
Maximizing Data Utility for HPC Python Workflow Execution
Thanh Son Phung
Douglas Thain

University of Notre Dame

Ben Clifford
Kyle Chard

University of Chicago

ABSTRACT
Large-scale HPC workflows are increasingly implemented in dy-
namic languages such as Python, which allow for more rapid devel-
opment than traditional techniques. However, the cost of executing
Python applications at scale is often dominated by the distribution
of common datasets and complex software dependencies. As the
application scales up, data distribution becomes a limiting factor
that prevents scaling beyond a few hundred nodes. To address this
problem, we present the integration of Parsl (a Python-native paral-
lel programming library) with TaskVine (a data-intensive workflow
execution engine). Instead of relying on a shared filesystem to pro-
vide data to tasks on demand, Parsl is able to express advance data
needs to TaskVine, which then performs efficient data distribution
at runtime. This combination provides a performance speedup of
1.48x over the typical method of on-demand paging from the shared
filesystem, while also providing an average task speedup of 1.79x
with 2048 tasks and 256 nodes.

ACM Reference Format:
Thanh Son Phung, Douglas Thain, Ben Clifford, and Kyle Chard. 2023. Max-
imizing Data Utility for HPC Python Workflow Execution. In Proceedings of
SC23 Workshop: High Performance Python for Science at Scale (SC ’23). ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/3624062.3624136

1 INTRODUCTION
Modern scientific workflows demand enormous compute and stor-
age capabilities, reaching tens of thousands of CPUs and terabytes
of disk space [1, 4]. For example, the Dark Energy Science Col-
laboration (DESC) reports an aggregated 2.5 PBs of data products
resulting from processing sky images obtained from the Rubin
Observatory [1]. To address this pressing need, current solutions
[3, 5, 9] revolve around the "scale-out" approach: the ability to
linearly scale the computational power with available resources.

To effectively utilize current solutions, users often express such
applications as a dynamic workflow: necessary computations are
separated and individually packaged into fine-grained tasks to be
executed independently on compute nodes. In this approach, it is the
responsibility of the compute node (or a proxy for that node in the
case of a pilot job) to provide a task with access to its input data and
software dependencies for a successful execution. It is important
to note that the size of input data and software dependencies for
a single task can easily reach GBs of disk space. For example, two
popular deep learning frameworks tensorflow and pytorch take
2.2 GBs and 1.7 GBs of disk space, respectively. Running workflows
with thousands of tasks using these frameworks implies at least
terabytes of data transferred between the data source (e.g., a shared
filesystem) and compute nodes. Such data volumes necessitate a
careful decision on how to provide access to data when thousands
of tasks are executed concurrently on an HPC cluster.

Several methods have been developed to provide data and de-
pendencies to a task on a compute node. We divide these methods
into two main categories:

(1) Shared Filesystems: Some workflow systems rely on the ex-
istence of shared filesystem mounts on compute nodes to
deliver data and software dependencies to tasks. While this
approach does reduce data delivery complexity for both users
and developers, its performance is dependent on the perfor-
mance of the shared filesystem,which can be heavily strained
by other users’ activities in the facility. Since production
workflows are usually comprised of thousands of tasks, this
problem is further exacerbated at workflow startup when all
tasks ask the shared filesystem for the same set of software
dependencies, overloading the metadata server and the data
servers that hold the software dependencies, thus reducing
the overall workflow performance.

(2) Data Staging: Recent efforts instead use the local storage
available on compute nodes to stage data. This approach re-
quiresmorework from users but can increase performance as
data and software dependencies are extracted once from the
shared filesystem and loaded into local storage distributed
over compute nodes.

Data-staging methods can be further broken down into two
technical styles:

(1) Private Temporary Filesystems: These solutions [11, 12] trans-
form the aggregated local storage on compute nodes into
a temporary filesystem and load data and software depen-
dencies therein, virtually making them “closer" to compute
nodes. This approach relieves the shared filesystem from
its data delivery responsibility but requires that all data be
transferred into the temporary filesystem upon workflow
startup, and thus inducing a significant latency to a workflow
execution. Furthermore, any potential awareness of data lo-
cality is hidden from all components in a workflow run due
to the abstraction of a shared filesystem (a temporary filesys-
tem is still a shared filesystem), thus removing possible data
movement optimizations and sharing.

(2) Explicit Data Placement and Management: Workflow systems
like WorkQueue[5] or Makeflow[2] instead require explicit
annotations of data-to-task bindings and map locations of
all data and tasks on compute nodes on-the-fly. Despite the
increased burden of correct annotations on users, this dynam-
icity allows for several optimizations: caching common data
and software dependencies at compute nodes, P2P transfer
of data between compute nodes, etc.

We argue that explicit data placement and management are nec-
essary to optimize performance of workflow execution. This is
because the data-to-task annotations allow for the maximization
of data utility in a workflow: once a data asset is loaded into a

https://doi.org/10.1145/3624062.3624136


compute node, it becomes a source of data from which other com-
pute nodes can pull from and other tasks can reuse, thus reducing
pressure on the common data storage. This approach effectively
views the problem of data and software dependencies delivery as a
data dissemination problem: compute nodes that don’t have needed
data (not "infected") can pull data replicas from "infected" compute
nodes instead of the shared filesystem, and tasks on the same com-
pute nodes can reuse the same software dependencies instead of
each pulling them separately.

To evaluate this idea, we integrate Parsl [3], a Python-native
workflow manager that uses Python functions to define tasks and
tracks task dependencies using Python futures, with TaskVine[10],
a data-intensive workflow execution engine that extensively uses
data-to-task annotations and local storage of compute nodes to opti-
mize workflow executions on-the-fly. We first give a brief overview
of Parsl and TaskVine, and show several technical problems in the
mapping of Parsl abstractions to the TaskVine API. We then show
how to overcome these problems and provide a complete data-to-
task annotation to TaskVine for every task, thus enabling TaskVine
to optimize workflow execution. Our work is implemented as the
TaskVineExecutor in Parsl and can be used by production work-
flows by simply specifying its use in the Parsl configuration. Our
results show that the execution time of a workflow with 2048 tasks
can be sped up from 1.05x to 1.48x and the average task execution
time can be sped up from 1.02x to 1.79x using up to 256 workers.

2 BACKGROUND
Parsl: Parsl is a Python-native parallel programming library that
aims tomake it easy to encode parallelism in application code. In the
front end, users need only to apply Python decorators to functions
that may be executed concurrently. The Parsl-provided decorators
allows for optional specification of input/output file wrappers that
are then staged to/from compute nodes. Once these functions are
called by the Python interpreter, a Python concurrent.futures
Future object is returned immediately, and users can check for
results via the Future API (f.done() and f.result()). Parsl’s core
consists of two components: the DataFlowKernel and the Executor.
The DataFlowKernel’s job is to maintain a mapping of futures to
results of function calls, and the dependency call graph among
called functions. Once functions’ dependencies are resolved, ready
functions are wrapped and given to the Executor as a stream of
tasks to be scheduled to execute on compute nodes. The Executor
then ensures successful executions of tasks and returns the results
to the DataFlowKernel, which then sets the results or exceptions of
Future objects appropriately.

TaskVine: TaskVine is a data-intensive workflow execution en-
gine that follows themanager-worker paradigm. At the top layer, ap-
plications first define tasks and data on-the-fly, including software
dependencies, then provide data-to-task bindings to the TaskVine
Manager. It’s important to note that data is treated as a first-class
citizen just like tasks: common shareable data is defined as a unique
File object, and the binding will then serve as a hook between
registered Files and tasks. Once the mapping and registration are
done, the Manager will start sending out tasks to ready compute
nodes and direct the data delivery to all connected compute nodes,
marking data as cacheable and transferable as appropriate. Since

Figure 1: Parsl-TaskVine Integration Architecture

tasks cannot be executed before all input data and software de-
pendencies are presented, waiting compute nodes will seek data
transfers from replicas on ready nodes. Allowing waiting nodes to
uncoordinatedly ask ready nodes for pending data will most likely
result in bandwidth overloading between nodes in an HPC cluster
and thus degrade the performance of the workflow execution and
perhaps other co-located workflows. To avoid this, the TaskVine
Manager coordinates the P2P transfers by capping the number
of concurrent transfers a compute node can make (default to 3),
thereby introducing an implicit throttling mechanism to the data
dissemination process. A task will then start its execution when all
data dependencies are staged in (all I/Os hereafter are contained in
the compute node). Once all tasks finish and results are returned
to the application, the Manager will direct workers to clean their
workspaces as appropriate and free the cluster’s resources.

Related Work: Many workflow systems [6, 7] assume the ex-
istence of a static DAG of tasks to execute a workflow. While this
assumption fits well with some applications and allows for optimiza-
tions by statically analyzing the DAG, modern applications often
do not have prior knowledge of the amount of computation needed
to be performed, and instead probing work is required before arriv-
ing at the formation of a DAG of tasks. Other workflow systems,
such as Parsl [3] and Dask [9], allow a more dynamic expression
of an application, relying heavily on Python’s Future-like objects
to represent tasks to be executed at compute nodes. This approach
focuses on the parallelization of Python computations, but falls
short in data delivery and management. They either depend on
shared filesystems to deliver data and dependencies, or stream data
and dependencies sequentially to each task, and thus fail to make
use of readily available data replicas on other compute nodes.

3 INTEGRATION MODEL
Overview: Figure 1 shows the architecture of the Parsl-TaskVine
integration. At the top level, an application defines functions to
be executed concurrently and registers them with Parsl using the
app decorator. Once these functions are called, two events happen:
(1) a Future object is returned immediately per function call to the
application representing a pending function execution, and (2) the
function objects along with their arguments are given to Parsl’s
DataFlowKernel. The DataFlowKernel will add given function calls
to its internal dynamic graph of computation, resolve function de-
pendencies to determine which functions can be readily run, and
send ready functions to the Executor. The Executor upon startup

2



will spawn two processes, the TaskVine Manager which handles
task scheduling, execution, and data management, and the TaskVine
Factory, which exclusively manages the sizing of the pool of work-
ers. Upon receiving the ready functions from the DataFlowKernel,
the Executor then serializes the function objects and arguments
using available serializing methods and sends the serialized objects
to the TaskVine Manager process. The Manager process detects
tasks and their associated data, registers both to its internal data
structures, and annotates data-to-task bindings. The Manager then
schedules tasks for execution in TaskVine workers (priority is given
to workers that already have data dependencies available), which
are launched as individual processes on compute nodes in a clus-
ter and report for work to the Manager upon startup. To launch
workers on an HPC cluster, we utilize the TaskVine Factory pro-
cess, which generates helper scripts to launch TaskVine worker
processes on compute nodes and automatically scales the number
of workers as users wish. The Factory process is started by default
when a workflow starts up, and will release all resources upon
receiving a termination signal from the Executor.

Serialization/Deserialization: Our first technical problem re-
volves around sending Python objects (function and arbitrary argu-
ment objects) between processes (specifically, between the Executor
and Manager, and between the Manager andWorker). A naive im-
plementation can easily lead to double serialization/deserialization
of every Python object per task (once per component pair), which
would significantly reduce workflow performance. To avoid this,
all Python objects are serialized to TaskVine Files in the Execu-
tor process, and conveyed to the Manager process through local
file paths. The Manager then binds appropriate Files to tasks and
sends a "wrapper" task instead. This "wrapper" task once sent to
a worker will deserialize objects from the File, load them to the
current Python namespace, and execute the function call normally.
Results are also communicated the same way: they are serialized to
a file at a worker, transferred back to the Manager, and deserialized
and given back to the application. The Parsl-TaskVine integration
uses a combination of pickle and dill [8] packages to serialize/de-
serialize Python objects, and can support customized serializers
should users need.

Environment Packaging: To enable the comprehensive and ex-
plicit data placement and management strategy of TaskVine, users
can choose to specify the necessary software dependencies. This
can either be in the form of a tarball containing all software de-
pendencies, a conda environment that encapsulates all software
dependencies of the workflow, or a customized tarball that fol-
lows TaskVine’s convention of package dependencies. If given, the
Manager will create if needed and bind this dependency tarball to
all tasks, and send the tarball over to a worker either directly or
through P2P transfers. The worker caches the extracted dependen-
cies directory using its local storage to facilitate sharing between
co-located tasks, effectively localizing all file accesses to package
dependencies by one large tarball transfer.

Data Caching/Sharing: Parsl-TaskVine Executor takes a proac-
tive view on the problem of caching and sharing data. By default,
all files that bind with tasks using the data-to-task bindings are
cached and shared, with the expectation that such data will be used
repeatedly later. By the same argument, software dependencies are

Figure 2: Workflow Execution Time

also cached and shared, as functions usually run in the same envi-
ronment and thus should share dependencies. Two types of data are
never cached or shared between workers: (1) computational results,
as they must be returned to the application for further processing,
and (2) temporary stdin, stdout, and stderr of individual tasks.

Resource Allocation and Scaling: Users have the ability to
specify the amount of resources a function may consume by passing
a dictionary of resource values as an argument to the function call.
The Executor will detect and parse the argument if available, and
use TaskVine APIs to set these resource limits accordingly. The size
and number of workers can be configured and given to the TaskVine
Factory process. Upon startup, the Factory process will read the
configuration, create helper scripts to various batch systems, and
launch and monitor workers properly.

4 EVALUATION
To evaluate explicit data placement and management in Python
workflow execution, we run a hyperparameter sweep application
on two configurations: (1) entirely using the panfs [13] filesystem,
and (2) entirely using TaskVine’s data distribution method. The
application consists of searching a set of 2048 possible combinations
of configurations of a neural network designed to categorize MNIST
images. The neural network trains in approximately 5 minutes and
uses at most 2 cores and 2GBs of memory and disk. Each run of a
neural network training requires access to a software dependency
directory of size 4.4 GBs (compressible to 908 MBs) and a dataset
of 25 MBs (compressible to 17MBs). Each worker has 16 cores and
16GBs of memory and disk and thus can run 8 tasks concurrently.
Finally, all workflows run on an HTCondor campus HPC cluster
with varying number of workers from 32, 64, 128, to 256.

Figure 2 shows the execution time of the workflow with vary-
ing number of workers and execution modes: using the shared
filesystem ("shared-fs") and using the TaskVine distribution method
("vine"). Since the software dependency and dataset tarballs can be
reused over multiple runs, "vine-hot" shows the execution time of
the workflow when these tarballs are cached on the manager node
(these tarballs are still extracted at the compute nodes however.)
We can see that the TaskVine distribution method doesn’t bring
major benefits when running at a small scale of 32 workers with a
speedup of 1.05x. However, as we increase the number of workers
to 64, 128, and 256, the TaskVine distribution method scales better

3



(a) shared-fs-32

(b) vine-32

(c) shared-fs-64

(d) vine-64

(e) shared-fs-128

(f) vine-128

(g) shared-fs-256

(h) vine-256
Figure 3: Histograms of task execution time in 8 workflow runs

x-axis: execution time (s), y-axis: task count.

shared-fs vine
mean median std mean median std

32 816.7 884.6 153.7 803.5 885.3 171.5
64 888.6 901.8 148.6 503.6 296.9 299.4
128 602.8 618.2 179.2 460.7 317.0 229.4
256 961.3 849.2 229.9 538.5 437.2 265.0

Table 1: Statistics of tasks’ execution time

than the shared filesystem and brings speedups of 1.38x, 1.31x, and
1.48x, respectively. We can also see the effect of diminishing returns
when doubling the number of workers from 128 to 256 with the
shared filesystem, only getting a 1.02x speedup. TaskVine, on the
other hand, shows a better 1.15x speedup as both configurations
start to be bottlenecked by the data dissemination problem.

Figure 3 shows the histograms of all 2048 tasks’ execution time
over 8 combinations of workflow configurations. While tasks in
workflows that use the shared filesystem generally run longer due
to the concurrent I/O pressure to the same data source, TaskVine’s
data distribution method results in a higher number of tasks finish-
ing faster as data and software dependencies are distributed more
quickly and thus reduces average task execution time.

Table 1 shows the mean, median, and standard deviation of 2048
tasks’ execution time with varying combinations of the number
of workers and execution modes. As we increase the number of
workers from 32 to 256, TaskVine’s distributionmethod yields better
average task execution time, obtaining speedups of 1.02, 1.76, 1.31,
and 1.79, respectively.

5 CONCLUSION
We intergrated Parsl with TaskVine to utilize local storage of com-
pute nodes and maximize data utility in Python workflow execu-
tions. We showed that by using an explicit data placement and
management strategy, TaskVine can coordinate and transmit data
and software dependencies faster than using a shared filesystem at
scale, obtaining a speedup of 1.48x and 1.79x in workflow execution
time and average task execution time, respectively.

REFERENCES
[1] Bela Abolfathi, David Alonso, Robert Armstrong, Éric Aubourg, Humna Awan,

Yadu N Babuji, Franz Erik Bauer, Rachel Bean, George Beckett, Rahul Biswas,
et al. 2021. The lsst desc dc2 simulated sky survey. The Astrophysical Journal
Supplement Series 253, 1 (2021), 31.

[2] Michael Albrecht, Patrick Donnelly, Peter Bui, and Douglas Thain. 2012. Make-
flow: A portable abstraction for data intensive computing on clusters, clouds,
and grids. In Proceedings of the 1st ACM SIGMOD Workshop on Scalable Workflow
Execution Engines and Technologies. 1–13.

[3] Yadu Babuji, Anna Woodard, Zhuozhao Li, Daniel S. Katz, Ben Clifford, Rohan
Kumar, Lukasz Lacinski, Ryan Chard, Justin M. Wozniak, Ian Foster, Michael
Wilde, and Kyle Chard. 2019. Parsl: Pervasive Parallel Programming in Python.
In Proceedings of the 28th International Symposium on High-Performance Parallel
and Distributed Computing (Phoenix, AZ, USA) (HPDC ’19). Association for
Computing Machinery, New York, NY, USA, 25–36. https://doi.org/10.1145/
3307681.3325400

[4] Jakob Blomer, Philippe Canal, Axel Naumann, and Danilo Piparo. 2020. Evolution
of the ROOT tree I/O. In EPJ Web of Conferences, Vol. 245. EDP Sciences, 02030.

[5] Peter Bui, Dinesh Rajan, Badi Abdul-Wahid, Jesus Izaguirre, and Douglas Thain.
2011. Work queue+ python: A framework for scalable scientific ensemble appli-
cations. InWorkshop on python for high performance and scientific computing at
sc11.

[6] Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip J
Maechling, Rajiv Mayani, Weiwei Chen, Rafael Ferreira Da Silva, Miron Livny,
et al. 2015. Pegasus, a workflow management system for science automation.
Future Generation Computer Systems 46 (2015), 17–35.

[7] Paolo Di Tommaso, Maria Chatzou, Evan W Floden, Pablo Prieto Barja, Emilio
Palumbo, and Cedric Notredame. 2017. Nextflow enables reproducible computa-
tional workflows. Nature biotechnology 35, 4 (2017), 316–319.

[8] Michael MMcKerns, Leif Strand, Tim Sullivan, Alta Fang, andMichael AGAivazis.
2012. Building a framework for predictive science. arXiv preprint arXiv:1202.1056
(2012).

[9] Matthew Rocklin. 2015. Dask: Parallel Computation with Blocked algorithms and
Task Scheduling. In Proceedings of the 14th Python in Science Conference, Kathryn
Huff and James Bergstra (Eds.). 130 – 136.

[10] Barry Sly-Delgado, Thanh Son Phung, Colin Thomas, David Simonetti, Andrew
Hennesse, Ben Tovar, and Douglas Thain. 2023. TaskVine: Managing In Cluster
Data for High Throughput Data Intensive Workflows. WORKS Workshop on
Workflows in Support of Large Scale Science at Supercomputing (2023).

[11] Osamu Tatebe, Kazuki Obata, Kohei Hiraga, and Hiroki Ohtsuji. 2022. Chfs:
Parallel consistent hashing file system for node-local persistent memory. In
International Conference on High Performance Computing in Asia-Pacific Region.
115–124.

[12] Marc-André Vef, Nafiseh Moti, Tim Süß, Tommaso Tocci, Ramon Nou, Alberto
Miranda, Toni Cortes, and André Brinkmann. 2018. Gekkofs-a temporary dis-
tributed file system for hpc applications. In 2018 IEEE International Conference on
Cluster Computing (CLUSTER). IEEE, 319–324.

[13] Brent Welch and Garth A Gibson. 2004. Managing Scalability in Object Storage
Systems for HPC Linux Clusters.. In MSST. Citeseer, 433–445.

4

https://doi.org/10.1145/3307681.3325400
https://doi.org/10.1145/3307681.3325400

	Abstract
	1 Introduction
	2 Background
	3 Integration Model
	4 Evaluation
	5 Conclusion
	References

