data
transfered during operation.

C$ = $IH ∗R∗Hoperation+$GB∗(Datain+Dataout), (12)

where Hoperation is Toperation (defined in Equation 5)
rounded to the nearest hour. $IH represents the cost in-
curred per instance per hour of use while $GB represents
the cost charged per gigabyte of data transfer to and
from the instances. To simplify analysis and provide a
general context, we assume $IH to be $1 and $GB to be
$0.01.
We note that favorable trade-offs often exist between

the time and cost of operation. For example, in Figure 2b,
the lowest operating cost ($60.16) under a bandwidth of
100Mbps is achieved when running with 4 partitions.
However, accommodating a 0.33% increase in the oper-
ating cost ($60.36) for operation with 9 partitions leads
to a 50% decrease in the operating time. This is because
operation with 9 partitions increases the gains from
concurrent executions and lowers the time of operation
such that it matches the gains in cost when running with
4 partitions. The small increase in cost for the operation
with 9 partitions results from the increase in the transfer
costs for the software dependencies.
In our evaluations, we find it useful to compute and

use a metric called Cost-Time product to consider these
trade-offs and assign equal importance to the time and

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2415780, IEEE Transactions on Cloud Computing

D. RAJAN AND D. THAIN, DESIGNING SELF-TUNING SPLIT-MAP-MERGE APPLICATIONS FOR HIGH COST-EFFICIENCY IN THE CLOUD 6

cost of operation.

Cost-T ime product = C$ ∗ Toperation. (13)

We note this metric is only one of several ways of
expressing cost-efficiency since different weights may be
assigned to the time and cost of operation based on the
preferences of the operators. At the same time, we note
the model can be easily extended to provide estimations
on the cost-efficiency metrics preferred by the operators.

4.2 Application-level control

The application-level model in Section 4.1 provides es-
timations on the performance and overheads of the
runtime components. However, to regulate the over-
heads and achieve cost-efficiency, the application must
explicitly direct and control the following actions using
estimates from the model.
Partitioning workload into tasks: The applications must
define the partitioning of the workload into tasks using
estimates from the model. The number of tasks created
for operation also dictates the overheads associated with
the task executions, data transfers, and merge operations.
As a result, control over the number of tasks enables
applications to lower the running time and minimize the
incurred overheads in their deployed environments.
Binding data to tasks: The applications must explicitly
bind the data dependencies to the created tasks. This
control enables the application to manage the data trans-
fer overheads of the tasks. The control over the binding
of data is also necessary for the adaptations during
operation that adjust the partitioning of the workload
according to the observed conditions.
Merging outputs of tasks: The application-level control
of the partitioning requires similar control over the
merge operations so the outputs of tasks created from
the partitions are correctly aggregated to produce the
final results. This control also helps correctly estimate
the overheads associated with the merge phase.
Submitting tasks for execution: The applications must
direct the submission of tasks for execution and thereby,
the number of simultaneous executions. This control
enables applications to manage the overheads associated
with transferring the common software dependencies.
For example, when the transfer overheads associated
with the software dependencies are large, the application
can regulate the number of simultaneous executions so
the transfer of these dependencies is minimized. This
is because the common dependencies are cached for
subsequent tasks after their initial transfer.

4.3 Application-level adaptation

Elastic applications cannot assume, predict, or control
the characteristics of the operating environment in which
they are deployed. Therefore, the applications must
adapt their operation to the characteristics of the de-
ployed environment. We focus on adaptations of the two

parameters that dictate the time and cost of operation:
the number of partitioned tasks and the number of
instances used for operation.
A simple approach for determining the number of

tasks and resources to provision involves the global
enforcement of default values, or requiring the operators
or users to manually determine them. This approach is
employed in Hadoop [15] and illustrated in Figure 4a.
While this approach provides operators with the ability
to define and control the runtime behavior, it requires de-
tailed knowledge of the characteristics of the workload
and the overheads of operation in the deployed envi-
ronment. In addition, the effectiveness of this approach
requires tight control over the operating environment to
provide consistent characteristics throughout operation.
We present two techniques to determine the num-

ber of partitions and resources for running the de-
fined workload in the deployed environment without
operator intervention. The first technique performs an
initial assessment of the operating environment using
a sample execution and resource allocation. It applies
the measurements in the model to determine the op-
erating parameters that achieve cost-efficient operation.
This enables the optimal operation of applications in
any deployed environment and operating conditions.
This technique is also similar to the approach suggested
by cloud providers for determining the right type of
hardware and instances for running a workload [25].
Figure 4b illustrates this technique for adapting the
operation according to the characteristics of the deployed
environment. The effectiveness of this technique requires
the operating conditions that impact the performance of
the applications to remain unchanged during operation.
The operating conditions in cloud platforms, espe-

cially network bandwidth, are prone to vary during
operation due to multi-tenant effects such as congestion,
varying load on the shared network links, and oversub-
scription of the networking hardware. This impacts the
cost-efficient operation of applications whose overheads
of operation are influenced by these conditions. In this
work, we focus on the adaptations to changes in the
network bandwidth during operation.
To handle changes in the operating conditions during

runtime, the second technique periodically measures the
operating conditions and dynamically adapts the num-
ber of partitions and instances chosen for operation. This
technique progressively partitions the workload, mea-
sures the conditions during operation of the submitted
partitions, and applies the measurements in determining
the number of partitions and instances for operating the
remainder of the workload under the current conditions.
Figure 4c illustrates this approach. In this work, the
adaptations do not attempt to repartition already dis-
patched partitions since this requires complex feedback
mechanisms (such as the ability to continously monitor
the global state and cost of operation on the partitions)
which is beyond the scope of this paper.
The operating conditions measured in both adaptation

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2415780, IEEE Transactions on Cloud Computing

D. RAJAN AND D. THAIN, DESIGNING SELF-TUNING SPLIT-MAP-MERGE APPLICATIONS FOR HIGH COST-EFFICIENCY IN THE CLOUD 7

(a) The manual approach to partitioning using
user-specified partition sizes.

(b) The sample execution-based approach that
performs an assessment of the operating
environment before operation.

(c) The adaptive approach that continually
measures and adapts to the characteristics
of the operating environment.

Fig. 4: Illustration of the different strategies for partitioning the defined workload in elastic applications.

techniques include the execution overheads of the tasks,
the network bandwidth, the local overheads of partition
and merge, and the size of physical memory allocated
at the provisioned resources. The measurements are
incorporated in the model expressed in Equations 5, 12,
and 13 to determine the current cost of operation and
estimate the cost for running the remainder of the work-
load. The estimations are made considering the hourly
boundaries in the metering of the provisioned instances
to maximize their usage. The partitions and the in-
stances used for operation are provisioned, maintained,
and terminated based on the estimations of the current
costs and the costs for operating the remainder of the
workload. The adaptations in the presented technique is
regulated by the size of the partitions since the measure-
ments are performed at the dispatch and completion of
partitions. Further, the adaptations are terminated when
it is determined that the remainder of the workload can
be completed within the upcoming hourly boundary in
the metering of the provisioned instances.

5 EXPERIMENTAL ANALYSIS

We apply the presented techniques in building two self-
tuning applications - Elastic Sort (E-Sort) and Elastic
MAKER (E-MAKER). E-Sort performs sorting by parti-
tioning the data and concurrently sorting the partitions
on provisioned instances. The sorted partitions are then
merged at the master-coordinator to produce the final
sorted sequence. E-Sort uses the GNU Sort tool as its
kernel for sorting the partitions. We use E-Sort as a
representative application whose workload resembles
many data analysis, mining, and processing workloads.
The second application, E-MAKER, is a bioinformatics

program for annotating genome sequences [12], [13]. The
annotations enable biologists to identify the presence of

various cellular elements and their contributions to the
functions of the genome. The annotations are performed
by comparing the subject genome against a set of ref-
erence sequences and identifying similarities. E-Maker
partitions and dispatches the sequences for concurrent
annotation. It uses the MAKER tool [26] as the kernel
for annotating the partitioned sequences.
Our goal in this study is not to build optimized imple-

mentations of the applications but to use the applications
to demonstrate and evaluate the application-level tech-
niques in effect. Besides, the techniques are necessary
irrespective of the optimizations in the implementations.
As we noted earlier, the merge overheads for E-Sort

and E-MAKER differ due to the workload and the
implementation of the merge algorithm. In E-Sort, the
partitions are merged using a k-way merge algorithm
that iteratively compares the records in the partitions
and aggregates them in sorted order. The asymptotic
running time of the algorithm is O(N ∗ K). The merge
overheads of E-Sort are modeled as

Tmerge = (c ∗N ∗K) + (d ∗N), (14)

where c represents the cost of the comparisons in the
merge algorithm and d is the cost associated with read-
ing the sorted records in the partitions. On the other
hand, the merge in E-MAKER is trivial since the results
of the tasks - the annotated sequences - are simply
concatenated in a output directory. Hence, we model the
overheads of merge to be constant and negligible.
Organization: We begin our analysis of self-tuning ap-
plications by observing the effects of the number of
partitions on the operating time and cost. We observe
differences in the effects of the number of partitions on
the overheads of partition, merge, data transfer, and task
executions in E-Sort and E-MAKER. The application-

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2415780, IEEE Transactions on Cloud Computing

D. RAJAN AND D. THAIN, DESIGNING SELF-TUNING SPLIT-MAP-MERGE APPLICATIONS FOR HIGH COST-EFFICIENCY IN THE CLOUD 8

level models in E-Sort and E-MAKER provide estimates
on the time and cost of operation considering these ef-
fects. We experimentally validate these estimations with
the goal of not showing estimations that perfectly match
with the observed values, but to show the effectiveness
of the model in providing information about the over-
heads of operation and their impact on time and cost.
The validations enable us to utilize the model in study-

ing the effects of the characteristics of the workload and
operating environment on the time and cost of operation
using different partitions. The study establishes that
decisions on the number of partitions and instances for
cost-efficient must be made considering the characteris-
tics of the workload and operating environment. We then
experimentally demonstrate the self-tuning capabilities
of E-Sort and E-MAKER in determining the number of
partitions and instances to provision for cost-efficient
operation. The applications utilize the application-level
model and control to determine these parameters.
Our analysis considers the number of instances pro-

visioned for operation to be equivalent to the number
of partitions chosen for operation as it enables the si-
multaneous execution of the partitions. However, it may
be useful to create smaller partitions to achieve faster
failure recovery, manage resource consumption, and ob-
tain measurements on the operation at smaller intervals.
Therefore, we study the effects of over-partitioning where
the number of partitions is greater than the instances
determined for cost-efficient operation. We observe the
impact of over-partitioning to be negligible when the
partition and merge overheads are minimal. In such
cases, over-partitioning can be useful for adapting to
changing operating conditions without incurring ad-
ditional overheads. We evaluate and demonstrate the
dynamic adaptation technique that progressively over-
partitions and runs the workload when the character-
istics of the deployed environment, such as network
bandwidth, vary during operation.
Experimental platforms and inputs: Our evaluations
are done using on-demand instances from Microsoft
Azure [27] - a commercial cloud platform, Future-
Grid [28] - a national infrastructure that provides an IaaS
testbed for building cloud applications, and Notre Dame
CRC - a campus-wide infrastructure at the University of
Notre Dame that offers access to IaaS instances.
The E-Sort runs in our evaluations operate on 2 billion

records that total 11GB in size. The E-MAKER runs
operate on 800 contiguous sequences of the Anopheles
Agambiae PEST strain which amount to 7.5MB. The
software overheads for E-Sort consist of the transfer of
the GNU Sort executable which is 100KB. In E-MAKER,
the software overheads include the reference dataset and
the libraries required for the execution of the MAKER
tool and are 4GB in size.

5.1 Effects of the number of partitions

We experimentally observe the impact from the number
of partitions on performance and break down the impact

 0

 1000

 2000

 3000

 4000

 5000

2 6 12 18 24 30 36 42 48 56

T
im

e
(s

)

Partitions

Partition
Tasks

Merge
Data

(a) E-Sort

 0

 4000

 8000

 12000

 16000

 20000

2 4 8 20 40 60 80 100

T
im

e
(s

)

Partitions

Partition
Tasks

Merge
Data

(b) E-MAKER

Fig. 5: Comparison of the overheads of the partition, task ex-
ecution, data transfer, and merge operations during operation
of E-Sort and E-MAKER.

on each of the runtime components. Figure 5 plots the in-
dividual runtimes of the partition, task execution, merge,
and data transfer components of E-Sort and E-MAKER.
In this figure, the number of instances provisioned for
operation is equivalent to the number of partitions.
Figure 5a shows the operating time of E-Sort for

different partitions is dictated by the task execution times
and merge overheads. The task execution times decrease
exponentially while the merge overheads increase lin-
early as the number of partitions increases. The opposing
trends in the task execution and merge overheads results
in a running time that decreases with increasing parti-
tions until the merge overheads outweigh the decrease
in the task execution times.
In contrast, the operating time of E-MAKER, plotted

in Figure 5b, is determined by the data transfer over-
heads and the task execution times. In E-MAKER, the
data overheads increase linearly due to the software
dependencies being transferred to each compute instance
where the tasks are executed. As a result, the increase
in the data overheads offset the gains in the concurrent
executions as the partitions increase.
In summary, we observe two distinct patterns in the

impact of the partitions on the operation of the two ap-
plications. The concurrency in operation is counteracted
by the partition and merge overheads in E-Sort and the
data overheads in E-MAKER. The model formulated in
Section 4.1 provides estimations on these overheads and
their impact on the time and cost of operation.

5.2 Validation of the estimations from the model

We validate the application-level model by comparing
the estimations from Equations 5, 12, and 13 against
the values observed in operation. Figure 6 presents
the comparison of the estimated and actual time, cost,
and cost-time product of operation for E-Sort and E-
MAKER. The observed values for E-Sort were recorded

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2415780, IEEE Transactions on Cloud Computing

D. RAJAN AND D. THAIN, DESIGNING SELF-TUNING SPLIT-MAP-MERGE APPLICATIONS FOR HIGH COST-EFFICIENCY IN THE CLOUD 9

during operation on Microsoft Azure instances when the
network bandwidth was measured at 800 Mbps. On the
other hand, E-MAKER was observed in operation on
FutureGrid instances when the network bandwidth was
200 Mbps. As we described earlier, the cost of operation
on these platforms is computed after rounding the time
of operation to the nearest hour.

 0

 1000

 2000

 3000

 4000

 5000

 0 10 20 30 40 50

T
im

e
 (

s
)

Partitions

Actual
Estimated

(a) Toperation: E-Sort

 0

 3000
 6000

 9000
 12000

 15000

 0 20 40 60 80 100

T
im

e
 (

s
)

Partitions

Actual
Estimated

(b) Toperation: E-MAKER

 0
 10
 20
 30
 40
 50
 60

 0 10 20 30 40 50

C
o

s
t

($
)

Partitions

Actual
Estimated

(c) C$: E-Sort

 0
 100
 200
 300
 400
 500
 600

 0 20 40 60 80 100

C
o

s
t

($
)

Partitions

Actual
Estimated

(d) C$: E-MAKER

 0
 8

 16
 24
 32
 40
 48

 0 10 20 30 40 50

C
o

s
t-

ti
m

e
 (

$
-h

r)

Partitions

Actual
Estimated

(e) Cost-time product: E-Sort

 0

 500

 1000

 1500

 2000

 2500

 0 20 40 60 80 100

C
o

s
t-

ti
m

e
 (

$
-h

r)

Partitions

Actual
Estimated

(f) Cost-time product: E-MAKER

Fig. 6: Comparison of the observed values during operation
with the estimations from the model for E-Sort and E-MAKER.
The run times were averaged over 3 runs and the error bars
describe the observed minimum and maximum values.

The estimations from the model use the same values
for the execution time of a task in Equation 7 and the
constants in Equations 6 and 14 as the measurements
made from the execution of the sample partitions by the
respective applications. As before, we maintain the in-
stances (R) for operation to be equivalent to the number
of partitions (K) in Figure 6.

The model correctly estimates the overheads of con-
current operation and their impact on the time and
cost of operation. Figure 6 shows the estimations from
the model on the time, cost, and cost-time product of
operation reflect the values observed during operation.
The validation of the model enables us to use the esti-
mations from the model in analyzing the operation of
applications with different characteristics of the work-
load (such as higher task execution times), operating
parameters (such as number of partitions), and operating
environments (such as network bandwidth). Further, the
estimations from the model can be applied in correctly

identifying the optimal number of partitions and in-
stances to provision for operation.

5.3 Effects of the characteristics of the workload
and operating environment

We study the choice of the number of partitions by con-
sidering the impact of the characteristics of the workload
and operating environment on cost-efficient operation.
In this study, we compare workloads with different
task execution overheads that incur the same partition,
merge, and data overheads. That is, we vary the gains
in concurrency by increasing the execution times of
the tasks relative to the other overheads of operation.
These configurations are analogous to applications with
similar but complex workloads where the task execution
overheads are dominant in the overheads of operation.
We also consider operation under different network

bandwidth (which impacts the transfer overheads) as
it can vary between deployments due to differences
in the platform configurations and hardware. Further,
the network resources are often shared among multiple
tenants of IaaS and PaaS platforms resulting in variations
of the bandwidth from traffic patterns, congestion, and
demand for resources. Finally, we study the effects of
the size of physical memory (which impacts the I/O
overheads in task executions) allocated at the instances.
Figures 7 and 8 illustrate the effects of the charac-

teristics of the workload and network bandwidth on
the operating time, costs, and cost-time product for
various partitions in E-Sort and E-MAKER respectively.
In these figures, each row plots the operation for the
task execution times (Ttask) that are multiples (1x, 2x,
and 5x) of the value observed in Figure 5. We artificially
introduced delays in the execution of the tasks to inflate
their execution times to the desired proportion. The
overheads of partition and merge operations are the
same as plotted in Figure 5.
The increase in the execution time of the tasks relative

to the partition, merge, and data overheads leads to an
increase in the gains realized from concurrent operation.
Therefore, the number of partitions that achieve lower
operating times increases with higher task execution
times as observed in Figures 7 and 8. Similarly, an
increase in network bandwidth lowers the data transfer
overheads and increases the gains realized from oper-
ation with higher number of partitions. This effect is
seen in Figure 8 for E-MAKER due to the large transfer
overheads from software dependencies.
As we noted in Section 3, the operating costs exhibit

irregular trends due to the rounding of the operating
time to the nearest hour. That is, the cost and cost-
time product of operation with increasing partitions in
Figures 7 and 8 are influenced by the magnitude of the
decrease in the operating time and if the decrease results
in a drop to the next lowest hourly boundary.
Finally, Figure 9 plots the estimated and observed task

execution times for sorting different sizes of data on an

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2415780, IEEE Transactions on Cloud Computing

D. RAJAN AND D. THAIN, DESIGNING SELF-TUNING SPLIT-MAP-MERGE APPLICATIONS FOR HIGH COST-EFFICIENCY IN THE CLOUD 10

Time Cost Cost-time

1x

 0

 1

 2

 3

 0 5 10 15 20

T
im

e
(h

r)

Partitions

50mbps 100mbps 400mbps

 0

 10

 20

 30

 40

 50

 0 5 10 15 20

C
os

t (
$)

Partitions

50mbps 100mbps 400mbps

 0

 15

 30

 45

 60

 75

 0 5 10 15 20

C
os

t-
tim

e
($

-h
r)

Partitions

50mbps 100mbps 400mbps

2x

 0

 1

 2

 3

 4

 0 5 10 15 20

T
im

e
(h

r)

Partitions

 0

 10

 20

 30

 40

 50

 0 5 10 15 20

C
os

t (
$)

Partitions

 0
 10
 20
 30
 40
 50
 60
 70

 0 5 10 15 20

C
os

t-
tim

e
($

-h
r)

Partitions

5x

 0
 1
 2
 3
 4
 5
 6

 0 5 10 15 20

T
im

e
(h

r)

Partitions

 0

 10

 20

 30

 40

 50

 0 5 10 15 20

C
os

t (
$)

Partitions

 0
 20
 40
 60
 80

 100
 120

 0 5 10 15 20

C
os

t-
tim

e
($

-h
r)

Partitions

Fig. 7: Estimated operating time, operating costs, and cost-time product of E-Sort for sorting 2 billion records totaling 11GB
under various characteristics of the operating environment.

Time Cost Cost-time

1x

 0

 2

 4

 6

 0 5 10 15 20

T
im

e
(h

)

Partitions

50Mbps 100Mbps 400Mbps

 0
 20
 40
 60
 80

 100
 120
 140

 0 5 10 15 20

C
os

t (
$)

Partitions

50Mbps 100Mbps 400Mbps

 0

 100

 200

 300

 400

 500

 0 5 10 15 20

C
os

t-
tim

e
($

-h
r)

Partitions

50Mbps 100Mbps 400Mbps

2x

 0

 2

 4

 6

 8

 10

 0 5 10 15 20

T
im

e
(h

)

Partitions

 0
 20
 40
 60
 80

 100
 120

 0 5 10 15 20

C
os

t (
$)

Partitions

 0

 100

 200

 300

 400

 500

 0 5 10 15 20

C
os

t-
tim

e
($

-h
r)

Partitions

5x

 0

 5

 10

 15

 20

 25

 0 5 10 15 20

T
im

e
(h

)

Partitions

 0
 20
 40
 60
 80

 100
 120
 140

 0 5 10 15 20

C
os

t (
$)

Partitions

 0
 250
 500
 750

 1000
 1250
 1500
 1750

 0 5 10 15 20

C
os

t-
tim

e
($

-h
r)

Partitions

Fig. 8: Estimated operating time, operating costs, and cost-time product of E-MAKER for annotating 800 contiguous sequences
of the Anopheles Agambiae genome for various characteristics of the operating environment.

instance with 12GB of memory. We find the observed
times deviate from the estimations when the data size
exceeds 12GB. However, we do not notice a similar
impact on E-MAKER since the genome sequences loaded
in memory for annotation are often less than 10MB. In
this work, we limit the partitions in E-Sort to the size of
the memory at the provisioned instances to minimize the
unpredictable impact on the task execution overheads.

In summary, the determination of the number of
partitions and instances to provision must be made in
conjunction with measurements of the characteristics of

the workload and operating environment.

5.4 Adaptations to the characteristics of the work-
load and operating environment

In this section, we show the application-level adapta-
tions of the number of partitions and instances used in
operation based on the initial assessment of the over-
heads of running the workload in the deployed environ-
ment. The adaptations measure the characteristics of the
workload (such as task execution times) and operating
environment (such as network bandwidth) by operating

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2415780, IEEE Transactions on Cloud Computing

D. RAJAN AND D. THAIN, DESIGNING SELF-TUNING SPLIT-MAP-MERGE APPLICATIONS FOR HIGH COST-EFFICIENCY IN THE CLOUD 11

 0

 7500

 15000

 22500

 30000

 37500

 0 5 10 15 20 25 30 35 40 45

R
un

ni
ng

 ti
m

e
(s

)

GB

Actual
Estimated

Fig. 9: Estimated and observed task execution times Ttask for
sorting various data sizes at an instance with 12 GB of RAM.

a sample partition on a sample allocation. The sample
partition comprises about 1% of the defined workload
in the applications. The sample allocation consists of a
single instance in the same environment in which the
application will be deployed. This sample allocation is
further used in operating the remainder of the workload
to prevent wastage as instances in cloud platforms incur
charges to the nearest hour.
The measurements using the sample partition and

allocation provide information on the network band-
width and the overheads of task execution, partition, and
merge. Based on these measurements, the application
can use the model to determine the number of partitions
and instances to provision.
Figures 10 and 11 show the chosen partitions along

with the actual cost-time product observed when run-
ning with those partitions. The overheads of operating
the sample partitions are minimal compared to the over-
all time of operation. This can be observed in Figures 10
and 11 where the actual cost-time product closely tracks
the cost-time product estimated by the model. In sum-
mary, these figures show that the applications achieve
cost-efficiency by tuning their operation to the operating
conditions in the deployed environment.

5.5 Over-partitioning of workload

Our analysis so far considers the number of partitions
and instances provisioned for operation to be equivalent.
The over-provisioning of instances relative to the num-
ber of partitions chosen for operation results in resource
wastage and high costs. In this section, we consider
the over-partitioning of the workload relative to the
number of instances provisioned for operation. The over-
partitioning is useful when smaller partitions or tasks
are desired for faster detection and re-execution of failed
tasks, limiting the consumption of resources by tasks,
and quickly adapting the operation to varying operating
conditions measured from the execution of tasks.
Figure 12 describes the effects of creating partitions

greater than the number of instances determined for
cost-efficient operation. The over-partition factor repre-
sents the multiplicative factor applied on the number of
instances determined for cost-efficient operation.
In E-Sort, over-partitioning incurs higher partition and

merge overheads without recording any increase in the
gains from the increased concurrency. This is because
the number of partitions that can be simultaneously

executed is limited by the number of instances avail-
able for operation. As a result, the time and cost of
operation of E-Sort increases with over-partitioning as
seen in Figure 12a (at over-partition factor of 6, the
time of operation increases to the next hourly boundary
resulting in a sharp increase in the cost-time product).

 0

 3

 6

 9

 12

 15

 0 2 4 6 8 10 12

C
os

t-
T

im
e

($
-h

r)

Over-partition factor

Actual
Estimated

(a) E-Sort

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 2 4 6 8 10 12

C
os

t-
T

im
e

($
-h

r)
Over-partition factor

Actual
Estimated

(b) E-MAKER

Fig. 12: Illustration of the effects of over-partitioning in E-Sort
and E-MAKER. The actual values were observed with the same
experimental setup and inputs as Figure 6.

In E-MAKER, the effects of over-partitioning on the
time and cost of operation are marginal. This is because
the partition and merge overheads are negligible and the
data transfer overheads only increase with the number
of instances used for execution of the tasks. In the
next section, we utilize over-partitioning in E-MAKER to
enable the measurement of varying operating conditions
at shorter intervals and the adaptation of the operating
parameters to the measured conditions.

5.6 Adaptations to varying operating conditions

In this section, we demonstrate the dynamic adaptations
when the characteristics of the operating environment
that impact the overheads and performance of the appli-
cations vary during operation. We consider changes in
the network bandwidth since it is prone to vary due to
multi-tenant effects. We show the dynamic adaptations
in E-MAKER where the impact from changes in the
bandwidth are pronounced due to the large common
data transfer overheads.
Figure 13 shows the dynamic adaptations by E-

MAKER to the operating conditions observed during
runtime. It plots the number of partitions and instances
chosen for operation based on the observed bandwidth.
The adaptations in E-MAKER function by progressively
partitioning and allocating the instances for operation
based on the observed conditions. It also over-partitions
the workload by a factor of 2 to enable measurement

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2415780, IEEE Transactions on Cloud Computing

D. RAJAN AND D. THAIN, DESIGNING SELF-TUNING SPLIT-MAP-MERGE APPLICATIONS FOR HIGH COST-EFFICIENCY IN THE CLOUD 12

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25

C
os

t-
T

im
e

($
-h

r)

Partitions

50Mbps
100Mbps
400Mbps

50Mbps
100Mbps
400Mbps

(a) Ttask : 1x

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25

C
os

t-
T

im
e

($
-h

r)

Partitions

50Mbps
100Mbps
400Mbps

50Mbps
100Mbps
400Mbps

(b) Ttask : 2x

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25

C
os

t-
T

im
e

($
-h

r)

Partitions

50Mbps
100Mbps
400Mbps

50Mbps
100Mbps
400Mbps

(c) Ttask : 5x

Fig. 10: The lines represent the estimated values for sorting 2 billion records totaling 11GB under different bandwidth. The
individual points plot the partitions dynamically chosen during operation by measuring the operating environment.

 0

 100

 200

 300

 400

 500

 0 5 10 15 20

C
os

t-
T

im
e

($
-h

r)

Partitions

50Mbps
100Mbps
400Mbps

50Mbps
100Mbps
400Mbps

(a) Ttask : 1x

 0

 100

 200

 300

 400

 500

 0 5 10 15 20 25

C
os

t-
T

im
e

($
-h

r)

Partitions

50Mbps
100Mbps
400Mbps

50Mbps
100Mbps
400Mbps

(b) Ttask : 2x

 0

 250

 500

 750

 1000

 1250

 1500

 0 5 10 15 20 25

C
os

t-
T

im
e

($
-h

r)

Partitions

50Mbps
100Mbps
400Mbps

50Mbps
100Mbps
400Mbps

(c) Ttask : 5x

Fig. 11: The lines represent the estimated values for annotating 800 sequences of Anopheles Agambiae under different bandwidth.
The individual points plot the partitions dynamically chosen during operation by measuring the operating environment.

and adaptation at shorter intervals without incurring
additional overheads. In our setup, E-MAKER measures
the operating environment after the dispatch of every
task and recomputes the operating parameters.

We observe in Figure 13 that when the bandwidth
drops after 300 seconds of operation, E-MAKER recom-
putes its operating parameters and lowers the number
of partitions and instances it uses for operation. This
minimizes the transfer overheads which become pro-
nounced at low bandwidth. When the bandwidth in-
creases again at 2100 seconds, E-MAKER determines that
it can achieve cost-efficiency by continuing operation
with the current scale of instances rather than increasing
the instances in the deployment. In the experiment show
in Figure 13, the overheads of progressive partitioning
and re-computation of the operating parameters was less
than 5% of the time of operation.

For comparison, Figure 13 also plots the operation of
E-MAKER using the measurements from the operation
of sample partitions in the same operating environment.
Figure 13 shows a sharp increment in the operating
cost of the sample partitioning approach at 3600 seconds
when the time of operation exceeds the hourly boundary.
At this point, the instances are provisioned for another
hour of use and thus the operating costs increase. From
the comparisons of the two techniques, we note the
dynamic adaptations are better positioned to handle
variations in the operating environment while incur-
ring low overheads. However, the dynamic adaptations
can incur large overheads and prove disadvantageous
without a properly designed control system [29] in the
presence of spurious and frequent variations.

6 RELATED WORK

Previous efforts have built and studied solutions for
the efficient deployment and operation of computational
processes. We review these efforts and summarize the
differences with the techniques presented in this work.
Techniques for service-oriented environments: Several
efforts have studied techniques for the optimal operation
and provisioning of resources for service-oriented and
multi-tenant environments such as web applications [30],
e-commerce systems [31], and databases [32]. The tech-
niques for service-oriented environments include load
prediction and estimation [33], [34], analysis of previous
deployments and loads [31], and monitoring and adapt-
ing the provisioned resources according to the needs
of the services [30], [35]. The techniques advocate the
adaptation of the operating environment to the demands
of the services.
In these environments, the workload is unknown,

unpredictable, and determined by external factors such
as the current demands of users. Further, these environ-
ments have different economies of operation since the
operating costs are incurred in serving multiple users
and guaranteeing the negotiated service level agree-
ments. Our work solves a different problem, where the
end-user presents a finite workload and must bear the
cost of the chosen configuration.
Resource provisioning mechanisms: The provisioning
and allocation of resources for large-scale and resource-
intensive applications have been extensively studied in
the context of distributed computing [36]–[38]. Recently,
several efforts have considered the cost-efficient deploy-
ment of scientific and data-intensive workloads in cloud

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2415780, IEEE Transactions on Cloud Computing

D. RAJAN AND D. THAIN, DESIGNING SELF-TUNING SPLIT-MAP-MERGE APPLICATIONS FOR HIGH COST-EFFICIENCY IN THE CLOUD 13

 0
 100
 200
 300
 400
 500
 600

0 900 1800 2700 3600 4500

B
an

dw
id

th
 (

M
bp

s)

Time (s)

Induced network disruption

 0
 5

 10
 15
 20
 25

0 900 1800 2700 3600 4500

P
ar

tit
io

ns

Time (s)

Adaptive
Sampling

 0
 2
 4
 6
 8

 10
 12

0 900 1800 2700 3600 4500

In
st

an
ce

s
us

ed

time (s)

Adaptive
Sampling

 0
 5

 10
 15
 20
 25
 30
 35

0 900 1800 2700 3600 4500

C
os

t (
$)

time (s)

Total: $26.48

Total: $9.31

Adaptive
Sampling

 0

 10

 20

 30

 40

0 900 1800 2700 3600 4500

C
os

t-
tim

e
($

-h
r)

time (s)

Total: 32.56

Total: 9.22

Adaptive
Sampling

Fig. 13: Dynamic adaptations of the operating parameters in
E-MAKER according to the observed network bandwidth. For
comparison, the operation using the parameters chosen from
the initial sampling of the environment is also plotted.

platforms [39]–[41]. The effort in [42] considers a class
of elastic applications with flexibility in the quality of
the results computed and presents solutions for their
efficient resource allocation. The authors in [39] and [43]
present heuristics for the optimal allocation of resources
for an arbitrary batch of independent jobs. The efforts
in [40], [41] present scheduling techniques in the mid-
dleware for multi-user environments running on cloud
resources. These scheduling techniques argue for coordi-
nation between cloud providers and users to maximize
the resource utilization of the provisioned resources.

We extend the work in this area by considering de-
ployments where operators or users independently and
directly provision resources from cloud platforms for op-
eration. The provisioned resources are exclusively dedi-
cated and maintained for the operation of an instance of
the application. We present techniques for determining
the scale of resources that achieve cost-efficient operation
in these deployments.

Workload partitioning: The partitioning and decompo-

sition of workloads have previously been studied in
shared execution environments, such as grids and clus-
ters [44], [45]. Recently, Agarwal et al. [46] considered a
system with a large proportion of recurring jobs and uti-
lized information from prior executions to determine the
optimal degree of parallelism to enable during operation.
The work in [47] describes the importance of identifying
the optimal number of data partitions for MapReduce
applications. It presents preliminary insights from an
approach combining code and data analysis with opti-
mization techniques. In our work, we argue that appli-
cations using the split-map-merge paradigms, such as
MapReduce, can benefit by internally incorporating a
model that can harness the code and data analysis to
determine cost-efficient operation.
Finally, the efforts in [48], [49] are closely related by

their use of a model describing the time and cost of oper-
ation of applications. The framework in [48] is targeted
at deployments in a hybrid environment comprised of
resources drawn from a local cluster and a commercial
cloud. The framework schedules jobs on the local cluster
and provisions resources in the cloud when the capacity
at the cluster cannot satisfy the time constraints of the
applications. The Conductor framework in [49] presents
an abstraction for efficiently deploying MapReduce ap-
plications. It includes a model describing the costs, ca-
pabilities, and the computation and storage capacities
of various instances offered in a cloud platform. The
models are applied to select the services that achieve the
lowest cost in running the MapReduce application. The
applicability of the framework is restricted to the cloud
services and instances that are modeled.

7 CONCLUSION AND FUTURE WORK

The cost-efficient operation of concurrent applications
in cloud platforms is determined by the number of
partitions and compute instances chosen for operation.
We showed the scale of partitions and instances that
achieve cost-efficient operation varied depending on the
characteristics of the workload and the environment in
which they are deployed. Further, these operating pa-
rameters have to determined in diverse, unknown, and
often unpredictable operating environments. In order to
determine the number of partitions and instances for
cost-efficient operation in the deployed environment, we
argue that applications must be self-modeling and self-
tuning. In this work, we considered the class of appli-
cations executed using the split-map-merge paradigm
and presented application-level techniques for realizing
self-modeling and self-tuning applications. We showed
these applications achieved high cost-efficiency by deter-
mining the resources needed for execution and adapting
their execution according to the measured characteristics
of their deployed environments.
We regard the techniques in this paper as an illustra-

tion of the principles of building concurrent applications
in the cloud. For these principles to be effective, we

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2415780, IEEE Transactions on Cloud Computing

D. RAJAN AND D. THAIN, DESIGNING SELF-TUNING SPLIT-MAP-MERGE APPLICATIONS FOR HIGH COST-EFFICIENCY IN THE CLOUD 14

believe the techniques must be tailored and tuned to the
properties and runtime components of the class of appli-
cations (e.g., directed acyclic graphs) being considered.
An useful extension of the presented techniques will
consider the effects of the size of instances to determine
if cost-efficiency can be achieved by switching to a
different instance size or service when the operating
conditions vary. Another direction would consider work-
loads that can be partitioned into tasks which utilize
multiple cores for execution. Our current work proceeds
in this direction by studying the trade-offs between the
capabilities and costs of different instances sizes in cloud
platforms for running multi-core applications.

ACKNOWLEDGEMENTS

This work was supported in part by National Science
Foundation grants CNS-0643229, CNS-855047, and OCI-
1148330.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Process-
ing on Large Clusters,” in Symposium on Operating System Design
and Implementation (OSDI), 2004, pp. 137–150.

[2] D. R. Cutting, D. R. Karger, J. O. Pedersen, and J. W. Tukey, “Scat-
ter/gather: A cluster-based approach to browsing large document
collections,” in Proceedings of the 15th International ACM SIGIR
conference on Research and development in information retrieval, 1992,
pp. 318–329.

[3] J.-P. Goux, S. Kulkarni, J. Linderoth, and M. Yoder, “An enabling
framework for master-worker applications on the computational
grid,” in High-Performance Distributed Computing, 2000. Proceedings.
The Ninth International Symposium on, 2000, pp. 43–50.

[4] W. Lu, J. Jackson, and R. Barga, “AzureBlast: a case study of
developing science applications on the cloud,” in Proceedings of the
19th ACM International Symposium on High Performance Distributed
Computing. ACM, 2010, pp. 413–420.

[5] E. Roloff, M. Diener, A. Carissimi, and P. Navaux, “High perfor-
mance computing in the cloud: Deployment, performance and
cost efficiency,” in Cloud Computing Technology and Science, 4th
IEEE International Conference on, 2012, pp. 371–378.

[6] C. Wang, K. Ren, J. Wang, and Q. Wang, “Harnessing the cloud
for securely outsourcing large-scale systems of linear equations,”
IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 6,
pp. 1172–1181, Jun. 2013.

[7] R. Barga, D. Gannon, and D. Reed, “The client and the cloud:
Democratizing research computing,” IEEE Internet Computing,
vol. 15, no. 1, pp. 72–75, Jan. 2011.

[8] W. Cirne, D. Paranhos, L. Costa, E. Santos-Neto, F. Brasileiro,
J. Sauve, F. A. B. Silva, C. Barros, and C. Silveira, “Running bag-of-
tasks applications on computational grids: the mygrid approach,”
in Parallel Processing, 2003. Proceedings. 2003 International Confer-
ence on, Oct 2003, pp. 407–416.

[9] A. V. Gerbessiotis and L. G. Valiant, “Direct bulk-synchronous
parallel algorithms,” Journal of parallel and distributed computing,
vol. 22, no. 2, pp. 251–267, 1994.

[10] A. Luckow and et al., “Distributed replica-exchange simulations
on production environments using saga and migol,” in IEEE
Fourth International Conference on eScience, 2008, pp. 253–260.

[11] B. Abdul-Wahid, L. Yu, D. Rajan, H. Feng, E. Darve, D. Thain,
and J. A. Izaguirre, “Folding Proteins at 500 ns/hour with Work
Queue,” in 8th IEEE International Conference on eScience (eScience
2012), 2012.

[12] A. Thrasher, Z. Musgrave, D. Thain, and S. Emrich, “Shifting
the Bioinformatics Computing Paradigm: A Case Study in Par-
allelizing Genome Annotation Using Maker and Work Queue,”
in IEEE International Conference on Computational Advances in Bio
and Medical Sciences, 2012.

[13] D. Rajan, A. Thrasher, B. Abdul-Wahid, J. A. Izaguirre, S. Emrich,
and D. Thain, “Case Studies in Designing Elastic Applications,”
in 13th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid), 2013.

[14] D. Rajan, A. Canino, J. A. Izaguirre, and D. Thain, “Converting a
High Performance Application to an Elastic Cloud Application,”
in The 3rd IEEE International Conference on Cloud Computing Tech-
nology and Science (CloudCom 2011), 2011.

[15] Hadoop, http://hadoop.apache.org/, 2007.
[16] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Dis-

tributed data parallel programs from sequential building blocks,”
in Proceedings of EuroSys, March 2007.

[17] S. Jha, Y. E. Khamra, and J. Kim, “Developing Scientific Applica-
tions with Loosely-Coupled Sub-tasks,” in Proceedings of the 9th
International Conference on Computational Science: Part I, ser. ICCS
’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 641–650.

[18] P. Bui, D. Rajan, B. Abdul-Wahid, J. Izaguirre, and D. Thain,
“Work Queue + Python: A Framework For Scalable Scientific En-
semble Applications,” in Workshop on Python for High Performance
and Scientific Computing (PyHPC) at the ACM/IEEE International
Conference for High Performance Computing, Networking, Storage, and
Analysis (Supercomputing) , 2011.

[19] C. Moretti, A. Thrasher, L. Yu, M. Olson, S. Emrich, and D. Thain,
“A Framework for Scalable Genome Assembly on Clusters,
Clouds, and Grids,” IEEE Transactions on Parallel and Distributed
Systems, vol. 23, no. 12, 2012.

[20] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on. IEEE, 2010, pp. 1–10.

[21] M. A. Suleman, M. K. Qureshi, and Y. N. Patt, “Feedback-driven
threading: Power-efficient and high-performance execution of
multi-threaded workloads on cmps,” in Proceedings of the 13th
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2008, pp. 277–286.

[22] R. Rabenseifner, G. Hager, and G. Jost, “Hybrid mpi/openmp
parallel programming on clusters of multi-core smp nodes,” in
Parallel, Distributed and Network-based Processing, 2009 17th Euromi-
cro International Conference on, Feb 2009, pp. 427–436.

[23] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime measure-
ments in the cloud: Observing, analyzing, and reducing variance,”
Proc. VLDB Endow., vol. 3, no. 1-2, pp. 460–471, Sep. 2010.

[24] G. M. Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” in Proceedings of the
Spring Joint Computer Conference, ser. AFIPS ’67 (Spring). ACM,
1967, pp. 483–485.

[25] “How do I select the right instance type?” http://aws.amazon.
com/ec2/faqs, accessed: 2014-07-21.

[26] C. Holt and M. Yandell, “MAKER2: an annotation pipeline
and genome-database management tool for second-generation
genome projects,” BMC Bioinformatics, no. 12, p. 491, 2011.

[27] “Windows Azure Cloud Platform,” http://www.windowsazure.
com, accessed: 2013-12-21.

[28] “FutureGrid,” https://portal.futuregrid.org, accessed: 2013-12-21.
[29] G. F. Franklin, D. J. Powell, and A. Emami-Naeini, Feedback Control

of Dynamic Systems, 4th ed. Upper Saddle River, NJ, USA:
Prentice Hall PTR, 2001.

[30] B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, and T. Wood,
“Agile dynamic provisioning of multi-tier internet applications,”
ACM Trans. Auton. Adapt. Syst., vol. 3, no. 1, pp. 1–39, Mar. 2008.

[31] D. Villela, P. Pradhan, and D. Rubenstein, “Provisioning servers
in the application tier for e-commerce systems,” ACM Transactions
on Internet Technology, vol. 7, no. 1, Feb. 2007.

[32] S. Sakr and A. Liu, “Sla-based and consumer-centric dynamic
provisioning for cloud databases,” in Proceedings of the IEEE Fifth
International Conference on Cloud Computing, 2012, pp. 360–367.

[33] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: Elastic
resource scaling for multi-tenant cloud systems,” in Proceedings
of the 2Nd ACM Symposium on Cloud Computing, ser. SOCC ’11.
New York, NY, USA: ACM, 2011, pp. 5:1–5:14.

[34] Q. Zhang, L. Cherkasova, and E. Smirni, “A regression-based
analytic model for dynamic resource provisioning of multi-tier
applications,” in Proceedings of the Fourth International Conference
on Autonomic Computing, 2007, pp. 27–.

[35] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
A. Merchant, and K. Salem, “Adaptive control of virtualized
resources in utility computing environments,” ACM SIGOPS Op-
erating Systems Review, vol. 41, no. 3, pp. 289–302, 2007.

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2415780, IEEE Transactions on Cloud Computing

D. RAJAN AND D. THAIN, DESIGNING SELF-TUNING SPLIT-MAP-MERGE APPLICATIONS FOR HIGH COST-EFFICIENCY IN THE CLOUD 15

[36] G. Juve and E. Deelman, “Resource Provisioning Options for
Large-Scale Scientific Workflows,” in 2008 IEEE Fourth Interna-
tional Conference on eScience. IEEE, Dec. 2008, pp. 608–613.

[37] M. D. de Assunçao and R. Buyya, “Performance analysis of
allocation policies for interGrid resource provisioning,” Inf. Softw.
Technol., vol. 51, no. 1, pp. 42–55, Jan. 2009.

[38] T. Sandholm, J. A. Ortiz, J. Odeberg, and K. Lai, “Market-Based
Resource Allocation using Price Prediction in a High Performance
Computing Grid for Scientific Applications,” in 2006 15th IEEE
International Conference on High Performance Distributed Computing.
IEEE, 2006, pp. 132–143.

[39] S. Genaud and J. Gossa, “Cost-Wait Trade-Offs in Client-Side Re-
source Provisioning with Elastic Clouds,” in IEEE 4th International
Conference on Cloud Computing, Jul. 2011, pp. 1–8.

[40] C. Vecchiola, S. Pandey, and R. Buyya, “High-Performance Cloud
Computing: A View of Scientific Applications,” in 2009 10th Inter-
national Symposium on Pervasive Systems, Algorithms, and Networks.
IEEE, Dec. 2009, pp. 4–16.

[41] T. A. Henzinger, A. V. Singh, V. Singh, T. Wies, and D. Zufferey,
“FlexPRICE: Flexible Provisioning of Resources in a Cloud En-
vironment,” in 2010 IEEE 3rd International Conference on Cloud
Computing. IEEE, Jul. 2010, pp. 83–90.

[42] Q. Zhu and G. Agrawal, “Resource Provisioning with Budget
Constraints for Adaptive Applications in Cloud Environments,”
IEEE Transactions on Services Computing, 2012.

[43] F. Chang, J. Ren, and R. Viswanathan, “Optimal Resource Allo-
cation in Clouds,” in IEEE 3rd International Conference on Cloud
Computing. IEEE, 2010, pp. 418–425.

[44] W. Chen and E. Deelman, “Integration of Workflow Partitioning
and Resource Provisioning,” in 12th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing, 2012, pp. 764–768.

[45] M. K. Hedayat, W. Cai, S. J. Turner, and S. Shahand, “Distributed
Execution of Workflow Using Parallel Partitioning,” in 2009 IEEE
International Symposium on Parallel and Distributed Processing with
Applications. IEEE, 2009, pp. 106–112.

[46] S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu, I. Stoica, and
J. Zhou, “Re-optimizing data-parallel computing,” in Proceedings
of the 9th USENIX Conference on Networked Systems Design and
Implementation, Berkeley, CA, USA, 2012, pp. 21–21.

[47] Q. Ke, V. Prabhakaran, Y. Xie, Y. Yu, J. Wu, and J. Yang, “Optimiz-
ing data partitioning for data-parallel computing,” in Proceedings
of the 13th USENIX conference on Hot topics in operating systems, ser.
HotOS’13. Berkeley, CA, USA: USENIX Association, 2011, p. 13.

[48] T. Bicer, D. Chiu, and G. Agrawal, “Time and Cost Sensitive Data-
Intensive Computing on Hybrid Clouds,” in Cluster, Cloud and
Grid Computing, 12th IEEE/ACM International Symposium on, May
2012, pp. 636–643.

[49] A. Wieder, P. Bhatotia, A. Post, and R. Rodrigues, “Orchestrating
the deployment of computations in the cloud with conductor,”
in Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation, 2012, p. 27.

Dinesh Rajan received his M.S in Computer
Science and Engineering from the University of
Notre Dame in 2008. He is currently a Ph.D
student in Computer Science and Engineering
at the University of Notre Dame. His research
studies the design of concurrent applications
deployed and operated on distributed systems.

Douglas Thain received the B.S. in Physics in
1997 from the University of Minnesota and the
M.S. and Ph.D. in Computer Sciences in 1999
and 2004 from the University of Wisconsin. He
is currently an Associate Professor of Computer
Science and Engineering at the University of
Notre Dame, where his research focuses on
scientific applications of distributed computing
systems.

