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Abstract—Even with the increase in the number and variety
of computer resources available to research scientists today, it is
still challenging to construct scalable distributed applications. To
address this issue, we developed Work Queue, a flexible master/-
worker framework for building large scale scientific ensemble ap-
plications that span many machines including clusters, grids, and
clouds. In this paper, we describe Work Queue and then present
the Python-WorkQueue module, which enables scientists to take
advantage of our Work Queue framework while using the Python
programming language. To demonstrate the module’s flexibility
and power, we examine two distributed scientific applications,
RepExWQ and Folding@work. Both of these programs were
written using Python-WorkQueue and manifest the Work Queue
framework’s ability to scale not only to hundreds of workers, but
to also enable scientists to take advantage of multiple distributed
computing resources simultaneously.
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I. INTRODUCTION

Today, research scientists face the challenge of efficiently
and effectively utilizing the abundance of computing resources
now available to them through campus clusters, computing
grids, and cloud environments. Although there are tools for
building applications for each of these individual distributed
environments, there are very few systems designed to harness
the computing power of all of these resources simultaneously.

To address this problem, we developed Work Queue, a
flexible master/worker framework for constructing large scale
scientific ensemble applications that span many machines
including clusters, grids, and clouds. Unlike traditional dis-
tributed programming systems such as MPI, Work Queue
allows for an elastic worker pool and thus enables the user
to scale the number of workers up or down as required
by their application. Additionally, it provides fault tolerance
for intermittent errors by gracefully handling worker failures.
Moreover, Work Queue also provides data management fea-
tures to support data intensive distributed applications.

We have briefly mentioned Work Queue in passing in some
of our previous work [1], [2], [3]. This paper presents
a detailed explanation and description of the Work Queue
framework and introduces the Python-WorkQueue module,
which allows research scientists to construct scalable dis-
tributed ensemble applications using the Python programming
language [4].

Although there is some previous research on parallel
and distributed computing frameworks for Python, Python-
WorkQueue has a few distinguishing properties. First, Work
Queue is designed as a framework for composing an ensemble
or collection of scientific applications. That is, rather than
composing the entire application as a single program, Work
Queue applications consist of multiple executables, each re-
sponsible for a single stage or function in the application
workflow. This is in contrast to modules such as PyMW [5],
Mpi4Py [6], PyDoop [7], Scientific.BSP [8], which are de-
signed for building monolithic distributed applications primar-
ily in Python and where functions are typically embedded
internally in the application code rather than as independent
external executables.

Second, Work Queue provides additional distributing com-
puting features to enable the construction of robust and scal-
able scientific applications. For instance, it provides workflow
data management for caching data on remote workers to avoid
costly data transfers. As mentioned earlier, it also supports
fault tolerance for intermittent errors, and will automatically
retry tasks in certain conditions. Additionally, Work Queue has
multiple scheduling algorithms that can be used to optimize
how tasks are dispatched to workers and it has a feature
for detecting and dealing with straggler tasks. Work Queue
also provides a catalog discovery service for automatically
connecting workers to different masters.

Finally, Work Queue’s flexible worker deployment mech-
anism allows Work Queue applications to take advantage of
computing resources from multiple distributed environments
such as a personal cluster, campus grid, or public cloud
provider. Not only can Work Queue applications execute on
different types of distributed systems, but they can also utilize
resources from multiple platforms simultaneously to form a
personal cloud consisting of hundreds to thousands of workers.

In the next section of the paper, we provide an exhaustive
description of the Work Queue framework and the features it
provides for developing scalable ensemble applications. After
this, we present the Python-WorkQueue module, describe our
implementation, and provide an example of using the API to
build a distributed image conversion program. To demonstrate
the power and flexibility of using Work Queue and Python
together, we then examine two scientific ensemble applica-
tions, RepExWQ and Folding@work. Both of these distributed



applications manifest Python-WorkQueue’s ability to scale not
only to hundreds of workers, but to also enable scientists to
take advantage of multiple distributed computing resources.
Finally, we conclude the paper with a discussion of related
work, and consider possible avenues for future research.

II. WORK QUEUE

The Work Queue programming model is based on the
traditional master/worker pattern [9]. In this model, a master
dispatches a series of tasks to a pool of workers to execute.
Normally, the master contains all of the application logic and
orchestrates the data flow, while the workers perform specific
computational functions described by the tasks sent from the
master. Unlike systems such as MPI, the worker pool is not
fixed and can grow and shrink dynamically over the life-time
of the application.
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Fig. 1. Work Queue Master/Worker Pattern.

Figure 1 provides an overview of master/worker pattern
utilized in Work Queue. In a typical Work Queue application,
there is a single master and many workers. The master
maintains a set of tasks referred to as the workqueue, where
each task consists of a specification of the required executable
and input files, and the output files to be generated by
each task. Workers run as separate processes, receive these
tasks, and perform the specified computation. As mentioned
in the introduction, Work Queue was designed as a framework
for combining and orchestrating an ensemble or collection
of scientific applications. As such, all computational tasks
are encapsulated in external executables, rather than internal
functions. This is convenient as it allows for re-using existing
software to develop more sophisticated scientific workflows.

To coordinate the distribution of data and the execution of
applications, Work Queue utilizes a TCP-based RPC protocol
for communicating between the master and worker. The pro-
tocol includes commands such as get and put to transfer
data between the master and worker and work to have the
worker execute a task. The general communication pattern for
a Work Queue application is as follows:

1) The master retrieves the next pending task from its
workqueue.

2) Next, the master selects a worker and transfers any data
such as the application executable or input files required
by the task by using the put RPC.

3) Once the files are on the remote worker, the master
requests the worker to execute the task with the work
command.

4) When the task is complete, the worker completes the
work RPC previously sent by the master by respond-
ing with the output and exit status of the application
executed in the task.

5) Finally, the master retrieves any output files specified in
the task from the worker using the get RPC.

This general process is performed continuously until the
workqueue is empty and the application is complete.

A. Data Management

As noted previously, Work Queue provides a mechanism for
sending and receiving data between the master and worker.
This is because Work Queue does not assume any shared data
storage system, and thus considers the master and workers
to be operating in separate sandbox environments. In this
model, the master and workers only have access to their own
independent local filesystems.

This means that before a task can be executed, any necessary
executable and input files must first be transfered from the
master to the remote worker. These data dependencies are
specified when creating a task. If a file is to be utilized in
subsequent tasks, the user can tell Work Queue to cache the file
on the worker. When a file is cached, it will only be transferred
if the remote worker does not already have the file, which can
greatly improve performance by avoiding costly data transfers.
Caching is available for both input and output files, which
is useful workflows that consist of a pipeline of sequential
operations.

In addition to files, Work Queue also supports transmitting
data that is stored in memory. Since the execution model of
the framework is based on coordinating ensembles of external
applications, any data stored in memory will be materialized
as a file upon task execution. That is, the master may transmit
data stored in a memory buffer to the worker, who will then
transfer that data to a file on its local filesystem to be used
by the task application. Similarly, the standard output of the
task is stored in memory and transmitted back to the master
upon completion. As such it is not necessary for the user to
manually capture the standard output of the task applications.

To ensure that the remote environment is not littered with
artifacts of the Work Queue application, workers will perform
periodic garbage collection. Whenever the worker disconnects
from the master or is terminated, it will also remove the
contents of its sandbox environment.

B. Fault Tolerance

Because Work Queue was designed to work in a distributed
environment, it provides some measure of fault-tolerance. In
particular, it is resilient to communication link failures and
will automatically re-schedule a task if it detects a connection
drop between the master and worker.

Figure 2 provides the state diagram of a Work Queue
task. A task begins in the ready state and then transitions
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Fig. 2. Work Queue Task State Diagram.

to the sending state when the master begins to transfer its
dependencies to a remote worker. If a failure such as not
having the appropriate permissions to read a file on the master
occurs, the task’s status is marked as input failure and the
task is placed in the complete state as nothing else can be
done by Work Queue to overcome this error. If a transmission
error occurs while sending, then the task is put back in the
ready state and will be retried. Additionally, the worker will
be removed since the network connection has failed.

Once the files are transferred, then the worker begins exe-
cuting the task, which is then placed in the running state. If the
task process is killed by the remote machine, Work Queue will
put the task back in the ready state to be retried. Otherwise, the
exit status of the process is checked. If the application returned
abnormally, then the task’s status is marked as function failure.
Regardless of the application’s exit status, the task moves to
the receiving state.

After the task is finished executing, the master will request
the output files from the worker. At this point, the task
transitions to the receiving state. If a file is missing or has
the wrong the permissions, then the task’s status is set to
output failure. Otherwise, if all files transfer successfully, then
the task’s status is set to success and the task finishes in the
complete state.

Overall, the Work Queue task state machine is designed
to allow tasks to be retried automatically when intermittent
errors such as transmission failures or eviction on the remote
host occur. For other types of failures, Work Queue marks the
task with a description of the error and allows the user decide
what to do. The user may wish to re-submit the task to the
workqueue, and in that case the task will be retried again.

C. Scheduling

Work Queue provides multiple scheduling algorithms for
selecting which worker to dispatch a task to based on certain
criteria. That is, when a task is ready for execution, it is sent to
a worker that is determined by one of the following methods:

1) First Come First Serve: In this algorithm, tasks are
assigned to the first ready worker in the queue. If there
are more tasks than workers, then this algorithm will
ensure that workers are kept busy with work. However,

if there are more workers than tasks, then it is possible
for some workers to starve for work if they are at the
end of the queue. Fortunately, this is a rare occurrence
as there are usually many more tasks then workers.

2) Cached Files: This algorithm takes advantage of the fact
that Work Queue tracks what input and output files are
stored on each worker, and will prefer the workers that
already contain the required input data for the current
task. Normally, Work Queue will select the worker that
has the most required data and is ready. If no worker has
the required files, then the first ready worker is selected.
In either case, any missing input files will be transferred
to the worker if necessary. This method takes advantage
of data locality, which can improve the performance of
data intensive applications.

3) Fastest Time: This scheduling option selects the host
that has the fastest average turnaround time for complet-
ing tasks and transferring data, and is in the ready state.
The purpose of this method is to favor the best perform-
ing workers and thus attempt to avoid any stragglers.
If no host is available, then the First-Come-First-Serve
scheduler is utilized to find a suitable worker.

4) Preferred Hosts: Work Queue allows users to tag tasks
with a set of preferred hosts. When using this method,
Work Queue will attempt to match the task to one of its
preferred hosts. If none are available, then the first ready
worker is selected. This option is useful for optimizing
host selection based on priorities such as data locality,
operating environment, hardware requirements, etc.

5) Random: This algorithm attempts to perform rudimen-
tary load balancing by selecting a random ready worker.

These scheduling configurations may be set on both a per
workqueue basis, or a per task basis by the user. The default
scheduler is the First-Come-First-Serve algorithm.

D. Fast Abort

In any distributed system, it is possible for unexpected
delays to occur. For instance, in a Condor pool, a running
task may be arbitrarily delayed during execution; it may be
evicted by system policy, stalled due to competition for local
resources, or simply caught on a very slow machine. Likewise,
a task in a cloud environment like Amazon EC2 may be
sent to an over-committed node or experience network issues,
and thus face slow execution time. Such delays may inhibit
parallelism and adversely affect overall execution throughput.

To address these problems, the Work Queue provides a fast
abort option. By keeping statistics on the average execution
time of successful jobs and the success rate of individual
workers, Work Queue can determine which tasks are pro-
gressing too slowly. End users enable the fast abort option by
setting a multiplier. When this option is set, Work Queue pro-
actively aborts and re-assigns any tasks that have run longer
than fast abort multiplier × average execution time to
different workers. Previous research has shown that careful use
of the fast abort option can increase parallelism for certain
applications [1].



E. Worker Deployment

Because Work Queue utilizes a TCP-based RPC protocol
for coordinating the interaction between the master and the
workers, it is possible to start a worker anywhere that has a
network connection. Unlike some other systems, the deploy-
ment and activation of a worker is performed externally by
the user, rather than by the Work Queue framework. That
is, users must manually start workers using whatever means
is convenient to them. Fortunately, this is a straightforward
process as each worker is simply a statically linked executable
called work_queue_worker. To start a worker, the user
simply runs the following:

work_queue_worker <hostname> <port>

Listing 1. Start a Work Queue worker.

To simplify the activation of multiple workers on various
distributed systems, we include a set of worker submission
script for starting workers on Condor [10], Sun Grid Engine
(SGE), and local multi-core machines. Here is an example of
activating 50 workers on a local campus Condor cluster:

condor_submit_workers <hostname> <port> 50

Listing 2. Submit 50 Work Queue workers to Condor pool.

In Listings 1 and 2, the hostname and port refer to the
location of the master the workers should connect to in order
to retrieve tasks.

In addition to these deployment scripts, we also provide a
utility called work_queue_pool which not only deploys
workers to Condor, SGE, and local multi-core machines, but
will also maintain a constant pool of workers. For instance,
when using Condor, it is possible for a worker to be evicted.
Unlike the submission scripts, the work_queue_pool util-
ity will monitor and track the execution of the workers and if
they are stopped for any reason, it will automatically resubmit
a worker. This allows for the user to maintain a worker pool
of constant size, which is useful for certain workflows.

F. Catalog Discovery Service

Sometimes, it is not always known a priori where the master
application is running, which would make the automation of
starting a master and a pool of workers difficult since the
workers require the location of the master. Other times, users
may wish to maintain a constant pool of dedicated workers,
but have them migrate to new masters as they come online.
To facilitate such scenarios, Work Queue supports a catalog
discovery service.

To utilize this feature, users simply apply a project name
to their master workqueue and tell the workers to utilize
this project name when looking up a master. When a Work
Queue application has a project name and catalog mode is
enabled, it will contact a known catalog server at startup
and announce its availability. Likewise, when workers are

in catalog mode, they will contact the catalog server and
request projects identified by the desired project name. To
avoid keeping stale information, the master will periodically
send heartbeat messages to the catalog server and include
information such as the number of workers attached, the
number of workers busy, the number of tasks to perform, and
the number of tasks completed. Similarly, the catalog server
will also periodically remove master entries that have not been
updated after a certain timeout. The status of Work Queue
applications available on the catalog server can be queried
using the work_queue_status utility.

G. Application Architecture

Applications access the Work Queue framework through
the use of the Work Queue Library, which is written in
the C programming language. This library provides methods
for creating a workqueue, specifying tasks, and submitting
work to workers along with functions to access the previously
described caching, scheduling, fast abort, and catalog features.
To allow the Master process to perform computations while the
workers are busy, Work Queue provides a polling mechanism
that enables the master to check if results have been returned
without blocking indefinitely.
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Fig. 3. Work Queue Application Architecture.

Figure 3 provides an example of the high-level architecture
of a Work Queue application spanning multiple distributed
systems. As can be seen, each Work Queue application utilizes
the C Work Queue library to setup a workqueue and specify a
set of tasks to perform. Using the worker deployment scripts
described earlier, users can activate workers on a variety of
distributed systems such as a personal Beowulf cluster, a
campus Condor cluster, a private SGE grid, and even a public
cloud service such as Amazon EC2 or Microsoft’s Azure.
When utilizing workers from multiple distributed environ-
ments, Work Queue applications can in effect configure and
take advantage of a personal cloud of hundreds of workers for
scientific ensemble applications.

III. PYTHON-WORKQUEUE

Although Work Queue has been shown to be a robust
and flexible framework for constructing scalable distributed
applications in previous work [1], [2], [3], its wider adoption is



slightly hindered by the fact that applications must be written
in C in order to use the library. While using C is not a prob-
lem for most experienced distributed systems programmers,
developing in C can be tedious and error-prone. Likewise,
computational scientists who require the use of extensive
computational resources and thus would benefit from using
Work Queue are generally well-versed in scripting languages
but not in low-level languages such as C. Therefore, to provide
scientific researchers access to the Work Queue framework in
a more user-friendly language, we have developed a Python
binding for the Work Queue library.

A. Python Module

The Python-WorkQueue module exposes an API that closely
resembles the conventional C API, except that it converts the
core Work Queue data structures into Python objects in order
to make the module as Pythonic as possible. Specifically, the
module provides two core objects, WorkQueue and Task,
which have methods to perform appropriate operations such
as configuring parameters, submitting tasks, and retrieving
results. Once installed, the Python-WorkQueue module can be
loaded by importing the work_queue module.

Initially, we manually wrote a Python C extension to wrap
the original C Work Queue library, rather than use an auto-
generation tool such as SWIG. This was done to maintain
fine-grain control of the Python-WorkQueue package and to
minimize the number of dependencies required for our soft-
ware suite, CCTools, which now includes the Python module.
Directly writing Python bindings for Work Queue by hand
also allowed us to support both Python 2 and Python 3 from
a single code-base. Although most scientific Python libraries
only support Python 2, we made great efforts through the
careful use of macros and pre-processor constructs to support
both Python 2 and Python 3. This allows users to utilize
whichever Python version they are most comfortable using.

The flexibility of a custom hand-written binding, however,
came at the cost of maintainability. As new features were
added and developed it became tedious to also have to update
the Python C extension. Moreover, only a few people had
experience with the Python C API, so the burden of mainte-
nance fell to this select party. To alleviate this problem, we
recently implemented a SWIG-based binding that produces
a low-level or direct one-to-one binding to our Work Queue
C library. We then added a second higher-level binding that
builds on the low-level library and adds an object-oriented
interface to the framework. This more Pythonic interface is
what we recommend our users to utilize in constructing their
applications.

Unfortunately, due to the use of shared global data structures
in the original Work Queue C library, the Python Work Queue
binding is not thread safe. This means that while it is possible
to run multiple Work Queue masters from a single Python
thread, it is just not possible to safely run different masters
in multiple threads. In practice, this is not a problem as most
applications only run one master.

To demonstrate the Python-WorkQueue module, the remain-
der of this section will provide examples of using the package
to construct WorkQueue and Task objects and a small
example of a complete Python-WorkQueue application.

# Import objects from work_queue module
from work_queue import WorkQueue
from work_queue import WORK_QUEUE_RANDOM_PORT
from work_queue import WORK_QUEUE_SCHEDULE_FILES

# Start Work Queue on first open port
wq = WorkQueue(WORK_QUEUE_RANDOM_PORT)
print "WorkQueue started on port %d" % wq.port

# Set project name
wq.specify_name(’project.name’)

# Select cached files scheduling algorithm
wq.specify_algorithm(WORK_QUEUE_SCHEDULE_FILES)

# Enable fast abort with multiplier
wq.activate_fast_abort(1.5)

Listing 3. Create WorkQueue object and specify settings.

B. WorkQueue
The first main component of a Python-WorkQueue appli-

cation is the WorkQueue object. Each Work Queue master
application must have at least one workqueue which tracks
tasks and maintains a listing of connected workers. To instan-
tiate a WorkQueue object, a user simply calls the WorkQueue
class constructor like any other Python object as demonstrated
in Listing 3.

By default, if no port is specified a workqueue will be
started on the default Work Queue port (9123). In Listing
3, we utilize a method provided by the module for auto-
matically finding an open port in a given range by passing
the WORK_QUEUE_RANDOM_PORT constant. In addition to a
port argument, the WorkQueue object can also take optional
keyword arguments for setting the project name and for
enabling catalog mode.

Once we have constructed a WorkQueue object, we can
utilize different class methods to set various workqueue param-
eters. Listing 3 shows how to set the workqueue project name,
select the worker selection algorithm, and enable the fast abort
mechanism in Python. The names of the WorkQueue methods
and the module’s constants have a direct correspondence to
the C API for the most part.

During the life-time of the application, the WorkQueue
object also maintains a set of statistics for tracking information
such as the number of workers connected, workers busy, tasks
waiting, tasks running, and tasks completed. To access this
information, the user simply needs to get the stats property
of the WorkQueue object, which will return an object with
members containing all of the statistical information for the
workqueue.

C. Task
The second core component of the Python-WorkQueue

module is the Task object. As explained previously, Work



from work_queue import Task
from work_queue import WORK_QUEUE_SCHEDULE_FCFS

# Input and output files
input_file = ’input’
output_file = ’output’

# Create Task object
task = Task(’cat < %s > %s’ % (input_file,

output_file))

# Set algorithm and tag
task.algorithm = WORK_QUEUE_SCHEDULE_FCFS
task.tag = str(time.time())

# Specify input buffer and output file
task.specify_input_buffer(’hello, world’,

input_file,
cache=False)

task.specify_output_file(output_file, output_file)

# Submit Task to WorkQueue
wq.submit(task)

Listing 4. Create Work Queue Task and specify settings.

Queue is a framework for constructing scientific ensemble
applications. That is, it is used to coordinate the execution of a
collection of external scientific executables. Therefore, in order
to perform computations on remote workers, it is necessary to
specify the input and output files for each task, including any
executables and libraries required for the computation.

Listing 4 provides an example of creating a Task object and
specifying the file dependencies. In this example, we create
a Task by passing it the shell command to execute on the
remote worker. Next, we set the worker selection algorithm
to use for this task. By default this is unset, which means the
workqueue algorithm setting will be used. In Listing 4, we
set the algorithm to First-Come-First-Serve. Afterwards, we
give the task a tag, which is a user-defined property that can
be employed by the programmer to manually track different
tasks.

Then, we specify our input and output files. The file
specification methods in the Task object take two required
arguments: the name of the file on the local system, and the
name of the file on the remote system. Having both arguments
allows users to rename files before consumption on the remote
worker. In this example, we use an in-memory string that will
be materialized by Work Queue on the worker and disable
caching for this input. For the output, we simply use the same
file name for both the local and remote systems. After we are
finished specifying the task, we submit it to the workqueue by
using the WorkQueue’s submit method.

D. Distributed Convert Example

Listing 5 is an example of a complete application writ-
ten using our Python-WorkQueue bindings that converts a
set of input images to another format using ImageMagick’s
convert utility. The program in takes an initial argument
that specifies the new output image extension, which is then
followed by a list of input images to convert. For each of these

images, we determine the output filename and create a task
that uses the convert utility to transcode the original input
image to the new output image. To ensure we transfer our files
properly, we mark the input and output file dependencies in
the Task object we created and then submit the specified task
to the WorkQueue object.

from workqueue import WorkQueue, Task
import os, sys

wq = WorkQueue()
output_ext = sys.argv[1]

# For each file, construct & submit a transcoding task
for input_file in sys.argv[2:]:

output_file = os.path.splitext(input_file)[0]
output_file += ’.’ + output_ext

task = Task(’convert %s %s’ % (input_file,
output_file))

task.specify_input_file(input_file, input_file)
task.specify_output_file(output_file, output_file)
wq.submit(task)

# While workqueue is not empty, poll for task
# and then print command and result
while not wq.empty():

task = wq.wait(1)
if task:

print task.command, task.result

Listing 5. Python-WorkQueue Distributed Convert Example.

The main processing occurs in the while loop near the end
of Listing 5. In this loop, we first check if the workqueue is
empty. If it is not, we then trigger processing the workqueue
and waiting for a task by calling the wait method of the
WorkQueue object with a timeout of one second. When this
method completes it will return a completed Task object if one
is available, otherwise, it will return None. Once we receive
a valid Task object, we print out the command and its result.
Remember that whenever a task is returned, all of its specified
output files will have been transferred already, so the user does
not need to request the files manually.

As shown in the code listings in this section, the Python-
WorkQueue module is a relatively simple and straightforward
package for developing master/worker type distributed appli-
cations.

IV. APPLICATIONS

To demonstrate Python-WorkQueue’s flexibility and power
in composing scalable scientific ensemble applications, we
present two active research systems used at the University
of Notre Dame, RepExWQ and Folding@work. These two
applications were built using Python-WorkQueue and manifest
the framework’s ability to scale workflows across multiple
distributed systems and up to over a thousand of workers.

A. RepExWQ

Several techniques have been proposed to sample the con-
formational space of biomolecules such as proteins, which is a
difficult problem due to the high dimensionality of the search



space. A well-known and common technique employed in such
studies is replica exchange [11], [12]. As a result, replica
exchange has been built into several molecular dynamics
simulation software such as ProtoMol [13], NAMD [14],
CHARMM [15], and GROMACS [16].

Using this technique, simulations are run by creating repli-
cas of a protein molecule and executing each in parallel over
several Monte Carlo steps at different temperatures. At the end
of every Monte Carlo step, an exchange is performed between
neighboring replicas if a Metropolis Monte Carlo criterion
is met. In this exchange, the temperature of the replicas are
swapped and the simulations are continued in the same manner
until the required number of Monte Carlo steps is reached.
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Fig. 4. Implementation of Replica Exchange using the Work Queue workflow.

Traditionally, replica exchange is implemented in parallel
using MPI, which performs well when all the resources
are dedicated but not when resources may be intermittently
available, as is more common. Here, we describe the results
of converting this application to an elastic application using
Work Queue.

The implementation of replica exchange using the Work
Queue framework involves a master script built in python
called RepExWQ. This master script uses the Python-
WorkQueue library to setup a workqueue and submit tasks
corresponding to the simulations of each replica to run on
the remote workers. The master achieves this by defining
the configuration for each replica’s simulation at the current
Monte Carlo step and submitting these simulations as tasks.
The configuration along with other required input are specifed
as input files, and the data created at the end of simulation is
specified as output files as illustrated in Listing 4. The task
specification corresponding to the simulation of each replica’s
step consists of its input files, its output files created at the
end of simulation, and the command arguments to run the
simulation program executable. The simulation program used
here, ProtoMol [13], is also specified as an input file so that
it is transferred and cached at the workers. Similarly, any
libraries and dependencies required for the execution of the
simulation program can also be specified as input files in the
master script.

After the tasks are submitted, the master waits for the
workers to complete execution of the tasks and return the

specified output files. When all scheduled tasks have finished
execution, the master checks to see if a replica exchange
can be attempted between two neighboring replicas. At the
satisfaction of certain criteria, the temperature of the two
replicas are swapped and updated. The configuration and
parameters for the next step are created and the process is
repeated. The master, therefore, breaks down the simulation
into smaller work units (tasks) that are run at distributed
workers, and processes the results of each work unit to produce
the final output of the entire simulation run. Figure 4 is an
illustration of this implementation of replica exchange.

Fig. 5. Running time of Monte Carlo steps run over 400 replicas in
RepExWQ with workers running on multiple cloud platforms.

Event Description Total workers at end of event
A Start of experiment with 100

workers in ND SGE
100

B Addition of 150 workers in
Condor

250

C Addition of 110 workers in
Condor and 40 workers in
Amazon EC2

400

D Removal of 100 workers in ND
SGE

150

E Removal of 125 workers in
Condor and 25 workers in
Amazon EC2

250

TABLE I
DESCRIPTION OF THE EVENTS SHOWN IN FIGURE 5.

We proceed to experimentally study this Work Queue im-
plementation of replica exchange. In this experiment, we run a
replica exchange simulation with 400 replicas over 100 Monte
Carlo steps. Figure 5 plots the time to complete the simulation
of a Monte Carlo step over all replicas. The master script
was run from a workstation inside the Notre Dame campus
network. We note that the master can be run from any site
including cloud platforms, but we chose this setup to illustrate
ease of building and deploying the master.



We utilize workers on three different platforms: our 4000-
core campus cluster managed by SGE, our 1200-core campus
grid managed by Condor, and the Amazon EC2 service. Over
the course of the experiment, the computing resources varied
dynamically as compute nodes were requested, allocated,
and terminated. The specific instances at which the available
resources changed is labeled in the figure and described in
Table I.

We make the following observations from Figure 5. The
Work Queue implementation of replica exchange is elastic
and dynamically adapts to resource availability. We observe
this at each of the described events in Table I. At Events B
and C, the addition of workers to the existing pool results in
the running time of the Monte Carlo steps being lowered. At
Events D and E, the termination and removal of workers only
leads to a brief spike in the running time without stalling the
simulation run. This timeline also shows that the Work Queue
implementation is fault tolerant and recovers from failures. We
observe this at Events D and E, where workers were removed
while they were executing tasks corresponding to the Monte
Carlo simulations of the replicas. This resulted in the failure
of tasks that were being executed by the removed workers.
Work Queue dynamically rescheduled these failed tasks on
the remaining workers, as described in Figure 2 for handling
failures resulting from tasks being killed or terminated. We
attribute the spike in the running time following Events D
and E to the failed work units being rerun on the remaining
workers as they finish execution of their assigned tasks.

Finally, we make the observation that the simulations suc-
cessfully completed with individual tasks executing simulta-
neously on different distributed systems. The Work Queue
implementation is oblivious to the underlying execution plat-
form and environment and thus is able to leverage multiple
distributed computing platforms at the same time as part of
a virtual cloud of workers. This ability to utilize multiple
distributed environments is especially useful when the user is
constrained by local resources or administrative policies and
requires the utilization of additional computational services to
perform their experiment.

B. Folding@work

Molecular dynamics (MD) attempts to capture the behavior
of biological systems at atomic resolution by solving Newton’s
equations of motion at small timesteps – typically at the
femtosecond (10−15s) scale. Certain biologically important
mechanisms, such as protein folding, occur in microsecond
(10−6s) to second timescales. Even the most powerful super-
computers have difficulty capturing the relevant motions of
large systems.

Previous work has shown that several parallel simulation
trajectories can be used to approximate long trajectories [17],
[18], [19]. This exposes an interface for parallelism that
is exploited by the highly popular Folding@home project
[17], allowing commodity hardware to capture protein fold-
ing using the code bases of existing MD software such as
GROMACS [16].

Folding@work (F@w) aims to bring heterogeneous re-
sources such as Condor, batch systems such as the Sun Grid
Engine available on clusters, or the cloud such as Amazon
EC2 together. The goal is to allow researchers to declaratively
describe their molecular dynamics simulations and allow F@w
to manage the complexity of dispatching tasks to resources and
handling the failures.
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Fig. 6. Folding@work using the Work Queue Workflow.

Figure 6 illustrates the architecture of the current version
of F@w. The user defines a project in terms of scientific
goals by describing the experimental conditions of interest.
These conditions may require different conformations, differ-
ent molecules, different temperatures, and so forth. The project
is then translated into task specifications called workunits.
A workunit defines the input and output files, the executa-
bles, and the environmental setup. These workunits are then
assigned to a worker using the Python-WorkQueue library.
As workunits complete, the output files are returned to the
project, which then processes the results to create subsequent
workunits.

We ran F@w for one month using the Work Queue frame-
work and ProtoMol [13] to capture the folding of a 32 residue
mutant of the WW domain. The goal was to investigate the
effects of simulation parameters using long-timestep molecular
dynamics [20] as compared to the Langevin Leapfrog integra-
tor. Five experimental conditions were run in 1,000 replicates
using different initial velocities with a timestep of 50 fs.

The results of the F@w project running for a month are
shown in Table II. Using five Work Queue master nodes with
each node responsible for 1,000 tasks at a time, we were
able to accumulate over 300 µs of aggregate simulation time
using over 280,000 tasks. For reference, it would require 3,000
days for a single continuous simulation to access 300 µs.
The execution time of each task averaged around 2 hours.
Though we did see a large variation in execution time, this
is likely due to the heterogeneity of the hardware. During



Tasks assigned 283830
Results received 122141
Aggregate data gathered 305 µs
Execution time average (min) 125
Execution time std. dev. (min) 87
Number of Workers 5000
Number of unique machines 370

TABLE II
FOLDING@WORK DATA GATHERED OVER ONE MONTH.

this time, jobs were running on three distinct campus grids:
the University of Notre Dame, Purdue University, and the
University of Wisconsin-Madison. By utilizing multiple Work
Queue masters in conjunction with computing resources from
multiple distributed systems from three different campus grids,
we were able scale up to 5,000 workers and accumulate a
considerable amount of experimental data.

Using Folding@work, we were able to overcome resource
availability limits, which are around 100 jobs in the SGE
scheduler at Notre Dame. Even though in theory we could
have done this using Condor, the length of our simulations that
run continuously for several weeks would have made getting
results improbable. By using Work Queue to partition each
long running simulation into small chunks and managing all
the complexity for the user, we have made this both practical
and easy to use.

V. RELATED WORK

Although Work Queue was originally intended to serve as a
light-weight master/worker glide-in [21] system for traditional
computational grids such as Condor [10] and SGE, it quickly
outgrew this limited role and developed additional features as
described in this paper. In this context, Work Queue is similar
to systems such as Falkon [22], in that it provides fast, low-
latency, task execution on clusters and computational grids.
Work Queue differs from Falkon, however, in that it focuses
on robust scalability and thus allows for use across multiple
distributed systems simultaneously, while Falkon focus on
performance and efficiency on single highly parallel machines.

Because of Python’s user friendliness and power, it has
attracted a serious following in the scientific community.
As such, there have been multiple projects focused on eas-
ing and simplifying the development of distributed scien-
tific applications while using Python. Examples of such
Python packages include MPI4Py [6], the Modular toolkit for
Data Processing (MDP) [23], PyMW [5], Scientific.BSP [8],
and Scientific.DistributedComputing.MasterSlave [24]. Like
the PyMW and Scientific.DistributedComputing.MasterSlave
packages, Python-WorkQueue utilizes a master/worker pro-
gramming model, which permits an arbitrary number of
worker processes. This flexibility allows these systems to be
very fault tolerant and to scale dynamically. Unlike these
packages, however, Python-WorkQueue focuses primarily on
applications that consist of orchestrating ensembles of scien-
tific applications, rather than producing a single monolithic
distributed application.

Another related work is PyDoop [7], which is a Python
library for creating Map-Reduce [25] applications that run on
Hadoop [26]. In this case, the resulting distributed application
relies on a sophisticated distributed system and is constrained
by a limiting programming model. Python-WorkQueue does
not depend on any particular distributed environment and thus
is more portable. Moreover, because it uses the master/worker
paradigm, its programming model is more general than Map-
Reduce and allows for different types of workflows that would
be inefficient or impractical on Hadoop.

As noted in the introduction, Work Queue has been men-
tioned briefly in some of our previous work [1], [2], [3]. These
papers, however, focused on the applications presented in those
works and did not describe the Work Queue framework in
detail as this paper does. Moreover, this paper presents for
the first time our Python-WorkQueue module and provides
examples of Work Queue applications written in Python that
scale across multiple distributed systems simultaneously and
up to over a thousand workers.

VI. FUTURE WORK

The Python-WorkQueue module is a part of the standard
CCTools software distribution maintained by the Cooperative
Computing Lab at the University of Notre Dame. The software
collection is released under the GNU General Public License
(GPLv2) and can be downloaded at http://cse.nd.edu/∼ccl/
software/. Work is currently underway to extend some of the
other components in the CCTools software collection with
new Python bindings and to build various utilities using the
new modules. From our experience with Python-WorkQueue,
making our existing software available for use in a user
friendly language such as Python enables wider adoption of
our tools. This is especially relevant when collaborating with
computational scientists who may be familiar with scripting
languages but not with distributed programming or our lower-
level libraries.

In addition to this, due to Python-WorkQueue’s ease of
use and relative simplicity, we are considering methods of
utilizing the module in the Programming Paradigms course
at the University of Notre Dame. Thus far, we have presented
lectures on Work Queue and have had students run example
applications, but have not required the students to build
applications using the module by themselves. We believe that
Python-WorkQueue would be an effective way of introducing
students to distributed computing and plan on developing
educational course material around our software.

Regarding the Work Queue framework, we are currently
looking at a few new avenues of research. One possibility is to
extend Work Queue to support the more general fork/join [27]
programming model. This would allow for the construction
of hierarchical workflows with multiple levels of sub-masters,
rather than a single master. Likewise, we are also investigating
methods of propagating and managing resource constraints,
which is something we do not currently handle as part of the
Work Queue framework. This would mean a few possibilities
such as throttling bandwidth, limiting the number of cores



utilized, or reserving a certain amount of memory for the
application. Whatever additional features or capabilities we
implement in the future, we will ensure that the Python-
WorkQueue module has access to them.

VII. CONCLUSIONS

Work Queue is a flexible and powerful framework for con-
structing scalable scientific ensemble applications. It provides
attractive features such as fault-tolerance, data management,
multiple scheduling algorithms, fast abort, and support for
multiple distributed systems. With the introduction of the
Python-WorkQueue module, this functionality is now available
to research scientists in a user-friendly programming language.

In this paper, we present an overview of the Python-
WorkQueue module and then examine two real world scientific
applications that were built using Python-WorkQueue. The
first is RepExWQ, which demonstrates the ability of Work
Queue applications to span multiple distributed environments
such as a local campus cluster, a private grid, and a public
cloud service provider. The second application is the Fold-
ing@work data processing pipeline, which manifests Work
Queue’s ability scale to over a thousand concurrent workers
spread across different distributed systems. These applications
are evidence of Work Queue’s effectiveness in constructing
scientific ensemble applications that scale across multiple
distributed systems.
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