
Skip to main

Software Environments in Binder Containers

Binder is a publicly accessible online service for executing interactive notebooks based on Git repositories. Binder
dynamically builds and deploys containers following a recipe stored in the repository, then gives the user a browser-based
notebook interface. The Binder group periodically releases a log of container launches from the public Binder service.
Archives of launch records are available here. These records do not include identifiable information like IP addresses, but
do give the source repo being launched along with some other metadata. The main content of this dataset is in the
binder.sqlite file. This SQLite database includes launch records from 2018-11-03 to 2021-06-06 in the events
table, which has the following schema.

CREATE TABLE events(
 version INTEGER,
 timestamp TEXT,
 provider TEXT,
 spec TEXT,
 origin TEXT,
 ref TEXT,
 guessed_ref TEXT
);
CREATE INDEX idx_timestamp ON events(timestamp);

version indicates the version of the record as assigned by Binder. The origin field became available with
version 3, and the ref field with version 4. Older records where this information was not recorded will have the
corresponding fields set to null.
timestamp is the ISO timestamp of the launch
provider gives the type of source repo being launched ("GitHub" is by far the most common). The rest of the
explanations assume GitHub, other providers may differ.
spec gives the particular branch/release/commit being built. It consists of <github-id>/<repo>/<branch> .
origin indicates which backend was used. Each has its own storage, compute, etc. so this info might be
important for evaluating caching and performance. Note that only recent records include this field. May be null.
ref specifies the git commit that was actually used, rather than the named branch referenced by spec . Note that
this was not recorded from the beginning, so only the more recent entries include it. May be null.
For records where ref is not available, we attempted to clone the named reference given by spec rather than the
specific commit (see below). The guessed_ref field records the commit found at the time of cloning. If the
branch was updated since the container was launched, this will not be the exact version that was used, and instead
will refer to whatever was available at the time (early 2021). Depending on the application, this might still be useful

Published June 1, 2021 | Version v2 Dataset Open

; ;  Shaffer, Tim1 Chard, Kyle2 Thain, Douglas1

Show affiliations

https://zenodo.org/
https://mybinder.org/
https://archive.analytics.mybinder.org/
https://orcid.org/0000-0002-7028-5246
https://zenodo.org/search?q=metadata.creators.person_or_org.name:%22Shaffer,+Tim%22
https://zenodo.org/search?q=metadata.creators.person_or_org.name:%22Chard,+Kyle%22
https://zenodo.org/search?q=metadata.creators.person_or_org.name:%22Thain,+Douglas%22

information. Selecting only records with version 4 (or non-null ref) will exclude these guessed commits. May be
null.

The Binder launch dataset identifies the source repos that were used, but doesn't give any indication of their contents. We
crawled GitHub to get the actual specification files in the repos which were fed into repo2docker when preparing the
notebook environments, as well as filesystem metadata of the repos. Some repos were deleted/made private at some
point, and were thus skipped. This is indicated by the absence of any row for the given commit (or absence of both ref
and guessed_ref in the events table). The schema is as follows.

CREATE TABLE spec_files (
 ref TEXT NOT NULL PRIMARY KEY,
 ls TEXT,
 runtime BLOB,
 apt BLOB,
 conda BLOB,
 pip BLOB,
 pipfile BLOB,
 julia BLOB,
 r BLOB,
 nix BLOB,
 docker BLOB,
 setup BLOB,
 postbuild BLOB,
 start BLOB
);

Here ref corresponds to ref and/or guessed_ref from the events table. For each repo, we collected spec files
into the following fields (see the repo2docker docs for details on what these are). The records in the database are simply
the verbatim file contents, with no parsing or further processing performed.

runtime : runtime.txt
apt : apt.txt
conda : environment.yml
pip : requirements.txt
pipfile : Pipfile.lock or Pipfile
julia : Project.toml or REQUIRE
r : install.R
nix : default.nix
docker : Dockerfile
setup : setup.py
postbuild : postBuild
start : start

The ls field gives a metadata listing of the repo contents (excluding the .git directory). This field is JSON encoded
with the following structure based on JSON types:

Object: filesystem directory. Keys are file names within it. Values are the contents, which can be regular files,
symlinks, or subdirectories.
String: symlink. The string value gives the link target.
Number: regular file. The number value gives the file size in bytes.

https://github.com/jupyterhub/repo2docker
https://repo2docker.readthedocs.io/en/latest/config_files.html#config-files

CREATE TABLE clean_specs (
 ref TEXT NOT NULL PRIMARY KEY,
 conda_channels TEXT,
 conda_packages TEXT,
 pip_packages TEXT,
 apt_packages TEXT
);

The clean_specs table provides parsed and validated specifications for some of the specification files (currently Pip,
Conda, and APT packages). Each column gives either a JSON encoded list of package requirements, or null. APT
packages have been validated using a regex adapted from the repo2docker source. Pip packages have been parsed
and normalized using the Requirement class from the pkg_resources package of setuptools. Conda packages have been
parsed and normalized using the conda.models.match_spec.MatchSpec class included with the library form of
Conda (distinct from the command line tool). Users might want to use these parsers when working with the package data,
as the specifications can become fairly complex.

The missing table gives the repos that were not accessible, and event_logs records which log files have already
been added. These tables are used for updating the dataset and should not be of interest to users.

Files

Files (5.0 GB)

binder.sqlite
md5:230c727e8893ae4d4ce88db04995c33f

5.0 GB

Download

Citations 









Show only:

Literature (0) Dataset (0) Software (0)

Unknown (0) Citations To This Version

Search for citation ... Search

No citations found

805 116

https://github.com/jupyterhub/repo2docker/blob/73ab48a42d8f818038540d0a15bc2b4f7d88d46e/repo2docker/buildpacks/base.py#L673
https://setuptools.readthedocs.io/en/latest/pkg_resources.html#requirement-objects
https://zenodo.org/records/4915858/files/binder.sqlite?download=1
https://zenodo.org/records/4915858/files/binder.sqlite?download=1
https://support.zenodo.org/help/en-gb/25-citations
https://support.zenodo.org/help/en-gb/25-citations

Versions

External resources

Details

Rights

 VIEWS DOWNLOADS

 Show more details

 



Version v2
10.5281/zenodo.4915858

Jun 1, 2021

Version v1
10.5281/zenodo.4891791

Jun 1, 2021

Cite all versions? You can cite all versions by using the DOI 10.5281/zenodo.4891790. This DOI represents all
versions, and will always resolve to the latest one. Read more.

View all 2 versions

Indexed in

OpenAIRE

DOI

DOIDOI 10.5281/zenodo.491585810.5281/zenodo.4915858

Resource type
Dataset

Publisher
Zenodo



License

https://doi.org/10.5281/zenodo.4915858
https://zenodo.org/records/4891791
https://doi.org/10.5281/zenodo.4891791
https://doi.org/10.5281/zenodo.4891790
https://zenodo.org/help/versioning
https://zenodo.org/search?q=parent.id:4891790&sort=version&f=allversions:true
https://explore.openaire.eu/search/result?pid=10.5281/zenodo.4915858

Citation

Export

Creative Commons Zero v1.0 Universal

Shaffer, T., Chard, K., & Thain, D. (2021). Software Environments in Binder Containers [Data set]. Zenodo.
https://doi.org/10.5281/zenodo.4915858

Style APA  

JSON  Export 

Technical metadata

Created June 9, 2021

Modified September 5, 2021

Jump up

About

About
Policies
Infrastructure
Principles
Projects
Roadmap
Contact

Blog

Blog

Help

FAQ
Docs
Guides
Support

Developers

REST API
OAI-PMH

Contribute

 GitHub

 Donate

Funded by

Powered by CERN Data Centre & InvenioRDM
Status Privacy policy Cookie policy Terms of Use

Support

https://doi.org/10.5281/zenodo.4915858
https://zenodo.org/records/4915858/export/json
https://about.zenodo.org/
https://about.zenodo.org/policies
https://about.zenodo.org/infrastructure
https://about.zenodo.org/principles
https://about.zenodo.org/projects/
https://about.zenodo.org/roadmap/
https://about.zenodo.org/contact
https://blog.zenodo.org/
https://help.zenodo.org/
https://help.zenodo.org/docs/
https://help.zenodo.org/guides/
https://zenodo.org/support
https://developers.zenodo.org/
https://developers.zenodo.org/#oai-pmh
https://github.com/zenodo/zenodo-rdm
https://github.com/zenodo/zenodo-rdm
https://zenodo.org/donate
https://zenodo.org/donate
https://home.cern/
https://home.cern/
https://www.openaire.eu/
https://www.openaire.eu/
https://commission.europa.eu/index_en
https://commission.europa.eu/index_en
https://home.cern/science/computing/data-centre
https://inveniordm.docs.cern.ch/
https://stats.uptimerobot.com/vlYOVuWgM/
https://about.zenodo.org/privacy-policy
https://about.zenodo.org/cookie-policy
https://about.zenodo.org/terms
https://zenodo.org/support

