
VC3: A Virtual Cluster Service for Community Computation
Lincoln Bryant

University of Chicago
Chicago, Illinois

lbryant@uchicago.edu

Jeremy Van
University of Chicago

Chicago, Illinois
jeremyvan@uchicago.edu

Benedikt Riedel
University of Chicago

Chicago, Illinois
briedel@uchicago.edu

Robert W. Gardner
University of Chicago

Chicago, Illinois
rwg@uchicago.edu

Jose Caballero Bejar
Brookhaven National Lab

Upton, New York
jcaballero@bnl.gov

John Hover
Brookhaven National Lab

Upton, New York
jhover@bnl.gov

Ben Tovar
University of Notre Dame

Notre Dame, Indiana
btovar@nd.edu

Kenyi Hurtado
University of Notre Dame

Notre Dame, Indiana
khurtado@nd.edu

Douglas Thain
University of Notre Dame

Notre Dame, Indiana
dthain@nd.edu

ABSTRACT
A traditional HPC computing facility provides a large amount of
computing power but has a fixed environment designed to satisfy
local needs. This makes it very challenging for users to deploy
complex applications that span multiple sites and require specific
application software, scheduling middleware, or sharing policies.
The DOE-funded VC3 project aims to address these challenges by
making it possible for researchers to easily aggregate and share
resources, install custom software environments, and deploy cluster-
ing frameworks across multiple HPC facilities through the concept
of “virtual clusters”. This paper presents the design, implementation,
and initial experience with our prototype self-service VC3 platform
which automates deployment of cluster frameworks across diverse
computing facilities. To create a virtual cluster, the VC3 platform
materializes a custom head node in a secure private cloud, spec-
ifies a choice of scheduling middleware, then allocates resources
from the remote facilities where the desired software and clustering
framework is installed in user space. As resources become available
from scheduled nodes from individual clusters, the research team
simply sees a private cluster they can access directly or share with
collaborators, such as a science gateway community. We discuss
how this service can be used by research collaborations requiring
shared resources, specific middleware frameworks, and complex
applications and workflows in the areas of astrophysics, bioinfor-
matics and high energy physics.

CCS CONCEPTS
• Computer systems organization→ Grid computing;

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, or contractor of the national government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to allow others
to do so, for Government purposes only. Permission to make digital or hard copies for
personal or classroom use is granted. Copies must bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. To copy otherwise, distribute, republish, or post, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.
PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6446-1/18/07. . . $15.00
https://doi.org/10.1145/3219104.3219125

KEYWORDS
OSG, distributed data access, CVMFS, XENON, EGI, XENON1T,
XSEDE, Campus Cluster, HTCondor, Distributed computing, Cloud
computing, Grid computing
ACM Reference format:
Lincoln Bryant, Jeremy Van, Benedikt Riedel, Robert W. Gardner, Jose Ca-
ballero Bejar, John Hover, Ben Tovar, Kenyi Hurtado, and Douglas Thain.
2018. VC3: A Virtual Cluster Service for Community Computation. In Pro-
ceedings of Practice and Experience in Advanced Research Computing, Pitts-
burgh, PA, USA, July 22–26, 2018 (PEARC ’18), 8 pages.
https://doi.org/10.1145/3219104.3219125

1 INTRODUCTION
The traditional high performance computing (HPC) model assumes
that users conduct their work at one of a small number of facilities,
each equipped with advanced computing and storage capabilities.
Professional system administrators procure, install, operate, and
upgrade the facility according to local needs, working with users to
adjust applications so that they meet local conditions. As a result,
traditional HPC sites differ from each other in many ways small and
large, including details like the operating system, the file storage
system, the batch queue, the applications installed, and more.

Because of these local differences, complex applications con-
structed in a given facility are often difficult to disentangle from
the peculiarities of that facility. Production applications are often
complex assemblies of multiple scripts, libraries, and executables de-
pendent on system services such as middleware, databases, caches,
and other internet-accessible resources. Constructing such an as-
sembly in one location is hard enough; replicating it at another
facility can be a dreaded task for even a sophisticated user or system
administrator. As a result, powerful computing facilities may be un-
derutilized, and opportunities for research missed simply because
deploying a complex system is too time consuming.

This is not a problem for a single user at one facility, but it
presents a serious barrier to multi-institution collaboration, ex-
tension, and replication of research. Researchers have access to
different selections of resources according to their local conditions.
For example, university researchers might have a fair-share slice of

https://doi.org/10.1145/3219104.3219125
https://doi.org/10.1145/3219104.3219125

PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA L. Bryant, et al.

Figure 1: User Interface to VC3
The user interacts with the VC3 web portal (virtualclusters.org) to register an allocation for a computing resource, define a project and
collaborators, configure a software environment, launch a virtual cluster, and monitor its current state. Once running, all members of the project
can log into the head node of the VC and make use of the cluster via the installed middleware.

a university cluster, a peer-reviewed allocation on a national com-
puting facility like XSEDE [33] or Open Science Grid (OSG) [27],
or a pay-as-you-go arrangement with a commercial cloud provider
like Amazon or Google. Multiple researchers working together may
not necessarily have access to a common subset of facilities, but
they may wish to pool their combined resources together.

We address this problem through the concept of virtual clusters
(VCs) overlaid on existing computing resources. The key idea is to
make use of existing facilities in their current state, and inject into
them (as an unprivileged user job) a thin layer of software which
surveys the available resources, delivers missing dependencies, and
then deploys the research team’s desired middleware or application
structure on top. The research team supplies the VC3 platform with
a set of facilities where they hold allocations, amiddleware selection,
and a software environment. The VC3 service then provisions the
resources across the desired computing sites using only individuals’
login accounts and local allocations, providing the teamwith virtual
cluster headnode and login server in a secure private cloud.

In this paper, we describe the concept and architecture of our
virtual cluster service, along with a first prototype of the concept
(virtualclusters.org). We demonstrate that the prototype is
able to bootstrap and execute complex applications (South Pole
Telescope, XENON1T, Lobster, SHRiMP) using standardmiddleware
(HTCondor, CVMFS, Pegasus, Makeflow, Work Queue) running at
scale on infrastructure that was not otherwise prepared for the
application.

2 THE VIRTUAL CLUSTER CONCEPT
The concepts behind the VC3 platform come from the experiences
of distributed high-throughput computing on infrastructure such
as the OSG. In 2013, we developed the CI Connect [3] service which
provided a “virtual cluster” experience for researches submitting
applications and workflows to the OSG and dedicated campus HPC
clusters. The service, which leverages the capabilities of HTCon-
dor [26] (and derivative “glidein” and “overlay” concepts [29]) in-
tegrated resource targets in which scientific collaborations held
allocations while providing access to the shared (and preemptable)
OSG ecosystem. These services, which included OSG Connect [8],
have shown to be highly effective tools for over 200 projects, sup-
porting over one thousand researchers and delivering over 200
million CPU core-hours for science.

The VC3 platform automates creation of such virtual cluster
environments but with generalizations for the clustering layer and
sharing model. Its primary functions are:

• To bind allocations from individual investigators across insti-
tutional HPC clusters for shared projects supporting multi-
institutional scientific collaboration.

• To provision middleware (or clustering framework) over
heterogeneous HPC resources while preserving local setups,
resource scheduler systems, policy and autonomy.

• To build a uniform software environment across multiple
resource targets using preinstalled binaries (if available) or
downloading from a repository, according to the researcher’s
package specification.

• To size the cluster dynamically according to user specifica-
tions.

VC3: A Virtual Cluster Service for Community Computation PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA

Note this similar to service offerings from commercial cloud
providers, such as Google which offers tools for constructing dy-
namically sized HTCondor clusters [4], and more recently, SLURM
clusters [5]. However, in this case, the VC3 platform is building
equivalent compute environments from allocations on institutional
computing centers and national scale HPC facilities.

Figure 1 shows how a researcher interacts with the VC3 ser-
vice. We leverage the Globus Auth[34] service from the Globus
Platform [12] to provide a portal infrastructure and access to insti-
tutional identity management services. The end user interactions
with the VC3 service consist of establishing an account and profile,
registering an allocation from an institutional HPC cluster resource,
creating a project to which the allocation may be associated, invit-
ing research team members to join the project, creating a virtual
cluster template (middleware type, software environment, number
of worker nodes), and then launching a virtual cluster instance,
the head nodes of which are provisioned by the VC3 platform in
a secure private cloud. Once provisioned, research team members
may ssh login to the head node service to launch their workflows.

3 SYSTEM ARCHITECTURE
Figure 2 shows the architecture of the VC3 service. There are three
tiers of services involved:

• The static infrastructure contains the core VC3 processes
that interact with the end user and implement the fixed
points of the overall service.

• The dynamic infrastructure consists of the virtual ma-
chines and processes that are provisioned to create each
virtual cluster.

• The remote resources are the existing computing facilities
(campus clusters, HPC centers, commercial clouds, etc) that
VC3 is designed to harness.

To provision a virtual cluster, the VC3 service must create a suitable
head node in the dynamic infrastructure, then create a number of
worker nodes in the remote resources.

The front end of VC3 is very similar to that of a conventional web
service: a stateless web server interacts with the client and manip-
ulates state within a database. Because the actions performed by
VC3 are potentially expensive and long running, they are carried
out in the background by amaster process, which reads the intent
of the user to create or modify a virtual cluster, and then triggers
actions to move towards the desired state. For each virtual cluster
to be provisioned, the master process creates a head node in one
resource, and commissions a queue in the factorywhich provisions
multiple worker nodes in one or more remote resources.

The steps to setup and teardown each virtual cluster are de-
scribed by a finite state machine, where each edge represents a
discrete interaction with another local or remote service, such as
starting a process, invoking a head node, and so forth. The master
periodically queries the database for virtual cluster requests whose
desired state does not match the actual state, and then triggers the
appropriate action in the finite state machine. Because a large num-
ber of virtual clusters may exist at once, the master has a number
of rate-limiting controls to prevent excess consumption of local
resources.

A factory is responsible for managing the dynamic set of worker
nodes needed by a given virtual cluster. The factory continuously
matches the number of actual running worker nodes to the policy
given by the end user during the lifetime of the VC. When more
workers are needed, they are provisioned by submitting worker
jobs to remote computing resources, and then removed if no longer
needed. While easily stated, the task is quite complex because of the
independent behavior of the remote sites. While the desired case
is for workers to execute immediately, the jobs could be rejected,
delayed, migrated, or evicted, all due to remote policies and dynamic
load. The factory must take great care to advance the system state
gradually while avoiding repeated actions that would have the
effect of a denial of service attack on the computing resource.

Of course, the end user does not want a simple bare cluster, but a
functioning system with working software and operating services
to accomplish a particular workload. To this end, both head and
worker nodes execute a builder process that installs the necessary
software environment (more on that below) and then invokes the
desired middleware components. Most middleware fits the pattern
of amiddleware worker that runs on the worker nodes of the VC,
and amiddleware master that runs on the head node of the VC.

For example, when HTCondor [31] is selected as a middleware,
an HTCondor startd is run on the VC workers, while the VC head
node runs an HTCondor collector, negotiator, and schedd. If
Spark [35] is selected as a middleware, then a Spark worker runs
on each VC worker and the Spark libraries are installed on the
head node. When the user starts a Spark driver on the head node,
the workers contact it and begin to serve requests. In a similar
manner, when the Work Queue [11] middleware is selected, the
Makeflow [10] software is installed on the head node, and waits for
Work Queue workers on the VC workers to contact it.

4 RESOURCE MANAGEMENTWITH APF
To handle submission of middleware workers, VC3 uses AutoPy-
Factory (APF)[19]. Developed at Brookhaven National Laboratory,
APF began as the component used to manage pilot job submission
for the ATLAS physics experiment. APF was adapted to be used
in VC3 via its modular, plugin-based design, together with flexible
configurations descriptions. Its use of HTCondor-C as a generic
external interface allows APF to target any platform that HTCondor
supports (Grid Compute Elements, SSH-accessible resources, and
cloud targets like AWS or Openstack).

APF runs as a single daemonized process, launching separate
threads to handle each worker nodes queue, shared internal func-
tions, and global factory functions. An example of global functions
are threads to export log directories via HTTP, a utility to maintain
authentication tokens, and periodic factory reconfiguration. An
example of a service used by multiple queues is the plugin to query
the local HTCondor-C schedd persistent state.

Each of the queues normally manage interactions with a single
resource target. The behavior of the queues is determined by the
combination of a set of plug-ins, invoked in a fixed order, in a loop,
each one in charge of the performance of a well defined action.
These plugins allow composition to define simple algorithms for
determining the queues behavior, e.g. a MaxPerCycle plugin limits

PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA L. Bryant, et al.

Factory Master

Portal

VC-1
Head Node

VC-2
Head Node

H
TC

on
do

r
P

B
S

S
LU

R
M

DB O
pe

nS
ta

ck

Static VC3 Infrastructure Dynamic VC3 Infrastructure Remote Resources

End User

W

W

W

W

W

W

W

M

M

(1) Request VC
Via Browser

(5) SSH to New
VC Head Node

(2) Provision
Head Node

(3) Submit
Workers W

(4) Workers
Contact Master

Figure 2: VC3 System Architecture
An example of the VC3 infrastructure running two virtual clusters, each running a different middleware, represented by circles and diamonds,
respectively. To procure a virtual cluster: (1) The end user requests a VC via the web portal, which records the request in the database. (2) The
master instantiates a head node and starts a middleware-master there. (3) The factory selects remote resources and submits worker jobs there. (4)
The worker jobs start the middleware-workers, which contact the middleware-master on the head node. (5) The user connects to the head node and
uses the cluster.

how many new overlay jobs are submitted per cycle; a MaxPending
plugin defines when the queue will cease submission.

In the VC3 context, APF was modified with an additional con-
figuration plugin to periodically retrieve and update its overall
configuration from the VC3 database, which is in turn periodically
updated by the VC3 master process based on current virtual cluster
requests. A VC3-specific monitor plugin was also implemented to
communicate both queue information and overall factory informa-
tion back to the database, for display via the web portal.

Work was done to add full remote installation management to
the ability of HTCondor-C to submit via SSH to remote resources.
An SSH-specific submit plugin was written to ensure that before
attempting to submit to a resource, APF ensures that the HTCondor-
C glide-in software needed to manage jobs is installed in the user’s
home directory. If not, it performs the installation and only then
proceeds with overlay job submission.

In a typical virtual cluster invocation, the user will have autho-
rization to use multiple target resources to satisfy the request. In
the current implementation, the VC3 master process performs a
simple static distribution of overlay jobs across the resources to be
utilized. In the near future, APF will allow the VC3 master process
to provide a configuration that defines more complex strategies.
E.g., load balancing across a set of resources, and ordered fill (where
a second resource is only used when an initial resource is full). The
APF configuration mechanism will allow arbitrarily nested sets of
load balanced and/or ordered fill resource targets.

Both load balancing and ordered fill fundamentally depend on
understanding what it means for a resource to be full. This is not a
trivial definition, because jobs submitted to a site may wait in the
queue for a long time. However, due to local priorities, just because

a long queue exists does not mean the jobs will not run right away.
For our purposes, ’full’ can be defined in terms of how many new
overlay jobs have started within a given interval in the past, e.g.
resource A is full if no more than 2 new jobs have started in the
last 30 minutes. This functionality can be fully parametrized such
that each resource can have distinct, customized definitions of full.
These definitions will be part of the curated properties for each
VC3 resource, so that users need not provide them.

5 SOFTWARE ENVIRONMENTS
The end user of VC3 expects a precise software environment in
order to successfully run both applications as well as the desired
middleware. Themost comprehensiveway to accomplish this would
be to require the user to construct a suitable disk image with all of
the required software, and then deploy it on all nodes, using either
virtual machine or container technologies. (This is precisely what
happens in a cloud infrastructure.)

However, such an approach is neither feasible nor desirable in
VC3. The remote computing resources generally restrict end users
to operating as normal unprivileged users in a shared filesystem,
where a specific operating system and selection of applications has
been chosen that services the needs of the local community and
works well with the local computing resources. Although some
sites allow for the deployment of container images, this is by no
means universally supported, and there is no agreement on which
of the available container technologies to use: Docker [1], Singular-
ity [25], CharlieCloud [28], and Shifter [24] are all in use to varying
degrees. Further, deploying a container may even by desirable or
counterproductive when the native environment is already suitable
for the user’s task.

VC3: A Virtual Cluster Service for Community Computation PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA

Native OS:
RedHat 7 + Singularity

Builder

Singularity Builder

BLAST JobsBLAST Jobs

HTCondor Worker

S/W

BLAST Jobs

Native OS:
Debian 9 Only

Builder

BLAST JobsBLAST Jobs

HTCondor Worker

S/W

BLAST Jobs

Builder

BLAST JobsBLAST Jobs

HTCondor Worker

BLAST Jobs

Native OS:
Debian 9 + HTCondor + BLAST

IMG

Site A: Run Natively Site B: Build and Run Site C: Container + Build

Figure 3: Deploying an Environment on three Sites
Multiple techniques may be needed to provision a common environment – operating system, middleware, and application software – across
multiple sites. The VC3 builder examines the local environment and provides whatever is needed to repair to the desired state. In this example, a
user wishes to deploy Debian 9, HTCondor, and BLAST across multiple sites. At Site A, the environment is already present, so the builder simply
invokes the middleware directly. At Site B, the operating system is compatible, but the builder must download and install the middleware and
application. At Site C, the OS is not compatible, so the builder deploys a container in which the middleware and application must also be built.

To work within these requirements, VC3 asks the user to specify
a computing environment with any of these elements:

• A base operating system type and version (e.g. Redhat-6,
CrayOS-9, Debian-11)

• A container name, drawn from Docker Hub.
• A list of required software systems (e.g. python-2.7, blast-
2.2.28, lapack-3.7.0)

At each computing resource, VC3 provisions the necessary ele-
ments by whatever means are available. If the native environment
is compatible with the desired environment, then it is used directly.
If it is not compatible (or not complete) then the VC3 builder [32]
will construct the necessary environment, using whatever tools
are available at the local site. The builder is simply invoked as a
wrapper around the worker to be deployed, and is given the name
of the target operating system and software dependencies required.

Although the builder is hidden from the end user in VC3, it can
be invoked as a standalone tool. For example, to execute a shell in a
Debian-9 OS environment with the Spark middleware and BLAST
application installed, the builder is invoked like this:

vc3-builder --require-os debian9
--require spark
--require blast
--interactive
-- bash

In this example, the builder will evaluate whether the local op-
erating system is Debian 9. If so, it is used natively. If not, then
it looks for an installed container technology, and downloads a
container image corresponding to Debian 9, and enters it. In either
case (native or container), the user’s PATH is examined for the
Spark and Blast software. If present, it is used natively, if not, it is
downloaded and installed into the user’s home directory.

hmmer
v3.1.0

repeatmasker-free
v4.0.6

perl-vc3-modules
v0.5.0

perl
v5.24.0

gettext
v0.19.8

glib
v2.18.1

maker
v2.31.0

perl-want
v0.29.0

perl-local-lib
v2.19.0

perl-cpanminus
v1.7.0

perl-forks
v0.36.0

openssl
v1.0.2

python
v2.7.12

openmpi
v1.10.0

zlib
v1.2.8

perl-io-all
v0.86.0

perl-bioperl
v1.6.0

repeatmasker
v4.0.6

exonerate
v2.2.0

ncbi-rmblastn
v2.2.28

snap
v2013.11.29

trf
v4.9.0

perl-lwp-simple
v6.15.0

libffi
v3.2.1

perl-file-which
v1.2.0

perl-inline-c
v0.76.0

perl-unsafe-signals
v0.3.0

berkeley-db
v6.2.23

perl-DB_File
v1.8.0

repeatmasker-common
v4.0.6

perl-bit-vector
v7.4.0

ncbi-blast
v2.2.28

perl-inline
v0.8.0

perl-dbi
v1.6.0

perl-dbd-sqlite
v1.5.0

perl-text-soundex
v3.0.0

pcre
v8.39.0

augustus
v2.4.0

Figure 4: MAKER Software Dependencies

To support these software builds, a global master repository con-
tains a set of package recipes expressed in JSON. Each recipe indi-
cates the source packages, build commands, import procedure, and
dependencies of a given software page. For each software package
requested, a recipe and its dependencies are located and constructed
into a dependency graph. For production software, these graphs
can be quite complex, as can be seen in Figure 4 forMAKER [14], a
genome annotation pipeline used in the bioinformatics community.

For each dependency in the graph, builder checks to see if the
package is already available natively. If not, then the necessary
source packages are downloaded from upstream sources into a cache
directory. Each package is built and installed into the install tree
which is by default inside the user’s home directory.

To facilitate bootstrapping, the builder is designed to have as
few dependencies as possible that can be compiled to a truly static
binary which includes the packages recipes. This allows builder to
be deployed as a single executable file.

When a shared filesystem is available, the builder can run par-
allel builds across different computational nodes. In this mode, an
instance of the builder computes the steps necessary to install all

PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA L. Bryant, et al.

the required packages, and according to the batch system available,
it queues and checks the progress of additional builder instances
that perform the actual installation. Not only does this accelerate
build times, but it also moves computation off the head-nodes where
runtimes may be restricted by policy.

6 SECURITY CONSIDERATIONS
Great care is required in the design and implementation of VC3 in
order to protect access to each user’s credentials and the resources
that they may access. To the extent possible, VC3 relies on standard
tools to implement authentication and authorization.

In the static infrastructure, all components communicate via
HTTPS with the VC3 master serving as a certificate authority. In
order for a VC3 component to communicate with other components,
it must have a certificate issued by the VC3 master. In addition, all
internal components are firewalled to the outside world.

Passwords are never handled directly by VC3 in any form. End
users make use of Globus Auth to authenticate to the web portal,
while cluster and dynamic infrastructure authentication makes use
of standard SSH public keys. By design, VC3 never handles private
SSH keys owned by end-users. The only use of private SSH keys
is for internally-generated keys created for each head node in the
dynamic infrastructure, and these never leave the VC3 system. To
access a head node, users upload their SSH public key to the service
via the web portal. This key is automatically placed into the user’s
home directory on the dynamic head node at cluster installation
time, at which point users can log in and begin to use their VC.

To manage authentication at the other end of the system, where
VC3 communicates with a remote resource, a user receives an SSH
public key generated by the web portal and is required to add that
that key to their SSH authorized keys on the resource. In some
systems, this requires an additional step of adding the key to a web
portal or other system owned by the resource. Once the key has
been added, the VC3 system will validate that it is able to log in to
the remote resource.

This approach is made more complex by the emerging require-
ment of multi-factor authentication, which requires that users
present a second login confirmation by cell phone or other de-
vice. At some facilities, VC3 has been granted an “MFA Exemption”
that treats a limited source IP range (such as the VC3 factory subnet)
as one factor of the multifactor authentication process. In more
restrictive facilities, we have developed a standalone version of our
factory service that runs on the head node of the site and pulls
work from the VC3 system. In this way we can still provide virtual
cluster services to systems where automation is restricted.

7 EXAMPLE APPLICATIONS
South Pole Telescope via HTCondor+CVMFS The South Pole
Telescope (SPT) [21] is a microwave and millimeter-wave telescope
located at the Amundsen–Scott South Pole Station in Antarctica
that focuses on the observation of the Cosmic Microwave Back-
ground. The third generation of detectors [15] of SPT produce an
order of magnitude more data than previous generations. With the
increase in data rate, a proportionate increase computing resource
requirements occurred. This increase in computing requirements

initiate a shift for the collaboration from solely using collabora-
tion and campus resources to use distributed computing resources,
including OSG, National Energy Research Scientific Computing
Center’s (NERSC) Cori [6, 7], and campus clusters, for data process-
ing and Monte Carlo production.

The collaboration is seeking a way to access their various re-
sources through a common interface. In this case, we are using VC3
to extend SPT’s infrastructure by adding the University of Chicago
Research Computing Center (RCC) [9] and Cori to their already
existing resource pool through OSG. A virtual cluster is instanti-
ated with HTCondor middleware, with the head node configured
to allow “flocking” from existing SPT OSG submission nodes. This
allows users to transparently use RCC and Cori resources without
significant changes to their existing job workflow.

Integrating the Cori resource required additional effort. The ini-
tial challenge was that Cori uses a custom version of the Cray
operating system (OS). Currently, SPT distributes its software de-
pendencies using CVMFS [18] for RHEL6, RHEL7, and their deriva-
tives. We do not have the ability to build the entire software stack
for the specific OS without requiring that every user has access
to the machine and keep up with code changes. Instead of having
every user compile the code for Cray OS, we used Shifter [24] and
an OSG-provided Docker image to create a RHEL6 environment for
the jobs to run in. This allows us to use the CVMFS software repos-
itory by syncing it to Cori’s shared filesystem and bind-mounting
the directory to location to the expected location for CVMFS, i.e.
/cvmfs. With these changes, we were able to execute SPT work-
loads for both data processing and Monte Carlo production on Cori
through their already-established OSG interface.

XENON1TMonteCarlo via Pegasus+HTCondor.TheXENON
experimental program [13] aims to study yet to be discovered exotic
species of elementary particles called dark matter through their
interactions with xenon atoms. The experiment is the third and
current generation of detector consisting two tonnes of ultrapure
liquid xenon inside a dual-phase (liquid-gas) xenon time projection
chamber surrounded by a water-based muon veto.

The XENON1T experiment has significant computing resources
available at campus clusters and grid sites The resources at grid sites
were integrated through the OSG infrastructure. The campus clus-
ters were integrated in the same manner as described above, i.e. the
VC3 head node is configured to allow “flocking” from the existing
XENON OSG submission node. The workflow itself was controlled
through the Pegasus workflow management system [22], which
transparently uses both the OSG and campus cluster resources
without any additional configuration.

SHRiMP via Makeflow+Work Queue. SHRiMP is a tool used
in bioinformatics for genome alignments. A common SHRiMPwork-
flow involves thousands of alignment jobs against a target genome.
We tested a SHRiMP workflow consisting of over 5000 jobs ex-
pressed as a Makeflow [10] workflow. Makeflow allows the execu-
tion of workflows expressed as direct acyclic graphs on clusters,
clouds and grids using different batch systems. For our test, Make-
flow ran on top of Work Queue [11] middleware.

We directed the VC3 portal to create a virtual cluster of 350 work
queue workers. Once the headnode was available, the data for the
SHRiMP workflow and its Makeflow specification was copied to
it using scp. On the headnode, a Makeflow master process was

VC3: A Virtual Cluster Service for Community Computation PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA

launched that registered its address location in a globally available
catalog, tagged with the name given to the virtual cluster at creation
time. Using this tag, the workers connect to the globally available
catalog to find the location of the master and connect to it. Once a
worker connects, the master starts to deliver tasks to it, according
to tasks that are available for execution. For this particular test,
all the tasks in the workflow terminated successfully in close to 3
hours, which highlights the ease with which the VC3 system can
provide with short-lived clusters for particular needs.

CMS Analysis via Lobster at NERSC and Notre Dame. The
Compact Muon Solenoid (CMS) experiment [23] analyzes large
amounts of data collected from high energy particle collisions pro-
duced at the Large Hadron Collider (LHC) at CERN. The level of
CMS workload produced has a very high demand in terms of com-
puting resources, which are traditionally handled in a uniform way
on computing nodes integrated in the Worldwide LHC Computing
Grid (WLCG) [16].

Lobster is a workflow manager that allows the harnessing of re-
sources that are not part of the WLCG, assembling tasks on-the-fly
for dynamic job sizing, providing the software environment needed
and handling the stage out of job results remotely. It uses a master-
worker architecture implemented with Work Queue and has been
extremely successful for utilizing the opportunistic resources avail-
able in the Notre Dame campus cluster, submitting Work Queue
workers via HTCondor and using Singularity to provide the right
Operating System. Resources like NERSC, which work with a dif-
ferent container solution (Shifter) and with a different batch system
(SLURM), make it challenging to migrate.

The VC3 service allows the construction of a Work Queue virtual
cluster with the right Operating System on the Worker Nodes (via
Shifter or Singularity when needed) that allows Lobster to use
both Notre Dame campus resources and NERSC in a simple and
transparent way that would otherwise not be possible.

8 CURRENT STATUS
Currently, the VC3 platform is available as a limited beta for science
user groups that are working closely with the VC3 team. At present,
it is possible to create, use, and destroy a virtual cluster from the
web portal or command-line utility. Users visiting the VC3 portal
are able to: add allocations to resources, define projects, create
“cluster templates” describing the middleware type and scale for
their virtual clusters, pick software environments available via the
VC3 builder, and instantiate virtual clusters.

Today, users may create HTCondor[26] and Work Queue[17]-
based virtual clusters. Users can additionally select software en-
vironment for their cluster head node and workers through the
website, and the installation is handled via the VC3 builder. These
environments include common programming runtimes and com-
pilers such as Python, Scala, GCC, Perl, Tcl, etc. Where possible,
users can request environment such as OSG OASIS[2], provided by
the builder via Parrot[30]. We have also successfully tested Spark
at a small scale by using the S3 data plugin (in lieu of a shared
filesystem) and HTCondor middleware to distribute Spark workers.
Currently Spark can be deployed as an environment, but we plan
to support it as a first-class citizen middleware.

While we are not supporting custom VC3 installations at present,
all of the software is fully available on GitHub, packed in RPM
format, and tested thoroughly on the CentOS 7 platform.

9 CHALLENGES AND FUTUREWORK
Our experience so far has highlighted a number of challenges in
the cyberinfrastructure domain that go beyond VC3 and would be
worthy of further study.

Troubleshooting nested services. An increasing amount of
cyberinfrastructure is constructed by deeply nesting multiple tech-
nologies from multiple providers. In VC3, there is a long chain from
submission to execution: in one case, APF uses HTCondor-C to
submit jobs to SLURM, where each job uses Singularity to run the
builder to deploy HTCondor to run a job. When each of these com-
ponents works as expected, jobs run normally. However, problem
in any one component – whether due to user error, site configu-
ration, network disruption, or something else – results in failures
that are extremely hard to diagnose. Each system uses a different
convention for indicating success or failure, and a different means
of logging information. Uncovering the nature of the failure is a
challenge for the systems expert, much less the end user. New tech-
niques are needed to enable the construction and troubleshooting
of these nested systems. Possible solutions might be conventions
for invoking nested services, tools for verifying assertions deep
within the stack, or the equivalent of a “backtrace” for detecting in
which layer a failure occurred.

Fine grained accounting and resource control. Computing
sites typically offer accounting and resource control at the level of a
single user or funded project. For every gigbyte stored or cpu-hour
consumed, the resource consumption is tracked, and then halted if
the user or project completely consumes their allocation. However,
VC3 now enables users to share resource allocations for projects of
a smaller scope, perhaps just a certain analysis task, or a short-lived
simulation campaign. In such an environment, users will not want
to donate their entire allocation, but rather delegate some limited
slice to the project. An external service like VC3 can provide some
coarse controls on the use of this slice, but is not close enough to
the resource to immediately halt any overage. A more effective
solution would be for the facilities to allow users to dynamically
create sub-allocations which were individually accounted for and
enforced as children of the parent allocation. Then, users could
provide these sub-allocations to outside parties with confidence
that resources would not be overrun.

Curating technical knowledge of computing resources.
While there is a general commonality of design among HPC fa-
cilities, the technical details needed to access and use across a
distributed system are not easily discovered. A typical site consists
of a small set of login nodes that provide access to workers through
a batch system, and provide some kind of shared storage via a par-
allel or distributed filesystem. To use the batch system effectively,
one must not only know the software in use (HTCondor, SLURM,
PBS, etc) but also what details are unique to the local site, such as
the names of queues or resource classes. Likewise, to use a large
filesystem effectively, it is necessary to know what mount points
represent home directories vs temporary data vs long-term project

PEARC ’18, July 22–26, 2018, Pittsburgh, PA, USA L. Bryant, et al.

storage. Even details of the consistency semantics may matter: in or-
der to implement a reliable workflow, it is necessary to understand
whether the system provides strict metadata semantics, read-your-
write semantics, or something else entirely. Some of the details may
be documented, but often the documentation it out of date as the
system evolves, leaving the job to a savvy professional to figure
things out by hand. If it were possible to observe this information
more automatically and then curate it for use by multiple projects
would better enable multi-facility computing of all kinds.

Authenticationmodels for automated computing.Much of
our shared security infrastructure is built around the assumption
that there is a human in the loop at a fine granularity, ready and
willing to enter a password or approve a login. This assumption is
baked into emerging practices such as multi-factor authentication,
whereby the end user must not only provide a password but also
approve a login via a cell phone or other device. While this is a
perfectly sensible approach for interactive logins, it does not easily
accommodate any kind of external automation, which is essential
for the conduct of large scale science. New ideas are needed to
understand how the security requirements of computing sites can
be respected without requiring the user to interact with their cell
phone on every job or file transfer. One recent approach (Reverse
GAHP [20]) is to reverse the sense of the connection, so that the
user logs into the site manually, and then directs a proxy to connect
to an external workload manager. Another approach could be to
reduce the scope of credentials so that they address only a narrow
activity. For example, a user-signed certificate might grant authority
only to transfer files between specific locations, or to run only a
single kind of executable.

ACKNOWLEDGEMENTS
This work was supported by the Department of Energy NGNS
program via grant DE-SC0015711. We are grateful to Suchandra
Thapa (U.Chicago), Paul Brenner (U. Notre Dame), and John Gentile
(Science Gateways Institute) for their assistance and advice.

REFERENCES
[1] [n. d.]. Docker Website. http://www.docker.com. ([n. d.]). Accessed: 2018-03-26.
[2] [n. d.]. OSG Application and Software Installation Service (OASIS). https:

//opensciencegrid.github.io/docs/worker-node/install-wn-oasis. ([n. d.]). Ac-
cessed: 2018-03-26.

[3] 2018. CI Connect Website. (2018). Retrieved March 21, 2018 from http://www.
ci-connect.net

[4] 2018. Google HTCondor Website. (2018). Retrieved March 21, 2018 from
https://cloud.google.com/solutions/high-throughput-computing-htcondor

[5] 2018. Google Large Scale Technical Computing Website. (2018).
Retrieved March 21, 2018 from https://cloud.google.com/solutions/
using-clusters-for-large-scale-technical-computing

[6] 2018. NERSC Cori Website. (2018). Retrieved 2018/03/21 from http://www.nersc.
gov/users/computational-systems/cori

[7] 2018. NERSC Website. (2018). Retrieved 2018/03/21 from https://www.nersc.gov
[8] 2018. OSG Connect Website. (2018). Retrieved March 21, 2018 from http:

//osgconnect.net
[9] 2018. UChicago RCC Main Website. (2018). Retrieved March 15, 2018 from

https://rcc.uchicago.edu/
[10] Michael Albrecht, Patrick Donnelly, Peter Bui, and Douglas Thain. 2012. Make-

flow: A Portable Abstraction for Data Intensive Computing on Clusters, Clouds,
and Grids. InWorkshop on Scalable Workflow Enactment Engines and Technologies
(SWEET) at ACM SIGMOD.

[11] Michael Albrecht, Dinesh Rajan, and Douglas Thain. 2013. Making Work Queue
Cluster-Friendly for Data Intensive Scientific Applications. In IEEE International
Conference on Cluster Computing.

[12] Rachana Ananthakrishnan, Kyle Chard, Ian Foster, and Steven Tuecke. 2015.
Globus Platform-as-a-Service for Collaborative Science Applications. Concur-
rency - Practice and Experience 27, 1 (2015), 290–305.

[13] E. Aprile et al. 2011. Design and performance of the XENON10 dark matter
experiment. Astroparticle Physics 34 (April 2011), 679–698. https://doi.org/10.
1016/j.astropartphys.2011.01.006 arXiv:astro-ph.IM/1001.2834

[14] Cantarel B., Korf I., Robb SMC., Parra G., Ross E., Moore B., Holt C., Sanchez Al-
varado A., and Yandell M. 2008. MAKER: An Easy-to-use Annotation Pipeline
Designed for Emerging Model Organism Genomes. Genome Research 18, 1 (2008).

[15] B. A. Benson et al. 2014. SPT-3G: a next-generation cosmicmicrowave background
polarization experiment on the South Pole telescope. InMillimeter, Submillimeter,
and Far-Infrared Detectors and Instrumentation for Astronomy VII (Proc. SPIE),
Vol. 9153. Article 91531P, 91531P pages. https://doi.org/10.1117/12.2057305
arXiv:astro-ph.IM/1407.2973

[16] Ian Bird. 2011. Computing for the Large Hadron Collider. Annual Review of
Nuclear and Particle Science 61, 1 (2011), 99–118.

[17] Peter Bui, Dinesh Rajan, Badi Abdul-Wahid, Jesus Izaguirre, and Douglas Thain.
2011. Work Queue + Python: A Framework For Scalable Scientific Ensemble
Applications. In Workshop on Python for High Performance and Scientific Com-
puting (PyHPC) at the ACM/IEEE International Conference for High Performance
Computing, Networking, Storage, and Analysis (Supercomputing) .

[18] P Buncic, C Aguado Sanchez, J Blomer, L Franco, A Harutyunian, P Mato, and Y
Yao. 2010. CernVM – a virtual software appliance for LHC applications. Journal
of Physics: Conference Series 219, 4 (2010), 042003.

[19] J. Caballero et al. 2012. AutoPyFactory: A Scalable Flexible Pilot Factory Imple-
mentation. Journal of Physics: Conference Series 396 (2012), 032016.

[20] Scott Callaghan, Gideon Juve, Karan Vahi, Philip J. Maechling, Thomas H. Jordan,
and Ewa Deelman. 2017. rvGAHP: Push-based Job Submission Using Reverse
SSH Connections. In Proceedings of the 12th Workshop on Workflows in Support of
Large-Scale Science (WORKS ’17). ACM, New York, NY, USA, Article 3, 8 pages.
https://doi.org/10.1145/3150994.3151003

[21] J. E. Carlstrom et al. 2011. The 10 Meter South Pole Telescope. Proc. PASP 123
(May 2011), 568. https://doi.org/10.1086/659879 arXiv:astro-ph.IM/0907.4445

[22] Ewa Deelman et al. 2015. Pegasus: a Workflow Management System for Science
Automation. Future Generation Computer Systems 46 (2015), 17–35. https:
//doi.org/10.1016/j.future.2014.10.008 Funding Acknowledgements: NSF ACI
SDCI 0722019, NSF ACI SI2-SSI 1148515 and NSF OCI-1053575.

[23] The CMS Collaboration (Adolphi R et al.). 2008. The CMS experiment at the
CERN LHC. Journal of Instrumentation 3 (2008).

[24] Lisa Gerhardt, Wahid Bhimji, Shane Canon, Markus Fasel, Doug Jacobsen,
Mustafa Mustafa, Jeff Porter, and Vakho Tsulaia. 2017. Shifter: Containers
for HPC. Journal of Physics: Conference Series 898, 8 (2017), 082021. http:
//stacks.iop.org/1742-6596/898/i=8/a=082021

[25] Gregory M. Kurtzer, Vanessa Sochat, and Michael W. Bauer. 2017. Singularity:
Scientific containers for mobility of compute. PLOS ONE 12, 5 (05 2017), 1–20.
https://doi.org/10.1371/journal.pone.0177459

[26] Michael Litzkow, Miron Livny, and Matthew Mutka. 1988. Condor - A Hunter of
Idle Workstations. In Proceedings of the 8th International Conference of Distributed
Computing Systems.

[27] Ruth Pordes et al. 2007. The open science grid. Journal of Physics: Conference
Series 78, 1 (2007), 012057. http://stacks.iop.org/1742-6596/78/i=1/a=012057

[28] Reid Priedhorsky and Tim Randles. 2017. Charliecloud: Unprivileged Containers
for User-defined Software Stacks in HPC. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC ’17). ACM, New York, NY, USA, Article 36, 10 pages. https://doi.org/10.1145/
3126908.3126925

[29] I. Sfiligoi, D. C. Bradley, B. Holzman, P. Mhashilkar, S. Padhi, and F. Wurthwein.
2009. The Pilot Way to Grid Resources Using glideinWMS. In 2009 WRI World
Congress on Computer Science and Information Engineering, Vol. 2. 428–432. https:
//doi.org/10.1109/CSIE.2009.950

[30] Douglas Thain and Miron Livny. 2005. Parrot: An Application Environment
for Data-Intensive Computing. Scalable Computing: Practice and Experience 6, 3
(2005), 9–18.

[31] Douglas Thain, Todd Tannenbaum, and Miron Livny. 2003. Condor and the
Grid. In Grid Computing: Making the Global Infrastructure a Reality, Fran Berman,
Anthony Hey, and Geoffrey Fox (Eds.). John Wiley.

[32] Benjamin Tovar, Nicholas Hazekamp, Nathaniel Kremer-Herman, and Douglas
Thain. 2018. Automatic Dependency Management for Scientific Applications on
Clusters. In IEEE International Conference on Cloud Engineering (IC2E) .

[33] J. Towns et al. 2014. XSEDE: Accelerating Scientific Discovery. Comp. in Sci. and
Engr. 16, 5 (Sept 2014), 62–74. https://doi.org/10.1109/MCSE.2014.80

[34] S. Tuecke, R. Ananthakrishnan, K. Chard, M. Lidman, B. McCollam, S. Rosen,
and I. Foster. 2016. Globus auth: A research identity and access management
platform. In 2016 IEEE 12th International Conference on e-Science (e-Science). 203–
212. https://doi.org/10.1109/eScience.2016.7870901

[35] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. 2010. Spark: Cluster computing with working sets. HotCloud 10, 10-10
(2010), 95.

http://www.docker.com
https://opensciencegrid.github.io/docs/worker-node/install-wn-oasis
https://opensciencegrid.github.io/docs/worker-node/install-wn-oasis
http://www.ci-connect.net
http://www.ci-connect.net
https://cloud.google.com/solutions/high-throughput-computing-htcondor
https://cloud.google.com/solutions/using-clusters-for-large-scale-technical-computing
https://cloud.google.com/solutions/using-clusters-for-large-scale-technical-computing
http://www.nersc.gov/users/computational-systems/cori
http://www.nersc.gov/users/computational-systems/cori
https://www.nersc.gov
http://osgconnect.net
http://osgconnect.net
https://rcc.uchicago.edu/
https://doi.org/10.1016/j.astropartphys.2011.01.006
https://doi.org/10.1016/j.astropartphys.2011.01.006
http://arxiv.org/abs/astro-ph.IM/1001.2834
https://doi.org/10.1117/12.2057305
http://arxiv.org/abs/astro-ph.IM/1407.2973
https://doi.org/10.1145/3150994.3151003
https://doi.org/10.1086/659879
http://arxiv.org/abs/astro-ph.IM/0907.4445
https://doi.org/10.1016/j.future.2014.10.008
https://doi.org/10.1016/j.future.2014.10.008
http://stacks.iop.org/1742-6596/898/i=8/a=082021
http://stacks.iop.org/1742-6596/898/i=8/a=082021
https://doi.org/10.1371/journal.pone.0177459
http://stacks.iop.org/1742-6596/78/i=1/a=012057
https://doi.org/10.1145/3126908.3126925
https://doi.org/10.1145/3126908.3126925
https://doi.org/10.1109/CSIE.2009.950
https://doi.org/10.1109/CSIE.2009.950
https://doi.org/10.1109/MCSE.2014.80
https://doi.org/10.1109/eScience.2016.7870901

	Abstract
	1 Introduction
	2 The Virtual Cluster Concept
	3 System Architecture
	4 Resource Management with APF
	5 Software Environments
	6 Security Considerations
	7 Example Applications
	8 Current Status
	9 Challenges and Future Work
	References

