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ABSTRACT

Due to their portability and less overhead compared to traditional
virtual machines, containers are becoming an attractive solution for
running HPC workloads. Docker is a popular toolset which enables
convenient provisioning and management of containers and their
corresponding images. However, Docker does not natively support
running on shared storage, a crucial requirement in large-scale HPC
clusters which are often diskless or access data via a shared burst buffer
layer. This lack of distributed storage support can lead to overhead
when running containerized HPC applications. In this work, we explore
how Docker images can be served efficiently from a shared distributed
storage layer. We implement a distributed layer on top of Docker that
allows multiple Docker daemons to access container images from a
shared file system such as IBM Spectrum Scale or NFS. Our design
is independent of the underlying storage layer and minimizes the
synchronization overhead between different Docker daemons.
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1 INTRODUCTION

Due to the inherent performance overhead of traditional virtual
machines (VMs), the HPC community has avoided using virtualiza-
tion technology. With the rise of lightweight container technology,
it has now become possible for HPC clusters to deliver an isolated
environment with low overhead [2, 7]. Compared to VMs, the con-
tainer runtime eliminates overhead by sharing the host system
kernel across containers. Even though the basic technology for en-
abling containers has been existent in Linux distributions for years,
it has only recently been standardized and adopted in the form of
tools. Docker [1] is one of the most popular container runtimes
and used by many companies and organizations from both industry
and academia.

Docker consists of three components: (i) a registry service; (ii) a
daemon running on a Docker host; and (iii) a client to interact with
the daemon. The Docker registry is used to store and distribute
Docker images across daemons. An image consists of multiple
layers, each of which is a set of files that will be included in a running
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container. Layers can be shared across different images.The Docker
daemon is the persistent process that runs on a host machine and
manages containers and images while the Docker client is used
to send user requests to the Docker daemon such as starting or
stopping a container from a specific image.

When the daemon receives a request for creating a new container,
it will use Linux cgroups to isolate compute resources and generate
a private namespace based on Linux namespaces. It will then union
the image’s read only layers and create a writable layer to provision
the file system for the container. By default, the Docker daemon
stores its configuration about images, layers, and containers in a
directory called graph driver.

2 A SHARED IMAGE STORE

The above described architecture is designed for a setup where the
daemon is tightly coupled with the local storage of a Docker host
but not for a shared storage cluster. However, HPC clusters decouple
compute from storage and often lack local disks [3]. Additionally,
clusters use burst buffers to absorb bursty I/O during scientific work-
loads. Burst buffers are deployed remotely as a fast storage layer
and also accessed via a shared storage layer by multiple nodes [6].
This way of accessing data requires Docker to serve images from
shared storage to enable containerized HPC workloads.

Figure 1 shows a naive architecture to enable sharing images in
Docker. As shown in the figure, all daemons access the same shared
storage, but each daemon has its own private graph driver on the
shared storage. Such a design leads to three main problems: (i) large
scientific workloads can spawn hundreds of containers simultane-
ously from the same image to perform parallel computation. This
leads to large network overhead due to redundant fetches of the
same image; (ii) storage space is wasted because multiple copies
of the same image are stored; and (iii) maintaining a single graph
driver per daemon is difficult as it quickly becomes unclear which
image can/should be garbage collected to free space.

To solve the above problems, we propose to share the graph
driver across daemons from a distributed storage layer such as
IBM Spectrum Scale or NFS. This prevents redundant fetches, as
an image only has to be fetched once, and saves storage space by
avoiding redundant copies of an image. In addition, shared images
increase the layer reuse rate and open the possibility for lightweight
container migration.

While a shared graph driver comes with several benefits, it also
poses challenges: (i) as with any shared architecture, synchroniza-
tion between different components is required to prevent conflicts.
For example, multiple daemons may try to pull the same image
at the same time or a daemon may try to delete an image that is
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Figure 1: Architecture of a Docker enabled cluster

still being used by other daemons; (ii) a shared graph driver can
affect the overall performance of the cluster if image data has to
be streamed over the network to the daemons; (iii) popular images
can result in hot spots and create contention between multiple
concurrent read accesses of different daemons.

3 WHARF ARCHITECTURE

To resolve the challenges, we introduce Wharf, a distributed image
store for Docker. The architecture of Wharf is shown in Figure 2.
Wharf splits the graph driver contents into global and local state.
Global state comprises contents that need to be shared across dae-
mons, i.e. image layers and metadata about images and containers.
Wharf stores global state on a distributed file system. Local state
is related to the containers running on a single daemon, such as
networking or information about attached volumes. This data is
stored separately for each daemon, either in its local storage or on
a separate location in the distribute file system.

The Docker daemon uses in-memory metadata to cache the
global state. To share the graph driver, Wharf synchronizes the
in-memory metadata across all daemons via a shared file. Every
time a daemon updates its in-memory metadata, it locks this file
and flushes the changes. Wharf implements a distributed image
management interface to allow to plug in different distributed lock-
ing mechanisms. By default, Wharf provides a read/write locking
mechanism via the fcntl system call, which is part of the POSIX
standard and supported by most distributed file systems.

Currently, our prototype of Wharf is based on the above de-
scribed coarse-grained image locking. The coarse-grained lock al-
lows concurrent reads and exclusive writes to the image store. This
prevents conflicts by processing all write accesses sequentially. As
this is expensive, because only a single write is allowed at a time
to the image store, we are planning to implement a fine-grained
layer-based lock which only blocks writes to the same layer.

4 RELATED WORK

Previous work has studied sharing Docker images. Slacker [4] pro-
poses to lazily load image content from a shared storage backend
to reduce the amount of transferred unused image data. However,
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Figure 2: Wharf Architecture

Slacker does not consider a large-scale environment in which many
daemons can compete for accessing few images. Shifter [3] imple-
ments its own flat image format to serve images from a distributed
file system. It also requires several external dependencies, including
MongoDB, Redis, and Celery. In contrast, Wharf keeps the Docker
image structure and can run without additional software dependen-
cies. CoMICon [5] introduces a decentralized, collaborative registry
design to enable daemons to share images between each other.
However, images are still local to individual daemons.

5 CONCLUSION AND FUTURE WORK

In this paper, we explored how to efficiently share Docker images
through a shared storage layer to enable running Docker on large-
scale HPC clusters. We proposed Wharf, a shared Docker image
store that loads images into a distributed file system to prevent
redundant fetches and ease image management. We expect highly
parallel or high throughput HPC workloads to benefit from it.

A prototype of Wharf is currently under development and we
are planning to implement a fine-grained layer locking mechanism.
Additionally, we will investigate automatic layer replication mech-
anisms to mitigate possible read contention on popular images
and enable container live migration on the distributed file system.
Finally, we will use Wharf with container schedulers such as Ku-
bernetes to evaluate its performance with large HPC applications.
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