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Abstract 
 
Advanced research in biometrics presents new opportunities and challenges in grid computing.  
Biometric workloads are both data and computation intensive, and have the potential to be 
accelerated by employing large numbers of machines.  Many large workloads follow a common 
high level structure and could be made robust and scalable by custom high level abstractions.  
However, these workloads also have non-trivial security constraints to ensure the privacy of 
participants, and present new problems in large scale storage management.  In this paper, we 
give an overview of the needs of a biometric research group, and discuss the research problems 
in grid computing that result. 

A Brief Overview of Biometrics 
 
Biometrics is the study of identifying people from physical observations (modes) such as 
fingerprints, iris images, and face images. [WZ2003] [JD2004] In recent decades, the ability to 
rapidly acquire and process digital recordings has opened up new possibilities for performing 
authentication by biometric techniques.  Although this field already has a robust commercial 
sector that sells identification systems employing different modes, there are still many challenges 
to solve before biometric identification becomes widespread and highly reliable. [PP2007] For 
example: 
 

• Current commercial face recognition technologies require images to be taken in a 
consistent manner with fixed lighting and camera geometry and no major changes in the 
subject’s appearance or facial expression.  Are there comparison algorithms that are 
robust to common changes in the setting or the subject? 

 
• Various types of recording devices can capture the geometry of a face in three 

dimensions, albeit at lower resolution than a traditional image.  Is matching in three 
dimensions more or less accurate than matching using high quality two dimensional 
images? 
 

• Continuous video streams collect a large amount of data about subjects, but it is of 
significantly lower quality than deliberate photographs of subjects.  What degree of 
matching accuracy can be obtained from video streams? 

 
In order to explore these problems, a researcher must have access to large corpus of recordings in 
the desired mode, annotated with relevant information about the subject and recording conditions.    
For example, a current image acquisition at the University of Notre Dame involves collecting 
face images from the same subjects on a weekly basis over the course of a year.  Each image is 
taken in a different location, under different lighting conditions, and with a different facial 
expression.  Acquisition is performed under the supervision of a trusted proctor, who carefully 



arranges the subject and manually records metadata according to the overall goal of the study.  
Such data is collected in a lab, placed in temporary storage, and eventually is migrated into a 
central repository.  Clearly, such a dataset is time consuming and expensive to acquire. 
 
Once obtained, a researcher will wish to perform a large number of experiments, performing data 
reduction and comparison on different subsets of the population.  For example, consider the 
hypothesis that the shape of the nose is a suitable feature for face recognition.  To explore this 
hypothesis, a researcher must create two functions.   One function reduces a bitmapped image 
into a feature set, which might be the physical geometry of the nose.  The other function 
compares two features sets to each other, returning a value between zero and one, indicating the 
similarity of the two feature sets.  Then, all images of interest must be transformed into the 
feature space and compared all to each other, generating a matrix of results where each cell 
represents the similarity of any two images.  From the source metadata, we know which images 
are actually of the same subject, so the similarity matrix may be evaluated objectively using some 
distance metric from the ideal results or another comparison technique. 
 
(In these studies, brute force comparison is unavoidable.  For unknown matching algorithms, we 
must observe that matches return high values and non-matches return low values.  Other 
research has shown that early discard [LH2004] or clustering based on features [RB2007]  can 
reduce search times in on-line matching problems.  This is only possible when the behavior of the 
function is already known and accepted for production use.) 
 
There are many small variations upon this procedure.  If we wish to compare the effectiveness of 
nose shape versus ear shape for identification, the procedure is repeated to generate another 
matrix.  Functions for transformation to feature space and the comparison of features have an 
infinite number of variations that are still an open topic of research in all modes and matching 
architectures.  Of course, researchers designing competing algorithms should process the same set 
of data, so that the results are directly comparable. 
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A Sample Workflow in Biometrics



Although easily stated, such workloads are both computation and data intensive.  In recent work 
[CM2008] we demonstrated a workload that compared 6000 iris feature sets all to each other.  
With extensive manual tuning and continuous supervision, we recently carried out a workload 
that compared 6000 iris images of 1.25MB each all to each other. Each comparison required 
about one second of CPU time, for a total of 185 CPU-days of work, which was reduced to about 
one day on a local batch system of 200 nodes.  Although the total amount of input data (7.5GB) is 
not troublesome by itself, any significant fraction of the computation needs all of the data, and so 
it must be distributed to all nodes of the system.  This required the careful management of storage 
and network resources to avoid upsetting other users of the system.  Given access to larger 
resources such as the Open Science Grid or the TeraGrid, researchers could attack even larger 
problems, or produce more thorough results in the same amount of time.  If it were possible to 
easily run hundreds of such workloads, then researchers could quantitatively compare a large 
number of feature extraction and comparison algorithms. 
 
Unfortunately, biometric datasets cannot be generally distributed on the grid.  There are several 
possible hazards.  The most serious would be the exposure of a high quality recording coupled 
with personal information about the subject.  With a good iris image and the knowledge that it 
belonged to one of the authors, an evildoer might be able to successfully impersonate one of us in 
a future authentication check.  Even if such an attack is impractical today (our offices are secured 
by keys, not iris scans), a data loss today might pay off in the future when such technologies are 
more widespread.  Even without the metadata, access to a large body of data might permit a brute 
force attack on a future authentication check.   One could distribute features extracted from 
biometric samples instead of the samples themselves to purportedly avoid identity disclosure. 
However, some biometric features are invertible in that they can be used to reconstruct a synthetic 
biometric sample that could, under certain conditions, approximate the sample from which the 
feature set was derived. A less technical but still serious hazard would be an evildoer who obtains 
an identifiable picture or video, modifies it in an unsavory way, and distributes it widely to 
embarrass the subject. 
 
For these reasons, we cannot construct a conventional data grid that makes all data available to a 
significant user base over the wide area.  And yet, we wish to have a system where researchers 
collaborating over a wide area can exploit a common workspace where they may process and 
compare results based on the same input data.  For this we need a data analysis grid. 

Toward a Data Analysis Grid for Biometrics 
 
To address these challenges, we are designing and constructing a data analysis grid for 
biometrics.  A data analysis grid has a public interface for browsing and analyzing data using 
high level actions that may potentially consume large amounts of storage and computation, along 
with policies that control data access and resource consumption. A data analysis grid is different 
than a traditional computational grid because it does not provide access to CPUs for arbitrary 
tasks, and it is different than a traditional data grid because it does not disseminate large amounts 
of data to multiple participants.   We envision a system with the following components: 
 

• Online Archive.  The centerpiece of the system is an online archive that serves as both 
the data source and output target of all investigations.  Multiple copies of each data item 
are replicated across a storage cluster and are indexed by a central database that stores the 
experimental metadata and the location and state of each data file.  Queries made against 
the system can be performed to explore both the data and the metadata; both can be 
moved to the adjacent computing and storage grid for large scale processing.  A detailed 



access policy controls what data can be browsed, moved to the processing grid, or 
exported directly to the client. 

 
• Data Analysis Interface.  Users interact with the system through a high level interface 

that is tailored to the needs of biometric research.  A fairly small number of fundamental 
operations can be used to support a wide variety of research: selecting datasets based on 
metadata properties, reducing the elements to a feature space, comparing datasets to each 
other, and exporting the similarity matrix.  Although easily stated, each of these 
fundamental operations becomes complex and long running when applied to a dataset of 
any significant size.  End users will also require a workload estimation service so that 
they will have some warning whether an action will take a day or a year. 

 
• Computing and Storage Grid.  Analysis tasks that consume a significant amount of 

time and resources may be offloaded to a general purpose computing and storage grid 
that may be shared with other applications at the same institution.  As noted above, not all 
data is suitable for export, so sensitive stages of a workload may execute first on the 
archive, and later stages may be moved to the computing grid.  It may be necessary to 
transfer a large amount of data from the archive into the computing grid, so the system 
must have a mechanism and policy to tracking storage use and arbitrating between users 
of the system. 

 
• Data Ingestion Network.  In order to facilitate the correct, robust, and rapid ingestion of 

data into the system, we require a store-and-forward data ingestion network.  As data is 
acquired, either by a manual process or an automatic sensor, it is annotated with relevant 
metadata and initially stored on a device close to the sensor.  A local device is necessary 
to support the burst I/O needs to the sensor, but is unlikely to have long term reliability.  
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An automatic process detects newly acquired data and forwards it over the network to an 
intermediate storage node, where the data is validated to determine whether it is suitable 
for addition to the archive.  If so, it is ingested into the archive and duplicated on offline 
storage.  If the data is not valid, it will be moved to an exception queue where a human 
can examine it, and then either repair and resubmit, or discard the data.  End-to-end error 
checking can be used to ensure that data is not damaged in transit. 

Open Research Issues 
 
Many of the functional aspects of this data analysis grid have been studied by previous research, 
thus we expect to exploit a number of existing software packages to construct the system.  For 
example, the Storage Resource Broker [CB1998] may be used to manage data across multiple 
storage devices, annotated with searchable metadata.  Condor [DT2004] may be used to manage a 
multi user compute grid, while Chirp [DT2008] may be used to harness the internal storage of the 
same grid.  GSI [IF1998] will allow for a common authentication infrastructure across the system, 
and data grid tools such as RLS [SV2001] and RFT [WA2004] can be used to track and 
manipulate data across the system.  Pegasus [ED2004] may be used to define and execute 
workflows that manipulate distributed data.   
 
However, there are a number of open research problems that would not be addressed by the  
simple combination of existing software.  Here, we outline some of those challenges. 
 
Top-Down Workflow Abstractions 
Existing tools for constructing complex workflows are bottom-up tools.  That is, the user must 
completely specify all of the individual underlying activities – copy a file, execute a job – and 
them connect them together into a graph.  This model has been quite successful at complex, 
irregular tasks such processing satellite data [DAG-Sloan] and medical images [Swift].  However, 
because all of the precise activities must be specified in advance, it becomes more difficult for the 
workflow to adapt to the available resources, or deal with failures in execution. 
 
A top-down abstraction can solve some of these problems for workflows that are highly regular.  
For example, to simplify the distribution of data to our processing grid, we have constructed a 
top-down tool in which the user specifies the desire to distribute data to any N nodes that meet 
certain criteria.  The tool then transfers data efficiently using a spanning tree; if any failures 
occur, it simply looks for another host that meets the criteria and keeps going.  If we had 
attempted the same by using bottom-up construction, the system would be constrained to the 
exact resources selected at submission time, and would have little recourse except to retry failed 
transfers endlessly. 
 
If we consider the problem of transforming images into feature space, a bottom-up approach 
would construct a single job to transform each item, and then submit all of those jobs to a batch 
system.  This could be disastrously inefficient if the individual transformations are short running 
jobs.  Instead, if we take a top-down approach in which the user specifies the intent to transform 
the entire set using a given function, then the system can group the work into an appropriate 
number of jobs, based upon the locality of data, the number of available CPUs, and the running 
time of each function.  Our initial work on such abstractions is described in [BR2008] and 
[CM2008]. 



Aggregate Storage Management 

Moving large amounts of data between the archive and the processing grid presents problems of 
its own.  As we have noted, it is most effective to stage input data sets to all of the local nodes of 
the processing grid.  Although input datasets are commonly measured in gigabytes – no longer a 
large amount of data – managing a few gigabyte across several hundred machines has its own 
challenges.  It is impractical to stage all data to all nodes simultaneously, which causes all nodes 
to block on I/O and yields the network unusable for other tasks.  Instead, we must have a higher 
level abstraction that stages data to all nodes in an efficient manner.  To do this, we have provided 
users with a tool that replicates data using a spanning tree, which completes in logarithmic time. 
 
However, we have discovered through hard experience that, once it is easy to replicate data to 
many nodes, users take advantage of this facility and quickly fill up the available space.  Instead, 
what is needed is a system that tracks storage usage across the cluster and accepts responsibility 
for deleting datasets once the workflows that depend upon them have completed.  Such a system 
must be robust to a number of failure conditions, particularly the case that a node may be offline 
when either replication or deletion is requested. 
 
At a higher level, such allocation facilities must be connected to workflow execution and 
scheduling.  A large workflow may need to allocate both temporary space in the processing grid 
as well as output space in the online archive to store a large similarity matrix.  It is important that 
a workflow not proceed until space is available, otherwise a significant amount of computing 
resources will be wasted.  There are also opportunities for positive optimizations: workflows that 
process the same input may share a single instance of data staged into the processing grid, 
provided we are careful to avoid deadlocks on output space. 

Resource Estimation 

If we provide a simple interface for executing very large workflows, it may be too easy for users 
to become disconnected from the time and resources necessary to carry out the workflow.  A 
large workflow might consume several thousand CPU-days of computing, occupy a terabyte of 
storage, consume tens of thousands of dollars in electricity and cooling, and take a week to run to 
completion.  Such a degree of consumption should not be undertaken without at least informing 
the user, and perhaps should require the assent of the operator of the system.  At the very least, a 
user should have some conception of whether the work requested will take an hour or a year. 
 
To address this problem, we require an estimation service that can examine a proposed workflow 
and predict how long it will take and what resources will be consumed.  Of course, this is 
completely intractable problem for a general computation on an arbitrary grid.  But, for a data 
analysis grid running on fixed hardware with a constrained set of workflow structures and 
underlying applications, we hypothesize that it is possible to provide a lower bound on execution 
time and resource consumption within, say, one order of magnitude. 

Workflow Level Security 

Most mechanisms for enforcing security policies on data are enforced by the relevant file or 
database server, which examines the credentials of the requesting user in order to allow or deny 
access.  However, this form of conventional access control would not satisfy the necessary 
security policies of this system, of which the most important is raw biometric data may not exit 
the system.  A user with ordinary privilege might be permitted to execute code that manipulates 
and a feature space reduction in the archive or on the adjacent compute grid and even retrieve the 
output data, but cannot arrange for input data to leave the system. 
 



To address this problem, we require a security mechanism that examines a high level workflow, 
and determines whether it conforms to the site policy.  Of course, for this to be feasible, the 
workflow language must have a compact representation and explicit or derivable representations 
of the action of that workflow on the system.  This is likely not practical for a generalized 
scripting language, but seems achievable for a language consisting of the four operations shown 
above. 
 
An interesting sub-problem is how to constrain the behavior of small programs inserted into the 
workflow.  We would like to allow users to define and apply their own operators for reducing 
data to feature space, and to compare one item to another.  It is relatively simple to apply 
sandboxing techniques so that a malicious function could not simply ship the input data over the 
network.  But, how do we prevent the user from writing a function that simply copies the 
sensitive input data to the output, where it can be viewed?  This would require some observation 
of the information gain/loss from the input to the output in order to ensure that the feature space is 
sufficiently abstract. 

Multi-Modal Transactions 

Most grid related workflow systems have concentrated on the relationship between executables, 
batch systems, and file systems.  Typically, robustness is provided by re-attempting executions, 
relying on the assumption that most actions are idempotent.  However, adding databases and 
storage allocation systems to the mix introduces new kinds of problems.  Neither space allocation 
nor database updates are necessarily idempotent.  In the even of failure or cancellation of a 
workflow, there must be a robust method for identifying and rolling back incomplete portions of 
transactions, otherwise the system will quickly fill up with unreferenced garbage. 
 
This problem also extends to the input side of the system.  Biometric data acquisition is a bursty 
and error-prone process.  Some data is collected manually by an operator that must work a 
camera, type subject data, and then save the results when satisfied.  Operators can make mistakes 
by entering incorrect data or saving images of little value.  Other data is collected by automatic 
systems that can also fail in unexpected ways.  In both cases, data must be protected against 
accidental corruption, and data collection cannot stop if the network or the archive is unavailable. 
 
A system to perform asynchronous data movement from node to node is required.   
The solution is clearly some form of asynchronous data movement in the spirit of RFT 
[WA2004], Stork [TK2004], and Kangaroo [DT2001], but must go farther to include inline 
processing for validation and error-checking, as well as robust integration with the archival 
system, and a user interface for examining and dispatching exceptional data. 

Conclusion 
 
In this paper, we have described the high level goals of biometric research, and motivated the 
need for a data analysis grid with properties that depart somewhat from the usual goals of data 
and computing grids.  To build a robust system, we require new techniques that exploit high level 
workflow abstractions, aggregate storage management, workflow level security, resource 
estimation and multi-modal transactions.  Although each of these techniques is motivated by the 
biometric example, we believe that they will have further application in many other kinds of data 
intensive systems. 
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