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ABSTRACT

Container management frameworks, such as Docker, package di-
verse applications and their complex dependencies in self-contained
images, which facilitates application deployment, distribution, and
sharing. Currently, Docker employs a shared-nothing storage ar-
chitecture, i.e. every Docker-enabled host requires its own copy of
an image on local storage to create and run containers. This greatly
inflates storage utilization, network load, and job completion times
in the cluster. In this paper, we investigate the option of storing
container images in and serving them from a distributed file system.
By sharing images in a distributed storage layer, storage utiliza-
tion can be reduced and redundant image retrievals from a Docker
registry become unnecessary. We introduce Wharf, a middleware
to transparently add distributed storage support to Docker. Wharf
partitions Docker’s runtime state into local and global parts and
efficiently synchronizes accesses to the global state. By exploiting
the layered structure of Docker images, Wharf minimizes the syn-
chronization overhead. Our experiments show that compared to
Docker on local storage, Wharf can speed up image retrievals by up
to 12X, has more stable performance, and introduces only a minor
overhead when accessing data on distributed storage.
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1 INTRODUCTION

Operating system containers [28, 39] are rapidly becoming a popu-
lar solution for sharing and isolating resources in large-scale com-
pute clusters. As an example, Google reports to run all of its appli-
cations in containers, resulting in more than two billion launched
containers per week [19]. Furthermore, all major cloud vendors
have added container services to their offerings [1, 3, 9, 11].

Containers are attractive as they provide more lightweight isola-
tion compared to conventional virtual machines [27]. Additionally,
they abstract the application from the infrastructure, which allows
developers to focus on functionality rather than on deployment [18].
This facilitates a micro-service oriented compute model, in which
individual computational tasks or functions are executed in their
own, separate containers [38].

While the Linux kernel has included support for containers for
over a decade, they have only recently received extensive attention.
This is due to the rise of container management and orchestration
frameworks such as Docker [6], CoreOS [4], and Kubernetes [9],
which drastically simplify the creation, execution, and sharing of
containers. Docker provides a set of interfaces, implemented by
the Docker daemon, which allow users to conveniently package
an application and all its dependencies in images and to start con-
tainers from these images. To facilitate image storing and sharing,
Docker provides a registry service which acts as an image reposi-
tory. Daemons can push/pull images to/from the registry and run
them locally.

In Docker, each daemon process is shared-nothing, i.e. it pulls
and stores images in local storage and starts containers from the
local copies. This design introduces a tight coupling between the
daemon and the node’s local storage. Considering the rate at which
containers start in cloud environments [19] and the low startup
latencies required for micro services [38], this tight coupling leads
to four major problems: (i) if containers start from the same image
on different nodes, the image exists on all of the nodes. This wastes
storage space; (ii) large-scale applications often consist of thousands
of identical tasks, which are distributed across a large number
of nodes. To run such an application, each node has to pull the
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same image from a Docker registry to its local storage. This wastes
network bandwidth and increases the application startup time;
(iii) while only 6.4% of the image data is read by containers on
average [21], each node pulls the complete image from a registry.
This further wastes storage space and network bandwidth; (iv) some
clusters, e.g., in HPC environments, only offer shared storage while
compute nodes themselves are diskless [20, 42]. This prohibits
running containers in such environments.

To solve these problems and exploit the benefits of a highly scal-
able shared storage layer [30], we argue that the architecture of the
container runtime should be able to provide a way of storing images
in a shared file system, and each daemon should only maintain the
minimum necessary private state. Previous work has dealt with
this problem from the perspective of virtual machines [34, 35, 40],
proposing to locally cache the bare minimum an image needs to boot
and thereafter load data on demand. However, these approaches
cannot readily be applied to containers as they do not consider
the synchronization during pushing and pulling of images. More
recent work has focused on speeding up container startup times by
sharing storage across registry and daemons [21]. However, parallel
image accesses at scale are not considered.

In this paper, we present Wharf, a system to efficiently serve
container images from a shared storage layer such as NFS [31]
or IBM Spectrum Scale [12]. Wharf enables distributed Docker
daemons to collaboratively retrieve and store container images
in shared storage and create containers from the shared images.
Wharf significantly decreases network and storage overheads by
holding only one copy of an image in central storage for all daemons.
Designing Wharf requires careful attention to the semantics of
operations on container images to ensure consistency, scalability,
and performance.

Wharf exploits the structure of Docker images to reduce the
synchronization overhead. Images consist of several layers which
can be downloaded in parallel. Wharf implements a fine-grained
layer lock to coordinate access to the shared image store. This allows
daemons to pull different images and different layers of the same
image in parallel and therefore increase network utilization and
avoid excessive blocking. Wharf splits the data and metadata of
each daemon into global and local state to minimize the necessary
synchronization. Additionally, using the layer lock, Wharf ensures
that only consistent layer state can be seen by each daemon and
prevents the entire cluster from failing when single daemons fail.

Wharf is designed to be transparent to users and allows to reuse
existing Docker images without any changes. Wharf is independent
of the distributed storage layer and can be deployed on any storage
system, which provides POSIX semantics. Wharf currently supports
two common Docker copy-on-write storage drivers— auf's [2] and
overlay? [14]. Furthermore, though we implemented Wharf for
Docker, the presented design is applicable to other container man-
agement frameworks [13, 25].

After introducing the relevant background on Docker (§2), we
make three contributions:

(1) We analyze the implications of porting Docker’s storage model
to distributed storage (§3);

(2) We design Wharf, a shared image store for Docker that enables
storing images in a distributed file system (§4);
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(3) We implement Wharf and apply fine-grained layer locking, a
synchronization mechanism which exploits the layered structure
of Docker images, to reduce synchronization overhead (§5).

We evaluate Wharf using a combination of static and runtime bench-
marks on a 20-node Amazon EC2 cluster. We show that Wharf can
reduce image pulling times by a factor of up to 12X compared to
Docker on local storage, while only introducing a small overhead
of 2.6% during container execution due to remote data accesses (§6).
Additionally, we show that Wharf can significantly reduce network-
ing and storage resource consumption. After discussing related
work in §7 we conclude in §8.

2 DOCKER CONTAINERS

We start by discussing the basic concepts of Docker (§2.1) and
how images are constructed and distributed (§2.2). We then explain
container creation in more detail (§2.3).

2.1 Docker Architecture

Docker is a framework to simplify managing and deploying contain-
ers. It consists of three main parts: the Docker daemon, a Docker
client, and the Docker registry.

The Docker Daemon is responsible for starting and stopping
containers, creating images, and storing images in and retrieving
images from the registry. The daemon runs on a Docker-enabled
host machine and accepts commands from Docker clients.

The Docker Client is used to communicate with the daemon
and manage its containers. Communication is implemented via
a RESTful API and the interface includes commands such as run
and stop to start/stop a container, pull to retrieve images from
the registry, or rm to remove a container after it stops. Commonly,
Docker client and daemon run on the same machine.

The Docker Registry is Docker’s image repository. Users can
create images locally and push them to a public registry such as
Docker Hub [7] or to a private registry. Images are versioned in the
registry and can be pulled to Docker hosts to start a corresponding
container.

2.2 Images and Layers

Every Docker container is created based on a container image. An
image contains all necessary files to run the container and consists
of multiple read-only layers. A layer is a set of files which represents
a part of the container file-system tree. Layers are stacked on top
of each other and joined to expose a single mountpoint via a union
file system such as AUFS [2] or OverlayFS [14]. An image typically
consists of several layers with sizes ranging from several KB to
hundreds of MB [16].

The layered image structure allows sharing layers across contain-
ers. Docker identifies layers via a hash over their contents. When
multiple containers are created from images which contain identical
layers, Docker does not duplicate those layers. Instead, the different
containers read from the same copy of the layer. This saves storage
space and improves the startup times of containers.

Images can be shared between Docker hosts via the registry.
When an image is pushed to the registry, its corresponding layers
are compressed and archived as tarballs and then uploaded to the
registry. Additionally, the registry creates an image manifest that
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references the layers associated with the image so that clients can
retrieve all required layers when pulling an image. While the reg-
istry offers a convenient, centralized way of sharing images, it can
become a bottleneck when a large number of images is pulled at
the same time.

2.3 Container Creation and Graph Drivers

When the Docker daemon receives a request for creating a new
container, it executes the following steps. It first checks whether the
required image is already available locally. If not, it retrieves it from
the registry by first reading the manifest and then downloading
and extracting the corresponding layers to local storage. If the
daemon detects that one of the layers already exists locally, it will
not download that specific layer. By default, the daemon downloads
three layers in parallel.

Once the image is retrieved, the daemon will create the container.
Therefor, it first unions the read-only layers at a single mountpoint
and then creates a writable layer on top of it. Any changes made
to the container’s root file system are stored in the writable layer
via a copy-on-write (COW) mechanism. That means that before
modifying a file from a read-only layer, it is copied to the writable
layer and all changes are made to the copy. Once the container
exits, the writable layer is typically discarded.

The exact way of creating the union mount and performing
COW is defined by the Docker graph driver. Docker supports sev-
eral different graph drivers that vary considerably in performance,
portability, and compatibility with kernels and system software [41].
The most widely used graph drivers can be divided into two broad
categories: overlay drivers and specialized drivers.

Overlay drivers are based on overlay file systems, e.g., AUFS [2]
or OverlayFS [14]. These file systems layer on top of existing file
systems and intercept operations on files and directories. When
used, multiple read-only file systems are merged into a single logical
file system and any changes are written to a single writable file
system via COW.

Specialized drivers apply the same COW principle but use the
special, native capabilities of the file system or block device to im-
plement the layer model and COW. These drivers either require
special block devices or a block device that is formatted with a spe-
cialized file system. Devicemapper [5] and btrfs [37] are examples
of specialized drivers.

3 DOCKER ON DISTRIBUTED STORAGE

In this section, we discuss how to run Docker on distributed storage.
We first describe the naive approach, which is inherently supported
by Docker, and discuss its shortcomings (§3.1). We then introduce
the design goals for a native, efficient integration of Docker with
distributed storage (§3.2).

3.1 Naive Solution

In its current deployment mode, Docker assumes that local storage
is used exclusively by a single daemon. The daemon uses this stor-
age to store image and layer data, and metadata on the state of the
daemon and its running containers. Hence, two daemons cannot
operate on the same storage as they would override each other’s
state. This does not only hold for multiple daemons accessing the
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Figure 1: Docker on distributed storage, naive solution

same shared storage but also for multiple daemons on the same
host, accessing the same local storage.

The simplest way of enabling Docker to run on distributed stor-
age is to partition the distributed storage. Each daemon receives its
own partition where it can store all of its state and image data (see
Figure 1). The partitioning can be physically done as part of the
storage or simply by assigning each daemon a different directory.
This approach is supported by Docker today without any additional
implementation effort, as long as the underlying storage exposes a
POSIX interface.

While this design is simple, it comes with several shortcomings:
(i) it does not solve the problem of redundant pulls during a large-
scale workload. Each daemon still has to pull an image separately
and store it in its partition. This leads to both network and storage
1/0 overhead and increased container start-up latencies; (ii) it over-
utilizes storage space because a copy of the image has to be stored
for each daemon. As image garbage collection is still challenging, it
is a common problem for Docker users to run out of disk space due
to unused images/containers not being removed. This can quickly
lead to high storage utilization; (iii) image pull latencies can be
much higher—up to 4X longer in our experiments—compared to
Docker on local storage, due to extra data transfers between the
daemon and the distributed storage.

3.2 Design Goals

The above issues suggest that the naive approach is not sufficient
to successfully integrate Docker with a distributed storage layer.
Based on the shortcomings of the naive solution, we identify five
main design goals for a native integration approach.

1) Avoid redundancy. To efficiently run on distributed storage,
a native solution needs to avoid redundant data transfers. If an
image is required by multiple daemons, it should only be retrieved
and stored once. Additionally, all daemons should be aware of the
existing layers. If an image requires layers that are already present
in the distributed storage, only the missing layers should be pulled.
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2) Collaboration. Docker daemons should work together col-
laboratively to ensure correct and efficient operation. For example,
images can be pulled in parallel by multiple daemons to speed up
pulling as more resources are available. Furthermore, coordination
is necessary to prevent individual daemons from deleting images if
they are still in use by other daemons.

3) Efficient synchronization. When multiple daemons access
the same storage, locking and synchronization between the dae-
mons is necessary to avoid race conditions. To minimize the impact
on container startup times, synchronization should be lightweight
and exploit Docker’s layered image structure, i.e. accesses should
be synchronized at layer rather than image granularity.

4) Avoid remote accesses. As data is now accessed remotely
from the shared storage layer, additional latency is induced for
read/write operations. This can impact both Docker client calls and
the workload running inside a container. In the worst case, when
connectivity drops due to network failures, the entire container
can stall until the connection is restored. Hence, the amount of
necessary remote accesses should be minimized.

5) Fault Tolerance. The system as a whole must stay opera-
tional even if one or several individual daemons fail, i.e. a failing
daemon should not corrupt the global state and pending operations
should be finished by the remaining daemons.

4 WHARF

We now introduce Wharf, an extension of Docker for distributed
storage, which meets the above described design goals. Wharf al-
lows Docker daemons based on the same distributed file system to
collaboratively download and share container layers and thereby,
reduce storage consumption and network overhead. We first discuss
the overall architecture of Wharf (§4.1) which addresses design goal
1) and then explain fine-grained layer locking (§4.2) to implement
design goals 2) and 3). We describe Wharf’s local write optimiza-
tion (§4.3) to address design goal 4) and finally discuss Wharf’s
approach to fault tolerance (design goal 5) in §4.4.

4.1 System Architecture

The core idea of Wharf is to split the graph driver contents into
global and local state and synchronize accesses to the global state.
Global state contains data that needs to be shared across daemons,
i.e. image and layer data, and static metadata like layer hierarchies
and image manifests. It also includes runtime state, e.g., the progress
of currently transferred layers, relationships between running con-
tainers, and pulled images and layers. Global state is stored in the
distributed file system to be accessible by every daemon.

Local state is related to the containers running under a single
daemon, such as network configuration, information on attached
volumes, and container plugins, such as the Nvidia GPU plugin,
which simplifies the process of deploying GPU-aware containers.
This data only needs to be accessed by its corresponding daemon
and hence, is stored separately for each daemon. Local state can
either be stored on a daemon’s local storage or on a separate location
in the distributed file system.

Splitting the graph driver content into global and local state
ensures that all image-related information is stored once and not
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Figure 2: Wharf architecture

duplicated across different daemons. This addresses design goal 1)
as no redundant information is retrieved or stored.

The architecture of Wharf is shown in Figure 2. It consists of
three main components: Wharf daemons, an image management
interface, and a shared store for data and metadata.

1) Wharf daemons. Wharf daemons run on the individual
Docker hosts and manage their own local state for their local
containers. When a Wharf daemon receives a request to create
a container, it sets up the container root file system such that the
writable layer is stored at a private, non-shared location and the
read-only layers are read from the distributed file system. Wharf
daemons exchange information via updating the global state on
the distributed file system but do not communicate with each other
directly.

2) Image management interface. The image management in-
terface is the gateway through which Wharf daemons access the
shared global state. It ensures that concurrent accesses are synchro-
nized by locking the parts of the global state which are updated
by a Wharf daemon. This keeps the global state consistent. The
image management interface offers different ways of implementing
a distributed lock, e.g., using zookeeper [23] or etcd [8], if these
systems are available. If supported by the underlying file system,
Wharf can also rely on file locking (fcntl() interface) for access
synchronization. This approach is highly portable as it does not
require any additional external services.

3) Shared store. The shared store hosts all global state and is
split into two parts. The Shared Content Store contains the data
of the readonly layers and the root file systems of the running
containers. The Shared Metadata Store holds the metadata on which



Wharf: Sharing Docker Images in a Distributed File System

Wharf Daemon 1

Master
Transfer

Local Running Transfers

Wharf Daemon 2

if waiting
globally

if not waiting
globally

Dummy
Transfer

Local Running Transfers

Local Waitin? Transfers

-]

Local Waiting Transfers

Shared Storage

Shared Transfer Storage
Global Complete Transfers

Global Running Transfers

Global Waiting Transfers

Figure 3: Implementation of concurrent layer pulling

layers and images exist (Shared Layer Store and Shared Image Store),
are currently being pulled (Shared Transfer Store), and currently
being referenced by containers (Shared Reference Store). Each of
these metadata stores can be locked individually. The metadata
is concurrently readable by multiple daemons, but can only be
updated by one daemon at a time. Any attempt by a daemon to
access a layer from the Shared Content Store requires it to first
read the Shared Metadata Store and check the status of the layer, i.e.
whether it already exists, is currently being pulled, or is referenced
by a running container. As write access to the metadata is protected,
daemons are guaranteed to have a consistent view of the Shared
Content Store.

4.2 Layer-based Locking

Design goals 2) and 3) state that locking should be efficient and
daemons should collaborate with each other when retrieving or
deleting images. Wharf achieves this by exploiting the layered
structure of Docker images and implements layer-based locking
as part of the image management interface. Layer-based locking
allows Wharf daemons to write to the shared store by adding single
layers rather than an entire image. Read accesses do not have to be
synchronized. This means that multiple Wharf daemons

(1) can collaboratively pull different layers of an image in parallel,

(2) only lock a small portion of the shared store such that unrelated,
parallel operations are unaffected,

(3) do not pull or remove the same layer at the same time to avoid
redundant work,

(4) and can read data from the same layer in parallel.

Figure 3 shows how an image is pulled in parallel under layer-
based locking. In Docker, a daemon can start multiple transfers and
each transfer is responsible for pulling one layer. Each transfer has
two states: running and waiting. By default, each daemon has 3
threads for pulling layers in parallel.
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When a daemon receives a layer pulling request, it will create a
Master Transfer and register it in a local map data structure (Local
Running Transfers). If all pulling threads are busy, the daemon
will add the request to the Local Waiting Transfers queue for later
processing, once a thread becomes available. If another client tries
to pull a layer that is already being pulled by the daemon, the
daemon will create a Watcher to report the pulling progress back
to the client.

In Wharf, pulls not only have to be coordinated across multiple
local clients but also across multiple remote daemons (and their
clients). Therefore, Wharf uses three additional map data structures,
Global Running Transfers, Global Waiting Transfers, and Global Com-
plete Transfers, which are serialized and stored in the Shared Transfer
Store on the shared storage. Write access to the Shared Transfer
Store is protected by a lock.

Each time a Wharf daemon tries to pull a layer, it will first check
the Global Running Transfers map for whether the requested layer
is already being pulled by another daemon. If not, it will create the
Master Transfer and add it to both the Local and Global Running
Transfers. Waiting transfers are also registered in both the local
and global data structures. Daemons are responsible for removing
waiting transfers from the global map once they start retrieving
the corresponding layer.

If a Wharf daemon finds that a layer is already being pulled by
another daemon, it will create a Dummy Transfer and add it to the
list of running transfers. The Dummy Transfer is a placeholder to
transparently signal the client that the layer is being pulled without
actually occupying a thread. Each daemon runs one background
thread to periodically check, whether a Master Transfer for a cor-
responding Dummy Transfer has finished. Therefor, it polls the
Global Complete Transfers map where finished Master Transfers
are registered.

By using layer-based locking, Wharf accelerates image transfers
for large images, which consist of multiple layers and are required
by many daemons. It also avoids redundant layer pulling and in-
creases the layer usage as it can now be shared by containers across
different daemons. To avoid potential conflicts caused by deleting
layers that are currently in use by other daemons, Wharf uses a
global reference counter for each layer. A layer can only be deleted
from the Global Layer Store if its reference counter is 0.

4.3 Local Ephemeral Writes

In a typical Docker deployment the root file system of a container is
ephemeral, i.e. the changes written to the file system while the con-
tainer is running are discarded after the container stops. This trans-
lates to the removal of the writable layer by the underlying storage
driver. User applications frequently create substantial amounts of
intermediate data in the root file system which inflates the writable
layer. Furthermore, overlay storage drivers, like overlay?2 and aufs,
copy the whole file to the writable layer even when only a small
portion of the file is modified. This leads to significant write ampli-
fication at the file system-level compared to the user writes.
Docker typically stores writable and readable layers in the same
file system. In case of a distributed file system, this translates to a
large quantity of ephemeral container data being transferred across
the storage network, adding network and remote storage server
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overhead. Unlike Docker, Wharf stores writable and readable lay-
ers in two separate locations. Specifically, Wharf puts the writable
layers of running containers on locally attached storage while read-
only layers are stored in the shared storage so that any daemon
can access it. This design addresses design goal 4) by decreasing
the amount of writes to the distributed file system.

4.4 Consistency and Fault Tolerance

To achieve design goal 5), Wharf requires a strong consistency model
for its global state and needs to be able to deal with daemon crashes.

Consistency. As mentioned in §4.2, a fine-grained layer lock
is used to synchronize the global image and layer state between
daemons. While the global state can be read by multiple daemons
simultaneously, it can only be written by one daemon at a time.
Additionally, global metadata cannot be cached locally at daemons
to prevent them from operating on stale data. Exclusive writes
combined with no caching of state provides the necessary strong
consistency of the global state across daemons and makes sure that
daemons always operate on the same metadata view.

When a daemon performs an operation that requires updating
image data, e.g., pulling a new image or layer, it proceeds in three
steps: i) It goes through a metadata phase in which it locks the
necessary part of the global state and registers its actions, e.g., pull
layer Iy, if no other daemon is already performing the same action.
It then releases the lock; ii) it then continues with a data phase
during which the actual data is retrieved, iii) finally, if the operation
was successful, it again acquires the necessary metadata lock and
updates the metadata. As the data phase is always preceded by a
metadata phase, no two daemon can perform the same action twice.

Fault Tolerance. Wharf needs to deal with two types of failures:
First, Wharf needs to handle the case of a daemon crash while that
daemon is still holding a lock. In such a case, the entire system
can be stalled if the lock is not released correctly. To avoid such a
situation, Wharf uses lock timeouts after which any lock will be
released automatically. As daemons only need to acquire a lock to
access metadata, the periods during which a lock is required are
short and hence, timeouts can be set to low values (e.g., 15s).

Second, Wharf needs to handle daemon crashes during data
phases. If a daemon crashes while pulling a layer, the corresponding
image (and all other images that depend on that layer), will never
finish pulling. To continue downloading an image after a daemon
crashes, Wharf daemons use heartbeats. Heartbeats are periodically
sent and the last heartbeat timestamp is stored with the transfer in
the Global Running Transfers map. This allows other daemons to
check, whether a daemon is still pulling its layer or has crashed. In
case of a crash, a new daemon can continue the transfer.

5 WHARF IMPLEMENTATION

Next, we describe our implementation of Wharf in Docker. We first
describe how Wharf is able to share global state between the indi-
vidual daemons (§5.1) and then explain how images can be pulled
collaboratively in parallel (§5.2). The described implementation
adds approximately 2,800 lines of code to the Docker code base.
To run Wharf, the user only has to run the Docker daemon with
the shared-root parameter set. All other commands can be used
without any further changes for the user.
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5.1 Sharing State

To efficiently share the global state between daemons, Wharf has to
deal with two main problems: distributed synchronization for access
to the global state and in-memory caching of state in individual
daemons.

Docker uses three main structs which store the global state:
1) LayerStore for information on available layers (a list of readonly
and writable layers); 2) ImageStore for information on local images
(storage backend and image metadata); and 3) ReferenceStore,
which includes the references to all available images. Each daemon
keeps an in-memory copy of those data structures and can generate
them by reloading the directory that holds the persistent state of
the daemon. To accommodate multiple concurrent clients, a Docker
daemon protects its in-memory state via a mutex.

Wharf extends the design of Docker by serializing the above
data structures and to make them available to all daemons, it stores
them in the shared storage. It uses a distributed locking mechanism
to synchronize accesses. Read accesses can happen concurrently
and only require a read-only lock whereas write accesses require
an exclusive lock on the part of the state that should be updated.

By default, Wharf uses the fcntl system call to implement the
locking. As fcntl is supported by most distributed file systems, this
approach can be used out-of-the-box without extra software and
library dependencies other than what Docker requires. Via Wharf’s
Image Management Interface, it also allows users to replace the
default file-based locking with, e.g., an in-memory key/value store.

As multiple daemons can now update the global state, the in-
memory state of an individual daemon can become invalid. Hence,
before reading from their in-memory state, daemons have to check
whether the global state has been updated. To ensure daemons
always have the latest version of metadata before processing any
operation, Wharf applies a lazy update mechanism, which only
updates the cache of an individual daemon if the operation requires
metadata access. Wharf updates its in-memory data structures by
deserializing the binary files from the distributed storage and over-
write its in-memory data with the retrieved data.

5.2 Concurrent Image Retrieval

When pulling an image concurrently, Wharf daemons need to col-
laborate such that no redundant data is pulled. To enable multi-
ple daemons to pull layers concurrently, Wharf extends the layer
transfer model of Docker by adding two new components: the
SharedTransferManager and the SharedTransferStore, to com-
municate between daemons. The SharedTransferManager is the
distributed version of Docker’s TransferManager struct while the
SharedTransferStore is part of the global state and also serialized
to the shared storage. Figure 4 describes in detail how an image is
pulled in parallel by multiple Wharf daemons if they require the
same image at the same time.

Each daemon starts by fetching the image manifest and extract-
ing the layer information. The daemons will then dispatch a con-
figurable number of threads to pull the image layers in parallel. A
daemon will first check if the layer already exists. If not, it will
check whether it is already being pulled by one of its local threads.

In case another thread is already pulling the layer, the daemon
will generate a watcher to monitor the progress of the transfer.
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Figure 4: Layer pull procedure in Wharf

Otherwise, the daemon will check if the layer is currently being
pulled by another daemon on a different host. This information can
be obtained via checking the SharedTransferStore. If another
daemon is found, a dummy transfer is generated to monitor the
master transfer.

If no other daemon is pulling the layer and not all of the dae-
mon’s local threads are busy, the daemon will generate the mas-
ter transfer and dispatch a thread to start downloading the layer.
Once the master transfer is complete, the daemon will update the
SharedTransferStore. The SharedTransferStore is accessible
by all daemons, thus other daemons with allocated dummy transfers
can learn about the completion of the matching master transfer.

In case all local threads are busy pulling other layers, the daemon
creates a waiting transfer and pushes it to a local and global waiting
transfer queue. Once a local transfer finishes, the daemon will take
the next waiting transfer from the local queue and if it is still on the
global queue, start the download. Otherwise, that layer is already
being pulled by another daemon.

5.3 Graph Drivers and File Systems

As Wharf does not have direct access to the underlying block stor-
age, its applicability is limited to the category of overlay drivers
(see §2.3). Currently, Docker supports two overlay drivers: auf's
and overlay2!. Conceptually, Wharf is compatible with both graph
drivers and any POSIX distributed file system. However, running
overlay? drivers with a distributed file system is less common and,
therefore, not well tested. We found that some combinations are

!While there is an older driver based on OverlayFS, Docker recommends to use the
new overlay? driver.
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currently not operational. We tried two different file systems with
Wharf: NFS and IBM Spectrum Scale [12].

NFS. Wharf can work with NFS and both the auf's and overlay?2
graph drivers. However, we observed a problem when using NFSv4
and overlay2 due to the system.nfs4_acl extended attribute,
which is set on NFS files. OverlayFS is not able to copy the ex-
tended attribute to the upper file system, i.e. the file system which
stores the changed files (ext4 in our case). We believe this is due to
incompatibilities between NFSv4 ACLs and the ACLs of the upper
file system. While it is possible to mount NFSv4 with a noac1 option,
we found that this is not supported in our Linux distribution.

Spectrum Scale. We also were able to run Wharf on top of IBM’s
Spectrum Scale parallel file system. While the aufs driver was
working correctly, we again experienced problems using overlay2.
We observed that Docker tries to create the upper file system for
OverlayFS on Spectrum Scale, even though, local writes to ext4
are configured. This leads to an error (“filesystem on ’/path’
not supported as upperdir”). We currently do not know the
exact reason for this behavior, especially because we were able to
manually create an OverlayFS mountpoint on Spectrum Scale, but
are planning to investigate the problem in the future.

As OverlayFS is part of the mainline Linux kernel and hence,
offers better portability, we used the combination of overlay2 and
NFSv3 for our experiments with Wharf.

6 EVALUATION

To evaluate Wharf, we compare it to two other setups: (i) Dock-
erLocal, which uses local disks to store the container images, the
corresponding layers, and the writable layers; and (ii) DockerNFS,
which uses NFS as a storage backend but separate directories to
store the data for each daemon.

We run our experiments on an Amazon EC2 cluster using 5 to 20
t2.medium instances. Each instance has 2 vCPUs, 4 GB RAM, and
32 GB EBS disks and runs Ubuntu Linux 16.04 with kernel version
4.4.0-1048-aws. Wharf is based on Docker Community Edition 17.05
and we use this version in all of our experiments. To avoid network
speed variations between a public Docker registry and the daemons,
we set up a private registry on one t2.medium instance.

6.1 Pull Latency and Network Overhead

We start by running a set of microbenchmarks to measure the im-
pact of Wharf on image pull latencies. We consider five dimensions:
(i) the number of layers; (ii) the size of each layer; (iii) the number
of files per layer; (iv) the network bandwidth between the registry
and the daemons; and (v) the number of daemons. We set up five
experiments, and in each, vary one of the above dimensions while
fixing the others. We use the default number of 3 concurrent pulling
threads for each daemon.

6.1.1  Varying Number of Layers. To investigate how the granu-
larity of images influences the pulling latencies for the three differ-
ent setups, we pull an image that has a varying number of layers
ranging from 2 to 40. Each layer contains one file. We use 10 Docker
hosts and fix the image size to 2 GB. We measure the average pull
latencies of daemons. The first row of figure 5 presents the results.

Wharf shows the shortest average pull latencies (73 s) and lowest
overheads for both external (to the registry) and internal (to NFS)
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Figure 5: Pull latencies and network performance
The figures show image pull latencies and network utilization for different configurations. From the first row to the last row: (i) 10 daemons pull
20 images each, each image size is 2 GB and layers per image number vary from 2 to 40; (ii) 10 daemons pull 20 images with each image
containing 20 layers and the size of each layer varies from 5 MB to 100 MB; (iii) 10 daemons pull 18 images and each image has 20 layers with
50 MB per layer and 50-900 files per layer; (iv) 10 daemons pull 20 images from a local registry with the egress network bandwidth varying from
100 Mbps to 1000 Mbps; (v) 20 images are pulled by a cluster with a varying number of nodes, ranging from 5 to 20.

network traffic. During each pull operation, all Wharf daemons small number of layers, we can see a slight increase in pulling times
combined receive on average 2128 MB from the registry, 532 MB as in those cases Wharf cannot exploit the available parallelism.
from the NFS server, and sent 2049 MB to the NFS server. For a The performance of DockerNFS is limited due to the data transfer

between each daemon and the NFS server. It has the longest average
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Figure 6: Time diagram of layer pulls per client per thread. Every rectangle represents a pull of a single layer. C stands for
client and T for thread. The layer identifiers L are placed on top of their corresponding rectangles.

pull latencies (953 s) and highest external and internal network
traffic, receiving/sending an order of magnitude more data from
the registry/to the NFS server compared to Wharf.

DockerLocal generally performs worse than Wharf, due to the
fact that when all daemons are redundantly pulling the same image,
the network link to the registry becomes a bottleneck. On the
other hand, DockerLocal performs significantly better compared
to DockerNFS as the retrieved image data does not have to be sent
over the network again. Similar to Wharf, we also observe a slight
increase in pulling times for DockerLocal when the number of
layers is low.

6.1.2  Varying Layer Size. Next, we vary the size of each layer
from 5 to 100 MB to analyze the impact of different image sizes. We
fix the number of layers for our test image at 20 and again use 10
Docker hosts to pull the image in parallel. The results are shown in
the second row of Figure 5.

For all three setups, we observe an increase in pull latency for
larger layer sizes. This is expected as more data needs to be pulled as
the image size increases. Because Wharf only has to pull the image
once, its pull latency only increases by a factor of 1.1x overall while
DockerNFS and DockerLocal increase by 16x and 7X, respectively.
Due to the same reason, the network traffic for DockerNFS and
DockerLocal grows significantly faster compared to Wharf.

When looking at small image sizes, we observe that Wharf adds
a small overhead compared to DockerLocal and DockerNFS. For a
layer size of 5 MB, Wharf takes 21 s to pull the image while Docker-
Local takes 9 s and DockerNFS takes 16 s. This is due to the remote
accesses and the additional synchronization in Wharf. When mov-
ing to a layer size of 10 MB, the overhead disappears and Wharf
performs similarly to DockerLocal (18 s and 15 s respectively) while
outperforming DockerNFS (49 s).

6.1.3  Varying Number of Files. In early tests with NFS, we ob-
served large pulling latencies due to unpacking the compressed
layer tarballs. This is because NFS was using synchronous communi-
cation by default, i.e. the NFS server replies to clients only after the
data has been written to the stable storage. To mitigate this effect,
we configured NFS to use asynchronous communication. To see if

the number of files in the tarball can affect pulling times even in
asynchronous mode, we vary the number of files per layer from 50
to 900 while fixing the number of layers at 20 and the total image
size at 2 GB.

As shown in the third row of Figure 5, the pull latencies of
DockerLocal and Wharf are close and are unaffected by the file size.
Consistent with previous results, DockerNFS performs worse than
the two but also does not show any significant variation due to the
number of files per layer.

6.1.4 Varying Network Bandwidth. The default bandwidth be-
tween our private registry and daemons is between 1 Gbps and
10 Gbps (as per AWS specification). However, in practice, when
connecting to a public registry via a wide area link, bandwidths
can vary and throughput can drop significantly. To explore how
network bandwidth affects the system, we use the Linux tool tc
to vary the egress bandwidth of the registry node from 100 Mbps
to 1 Gbps and measure the pull latencies. The pulled image con-
sists of 20 layers of 50 MB each and we use 10 daemons to retrieve
the image in parallel. We do not vary the bandwidth to the NFS
server to simulate a realistic scenario in which distributed storage
is cluster-local and available via a fast interconnect. The fourth row
of Figure 5 shows the results.

For the lowest bandwidth of 100 Mbps, the average pull latencies
are 118 s, 885 s, and 889 s for Wharf, DockerLocal and DockerNFS,
respectively. As bandwidth increases, the pull latencies of Dock-
erNFS and DockerLocal drop quickly, while pull latency of Wharf
stays almost constant. As Wharf minimizes the network traffic
to the registry, it offers stable performance and is independent of
bandwidth variations on the registry connection.

6.1.5 Varying Number of Daemons. To analyze how the cluster
size affects system performance, we vary the number of nodes,
and hence the number of daemons, from 5 to 20. We use the same
20-layer image as in the above experiment for pulling and again
measure the average pull latencies of daemons and accumulated
network traffic. The results are presented in the fifth row of Figure 5.

As the number of nodes increases, the image pull latencies of
DockerNFS grow significantly from 129 s with 5 nodes to 826 s with
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Container | Total Exec | Avg Exec | Min Exec | Max Exec Data Data
Runtime Time Time (s) | Time (s) Time (s) | Received (MB) | Sent (MB)
Docker 7m26s 158 31 252 3227 50
Wharf 7m47s 154 46 263 354 768

Table 1: Runtime performance summary

20 nodes. While the growth for DockerLocal is less, it is visible and
spans from 40 s with 5 nodes to 215s for 20. In contrast, Wharf
shows stable pull latencies regardless of the number of nodes.
The reason is that DockerNFS and DockerLocal pull the image to
each node, i.e. as the number of nodes increases, the load increases.
Wharf only pulls an image once and is hence independent of the
number of nodes. This is also reflected in the network traffic which
stays constant for Wharf but increases for the other two setups.

6.1.6  Varying Pull Parallelism. To take a closer look at an image
pull operation, we zoom into the pull operation at the layer level
and launch three microbenchmarks: (i) one Docker daemon with
9 concurrent pulling threads; (ii) three Docker daemons with 3
pulling threads each; and (iii) three Wharf daemons, with 3 pulling
threads each. The image pulled consists of 10 layer with each layer
ranging from 100 MB to 120 MB.

As shown in Figure 6, the single Docker daemon with 9 threads
completes the task in 40 s. This is similar to Wharf, which completes
the task in 33 s. In both cases, the image is only pulled once with 9
parallel threads but as Wharf combines the resources from three
machines to retrieve the image, it can improve the pull latency.

The three Docker daemons take 151 s to 256 s to complete the
task. As each daemon pulls the image separately, every layer needs
to be pulled 3 times which causes network contention and slows
down the individual daemons.

6.2 Runtime Performance

While sharing images from distributed storage can reduce storage
and network overhead, containers have to now access data remotely.
This could add additional latency to individual tasks in a workload.

To analyze any potential runtime performance degradation in
Wharf we run a real-world workload and compare its performance
to DockerLocal. Our workload comes from the HPC domain and
computes the Burroughs-Wheeler Alignment (BWA), a highly com-
putational intensive job, which usually spawns thousands of parallel
tasks. The dataset used for this benchmark is generated by the CCL
Makeflow Examples respository [22]. We use the Makeflow work-
flow system [15] with the WorkQueue execution engine [17] to
implement the BWA and run it on 10 nodes with 1,000 parallel tasks
with DockerLocal and Wharf.

Table 1 presents the summary of execution times. We can see
that on average, Wharf only adds an absolute overhead of 4 s which
is equal to 2.6%. Looking at the total execution time, the 5 workflow
executions run 21s slower in Wharf compared to DockerLocal,
translating to an overhead of 4.7%. This shows that the remote
accesses incurred by Wharf only add a small overhead. As we
showed in our microbenchmarks, the benefit of Wharf also increases
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Figure 7: Effect of Wharf on task execution time

with larger cluster sizes and hence, we expect Wharf to perform
better compared to DockerLocal at scale.

Additionally, Wharf requires significantly less network resources,
retrieving 9.1X less data from the external network. While Wharf in-
troduces more sent network traffic (15x larger compared to Docker)
due to NFS traffic, the interconnect to the distributed storage is
usually faster compared to an external, wide area network and
hence, we do not expect it to become a bottleneck.

Figure 7 shows a histogram of the task execution times for one
of the runs of the workload. In general, we see that Wharf produces
more short running tasks compared to Docker which is due to
the shorter image pull latencies. In general, the two system setups
have a similar distribution of task execution time and we thus
conclude that using Wharf does not introduce significant runtime
performance degradation.

7 RELATED WORK

Previous work has studied how to better adapt container technology
to cloud environments. The studies can be classified into several
categories, targeting different use cases.

Container Runtimes. Several container runtime systems have
emerged to meet specific user requirements. Charliecloud [33] en-
ables container workflows without requiring privileged access to
data center resources through user namespaces. Singularity [25] is
an alternative container solution that aims to provide reproducibil-
ity and portable environments. It prevents privileged escalation in
the runtime environment, which improves cluster security, when
containers can run arbitrary code. Compared to them, Wharf fo-
cuses on improving the efficiency of image distribution and reduc-
ing network and storage overheads.

Container registry. Existing work has looked into how to opti-
mize the registry to reduce the cost of pushing and pulling images.
VMware Harbor [10] is an optimized registry server designed for
enterprise-level clusters. CoMICon [29] introduces a decentralized,
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collaborative registry design to enable daemons to share images
between each other. Anwar et al. [16] analyzed registry traces and
designed improvements to speed up image pulls. However, in all
the above systems, images are still local to individual daemons as
the improvements are only made at the registry side.

Image Distribution. Slacker [21] proposes to lazily load im-
age content from a shared storage backend to reduce the amount
of transferred unused image data. While this is similar to Wharf,
Slacker does not discuss the implications of sharing images between
daemons. Shifter [20] supports sharing images from a distributed
file system. However, it implements its own flat image format to
serve images and also requires several external dependencies, in-
cluding MongoDB, Redis, and Celery. In contrast, Wharf keeps the
Docker image structure and can run without additional software
dependencies. FID [24] uses a P2P protocol to speed up the pro-
cess of image distribution but still keeps duplicate copies for each
daemon.

Sharing VM Images. Previous work has studied how to ac-
celerate the distribution of VM images and improve VM startup
times. Razavi et al. [35] focus on simultaneous VM startups of the
same VMI (Virtual Machine Image) and find that as the number of
VM startups increase, networking becomes the bottleneck. They
propose that only a small part of the VMI is loaded at first. In
Squirrel [34], the authors note that capacity wise it is possible to
keep a significant amount of VMI caches on all client nodes, there-
fore decreasing boot time further. FVD [40] retrieves data from
images on demand, so a VM starts with the minimum data required.
Snowflock [26] uses a parent VM to fork multiple child VMs (on
arbitrary nodes within a network) by only shipping the critical
RAM state required by the child VM to start. Compared to these
approaches, Wharf focuses on containers and exploits Docker’s
layered image structure to retrieve and share images efficiently.

Other work has looked at image sharing via P2P [36] while
VDN [32] presents a distribution network for VM images. However,
this work does not consider sharing images from different hosts.

8 CONCLUSION

In this paper, we explored how to efficiently share Docker images
through a shared storage layer to reduce network and storage
overheads when running Docker in large-scale data processing
environments. We discussed the drawbacks of a naive solution
and the design goals for a native and more efficient approach. We
proposed Wharf, a shared Docker image store, which fulfills the
design goals and allows Docker daemons to collaboratively retrieve,
store, and run images. Wharf uses layer-based locking to support
efficient concurrent image retrieval and allows to write data to
local storage to reduce remote I/Os. Our evaluation shows that
Wharf can reduce image pull times by a factor of up to 12X and
network traffic by up to an order of magnitude for large images
while only introducing a small overhead of less than 3% when
running container workloads.
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