
Using Parrot in 
Scientific Workflows

Tim Shaffer
University of Notre Dame

tshaffe1@nd.edu





Misbehaving Tasks

Problem: a large number of temp files are accumulating on 
workers. Some tasks don't clean up properly before exiting.

Enter Parrot:

Set up each task with a private /tmp, now it’s easy to 
identify/clean up what a task left behind.

















Bonus: keep tasks from snooping around

They probably don't need access to
● /home
● /dev
● /sys
● /proc, maybe others

Alternatively, use a more fine-grained approach, e.g. "only 
allow a Makeflow job to write to the outputs it specified".



Portable Applications

It’s hard to know what will be available at the execution site.

● missing libraries
● different filesystem layout (e.g. /bin vs. /usr/bin, or 

packages installed under /opt)
● libraries compiled with features missing
● bad ld.so (really!)



Portable Applications

Bundle all dependencies, and use Parrot to set up the 
filesystem.

The app sees a consistent, known-good system 
configuration.

Parrot can automatically detect dependencies and make a 
package



Example: Portable Python

Copying the python binary 
to another computer won’t 
work: we need libraries and 
dependencies

● bzip2
● db
● expat
● filesystem
● gdbm

● glibc
● iana-etc
● libffi
● linux-api-headers
● openssl
● perl
● python
● tzdata
● zlib





















Remote Dependencies

Parrot can make remote resources available through the 
normal filesystem interface.

Rather than bundling all dependencies (which could be far 
more than needed on large projects), let Parrot fetch them 
on demand.

Programs see extra latency on initial access, but only 
retrieve the parts they actually use.



CVMFS

CernVM Filesystem (CVMFS) takes this approach to 
distribute experiment software.

Large, frequently updated codebase accessed daily from 
grid sites all over the world.

No need to explicitly install packages; just start running 
things, and dependencies are loaded as needed.





CVMFS on HPC

High performance computing (HPC) resources might not 
have an open internet connection and FUSE.

For the former, we can run an HTTP proxy on the login node.

Since Parrot supports CVMFS, just send a Parrot executable, 
no FUSE or setuid programs required.



CVMFS on HPC

Experiments are highly dependent on CVMFS to deliver 
software.

Long-running, compute-bound tasks don't suffer much 
performance penalty under Parrot.

With Parrot, take advantage of any worker with a working 
kernel, no need for cluster admins to install extra software.



Questions?

tshaffe1@nd.edu

http://ccl.cse.nd.edu/software/parrot/


