An Algebra for Robust Workflow Transformations

Nicholas Hazekamp
University of Notre Dame
Notre Dame, Indiana 46556
nhazekam@nd.edu

Abstract—Scientific workflows are often designed with a par-
ticular compute site in mind. As a user changes sites the workflow
needs to adjust. These changes include moving from a cluster to
a cloud, updating an operating system, or investigating failures
on a new cluster. As a workflow is moved, its tasks do not
fundamentally change, but the steps to configure, execute, and
evaluate tasks differ. When handling these changes it may be
necessary to use a script to analyze execution failure or run
a container to use the correct operating system. To improve
workflow portability and robustness, it is necessary to have a
rigorous method that allows transformations on a workflow.
These transformations do not change the tasks, only the way
tasks are invoked. Using technologies such as containers, resource
managers, and scripts to transform workflows allow for portabil-
ity, but combining these technologies can lead to complications
with execution and error handling. We define an algebra to
reason about task transformations at the workflow level and
express it in a declarative form using JSON. We implemented
this algebra in the Makeflow workflow system and demonstrate
how transformations can be used for resource monitoring, failure
analysis, and software deployment across three sites.

I. INTRODUCTION

Scientific workflows define a set of tasks and their in-
terdependencies to provide performance, reproducibility, and
portability. Workflows are used every day in bioinformatics
[1]-[6], high energy physics [7], [8], astronomy [9], and
many other domains. Workflow management systems provide
support for expressing the required resources, environment,
and configuration for each task. Correctly specified workflows
are explicit about required setup and environments. Often these
workflows are designed for a specific site, failing when moved
to different sites.

Differences between execution sites makes porting work-
flows hard and debugging complex. It is common for work-
flows to assume libraries and programs are available, use
applications configured for only one operating system, or rely
on unspecified configurations, all of which fail on different
sites. Accommodating each site’s configuration requires a
number of unique transformations to properly execute. The
tasks themselves do not change, but the environment, error
handling, and configuration may.

A typical use case is the need to deploy the same operating
system and software stack on several available compute sites.
Unfortunately, each site may have a unique operating system
or lack the necessary software. Users need a way to quickly
switch between each site, but do not want to rewrite the
workflow for each one. The simple answer is to use containers,

Douglas Thain
University of Notre Dame
Notre Dame, Indiana 46556
dthain@nd.edu

but how do we easily apply these containers to tasks? This is
further complicated when each site may use different container
technologies (i.e. Docker [10] and Singularity [11]).

The ability to combine available tools is required to handle
unique configurations and environments. Unfortunately, no
single tool can address these changes, but multiple tools are
needed in conjunction. As the number and variety of tools
increases, the complexity of combining them increases as
well. For example, if Singularity and a custom script are both
applied to a simple task by prepending their commands, char-
acteristics of execution like exit status, provenance of files, and
the final executed command become opaque. Properly nesting
the container inside of a script allows for differentiating
failures, debugging, and consistent execution. Each additional
layer must become a more nuanced transformation as nesting
technologies, such as containers, resource monitoring, and
error handling, becomes necessary. Different combinations of
tools are required depending on the site’s unique configuration.
The variable nature of required tools indicates the importance
of only applying tools to a workflow as needed, rather than
adding them to the workflow specification at each site.

We define an algebra for workflow transformations to ad-
dress the complexity of nesting different tools and technolo-
gies. Based on the sandbox model of execution, this algebra
formalizes the operations for applying transformations to tasks
which produce new tasks. These transformations can then be
applied in series to produce a task that incorporates all applied
transformations. Using formalized task transformations, we are
able to precisely apply multiple transformations to a workflow
and cleanly map to each task.

This algebra was expressed using JSON so that it is in-
dependent of (and therefore portable to) a variety of systems.
Using this JSON expression, a driver was written in Makeflow
[12] that allows us to apply transformations to a full workflow.
We discuss the challenges in applying transformations and how
these methods can be applied incorrectly and incompletely. To
show the efficacy of this solution we show several case studies.
The first uses a Singularity container to provide consistent
environments, a resource monitor to give accurate usage stats,
and a sandbox to isolate the available files and workspace.
The second shows a failure handler that captures a core-dump
and converts it into a stack trace, streamlining analysis and
lowering data transfer. The final case study executes the same
workflow on several sites using an environment builder that
dynamically builds required software at each task.

Evaluate

000 O

7

Fig. 1. Example Workflow.
This workflow shows standard split-join behavior. Each circle is a
task and and each square is a file. The first task partitions the data,
the next set of tasks analyze the individual partitions, and the last
task aggregates them. Each task executes independently and tasks are
often run on batch execution systems.

II. BACKGROUND AND CHALLENGES

Scientific workflows are a widely used means of organizing
a large amount of computational work. A workflow consists
of a large number of tasks, typically organized in a graph
structure such that the outputs of some tasks can be used
as the inputs of other tasks. Each task is a unit of work
that can be dispatched to a batch system or cloud facility
and can range in scale anywhere from a brief function call
lasting a few seconds to a large parallel application running
on hundreds of nodes for several hours. Examples of widely
used workflow management systems include Pegasus [13],
Kepler [14], Swift [15], Makeflow [12], and many others.
Figure 1 shows an example of a typical workflow structure.

A workflow primarily describes the researcher’s work to
run a set of simulations, to analyze a dataset, to produce a
visualization, etc. However, like any kind of program, there
may be a number of secondary requirements that must be
met to complete the work: a particular software environment
should to be constructed, resource controls for the batch sys-
tem will be selected, monitoring and debugging tools should
be applied to the task, and so forth. This might involve setting
environment variables, providing additional inputs, capturing
additional outputs, invoking helper processes, and more.

The first version of a workflow, constructed at a particular
computing site, may have all of these aspects intertwined with
the definition of the tasks to be done. The application may
depend upon software environments installed in fixed paths in
a shared filesystem. Environment controls may be set within
individual tasks. Resources may be hard coded for a particular
batch system The graph structure may reflect the current set
of debugging tools enabled. While this may work well at the
first site, it may become necessary to move the workflow to
another site in order to improve performance, increase scale, or
to apply the workflow in a new context. All these site-specific
controls are unlikely to work in the new context, and the

receiving user is then stuck with the problem of disentangling
the core code from the local peculiarities.

An appealing approach to this problem is to define sim-
ple modifications that can be individually applied to tasks
(transformations) in order to achieve specific local effects. For
example, one might have a transformation to run a task in
a container environment, another transformation to perform
monitoring and troubleshooting, and a final transformation
to configure a software environment for the local site. With
this approach, the scientific objective of the workflow can be
expressed in a portable way. A set of external transformations
are used to modify the tasks as needed for the local site.
Porting a workflow from one site to another becomes the
simple job of adjusting a few transformations rather than
rewriting the workflow from scratch. If it is necessary to
transform the workflow in a new way, a transformation can
be written, shared , and applied to many workflows.

However, our experience is that designing and using trans-
formations is not so easily done. What may seem like a
simple and obvious transformation can end up creating com-
plex interactions and incorrect results. As a simple example,
suppose that we want to run each task inside a Singularity
container named centos . img. At first, this sounds as simple
as prepending singularity run centos.img to each
command string then running the task. While this works in
limited cases, the general case for workflows with complex
task definitions fails. There are several reasons for this:

Substitution semantics. Using basic string substitution to
embed one command inside another often complicates exe-
cution. Commands that use input/output redirection, consume
files, or change the environment collide using basic substi-
tution. Addressing this uncertainty with shell quoting only
further complicates the matter and may change the execution.

Workflow modifications. Applying a transformation to a
task not only changes the individual task, but may also have
an effect on the global structure of the workflow. A command
transformed by a container now has an additional input (i . e.
centos.img) which must be accounted for as a dependency
in the workflow. Container images are large and affect the
scheduling and resource management of the workflow. In a
similar way, the container produces additional outputs which
must be collected and managed by the workflow.

Namespace conflicts. Transformations can modify the local
filesystem namespace. Log files with fixed names, temporary
generated files, files based on task input files, or modifications
to the working directory all alter the task and the workflow.
These actions blindly modify files outside the workflow or
cause race conditions with other concurrent transformations.
Since it is not always possible to alter these hard-coded paths
into unique filenames, collisions are inevitable.

Troubleshooting complications. The exit semantics of a
transformed task are complex as it is not sufficient for a
transformation to simply return the task’s integer exit status.
Each exit status should be differentiated, as transformations
may fail separately. For example, preparing the environment
may fail because a necessary software dependency is not

present, a container may fail when pulling the container
image over the network, or a resource monitor may exit when
resources are exhausted. In each of these cases, we must have
a means of distinguishing between transformation failure and
task failure. When multiple transformations are applied, the
result of the task looks more like a stack trace than a single
integer.

To address these challenges, we need a more rigorous way
of defining tasks and the transformations on those tasks such
that any valid transformation applied to any valid task gives
the expected result in a way that can be nested. In short, we
need an algebra of workflow transformations in order to make
scientific workflows more robust, portable, and usable.

III. AN ALGEBRA OF WORKFLOW TRANSFORMATIONS

We designed a formal abstraction to accommodate the
execution behavior of various tools. This formalism isolates
each transformation for consistent execution, allowing for
organized nesting. In particular, our abstraction describes how
to define a transformation for a given tool, as well as aspects
of execution to consider. Transformations are based on the
sandbox model of execution, which describes all aspects of
execution for which a transformation is responsible.

A. Notation

For the purpose of expressing tasks and transformations in
a precise way, we use a notation that is based on JavaScript
Object Notation (JSON). In addition to the standard JSON
elements of atomic values (true, 123, "hello"), dictio-

naries { name: value },andl/lists [10, 20, ... 1,
we add:
e let X = Y is used to bind the name X to the value Y.

e define F (X) = Y defines a function F that will eval-
uate to the value Y using the bound variable X.

o Simple expressions can be built up using standard arith-
metic operators and function calls on values and bound
variables.

e eval X evaluates the expression X and returns its value.

Using this notation, a single task (7'1) in a workflow is
expressed in JSON like this:

let T1 = {
"command": {
"pre":[1,
"cmd": "sim.exe < in.txt > out.txt",
"post":[],
}I
"inputs" : ["sim.exe", "in.txt" 1,
"outputs" : ["out.txt" 1,
"environment": {},
"resources"
{"cores":1, "memory":1G, "disk":10G }
}

Note that the schema is fixed. Every task consists of a
command with a pre, cmd, and post component, a list of
input files, a list of output files, a dictionary of environment
variables, and a dictionary of necessary resources (all defined
in detail later). Importantly, the formal list of inputs and
outputs is distinct from the command-line to be executed,
as guessing the precise set of files needed from an arbitrary
command-line is difficult. For example, a program might
implicitly require a calibration file calib.dat and yet not
mention that on the command line. The base task’s list of
inputs and outputs is drawn from the structure of the DAG by
the workflow manager.

B. Semantics

Makeflow allows for tasks in this form to be executed on
a wide variety of execution platforms, including traditional
batch systems (such as SLURM [16], HTCondor [17], and
SGE [18]), cluster container managers, and cloud services.
Because each of these systems differ in considerable ways, it
is necessary to define precise semantics about the execution
of the task and the namespace in which it lives. Once these
semantics are established, it becomes possible to write trans-
formations that work correctly regardless of the underlying
system. To accommodate these varied systems, we introduce
the sandbox model of execution.

The sandbox model of execution isolates the environment
and limits interactions to only specified files. Isolating the task
to run only the specified environment allows for higher flexi-
bility about where the task can run as well as increasing the
reproducibility of execution. Limiting the locally available files
helps prevent undocumented file usage, enforcing accuracy of
the file lists.

Applying a sandbox to a task is a multi-step process for
ensuring consistent environment creation. It goes as such:

1) Allocate/ensure appropriate space for execution, based

on resources.

2) Create sandbox directory.

3) Link/copy inputs to ensure correct in-sandbox name,

based on inputs.

4) Enumerate environment variables based on the specified

environment.

5) Run task defined command, using pre, cmd, and post.

6) Move/copy outputs outside of sandbox with appropriate

out-sandbox name, based on outputs.

7) Exit and destroy sandbox.

2. Create Sandbox

Environment
[[Envronment

o

Lo

1. Size
(Resources)

Fo

7. Delete Sandbox

Fig. 2. The sandbox model of task execution. This shows the different
steps needed to isolate the task from the underlying workflow environment to
prevent side-effect on the environment and filesystem.

define Singularity(T)
{

"command" : {

"cmd": "singularity run image " +

T.script + " > log." + T.ID

}

"inputs" T.inputs +
["image", T.script],
"outputs" T.outputs +
["log."+T.ID],
"resources" : {
"disk" T.resources{disk} + 3G

eval Singularity(T1l) yields
{
"command": {
"pre":[1,
"cmd": "singularity run image " +
"t _ID.sh > log.ID"
"post":[1,
}I
"inputs" ["sim.exe", "in.txt",
"image", "t_ID.sh" 1,
"outputs" ["out.txt",
"log.ID"],
"environment" : {}
"resources" : {
"cores" 1,
"memory" 1G,
"disk" 136G,

}

Fig. 3. Abstract Singularity transformation
Describes the Singularity command, added files (such as image and
output log), and increases the required disk space. Note, several of
the variables are unbound and will be resolved when applied to a
task. Unaltered fields are left undefined.

C. Transformations as Functions

A transformation is an abstraction of a task and provides
the information needed to translate a raw program invocation
into a properly defined task. A transformation contains the
same fields defined in a task: a command, inputs, outputs,
resources, and environment. However, it is an incomplete task
with unbound variables that are resolved when applied to a
task as a function.

Figure 3 illustrates Singularity written as a transformation.
As mentioned above, the generic definition of the transforma-
tion contains unbound variables such as T.cmd, T.inputs,
and T.outputs. When the transformation is applied to a
task, those variables are bound from the task’s structure.
Singularity requires additional space (3G) to account for the
Singularity image. Here, resources are not defined as a static
value. Rather they are in addition the to underlying resource.
Additionally, the Singularity transformation does not define an
environment, so it is left out.

The resulting task of evaluating Singularity (T1) can
be seen in Figure 4. The previously unbound variables have
been resolved, such as T.inputs becoming ["sim.exe,
"in.txt"]. The values that were not defined or extended
by Singularity were resolved from the underlying task,
such as cores and memory. Importantly, to create a valid
task even empty fields like pre, post, and environment are
still specified, allowing for evaluation and additional transfor-
mations to be applied.

Fig. 4. Resulting task of applying Singularity to T1.
The transformed task has all of the variables bound. The file lists
have combined the previously defined files with the files added by
Singularity. The resources are resolved and the required values
account for the original task and the transformation.

If you look carefully at Figure 3 you will notice two vari-
ables not bound by the underlying task directly, T.script
and T.ID. As part of the abstraction, the underlying task is
emitted as a script that is called in place of the command,
creating T.script. The ability to treat transformations as
functions is achieved by isolating each transformation as a
separate process. Isolating a transformation provides several
key benefits: clearly defined ordering of transformations, in-
stantiated environments persist only in that process and its
children, and exit status can be attributed at each level to track
failures. In practice this is achieved by producing a script that
defines the task, as seen in Figure 5.

The second variable, T. ID is key to this method’s success.
The ability to uniquely identify each task provides a clear
mapping to the workflow. A unique identifier is created using
the checksum of the current task, which incorporates the
command, input files’ names and contents, output files’ names,
environment, and resources. This identifier is used to identify
the output script and can be used by the transformation
to uniquely identify files in the workflow. Additionally, as
applying a transformation produces a new task, the identifier
is updated after each transformation.

D. Applying the Sandbox Model

The creation of a script from a task focuses on isolating
just the transformation but relies on finalization of the task
sandbox laid out in Section III-B. To consistently apply the
sandbox model to a task we define a sandbox procedure to

#!\bin\sh
#ID TASK_CHECKSUM

POST function

POST () {
Store exit code for use in analysis.
EXIT=S$?

Run post commands.

Exit with stored EXIT which may
have been updated by post.
exit S$EXIT
}
Trap on exit and
trap POST EXIT INT

call POST.
TERM

Export specified environment.

Run pre commands.

Run core command.

sim.exe < in.txt > out.txt

Fig. 5. Script created when evaluating Singularity (T1).

produce a script that creates a sandbox, handles files, and runs
the command. This procedure is applied to a task prior to
execution to isolate the task to a single sandbox directory.

This begins with creating a unique identifier, based on the
task checksum. The identifier is used to create the sandbox and
script names used in execution. In the script a POST function
captures the exit status, executes post commands, and returns
the outputs. This function is set as a trap to also analyze
failures. Next, the sandbox is created and inputs are linked into
it. The process changes directories, exports the environment,
and runs the pre commands. After the environment is set up,
the task cmd can run.

IV. TRANSFORMATIONS IN PRACTICE

In applying the above algebra, there are design consider-
ations to be made. To maintain the ability to nest several
transformations together, it is important to consider the naming
conflicts, the importance of differentiating pre, cmd, and
post, file management, resource specification, and how the
environment of a task is extrapolated.

A. Composability versus Commutability

An important aspect of this algebra is the ability to rea-
son about how the combinations of different transformations
interact and if they can be applied to created a valid task.
Using the previously defined application of transformations
we find that the set of transformations are composable, but
not commutable. These transformation are not commutable
because the ordering in which they are applied changes the
core evaluation of the task. This is, by design, to allow for the
differentiation of transformation ordering.

Transformations, in general, are composable. Any transfor-
mation can be applied to any task and produce a valid task,
with the exception of static name collisions. A static name
collision can result when an application uses hard-coded or
default names for files, careless naming, or even randomly
generated names. Running a single transformation at a time
may not cause a collision, but nested transformations and
concurrent tasks make collisions inevitable, as is often seen
with output logs and files sharing names between tasks.

Naming is resolved at the local level by detecting when
applying a transformation creates overlapping names. If col-
lisions are detected, the transformation is not applied and a
failure is returned. Though this restricts some combinations,
this can be overcome by better understanding the application
and using options to produce unique files.

However, if the same restrictions were applied to tasks
across the workflow, transformations with static names would
be prohibited entirely. As this may be inevitable, static files
may be remapped to a unique name in the workflow. As each
task is isolated in a sandbox, static files can be renamed when
moving to the global namespace using the task identifiers.
Remapping of the file relies on a more verbose file specifica-
tion as a JSON object instead of a string filename. JSON object
specification enables the wrapper to specify an inner_name,
specifying the name inside the sandbox, and the outer_name,
specifying the name in the workflow context. An example of
how this would look with a statically named file can be seen
in Figure 6 which defines a resource monitor transformation.

define RMonitor (T) {

"command" : [

"cmd": "rmonitor -—- " + T.script

]

"inputs" T.inputs + ["rmonitor",
T.script]

"outputs" T.outputs +

[{"outer_name="summary."+ID,
"inner_name"="summary"}]

Fig. 6. Verbose JSON object file specification.
In this example, the resource monitor uses a statically named default
summary, “summary”. In this case, the summary file’s name is
static and will collide in the global workflow context. To avert this
collision the file is specified with its static inner_name, and a unique
outer_name using the task’s ID.

B. Command Description

Commands express the setup, execution, and post process-
ing of a task. Commands are broken up into three parts, pre,
cmd, and post based on the command structure outlined.

Pre is a set of commands that run prior task invocation
and setup the task sandbox. This includes setting environment
variables, configuring dependencies, and loading modules or
software. For example, a Docker transformation would use pre
to load or pull images.

Environment provided
by Submission Node

Apply
Transformation a

Task expanded by
each transformation

Execute
Nested Task

Environment
defined by DAG

<é

Handle
Exit Status

Task Task Task Task
)= a)b Py
T Ea Eb E
Cc
Task submitted \ Environment Submit
Environment expanded by a
BATCH
Execute

Transformation ¢

{} Place

c Environment defined
by Batch and
Execution Node

Environment
evaluated for ¢

Fig. 7. General approach to Sandbox model of execution
The environment that exists at task execution is derived from several sources. The environment starts at the DAG where variables are resolved
internally and from the host machine. These values define the task’s initial environment. Transforms are applied to the task which extend
the environment (a, b, ¢ are generic transforms), but applied at execution. At the execution site, the environment is defined by the execution
node and batch system. A execution each transformation is applied and invokes its environment limited to the transformation’s execution.

post is a set of command that run after task invocation and is
used to handle failure by interpreting or masking them, create
outputs to prevent batch system failures from missing files, or
validate correctness of outputs. Post can differentiate docker
failing to load an image from task execution failure, allowing
more nuanced debugging.

The cmd string outlines the context in which the underlying
command is invoked. ecmd outlines how the underlying task
is called and isolates the effects of the calling transformation.

A benefit of separating the command into these parts is that
it allows us to differentiate the failures or problems that result
from each part. This is useful when determining that the setup
of your container failed so the task should not run or to prevent
the failure of post analysis from indicating a task failure
falsely. This separation also allows for each transformation to
be clearly expressed in a script, enabling simplified debugging.

C. File List Management

As transformations are applied, the list of inputs and outputs
grows. It is key for the correct organization of transformations
that the set of required files is outlined by the task structure
allowing the submitting system to confirm required inputs and
verify expected outputs. It is possible for a transformation to
rename or mask an existing file in the list. By doing so, the
transformation changes the context of the task when evaluated.
This can be done to allow for redirecting shared files or when

using installed reference material. Maintaining a correct set
of files helps prevent task collision. This information can also
map a pre or post application onto the files, estimate the space
needed for execution, or log these files for later analysis.

D. Resource Provisioning

The resources define the necessary allocation for proper
task execution. This value is extended and augmented by
transformations as the context and required resources change.
Commonly, as transformations are applied, additional disk
space is needed to store new files (like container images).

Resource provisioning may not only be additive as the
transformations are applied, but also maximal. This is typically
the case used for cores. The number of cores does not expand
as transformations are added but reflects the largest number of
cores needed by any transformation. For example MPI utilizes
a static number of cores, and to reflect that the resources
specification uses the maximum of the provided value and
the previous resource specification. The value of the resources
required for a task tracks the largest set of each resource. After
the transformations have been applied, the final task contains
a single specification reflecting the total expected usage.

E. Environment Elaboration

An important aspect of a task is the execution environment.
The environment defines a variety of values that control

execution such as available executables, required libraries
and values, and available machines for cluster execution.
However, the environment is often overlooked or ignored by
the researcher, which causes corruption, errors, and failures.
This can be mitigated on a single site, but as more sites
are utilized managing these environments becomes unrealistic.
It is important to understand how the task environment is
defined, when transformations are applied, and how to direct
the execution environment.

Figure 7 illustrates many of the locations a task’s environ-
ment, or expected environment, can be derived and how it
changes over execution. The workflow is executed with the
submit machine’s environment (FEg), defines an internal DAG
environment (Ep), and dispatches a task specific environment
(E7). The task environment is defined with values derived
from the DAG and submit machine, but crucially should
not include variables that reference non-existent programs,
libraries, and values at execution.

After the task is produced, transformations are applied that
may append, update, or mask the provided variables. As a
transformation is applied, Ep is written out to a script. The
transformation can update values set in the task and add
values based on needed, such as applications to the PATH
or libraries. Applying these transformations produces a stack
of environments (F,, Ey, E.) that are applied at execution.

Tasks are placed on an execution node, where the environ-
ment may vary from the submit machine. The batch system
environment (Fp) provides information about the assigned
machines, available cores, and location of software modules
and may be crucial for applications that use MPI or modules.
The execution node environment (Eg) defines information
such as local disks and available hardware.

The most basic method of invoking an environment is to
apply all variables either at the beginning of execution or
just prior to the task invocation. If applied initially, there
are likely uninstantiated or unbound dependencies. If just
prior to task execution, the context of each layer is evaluated
using incorrect values or software. Both ultimately lead to a
disconnect between the intended and the actual environment.
To prevent this, as tasks are invoked each transformation
creates a process that only applies the specified environment,
limiting the environment’s scope. Some transformations, such
as containers, wipe or mask the provided environment. As
transformation environments are applied, this should be taken
into account, as the order and manner environments are
instantiated may not carry through each transformation.

V. APPLICATIONS OF TRANSFORMATIONS

We will now look at several example applications of trans-
formations and how they can be used to improve the portability
and robustness of workflows.

A. Sandbox Transform

A sandbox transform creates a directory, transfers files,
and runs the command of the task. This simple lightweight
transformation isolates the execution namespace from the

workflow namespace, which allows for file renaming. The
sandbox is removed after execution, which eliminates local
unspecified files from polluting the namespace and disk quota.
The sandbox can be captured for analysis on failure.

B. Container Transform

A container transform wraps tasks in a specified container
for isolation and curated environments. A container pre com-
mand is used to pull down or unpack containers. This is
done separately to differentiate failure of initialization from
the invocation. A container cmd invokes the container with
the nested command, which creates it own isolated process.
Finally, a container post command cleans up container images,
reporting exit status.

Calling the nested command from the container isolates
the container arguments from the shell script invoked. This
prevents issues with differentiating arguments, isolating file
redirects, and instantiating an environment inside the container.
Containers can also mask the execution environment, which
can prevent an environment specified earlier from existing
inside the container. Containers often increases the required
resources to account for additional files, like container images.

C. Resource Monitoring Transform

A resource monitor transform measures the utilized re-
sources during task execution. If limits are specified, the
monitor will stop the task and report if the resources are
exceeded. As the resource monitor relies on the expected
resources, it can utilize the adjusted specification to adapt
as transformations add required resources. Other functionality
includes monitoring the files that are accessed and creating a
time series of the utilized resources. The resource monitor uses
the cmd to track the process. The resource monitor benefits
from the sandbox directory as the isolation allows the sandbox
to be monitored for disk usage. This does not increase the
resource needs but enforces them. In addition to the executable
and usage summary, the resource monitor creates additional
outputs such as the list of accessed files and resource usage
time series, all of which are added as outputs.

D. Environment Transform

Regardless if a submit script, container, or virtual machine
is used to run a task, there is often a need for configuration just
prior to task execution. This is necessary in cases such as redi-
recting environment to reference data, configuring variables to
include new libraries (such as LD_PRELOAD), or specifying
a precise version of Java (by setting Java home and library
paths). These types of transform rely on the pre command
to initialize the environment. This can also be done using
the environment dictionary, though these value are directly
exported and do not allow for nuanced initialization.

E. Failure Handling Transform

A transform that analyzes and handles errors at the task
execution site allows for evaluations of the environment where
the error occurred. Running evaluations only on failure limits

J

R
Pass-Through

p

[2)[5]

Applying
Resource Monitor

Initial Task

Applying Singularity

Legend Processes

]
A
O

D File
E Environment

Resource

Sandoox Monitor

Sandbcx Singularity

Process

Map
Inputs

Process

Map
Outputs

Task
Command

SI9IOIOIC),

Files
Task Singularily
Input Image
Task Singularily Resource
Output Log Summary

Creatmg Sandbox

Fig. 8. Evolution of task as transformations are applied.

Starting from the left, we have the initial task with a single input and output. Next, a resource monitor is applied which passes through
the original files, but also creates a summary of the resources used. After the resources monitor, a Singularity container is used to provide
a consistent operating system, requiring a image to run from and creating a log. Finally, a sandbox is created to isolate execution, limiting
file access when singularity maps the current directory. With each additional transformation, we see the complexity of the system increase.

the overhead on normal tasks and lessens the analysis burden
of the user. This is used in determining software configura-
tion/version incompatibilities, verifying if failure was due to
limited resources, analyzing output files to prevent corrupted
output, or process core-dumps into stack traces. Regardless
of workflow size, automating error handling helps to handle
errors allowing the user to analyze and address problems
quickly. The error handling generally relies on the post to
perform analysis based on the reported exit code or outputs.

VI. CASE STUDIES
A. Resource usage in a Container

Resource monitoring helps to build an understanding of
how a task behaves to accurately assign resources. If the task
requires a container for execution, the resources utilized may
be mischaracterized. As a result, it is useful to be able to
separate the resource utilization of the task and the container.
To do this, we first applied a resources monitor transformation
to the task which will measure the resources used only by
the task. Second, we applied the container transformation that
allows for the application to run on different platforms.

The definitions of these transformations can be seen earlier
in Figure 3 and Figure 6 for Singularity and the resource
monitor respectively. Figure 8 illustrates the complexity that
occurs when combining these transformations.

makeflow bwa.mf —apply rmonitor.jx —apply singularity.jx

Using the above makeflow call, we executed a workflow
that runs BWA [1]. This workflow partitions a large query

and runs each chunk concurrently, similar to Figure 1. This
workflow was used as the basis to evaluate nesting the re-
source monitor and Singularity. This workflow was run in
four configuration, both Singularity and the resource monitor,
just Singularity, just the resource monitor, and the workflow
with task sandboxes. We can examine the distribution of task
execution time under these different configurations in Figure 9
and see that there is minimal additional overhead for each
transformation. For these runs, Singularity utilized an image
on a shared filesystem to limit the sandbox creation time,
which can also be accomplished using a link. In situations
with no shared filesystem the image is transferred and affects
performance.

B. Failure Analysis

When moving between sites or changing data it is possible
that an application can intermittently fail causing a core-dump.
These core-dumps are unwieldy to move around and provide
limited insight into the cause of the failure and its environment.

To address this we wrote a transformation that analyzes a
core-dump at the execution site, and sends back the resulting
stack trace that is produced by GDB (GNU Project Debugger).
This transformation provides several keys benefits. The first is
that it allows for automated analysis of core-dump failures for
the user. Performing this in the execution sandbox provides
early resolution about the app that failed and which task
created it. Also, core-dumps are bloated and contain all of
the memory and stack, which are consolidated considerably
in a stack trace. This consolidation limits the amount of data
transferred back to the user.

15

1% : m__l :

15

Singularity-Resource Monitor =

Singularity -

f ol

15 - Resource Monitor — -

Number of Tasks

15 - Sandbox
10 +

o1 H
5 L I |
0 =
O % o % o % % v % D
Task Execution (Seconds)

Fig. 9. Histogram of task execution with nested transformations.
Distribution of task execution of BWA workflow grouped by applied
transformations, structured like Figure 1. The first configuration runs
the resource monitor inside of a Singularity, the second runs just
Singularity, the third runs just the resource-monitor, and the last
runs the task inside of an application sandbox. We see that the
distribution of execution time is consistent between runs, and the
amount of transformation overhead is minimal.

Enabling the capture of core-dumps depends on your sys-
tems default settings. A common default uses the “core” prefix
for core-dumps, but also limits their size. To accommodate
this, we set the wlimit to unlimited. After execution, if
a core-dump was created we process it using GDB. This
creates a stack trace that condenses the program failure. We
implemented this transformation as seen in Figure 10.

define StackTrace(T) {

"command" : [

"pre" ["ulimit -c unlimited"],
"cmd" "./" + T.script,

"post": ["gdb " + T.command{cmd} +

"corex —-ex bt > stack."+ T.ID ,

"touch stack." +T.1ID]

]
"outputs"

}

T.outputs+ ["stack."+T.ID]

Fig. 10. Stack trace transformation
The stack trace transformation allows a user to capture a core-dump
of a failed task and convert it into a stack trace. This is done by
setting the ulimit to allow the full core-dump, running the script, and
then analyzing the core-dump with GDB. The step of touching the
stack trace file prevents non-failed tasks from missing output.

To evaluate this, we wrote an application that allocates 1MB

of memory and then fails roughly 20 percent of the time,
creating a core-dump. We scaled this experiment to see the
difference of sending the stack trace instead of the core-dump.
As expected, we say differences of several orders of magnitude
of transfers, reducing as much as 2.4 GB down to 0.5MB. The
table below shows a comparison of workflows from 10 tasks
up to 10000. Using this technique on larger memory intensive
applications would yield more significant reductions.

Workflow | Failed | Total Core- | Total Stack
Tasks Tasks | Dump Size | Trace Size
10 4 3.7MB 0.8KB

100 24 28.6MB 6.4KB

1000 174 214.9MB 48.8KB
10000 | 1957 2.4GB 553.1 KB

C. Complex Software Configuration

In scientific computing, researchers often construct and rely
on a complex stack of analysis tools which are constructed
over months to years of work and configuration. The resulting
complexity often prevents researchers from scaling up or shar-
ing their configuration with collaborators. There are several
tools and solutions that exist to address this such as containers
and build management tools (like Nix [19] or Spack [20]). This
problem becomes more complex when the selected solution
is not supported on a different platform, such as different
container support or required installation permissions (super-
user). For this reason we selected VC3-Builder [21], which is
a user-level environment specification and construction tool.

As an example of complex software we use MAKER [22],
a bioinformatic analysis pipeline which relies on 39 separate
packages and a installed size of 4.2G. A MAKER installation
requires careful dependency management as several tools rely
on hard-coded, installation specific paths and installing by
hand can take several hour. As a result, MAKER is often
limited to a single carefully configured site. This is addressed
with VC3-Builder and we want to leverage this to use MAKER
on several sites for one workflow.

The transformation for VC3-Builder often simply invokes
vc3-builder, specifying the required dependencies, and
passing the command. However, because of MAKER’s com-
plexity several required packages have restrictive licenses re-
quiring the user pass and unpack the libraries. In Figure 11, we
can see a file, manual-distribution.tar.gz, which
contains the restricted packages. Using pre, we are able to set
up the correct directory structure, unpack the manual packages,
and prepare for vc3-builder.

This workflow was executed using Makeflow and distributed
with Work Queue [23], a master-worker execution platform.
Workers were created on each site, and tasks were distributed
to worker. To show the flexibility of transformations, workers
were created on Stampede2, Jetstream, and HTCondor. The
table below shows the task execution for each system, all of
which were calculated using a single workflow.

Build Time HTCondor
(HH:MM) 00:30

Jetstream
00:22

Stampede2
01:29

define VC3-Builder (T) {

"inputs" T.inputs + ["vc3-builer",
"manual-distibution.tar.gz"]
"command" : [
"pre" : ["mkdir -p vc3-distfiles",
"cd ve3-distfiles",
"cp ../manualx ./",
"tar xzvf manual«*",
"ed .. "],
"cmd": "./vc3-builder --require maker"

+ T.script,]
"resources": {
"cores" : 4,
"disk" T.resources{"disk"} + 4G,

b}

Fig. 11. VC3-Builder transformation
VC3-Builder is typically self-contained, and the specified cmd is
sufficient for most software. MAKER, however, relies on several
libraries with restricted licenses that must be provided by the user.
As a result, the transformation must create the install structure and
extract libraries to the correct location for VC3-Builder. We specify
cores for build threads and increase the disk for the installation.

VII. RELATED WORK

As we are looking at workflow transformations, it is impor-
tant to look at some of the major challenges of distributed
computing [24], which includes reproducibility, portability,
and flexibility, and how other workflow management systems
approach them. Swift [15] programming language uses an
app to define a program’s invocation. Nesting apps could be
similar, but the level of specification used does not address
many of the issue mentioned earlier, such as name collisions,
command nesting, and execution evaluation. Instead Swift
focuses on compiler-like optimizations for grouping work
[25]. Pegasus [13] focuses on planning the execution prior
to submission. This allows for more strict adherence to quota
limits and attempts to leverage the maximal parallelism, even
across multiple sites [26]. Pegasus allows for changes to a
workflow, but does so internally by clustering tasks [27]-[29],
spawning clean-up tasks to remove files [30], and restructuring
the workflow [31].

The similarities between these systems when comparing
how a task is defined would allow for clear mapping of the
above techniques each system. Importantly for this work, the
underlying system continues to manage and submit tasks. The
transformation are just applied and nested on top of them.

We also see similar work aimed at supporting containers
natively. For these systems to support containers, there was a
necessary level of work to abstract their applications, design
the interface, and then implement it such that it works on a
wide range of tasks [32]-[35]. Though this can deliver con-
sistent execution, the embedded nature of this implementation
makes it difficult for users to tailor the execution to their

needs/specifications and must be managed. This support must
change to address the available containers on a particular site,
such as Docker [10], Singularity [11], CharlieCloud [36], or
extend to support functionality like Slacker [37].

VIII. CONCLUSION

In the complex intersection of scientific workflows and
unique compute sites, a solution is needed to allow for quick
flexible workflow transformations. We introduce an algebra
that formalizes task and workflow transformations. In con-
junction with the formalization, we also define the sandbox
model of execution which allows these transformation to be
applied, but stay distinct in execution. We discuss several
complications when designing for real workflows, and explain
how we addressed them, such as file remapping, differen-
tiating command parts, and clearly handling resources and
environment. These methods were evaluated with three case
studies. First, we nested a resource monitor in a container with
consistent performance. Next, we captured and processed a
task core-dump limiting the analysis and file transfer needed.
Lastly, we executed a workflow across several sites running
a complex application seamlessly. Using workflow transfor-
mations we were able to quickly transform workflows to fit
unique configurations, without modifying the core work.

IX. REPRODUCIBILITY DATA

In an effort to provide consistent, reproducible results out-
lined are the resources utilized in this paper and where they
can be found. Specific commits are mentioned to provide the
exact version that was used.

The first is CCTools, which is an open-source distributed
computing tool kit, containing Makeflow and Work Queue
(CCTools). Second is the source for some of our example
workflows, particularly BWA using in the first case study
(Workflows). The last case study uses VC3-Builder (VC3-B).
All of the workflows, transformations, and auxiliary programs
used to produce this paper, include the tex (Paper).

CCTools:github.com/nhazekam/cctools/commit/7ab0645
Workflows:github.com/cooperative-computing-lab/makeflow-
examples/commit/600e13b
VC3-B:github.com/vc3-project/vc3-builder/commit/dc285f9
Paper:github.com/cooperative-computing-lab/workflow-
algebra-paper/commit/549d4df

As Paper is self-referential the final commit may be different.
All of these repositories are open source and contain Make-
files and instructions on how to build and run them.

ACKNOWLEDGMENT

This work was supported by part by National Science
Foundation grant ACI-1642409.

[1]

[2

—

[3]

[4]

[5

=

[6

=

[8

[t

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

H. Li and R. Durbin, “Fast and accurate long-read alignment with
Burrows-Wheeler transform,” Bioinformatics, vol. 26, no. 5, pp. 589—
595, Mar 2010.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman,
“Basic local alignment search tool,” J. Mol. Biol., vol. 215, no. 3, pp.
403-410, Oct 1990.

N. Hazekamp and D. Thain, “Makeflow examples repository.” [On-
line]. Available: http://github.com/cooperative-computing-lab/makeflow-
examples, 2017.

B. Giardine, C. Riemer, R. C. Hardison, R. Burhans, L. Elnitski, P. Shah,
Y. Zhang, D. Blankenberg, I. Albert, J. Taylor, W. C. Miller, W. J.
Kent, and A. Nekrutenko, “Galaxy: a platform for interactive large-scale
genome analysis,” Genome research, vol. 15, no. 10, pp. 1451-1455,
2005.

D. Blankenberg, G. V. Kuster, N. Coraor, G. Ananda, R. Lazarus,
M. Mangan, A. Nekrutenko, and J. Taylor, “Galaxy: A web-based
genome analysis tool for experimentalists,” Current protocols in molec-
ular biology, pp. 19-10, 2010.

J. Goecks, A. Nekrutenko, J. Taylor, and the Galaxy Team, “Galaxy:
a comprehensive approach for supporting accessible, reproducible, and
transparent computational research in the life sciences,” Genome Biol,
vol. 11, no. 8, p. R86, 2010.

E. Deelman, J. Blythe, Y. Gil, C. Kesselman, S. Koranda, A. Lazzarini,
G. Mehta, M. A. Papa, and K. Vahi, “Pegasus and the pulsar search:
From metadata to execution on the grid,” in Parallel Processing and
Applied Mathematics, R. Wyrzykowski, J. Dongarra, M. Paprzycki, and
J. Wasniewski, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2004, pp. 821-830.

A. Woodard, M. Wolf, C. Mueller, N. Valls, B. Tovar, P. Donnelly,
P. Ivie, K. H. Anampa, P. Brenner, D. Thain, K. Lannon, and M. Hildreth,
“Scaling Data Intensive Physics Applications to 10k Cores on Non-
Dedicated Clusters with Lobster,” in IEEE Conference on Cluster
Computing, 2015.

E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.-H.
Su, K. Vahi, and M. Livny, “Pegasus: Mapping scientific workflows onto
the grid,” in Grid Computing, M. D. Dikaiakos, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 11-20.

D. Merkel, “Docker: Lightweight linux containers for consistent
development and deployment,” Linux J., vol. 2014, no. 239, Mar. 2014.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2600239.2600241
B. M. Kurtzer GM, Sochat V, “Singularity: Scientific containers for
mobility of compute,” PLoS ONE, May 2017. [Online]. Available:
https://doi.org/10.1371/journal.pone.0177459

M. Albrecht, P. Donnelly, P. Bui, and D. Thain, “Makeflow: A Portable
Abstraction for Data Intensive Computing on Clusters, Clouds, and
Grids,” in Workshop on Scalable Workflow Enactment Engines and
Technologies (SWEET) at ACM SIGMOD, 2012.

E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, B. Berriman, J. Good, A. Laity, J. Jacob, and D. Kat,
“Pegasus: A framework for mapping complex scientific workflows onto
distributed systems,” Scientific Programming Journal, vol. 13, no. 3,
200.

L. Bertram, A. Ilkay, B. Chad, H. Dan, J. Efrat, J. Matthew,
L. E. A, T. Jing, and Z. Yang, “Scientific workflow management
and the kepler system,” Concurrency and Computation: Practice and
Experience, vol. 18, no. 10, pp. 1039-1065. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.994

Y. Zhao, J. Dobson, L. Moreau, 1. Foster, and M. Wilde, “A notation
and system for expressing and executing cleanly typed workflows on
messy scientific data,” in SIGMOD, 2005.

M. A. Jette, A. B. Yoo, and M. Grondona, “Slurm: Simple linux
utility for resource management,” in In Lecture Notes in Computer Sci-
ence: Proceedings of Job Scheduling Strategies for Parallel Processing
(JSSPP) 2003. Springer-Verlag, 2002, pp. 44-60.

M. Litzkow, M. Livny, and M. Mutka, “Condor - a hunter of idle

workstations,” in Proceedings of the 8th International Conference of

Distributed Computing Systems, June 1988.

W. Gentzsch, “Sun grid engine: Towards creating a compute power
grid,” in Proceedings of the Ist International Symposium on Cluster
Computing and the Grid, ser. CCGRID ’01. Washington, DC,
USA: IEEE Computer Society, 2001, pp. 35—. [Online]. Available:
http://dl.acm.org/citation.cfm?id=560889.792378

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[35]

E. Dolstra, M. de Jonge, and E. Visser, “Nix: A safe and policy-free
system for software deployment,” in Proceedings of the 18th USENIX
Conference on System Administration, ser. LISA 04. Berkeley, CA,
USA: USENIX Association, 2004, pp. 79-92. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1052676.1052686

T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee, A. Moody, B. R.
de Supinski, and S. Futral, “The spack package manager: Bringing order
to hpc software chaos,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
ser. SC ’15. New York, NY, USA: ACM, 2015, pp. 40:1-40:12.
[Online]. Available: http://doi.acm.org/10.1145/2807591.2807623

B. Tovar, N. Hazekamp, N. Kremer-Herman, and D. Thain, “Automatic
Dependency Management for Scientific Applications on Clusters,” in
IEEE International Conference on Cloud Engineering (IC2E) , 2018.
B. L. Cantarel, I. Korf, S. M. Robb, G. Parra, E. Ross, B. Moore, C. Holt,
A. Sanchez Alvarado, and M. Yandell, “MAKER: an easy-to-use annota-
tion pipeline designed for emerging model organism genomes,” Genome
Res., vol. 18, no. 1, pp. 188-196, Jan 2008.

P. Bui, D. Rajan, B. Abdul-Wahid, J. Izaguirre, and D. Thain, “Work
Queue + Python: A Framework For Scalable Scientific Ensemble Ap-
plications,” in Workshop on Python for High Performance and Scien-
tific Computing (PyHPC) at the ACM/IEEE International Conference
for High Performance Computing, Networking, Storage, and Analysis
(Supercomputing) , 2011.

Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon,
C. Goble, M. Livny, L. Moreau, and J. Myers, “Examining the challenges
of scientific workflows,” Computer, vol. 40, no. 12, pp. 24-32, Dec 2007.
T. G. Armstrong, J. M. Wozniak, M. Wilde, and I. T. Foster,
“Compiler techniques for massively scalable implicit task parallelism,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’14. Piscataway,

NJ, USA: IEEE Press, 2014, pp. 299-310. [Online]. Available:
https://doi.org/10.1109/SC.2014.30

W. Chen and E. Deelman, “Partitioning and scheduling
workflows across multiple sites with storage constraints,” in

9th International Conference on Parallel Processing and Applied
Mathmatics, 2011, funding Acknowledgements: NSF IIS-0905032.
[Online]. Available: http://pegasus.isi.edu/publications/2011/WChen-
Partitioning_and_Scheduling.pdf

W. Chen, R. Ferreira da Silva, E. Deelman, and R. Sakellariou,
“Balanced task clustering in scientific workflows,” in 9th [EEE
International Conference on e-Science (eScience 2013), 2013, funding
Acknowledgements: NSF 1IS-0905032 and NSF FutureGrid 0910812.
[Online]. Available: http://pegasus.isi.edu/publications/2013/chen-
clustering-escience2013.pdf

W. Chen, R. Ferreira da Silva, E. Deelman, and T. Fahringer,
“Dynamic and fault-tolerant clustering for scientific workflows,”
IEEE Transactions on Cloud Computing, vol. 4, no. 1, pp. 49-
62, 2016, funding Acknowledgements: NSF IIS-0905032, NSF ACI
SI2-SST 1148515, and NSF FutureGrid 0910812. [Online]. Available:
http://pegasus.isi.edu/publications/2015/chen-tcc-2015.pdf

W. Chen, R. Ferreira da Silva, E. Deelman, and R. Sakellariou,
“Using imbalance metrics to optimize task clustering in scientific

workflow executions,” Future Generation Computer Systems,
vol. 46, pp. 69-84, 2015, funding Acknowledgements: NSF
1IS-0905032 and NSF FutureGrid 0910812. [Online]. Available:

http://pegasus.isi.edu/publications/2014/2014-fgcs-chen.pdf

S. Srinivasan, G. Juve, R. F. da Silva, K. Vahi, and E. Deelman, “A
cleanup algorithm for implementing storage constraints in scientific
workflow executions,” 9th Workshop on Workflows in Support of Large-
Scale Science (WORKS), 2014.

C. K. Gurmeet Singh and E. Deelman, “Optimizing grid-based workflow
execution,” Journal of Grid Computing, vol. 3, no. 3-4, pp. 201-219,
December 2005.

C. C. Zheng and D. Thain, “Integrating Containers into Workflows: A
Case Study Using Makeflow, Work Queue, and Docker,” in Workshop
on Virtualization Technologies in Distributed Computing (VITDC), 2015.
K. Sweeney and D. Thain, “Efficient Integration of Containers into
Scientific Workflows,” in Science Cloud Workshop at HPDC, 2018.

W. Gerlach, W. Tang, A. Wilke, D. Olson, and F. Meyer, “Container
orchestration for scientific workflows,” in 2015 IEEE International
Conference on Cloud Engineering, March 2015, pp. 377-378.

K. Liu, K. Aida, S. Yokoyama, and Y. Masatani, “Flexible container-
based computing platform on cloud for scientific workflows,” in 2016

[36]

(371

International Conference on Cloud Computing Research and Innova-
tions (ICCCRI), May 2016, pp. 56-63.

R. Priedhorsky and T. Randles, “Charliecloud: Unprivileged containers
for wuser-defined software stacks in hpc,” in Proceedings of
the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’17. New York,
NY, USA: ACM, 2017, pp. 36:1-36:10. [Online]. Available:
http://doi.acm.org/10.1145/3126908.3126925

T. Harter, B. Salmon, R. Liu, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Slacker: Fast distribution with lazy docker containers,” in
14th USENIX Conference on File and Storage Technologies (FAST
16). Santa Clara, CA: USENIX Association, 2016, pp. 181-195.
[Online]. Available: https://www.usenix.org/conference/fast16/technical-
sessions/presentation/harter

