UNIVERSITY OF
NOTRE DAME

Introduction to Makeflow
and Work Queue with
Containers

CCTools

Nick Hazekamp and Kyle Sweeney
University of Notre Dame v
nhazekam|ksweene3@nd.edu

& Go to http://ccl.cse.nd.edu
@ and Click on Container Camp Tutorial

Software | Download | Manuals | Forum | Papers

The Cooperative Computing Lab

| —
Go to tife CyVerse Container Camp 2018 Tutorial gh Makeflow and Work Queue, March 9th! .
T R —
About the CCL Community Highlight
‘We design software that enables our collaborators to easily harness large scale distributed ForceBalance is an open source software tool for creating =5 il s
systems such as clusters, clouds, and grids. We perform fundamental computer science accurate force fields for molecular mechanics simulation | Foaeat e | = o
research that enables new discoveries through computing in fields such as physics, using flexible combinations of reference data from
chemistry, bioinformatics, biometrics, and data mining. experimental measurements and theoretical calculations. A
These force fields are used to simulate the dynamics and 5
CCL News and Blog physical properties of molecules in chemistry and - “] I
biochemistry. okatiad] BN
» Submit Your CCL Highlight (15 Jan 2018) ForceBalance
* CCL on Chameleon Cloud with ACIC (04 Dec 2017) The Work Queue framework gives ForceBalance the
« TPDS Paper: Storage Management in Makefiow (04 Dec 2017) ability to distribute computationally intensive pove s
e CCL at Supercomputing 2017 (13 Nov 2017) components of a force field optimization calculation in a il method Opiniast
« TPDS Paper: Job Sizing (26 Oct 2017) highly flexible way. For example, each optimization Ra o
» Makeflow Feature: JX Representation (18 Oct 2017) cycle launched by ForceBalance may require running 50
« Announcement: CCTools 6.2.0 released (09 Oct 2017) molecular dynamics simulations, each of which may take 10-20 hours on a high end
e 2017 DISC Summer REU Conclusion (30 Aug 2017) NVIDIA GPU. While GPU computing resources are available, it is rare to find 50 available
« Announcement: CCTools 6.1.6 released (29 Aug 2017) GPU nodes on any single supercomputer or HPC cluster. With Work Queue, it is possible to
« (more news) distribute the simulations across several HPC clusters, including the Certainty HPC cluster

at Stanford, the Keeneland GPU cluster managed by Georgia Tech and Oak Ridge National
Laboratories, and the Stampede supercomputer managed by the University of Texas. This
makes it possible to run many simulations in parallel and complete the high level
optimization in weeks instead of years.

ey

- Lee-Ping Wang, Stanford University

(Submit Your Story Here)
Research Software Community Operations
« Papers « Download « Annual Meeting « Work Queue Display v

Projects « Manuals « Workshops « Condor Display

http://ccl.cse.nd.edu

@ﬁg The Cooperative Computing Lab

We collaborate with people who have large scale computing
problems in science, engineering, and other fields.

\We operate computer systems on the O(10,000) cores:
clusters, clouds, grids.

We conduct computer science research in the context of real
people and problems.

We develop open source software for large scale distributed
computing.

http://ccl.cse.nd.edu

First Session Second Session

Thinking Opportunistically Containers in Makeflow
Overview of the Cooperative Computing Hands-On Tutorial
Tools Work Queue AP
Makeflow

Makeflow + Work Queue

Hands-On Tutorial

Thinking Opportunistically

@g@gg Opportunistic Computing

Much of scientific computing is done in conventional computing centers
with a fixed operating environment with professional sysadmins.

But, there exists a large amount of computing power available to end
users that is not prepared or tailored to your specific application:

National HPC facility

Campus-level cluster and batch system.

Volunteer computing systems: Condor, BOING, etc.
Cloud services.

Can we effectively use these systems for “long tail” scientific
computing?

@g@gg Opportunistic Challenges

When borrowing someone else’s machines, you cannot change the 0OS
distribution, update RPMs, patch kernels, run as root...

This often puts important technology just out of reach of the end user, e.qg.:
FUSE might be installed, but without setuid binary.
Docker might be available, but you aren't a member of the required Unix group.

The resource management policies of the hosting system may work against
you:

Preemption due to submission by higher priority users.
Limitations on execution time and disk space.

Firewalls only allow certain kinds of network connections. &

Backfilling HPC with Condor at Notre Dame

Number of CPUs

9000

8000

7000

6000

5000

4000

3000

2000

1000

01

Apr

01

May

01
Jun

n,

I

"M! ‘r

' ¥

4

01
Jul

01
Aug

01
Sep

01

Oct

Nov

0l

01

Dec

Jan

2000
1000
0

01 01

Feb Mar

Users of Opportunistic Cycles

Notre Dame

Condor Status ?:::.__.___?“ﬂll. e _lIllﬁ._lll E
LLLLELL) FETTI SITTI FEIOETS e PUTEDN TR W RS R Ll 1]} T D T
SEEEEEEEN u [ey SEEEEEER 7 B D
s| c e Foamees a6 Emmew mmmsmu 08 LLL L L] SnsEn I3
ots Cores B — TONTUR RS G | -n AT pRET o=

mzhud@nd.edu 1465 1465 _—.“.__.
B awoodard@nd.edu 67 1072 - —
W jsarro@nd.edu 170 680 S —s
khuang3@nd.edu 527 527
L L) el

&) hhatami@nd.edu 426 426 lll:llllllll aacEess T R ma o ——
S SR U N fem—— []

csweeti@nd.edu 287 287 | B

I =G ERESRY R) lmm=Ad
M klannon@nd.edu 123 123 |gauss et 1 - CLLTCL LI L TL L 1]
(11111111} (LAl 1111]]

O R T s SN — (T}
Unclaimed g9 R R L L L ———— ¢ [| [¢ | | | |
PUISFI QEITTRIX ICEUTRM RN GOIIVERX DTl o

- Matched 1 & N TECT R YT] R TP (e
t“] preemphng 3 3 SEESEREEEEN | o mmoe Ean AL L L L L L L) —III=IIIIII =il

T L TR e S A T)
Owner 55 573]

Total 3213 5605]

Display Options

T —— L IR
TFTN Ll i1l 11]])
Sort e o
Show
Size
Scale

| can get as many machines
on the cloud/grid as | want!

How do | organize my application
to run on those machines?

Cooperative Computing
Tools

{C% Our Philosophy

Harness all available resources: desktops, clusters, clouds, and grids.
Make it easy to scale up from one desktop to national scale infrastructure.

Provide familiar interfaces that make it easy to connect existing apps
together.

Allow portability across operating systems, storage systems, middleware...
Make simple things easy, and complex things possible.

No special privileges required.

% A Quick Tour of the CCTools

Open source, GNU General Public License.
Compiles in 1-2 minutes, installs in SHOME.
Runs on Linux, Solaris, MacQOS, FreeBSD, ..

Interoperates with many distributed computing systems.
Condor, SGE, Torque, Globus, iRODS, Hadoop..

Components: http://ccl.cse.nd.edu/software

Makeflow - A portable workflow manager.

Work Queue - A lightweight distributed execution system.

Parrot — A personal user-level virtual file system.

Chirp — A user-level distributed filesystem.

MAKEFLOW (MAKE + WORKFLOW)

Provides portability across batch systems.

=
@ Enable parallelism (but not too much!)
Fault tolerance at multiple scales.

Data and resource management.

Makeflow

Queue

http://ccl.cse.nd.edu/software/makeflow ~

Work Queue API

#include "work_queue.h’
while(not done) {

while (more work ready) {

task = work_queue_task_create();
// add some details to the task
work_gueue_submit(queue, task);

j

task = work_queue_wait(queue);
// process the completed task

)
http://ccl.cse.nd.edu/software/workqueue ~

Parrot Virtual File System

Custom Namespace

/home = /chirp/server/myhome
/[software = /cvmfs/cms.cern.ch/cmssoft

Capture System
‘ Calls via ptrace ‘
Parrot Virtual File System File Access Tracing
Sandboxing
User ID Mapping
IRODS HTTP CVMFS [

http://ccl.cse.nd.edu/software/parrot ~

Lots of Documentation

@) The Cooperative Comput. %

P - cIEN

@ Makeflow = Make + Worl X
T —

The [makeflow(1) x
CCL Home &« c

I: Research
. Makeflow(1)

[ccl.cse.nd.edu/software/manuals/man/makeflow.html e =

Aboutth| 2
e Project
o d e People
mpeme]| ¢ o= | NAME
perform fun * REU o
discoveries Sfiware makeflow - workflow engine for executing distributed workflows
biomnformat =
* Downl | SYNOPSIS
CCL Nevy o Manua
B % makeflow [options] <dagfile>
.
.
s DESCRIPTION
.
.

Makeflow 1s a workflow engine for distributed computing. It accepts a specification of a large amount of work to be performed. and runs it on remote
machines in parallel where possible. In addition. Makeflow i1s fault-tolerant. so you can use it to coordinate very large tasks that may run for days or
weeks in the face of failures. Makeflow is designed to be similar to Make. so if you can write a Makefile. then you can write a Makeflow.

You can run a Makeflow on your local machine to test it out. If you have a multi-core machine. then you can run multiple tasks simultaneously. If vou
have a Condor pool or a Sun Grid Engine batch system. then you can send your jobs there to run. If you don't already have a batch system. Makeflow

Researc comes with a system called Work Queue that will let you distribute the load across any collection of machines. large or small.
.
. OPTIONS
.
i % Condot | When makeflow 1s ran without arguments. it will attempt to execute the workflow specified by the Makeflow dagfile using the local execution engine.
.

Commands

I |9 | [
o
) o

-c, --clean Clean up: remove logfile and all targets.

Sy — R http://ccl.cse.nd.edu

. s Py R e |

A Portable Workflow System

MAKEFLOW (MAKE + WORKFLOW)

Provides portability across batch systems.

@ Enable parallelism (but not too much!)
Trickle out work to batch system

Fault tolerance at multiple scales.

Data and resource management.

Makeflow
se | Mok
Queue

MAKEFLOW (MAKE + WORKFLOW)
BASED OFF AN OLD IDEA: MAKEFILES

3

result

part1 part2 part3: input.data split.py
/split.py input.data

out1: part1 mysim.exe
/mysim.exe part1 >out

out2: part2 mysim.exe
./mysim.exe part2 >out2

out3: part3 mysim.exe
/mysim.exe part3 >out3

result: out1 out? out3 join.py
Jjoin.py out1 out? out3 > result

Makeflow Syntax

[output files] : [input files]
One Rule

[command to run]
calib.dat

sim.exe out.txt

in.dat

sim.exe in.dat —p 50 > out.txt

out.txt : in.dat
sim.exe in.data —p 50 > out.txt

Makeflow Syntax : sims.mf

out. :in.dat calib.dat sim.exe
sim.exe—p in.data > out.

out. :in.dat calib.dat sim.exe
sim.exe—p in.data > out.

out. :in.dat calib.dat sim.exe
sim.exe—p in.data > out.

How to run a Makeflow

Run a workflow locally (multicore?)
‘'makeflow -T local sims.mf’

Clean up the workflow outputs:
‘makeflow —c sims.mf"

Run the workflow on Torque:
‘makeflow =T torque sims.mf’

Run the workflow on Condor:
‘makeflow =T condor sims.mf’

Visualization with DOT

* makeflow_viz —D example.mf > example.dot
e dot-Tgif< example dot > example glf

S e — [

—— i

-~ -

S —— e
‘‘ --——-

A - __."/“'*'w - /J
S i T S

DOT;-ahd rela;ce'd;tools:
http://www.graphviz.org

Makeflow Shapes a Workflow

Concurrency
Control Thousands of Nodes

Millions of Tasks

Precise Transaction Performance
Cleanup els) Monitoring

E Example: Biocompute Portal

BLAST

=% ssaAHA
SHRIMP
EST

=i MAKER

== = &5 | f — Progress
} ' : — Bar
Generate Transaction
Ma_kveflow Log
L. 5 Update T
REay Run StatUS CondOr

P g Makeflow

Pool

Makeflow + Work Queue

A Portable Workflow System

MAKEFLOW

Makefile XSEDE Private
Torque

Cluster
Cluster

Public
Cloud
Provider

Local Files and
Programs

MAKEFLOW + WORK QUEUE

Makefile xs@P (w o
lorque ".Iusterm

submit lustr

Thousands of
Makeflow -
——— Workers in a

Personal Cloud
Cg'r- f ’Publicm

Il_ Condor Cloud
=n

Local Files and
Programs

WORK QUEUE

Application XS” Grrivate
AP 60”1”6 uster P

lustr
Thousands of

IFFTasks submit = Workers in a

tasks

0 / Personal Cloud
Condor Cloud

@ﬁg Advantages of Work Queue

Harness multiple resources simultaneously.

Hold on to cluster nodes to execute multiple tasks rapidly.
(ms/task instead of min/task)
Scale resources up and down as needed.

Better management of data, with local caching for data
intensive tasks.

Matching of tasks to nodes with data.

{4 Makeflow and Work Queue

To start the Makeflow
% makeflow =T wg sims.mf

Could not create work queue on port 9123.

% makeflow =T wg —p 0 sims.mf

Listening for workers on port 8374..

To start one worker:
% work_queue_worker master.hostname.org 8374 S

{C% Start 25 Workers in Batch System

Work Queue Factory:

work_queue_factory -T slurm -w 5-W 25

-T : specify the batch system
-w : Set the lower limit of workers to upkeep

-W : Set the upper limit of workers to submit

Keeping track of port
numbers gets old fast...

{4 Project Names

makeflow ... work _queue_worker
-N myproject -N myproject

Connect to
Master jetstream:4057

Port 4057

Worker

Advertise

Query

work_queue_status Catalog

“myproject”
is at jetstream:4057 ~

{4 Project Names

Start Makeflow with a project name:
% makeflow =T wg —N myproject sims.mf

Listening for workers on port XYZ...

Start one worker:

% work_queue_worker -N myproject

Start many workers:
% work_queue_factory -T slurm =N myproject 5 g

% work_queue_status

. /work queue status

PROJECT
awe-£ip35

fhfeng-gromacs—lOps

hfeng2-alab
forcebalance
forcebalance
fg-tutorial

s I

NAME
fahnd04.crc.nd.edu
lclsstor0Ol.crc.nd.edu
lclsstor0l.crc.nd.edu
leeping.Stanford.EDU
leeping.Stanford.EDU
loginl. futuregrid. tacc

WAITING
719
4980
2404
1082

0

BUSY COMPLETE WORKERS

1882 1206967
0 1280240
140 1234514
26 822

3 147

1882
111
140

26

{4 Advantages of Work Queue

MF +WQ is fault tolerant in many different ways:

If Makeflow crashes (or is killed) at any point, it will recover by reading the
transaction log and continue where it left off.

Makeflow keeps statistics on both network and task performance, so that
excessively bad workers are avoided.

If a worker crashes, the master detects failure and restarts the task elsewhere.
Workers can be added and removed at any time during workflow execution.

Multiple masters with the same project name can be added and removed while
the workers remain.

If the worker sits idle for too long (default 15m) it will exit, so as
not to hold resources idle. N 4

Alternative Makeflow
Formats

Utilizing JSON/JX for easier scripting

Makeflow JSON Syntax

Verbose flexible structure

Familiar structure

Consists of four items:
‘categories”: Object<Category>
"default_category": String
"environment”: Object<String>

‘rules™: Array<Rule>

Makeflow JSON Syntax

calib.dat
sim.exe out.txt

sim.exe in.dat —p 50 > out.txt

{
"outputs": [{"dag_name": "out.txt"}],
"inputs": [{"dag_name": "in.dat"}, {"dag_name": "calib.dat"},
{"dag_name": "sim.exe"}]
"command": "sim.exe —p 50 in.data > out.txt",
}

Makeflow JSON Syntax

calib.dat
sim.exe out.txt

sim.exe in.dat —p 50 > out.txt

Makeflow JSON Syntax

{
"outputs": [{"dag_name": "out_10.txt"}],
"inputs": [{"dag_name": "in.dat"}, {"dag_name": "calib.dat"},
{"dag_name": "sim.exe"}]
"command": "sim.exe —p 10 in.data > out_10.txt",
h
{

"outputs": [{"path": "out_20.txt"}],
"inputs": [{"dag_name": "in.dat"}, {"dag_name": "calib.dat"},

{"dag_name": "sim.exe"}]
"command": "sim.exe —p 20 in.data > out_20.txt",

| .

Makeflow JSON Rule

"inputs”: Array<File>
‘outputs”: Array<File>
‘command": String
"local_job": Boolean
‘category”: String

‘resources’: Resources
"allocation”™: String
"environment": Object<String>

VELCHINTI) @3 E)

Allows for more compact makeflows.

Provides functions for expanding tasks: range, variables, etc...
Can be used as templates in conjunction with an arguments file.
Useful for consistently structure data and different data.

Makeflow JX Syntax

How to run a Makeflow

Run a workflow from json
— makeflow --json sims.json

Clean up the workflow outputs:
— makeflow —c --json sims.json

Run the workflow from jx:
— makeflow --jx sims.jx

Run the workflow with jx and args:
— makeflow --jx sims.jx --jx-args args.jx

Short tutorial followed by Lunch

Container Integration

Providing consistent environments

{C% Containers Create Precise Execution Environments

docker run ubuntu-38.23 mysim.exe

C N

Code

Libraries

Kernel

<)

Ubuntu-38.23 Container
image Environment

@g@é’g Approaches to Containers with Makeflow

Approach 1:
Create containers for starting MF and WQ, then let them run as normal.
You are responsible for moving container images responsibly.
Approach 2:
Let MF create containers as needed for each task.
Provides more control over moving container images.

Sending and storing containers for each task.

Approach 1: Container for MF/WQ

docker run ubuntu makeflow

docker run ubuntu work _queue_worker

Approach 2: Container for Each Task

Docker Image:
ubuntu-38.23

Tasks

makeflow --docker ubuntu-38.23 —T sge . . .

Container Technology is Evolving

docker run ubuntu command

docker dockerd container

docker

docker.io

Installed service running as root

singularity exec ubuntu command

container

)) Container runs directly as a child process
singularity.lbl.gov (still needs setuid tool, though) 4

Approach 2 using Singularity

Singularity mage:
ubuntu.img

Tasks

makeflow --singularity ubuntu.img —T sge . . .

Cloud Operation

Methods to Deploying

@g@é’g Approaches to Cloud Provisioning with Makeflow

Approach 1:
MF creates unique instance for each task.
Provides complete isolation between tasks.
Requires startup and tear-down time of instances.
Approach 2:
Create instances and run WQ Workers on them, submitting to WQ from MF.
Relies on WQ for task isolation, but caches shared files.

Instance management relies on the user.

Approach 1: Individual instances per task

Tasks pun Makeflow

makeflow -T amazon --amazon-config my.config ...
4

Approach 2: Individual instances per worker

Worker

Run
Worker

Create
Workers

work_queue_factory -T amazon --amazon-config my.config

— CCTools

Nick Hazekamp Kyle Sweeney
Email : nhazekam@nd.edu Email:ksweene3@nd.edu

CCL Home : http://ccl.cse.nd.edu
Tutorial Link : http://ccl.cse.nd.edu/software/tutorials/cyversecc2018

UNIVERSITY OF

:5)) NOTRE DAME

mailto:nhazekam@nd.edu
mailto:ksweene3@nd.edu

