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A WORKFLOW MANAGEMENT SYSTEM TO FACILITATE
REPRODUCIBILITY OF SCIENTIFIC COMPUTING APPLICATIONS

Abstract
by

Peter Ivie

Reproducibility is becoming an increasingly challenging requirement of the sci-
entific process. Compared to more human intensive scientific procedures, it would
seem that scientific applications executed on computers could easily produce identi-
cal results despite slight changes to hardware, software, or simply timing. However,
implicit dependencies on data and execution environment, coupled with ambiguous
definitions of identity and equivalence throughout the process, make reproducibility
rarely possible. To address this problem, I created PRUNE, the Preserving Run En-
vironment. In PRUNE, every task to be executed is wrapped in a functional interface
and coupled with a strictly defined environment. With this information PRUNE can
directly execute each task. As a scientific workflow evolves in PRUNE, a growing
but immutable tree of derived data is created. The provenance of every item in the
system can be precisely described, facilitating sharing and modification between col-
laborating researchers, along with efficient management of limited storage space. |
show that with a minimal amount of overhead, these capabilities can be available
for large scale and complex workflows, such as an analysis of high-energy physics
data, a bio-informatics application, and processing of U.S. census data. PRUNE also

minimizes the cost of collaborative development of computational science.
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CHAPTER 1

INTRODUCTION

Growing concerns about the usefulness of some scientific publications have gen-
erated an increased focus on the concept of reproducible computational science [12].
Scientists may disagree on the use of the term reproducibility [63] 82, 54], but few
seem to dispute it’s importance. I consider computational science to be reproducible
if results can be achieved which are equivalent to the original results when an exper-
iment is re-executed where conditions differ only in ways that are not expected to be
significant. Ideally, reproducible experiments would contain sufficient details to be
effectively incorporated into the research of other scientists, with observations that
are correct and can be sufficiently validated. Scientific discovery is often stumbled
upon, but must still be separated from transient circumstances.

Knowing that some results can be obtained on demand by re-executing a work-
ﬂowE| is an important step towards enabling a skeptic to perform an equivalent exper-
iment and thereby confirm or refute the results. Ideally, the main responsibility to
ensure the correctness of publications would rest on the author, with the peer review-
ing providing secondary confirmation. However, even without considering the cost
of re-executing scientific workflows in an age of widespread big data, the difficulty of
even getting set up to re-execute the workflow is too daunting of a task for most peer

reviewers to undertake.

LA scientific workflow is the collection of data and tasks that are used to execute computational
scientific research.



In recent years, serious questions have been raised about the reproducibility of
scientific work in general, and scientific computing more specifically. While there
appears to be a general sense that most scientific computing is not as easily repro-
duced as it could be, there is no general agreement on what, precisely, reproducibility
entails, and what mechanisms are needed to achieve it.

Some argue that this situation has reached crisis proportions:

In the biotech industry, Amgen [I7] attempted to confirm the findings in 53 “land-
mark” articles in cancer research. These attempts were not merely computational,
but also involved working in the original labs under the direction of the original au-
thors in attempts to resolve discrepant findings. They only succeeded with 10% of
them. In pharmaceuticals, Bayer [156] had slightly better results and were able to
verify 21% of 67 different projects. These efforts involved scientific research where
the computational resources required were generally low.

In principle, computational experiments should be easy to reproduce, when com-
pared with physical experiments. Assuming that a computer is a deterministic ma-
chine, then simply applying the same program to the same inputs on an equivalent
architecture should yield equivalent results. Many design principles and recommen-
dations surrounding scientific computing have been encouraged [23] for years. But
in practice, the complexity of today’s software and hardware makes it surprisingly
difficult to even accurately describe the inputs, construct a deterministic program,
or identify equivalent hardware. Many of the difficulties stem from a need to simul-
taneously satisfy the needs of both the computer and a human as summarized in

figure [1.1] rather than being able to focus exclusively on one or the other.

1.1 Scope and contributions

In high-performance computing, the overhead of starting and stopping processes

is often minimized by allowing long running processes to send intermediate results
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Owerall Perspective for the Reproducibility of Computational Science

to other processes during run-time. As the duration and scale of such workflows
grow, there is an increasing risk that at least one process in the system will fail.
This typically forces the entire workflow to fail unless checkpoints of the entire state
of the workflow are stored on a regular basis. In the case of a system failure with
checkpoints, the workflow can resume from the last successful checkpoint. There can
be a significant amount of redundancy between checkpoints, and each checkpoint
can slow down the workflow. So a tradeoff has to be made between the overhead
of creating more frequent checkpoints as compared to the overhead of stopping all
processes when any failures occurs and re-executing from the last checkpoint.

In a high-throughput workflow, the checkpointing is often minimized by breaking
the workflow into tasks that do not pass messages during run-time, but provide final
results when the task is completed that can be used by other tasks. In essence,
checkpointing is done at the task level rather than the workflow level. In these cases
the overhead for system failures is limited to the duration of the tasks that failed, and

only the tasks need to be restarted, not the entire workflow. However, the overhead



of starting and stopping each task is a significant factor.

For workflows where the intermediate data (in passed messages) is relatively small
compared to the processing requirements, high-performance computing can be a more
efficient choice. However, in the presence of opportunistic or heterogeneous comput-
ing resources, the failure rates are often higher, so the cost of restarting the entire
workflow is high. And when a workflow has both a lot of data that would need to
be check-pointed and uses opportunistic and/or heterogeneous computing resources,
the high-performance approach is poorly suited as a solution. In such cases, inter-
mediate data can be stored and transferred as files in any format. Tasks need to
fit the compute resources upon which they execute, or they must be able to modify
the resource to satisfy their needs. Upon failure, a task can easily be moved to an
alternative compute resource without interrupting other running processes.

The computational science we have encountered is more suited to a task-based
workflow with no message passing. This eliminates the need to consider race condi-
tions or how message passing affects parallelism at the workflow level. An individual
task may utilize parallelism in this model, but it may not communicate with other
tasks in real-time.

In terms of reproducibility, heterogenous computing resources come with an in-
herent chance for results to be affected by the configuration of the underlying re-
source. With such resources, a scientist should work in collaboration with a system
administrator to ensure that resources are appropriate for the desired task, or can
be modified in real-time to become appropriate. In addition, the scientist should
assume the responsibility to either personally or programmatically verify that the
results are correct. Part of the scientific process is to perform an experiment more
than once to ensure that the results can be trusted. Computational science should
not be absolved of this responsibility based on an assumption that any computing

resources, heterogenous or not, are more predictable than a more human dependent



experiment (because they might not be).

To further limit the scope of this dissertation, I focus primarily on technical
problems in scientific computing, and refer the reader to other publications that
address the broader questions of publication habits [166], the role of funding agen-
cies [122] 172], fraud [I18| 43], legal issues [I73], similar questions [I45], and related
fields such as computer aided engineering [59]. Elements of scientific discovery that
do not involve computers are not the focus of this dissertation.

Computer aided engineering (CAE) is a similar field where computer software
is used to help perform engineering analysis tasks, rather than scientific workflows.
While not applied to the same domain, some of the concepts used can have applica-
bility to scientific computing, such as executing simulations of a model can be used to
evaluate the validity of the model in both CAE [120] and scientific computing [147].

The work presented in this dissertation is intended to expose techniques and
approaches that lead to more effective reproducibility. This is done by identifying
important properties relating to reproducibility that can be included in a system used
for computational science. It is not intended as a new utility that in and of itself will
solve the challenges encountered when trying to make scientific results reproducible.
As such, most of the evaluations and comparisons will focus on the presence vs.
absence of various characteristics. While there may be some comparisons to other
workflow management systems, I recognize that some components needed for an
effective workflow management system were left out because they were not needed
for reproducibility. Specific contributions include:

First, this work identifies and summarizes barriers to reproducibility, a wide range
of existing solutions to those problems, and tradeoffs that need to be considered in
particular cases.

Second, it asserts the importance of a Preserve First approach to workflow execu-

tion, where tasks are preserved and then executed by the system to help ensure that



implicit dependencies do not exist. This approach also makes it so that intermediate
data can be treated like a cache, since the data can be re-executed if needed.

Third, it introduces a way to name workflow objects based on the derivation tree.
This enables the system to uniquely and consistently identify objects shared as a
part of a collaboration and to distinguish between them and new objects even in the
presence of non-determinism.

Fourth, it demonstrates that in large workflows the overhead of these added efforts
can be computationally minimal in comparison to the workflow execution.

Fifth, it quantifies the benefits of the Preserve First and derivation based 1D
combination as applied to a collaborative arrangement, and estimates the cost of

various options for transferring workflow evolutions from one collaborator to another.

1.2 Publications

The following publications contributed to this dissertation as I, and the others
involved, wrestled with behaviors that made reproducibility challenging, but also
emphasized the need for more reproducible computational science.

DeltaDB: A Scalable Database Design for Time-Varying Schema-Free Data. In
IEEE International Congress on Big Data (BigData), 2014. [99] DeltaDB is a log
based database with an algebra for performing operations on the log to summarize
the records for reports. It reduced what would have been stored in 5TB of snapshots
down to 11GB.

Data Intensive Physics Applications to 10k Cores on Non-Dedicated Clusters with
Lobster. In IEEE Conference on Cluster Computing, 2015 [194] Lobster is a sys-
tem designed to perform high energy physics on compute resources outside of the
dedicated clusters designed for such activities. Shown to work with over 10,000 con-
current cores, it produces throughput comparable with the largest dedicated clusters

a part of the LHC infrastructure.



Techniques for Preserving Scientific Software Fzxecutions: Preserve the Mess or
Encourage Cleanliness? at the 2015 International Conference on Digital Preservation
(iPres) [I80] An overview of what challenges exist in attempting to preserve scientific
software research for reproducibility. Preserving the mess and encouraging cleanliness
are two generic ways to make this happen.

A Case Study in Preserving a High Energy Physics Application with Parrot in
the Journal of Physics: Conference Series (JPCS) [I37] Preserving a complex high
energy physics application such as Tau-Roast is challenging. The Parrot Packaging
Tool can be used to capture a minimum execution environment package for a scientific
application. Various technologies can be used to instantiate this package, making it
more likely to be reproducible in the future.

An Analysis of Reproducibility and Non- Determinism in HEP Software and
ROOT Data. In International Conference on Computing in High Energy and Nuclear
Physics, 2016. [105] Generically comparing high energy physics ROOT files generated
with the same parameters can lead to an evaluation on the equivalence level of the
results. Another approach attempted is to capture all system calls and provide pre-
dictable responses to those calls so that application doesn’t know anything is different.
This achieved deterministic results in some cases.

PRUNE: A Preserving Run Environment for Reproducible Computing. IEEE
Conference on e-Science, 2016. [102] In PRUNE, tasks are wrapped in a functional
interface and coupled with a strictly defined environment. The task is then executed
by PRUNE rather than the user to ensure reproducibility. As a scientific workflow
evolves in PRUNE, a growing but immutable tree of derived data is created. This

tree can be used for reproducibility storage management and collaboration.



1.3 Dissertation overview

So far, this chapter has painted a high level view of what reproducibility is, why
it is important and how effective current strategies are at satisfying the need for
reproducibility. Then the scope and contributions of this work were presented and
papers that led to the completion of this work were summarized.

CHAPTER 2 THE REPRODUCIBILITY PROBLEM DEFINED includes de-
tailed definitions not only for reproducibility, but also for terms surrounding repro-
ducibility. It also includes explanations for why it is difficult to actualize reproducibil-
ity for single commands not only because of implicit dependencies on the environment,
but also due to a mismatch between the needs of the computer and the needs of the
user. And then additional challenges related to workflows are discussed, such as the
tradeoffs between finely and coarsely granulated preservation and difficulties in the
execution of the workflow.

CHAPTER (38} RELATED WORK addresses the topic of object naming and de-
scribes categories of existing choices for executing workflows each with example sys-
tems as related work. Object naming is both challenging and important because it
is what computers and humans both use to uniquely identify objects in the workflow
so that changes to a workflow can be distinguished from previously included objects.
The categories of existing solutions range from tracing all system calls initiated dur-
ing the execution of a workflow to forcing the use of dedicated clusters in a walled
garden to ensure no implicit dependencies exist.

CHAPTER [} PRUNE OVERVIEW introduces a few ideas and practices de-
signed to encourage the use and development of reproducibility focused workflow
management systems. The ideology of Preserve First eliminates the chance of forget-
ting to preserve the workflow or of disparities between provenance and practice. It
also helps avoid hidden implicit dependencies on the environment. The components

of PRUNE are identified with the idea that the components make up an ever growing



tree of immutable tasks that describe every evolution of the workflow without hav-
ing to store all intermediate files. The reasoning behind combining a context based
identifier with a derivation based identifier for each object is then explained.

CHAPTER [p} PRUNE SINGLE USER EVALUATION lists specific technologies
that are chosen for the various components of PRUNE. A simple merge sort workflow
is shown with the equivalent operations described as a PRUNE workflow. Examples of
the underlying immutable objects are included. An workflow using U.S. Census data
is used as a proof of concept and reproducibility relevant metrics are recorded during
execution of the workflow. Storage savings for re-executing the workflow after changes
a various stages compared to creating a new folder are presented. Overhead is shown
to be negligible compared to the execution of workflow tasks, and a quota system is
put into action to keep storage consumption within specific bounds. PRUNE is then
applied to both bioinformatics and high energy physics workflows and the results are
used to confirm the overhead measurements. However, a few problems that arose are
described with solutions to those problems.

CHAPTERI[G: PRUNE COLLABORATION shows how the data stored in PRUNE
is used to estimate the financial and temporal cost of attempting to minimize re-
execution of tasks on a collaborators system vs. attempting to minimize the transfer
of intermediate files over a network. PRUNE to obtain and transfer either the inter-
mediate results or task information on a task by task basis. That coupled with the
ability to detect matching object using the content and derivation based identifiers
allows evolutions to a workflow to be transferred to collaborators in much more effi-
cient modes. These modes can also be chosen after the fact, which is helpful because
the optimal mode can change depending on the circumstances. The method for es-
timating network and compute costs are detailed and applied to all modes for the
bioinformatics and high energy physics workflows to show the benefits of the newly

available modes.



CHAPTER [ CONCLUSION summarizes the dissertation and reflects on the
successes and failures that were encountered. Future directions that could further ad-
vance the convenience and viability of making scientific results reproducible are then
illustrated. Followed by a section on how to reproduce the results of the workflows
used in this paper. I will note upfront that ssues were encountered with satisfying
data dependencies with each workflow both from technical and legal perspectives.
Obtaining permission to publicly share these workflows in their entirety turned out
to be less successful than addressing the technical challenges. I share all files and

data that I was permitted to. A link to this data is found in section [7.5]
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CHAPTER 2

THE REPRODUCIBILITY PROBLEM DEFINED

2.1 Perspectives on reproducibility

It is commonly expressed that reproducibility of computational science is a de-
sirable quality, and that there is a need to move the beyond the printed paper as a

means of communicating results. [I51] 170]

An article about computational science in a scientific publication is not
the scholarship itself, it is merely advertising of the scholarship. The
actual scholarship is the complete software development environment and
the complete set of instructions which generated the figures. [29]

This type of information can get very complex and detailed very quickly, but from

a user perspective it can be easier than it sounds with the proper tools and mindset.

It is a big chore for one researcher to reproduce the analysis and compu-
tational results of another [...] I discovered that this problem has a simple
technological solution: illustrations (figures) in a technical document are
made by programs and command scripts that along with required data
should be linked to the document itself [...] This is hardly any extra work
for the author, but it makes the document much more valuable to readers
who possess the document in electronic form because they are able to
track down the computations that lead to the illustrations. [39]

Researchers at the University of Arizona [I57] considered the repeatability of
402 ACM papers published in computer systems conferences. In this work, minimal
repeatability was defined simply as the ability to download and build the source code
within a reasonable amount of time. They were able to build 32.3% of them within

30 minutes. 15.9% more took over 30 minutes and 5.7% more with additional but

11



reasonable effort. The code failed to build in 2.2% of the cases, and the authors
declined to provide code in 7.5% of the cases. 36.3% of the authors never responded
to requests for the code. The subjects of the study were invited to post corrections
or addenda to the material, and the responses resulted in a wide variety of strong
opinions about the procedure.

All these numbers are definitely dismal, but is it really a crisis? Future compu-
tational science is likely to become even more complex [161] and resource intensive,
making reproducibility even more challenging. To understand why this is such a
problem, I will expound upon some of the reasons for, and benefits that come from

making research reproducible.

2.1.1 How is reproducibility defined?

A wide variety of authors have defined reproducibility and related terms in some-
what different ways. [106, 81, 190], 1, 195] 132, 171, 147] Although complete consensus
has not been achieved on these terms, I will use them in the following way:

To replicate an experiment [54] is to carry out exactly the same task as the
original researcher, with the expectation that the result will be the same. In scientific
computing, exact replication would constitute building the same program with the
same compiler running on the same hardware and the same operating system as the
original. Obviously, it may be difficult or impossible to replicate every last detail.
Seemingly innocuous details (like the system time [104]) may affect the final result.

To reproduce an experiment [195] is to carry out tasks that are equivalent in
substance to the original, but may differ in ways that are not expected to be significant
to the final result. In scientific computing, these differences could range from minor
to sweeping. One attempt to reproduce might run the same version of the software
on a new version of an operating system, while another attempt to reproduce might

involve writing a new piece of software that implements the same algorithm.
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The terms verify and validate are often used interchangeably. In the broader
literature |21, [147], they are used to indicate technical correctness and fitness for
purpose, respectively. In the context of scientific computing reproducibility, I define
verification as the task of replicating an experiment to see if it produces the claimed
output, while validation is the task of evaluating a result to see if the author’s
conclusions are warranted. One experiment corroborates another when they reach
the same overall conclusions.

When the components underlying an experiment are easily named and shared, it
becomes possible to make use of them in other contexts. This is known as variation
or reuse or extension.

The term provenance is used broadly to describe retrospectively the many po-
tential sources of input or variation to a program. For example, when a program is
run in a distributed system, it may be desirable to record the incidental details of the
machine on which it ran (architecture, operating system, system time) in case those
details are later found to be significant. Or, if a program B consumes input data
X that was the output of a previous program A, then it may be fruitful to record
that A — X — B to note that the output of B originally depended on the output of
A. [112], [78, 311, [175] 60}, 162, 119, 167]

A deterministic program always produces the same result when run with the
same input in the same computing environment. Some programs are non-deterministic
by design: for example, a Monte Carlo simulation uses a random number gen-
erator to evaluate a function with randomly chosen inputs. Other programs are
non-deterministic by accident: concurrency, operating system services, or the va-
garies of floating point math may all introduce differences where they are not de-
sired [58]. For example, even a Monte Carlo simulation with a fixed seed can produce
non-deterministic results [I03]. There may be ways to avoid some sources of non-

determinism, but it is difficult (if not impossible) to avoid all of them. Efforts can
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Equivalence

Same Phenomenon Human experts
Same Statistics Gnuplot, Matplotlib, R
Same Data {sha1sum, md5} of file contents
Same Bits {sha1sum, md5} of contents+metadata

Figure 2.1. Equivalence levels and Examples

Equivalence can be gauged with different methods depending on the desired focus.
Discussed in detail in section 2111

be made to detect [16], or mitigate such behavior, even at large scales [34], but there

is still a need to support better reproducibility at the system level.

2.1.1.1 Equivalence

[ must also be careful to define what constitutes the “same result” when comparing

two experiments (see figure [2.1)):

e Two experiments could produce the exact same bits.

e Two experiments could produce the same data in the sense that they encode
the same numeric contents, but differ in some irrelevant detail. For example,
an output file might incidentally contain the system time and the name of the
user who ran the program.

e Two experiments could produce statistically equivalent results, in that the
numeric values are different, but they both conform to the same statistical
distribution, modulo some error tolerance.

e Two experiments could observe the same phenomenon but not the same
data.

These distinctions have an important bearing on whether a result can be verified

automatically. If equivalence is defined by the same bits or the same data, then
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simple technical tools can be used to perform the comparisons. Evaluating statisti-
cally equivalent results requires a domain-specific tool, while comparing phenomena
requires a human with domain-specific knowledge. Consequently, it is desirable to
achieve reproducibility at the lowest level at which it is feasible, so that verification
can be performed automatically.

A part of reproducibility is communicating methods and intent [54], in addition
to communicating how to obtain identical results. When tools for logical equivalence
are not available, the burden of comparison rests on the scientist.

When the computer itself is the object of study, then performance or resource
consumption may be the primary result. In other cases, issues of performance are
relevant in terms of cost and/or convenience, but are not the focus of their research.
Various systems exist which are both appropriate for computational science and have
a focus on maximizing, measuring, or repeating performance goals. [109, 107, 33|
1716l 169, 53] Repeatability can refer to the ability to get the same performance [I]
in the presence of changing conditions in the underlying system. I will assume that
for the general case a focus more on reproducibility has benefits that outweigh the
advantages of a focus more on performance.

Topics discussed in other works, but not addressed in the paper include best
practices beyond the technical aspects [I71] and roles of not only the scientist, but
the funding agency and the journal editor [195].

Several authors [152], [132] have presented these reproducibility concepts as a spec-
trum starting with replicability by a single researcher as the minimum level of scien-
tific integrity, and increasing through verification, reproduction, validation, extension,
and reuse by many researchers. Each stage requires a greater amount of work but

has increasing value to the community at large.

15



2.1.2  Why should computing be reproducible?

There are a variety of reasons underlying the need for reproducibility:

To verify (or disprove) other’s results. [140] argues that the basic function
of a paper is to both announce some result and convince the reader that the result
is correct. However, [98] claims that the majority of published research findings are
false, due to small sample sizes, statistical noise, confirmation bias, and publication
bias. In most fields, peer-reviews serve to evaluate whether the work, as described,
is sound, significant, and interesting. With rare exceptions, reviewers do not have
the time, inclination, or skills to perform and verify the work described in a paper,
particularly if it requires access to unusual or expensive methods and facilities.

However, scientific computing has the unique advantage that any computational
activity is potentially reproducible, given the same code and input data and execution
on a compatible machine.

This has given rise to the concept of “reproducible research” [38] or an “executable
paper” [24, [32] in which the source code and data used to reach a conclusion are
coupled and distributed with the paper itself. In principle, this should allow the
reviewer and the reader to carry out the same action and evaluate the conclusions.

This concept has been offered as part of a number of special issues and efforts, but
has not been accepted broadly by research communities as of this writing. This may
be due to the fact that peer review considers more broadly the novelty, significance
and correctness of a work. For example, [I21] notes that merely re-running the
same code does not guarantee that the research results are correct. There are also
many cases where accessibility of the code and data is not sufficient: the results may
require access to specialized or high performance hardware, and may still require a
large amount of time or other resources to complete.

To verify one’s own results. In practice, I have encountered relatively few

researchers who wish to actively develop an adversarial relationship with others by
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disproving their work. However, some have argued that a healthy distrust of one’s

own work should drive reproducibility:

We do not take even our own observations quite seriously, or accept them
as scientific observations, until we have repeated and tested them. Only
by such repetitions can we convince ourselves that we are not dealing with
a mere isolated coincidence, but with events which, on account of their
regularity and reproducibility, are in principle intersubjectively testable.
[155]

To improve one’s own productivity. Some researchers perceive that efforts
to make their research reproducible will result in decreased productivity [13] as effort
is shifted towards technologies instead of their primary work. Others have argued the
opposite. For example, Jon Claerbout (who coined the term “reproducible research”)

made the following statement after many years working towards that end:

It takes some effort to organize your research to be reproducible. We found
that although the effort seems to be directed to helping other people stand
up on your shoulders, the principal beneficiary is generally the author
herself. This is because time turns each one of us into another person,
and by making effort to communicate with strangers, we help ourselves
to communicate with our future selves. [37]

To enable extension by others. Frequently, one researcher may wish to build
upon another’s work positively by augmenting it or evaluating it against a new dataset
or situation. This is easier said than done. Even when two researchers working
contemporaneously can share notes and advice, moving a code from one institution to
another can take months before the same setup is “working” in the new context. [79]
It becomes even harder when the original researcher is no longer available: they
may have graduated, have taken a new job, or have died. If the goal is to enable
reproducibility on the scale of 10-20 years [29], significant care is needed to record
all the necessary details. A focus on the human side of scientific computing [90] can
also make it so that others can understand and incorporate published research into

their future efforts.
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To survive technology evolution. Many research codes depend on a large
number of sub-components like libraries, compilers, runtime systems that must be
independently installed, configured, and tested on a given operating system. A large
computing site must occasionally go through an upgrade cycle to activate new hard-
ware, change system facilities, or upgrade the operating system. These are frequently
not backwards-compatible changes, and so all the supporting components must be
re-built to accommodate the new environment. The unsuspecting user may face an
enormous amount of work to reconstruct all these components. Reproducibility tech-
niques can assist in recreating the dependency tree (and testing it) after a major
upgrade, hopefully for years to come.

To enable community maintenance and support. A code developed by a
single researcher typically has a short productive lifetime. Keeping the code work-
ing on multiple platforms and relevant to current research trends takes time, and
eventually the researcher moves on to other activities, leaving “orphan” code be-
hind. However, if reproducibility techniques make it easy to execute a code in many
different contexts, responsibility for the code can be held by a larger community.
When multiple stakeholders are familiar with the code, technical problems are more
easily solved. Even automated techniques can be employed to perform maintenance
on an experiment when the research is adequately reproducible. [66] By publishing
reproducible research, ownership of maintenance is effectively transferred to the com-
munity [69] level. This allows the publishing scientist(s) to focus more on future work
than previous work.

In summary, computational scientists are often encouraged to make their research
reproducible so that that other scientists can verify, reproduce, and extend their

computational experiments, but there may be personal benefits also.
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2.2 Technical barriers to replicating a single command

Let us begin by considering the technical challenges of reproducing just a single
command. Suppose that an end user connects to a university computing facility and

enters the following command:
do_science.sh lab.dat model.csv 8 plot.jpg > stdout.csv

From the user’s perspective, the command string is the only visible evidence of
the program. The command itself provides the most superficial form of replicability:
by entering the exact same command into the same terminal later that day, there is
a good chance that exactly the same outputs will be produced.

However, there is no guarantee that the same command applied by a different
user on the same machine, much less a different user on a different machine, will
succeed at all, much less produce the same output. This is because the command
string replies on a large number of dependencies in the form of hardware, software,
and data, as shown in Figure Some of these dependencies are explicitly mentioned
on the command line (like the file model.csv) while others are implicitly provided
by the system.

The following sections cover such environmental challenges, in addition to chal-
lenges connected with abstractions, run-time anomalies, verification of results, and a

discussion about whether source or binary code should be the target of preservation.

2.2.1 Environment

I define the environment as both the system resources and the domain methods
used to perform the computational side of scientific research. The scope at which
systems preserve or describe the environment varies widely. Research is more likely to

be reproducible when all levels of the environment are preserved or at least identified.
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Command do_science.sh Igp.dat mgdel.cgle pIotljpg > stdi)/ut.csv
Data e | Toas ipovente? Seae]_resane (T8 s e T2
Software python 2.7, gnuplot 4.2, gcc 6.2.0, java 1.8, sqlite 3.14
Operating System CentOS 7.2-1511
Kernel Linux 2.6.32-642.6.2.el6.x86_64
Hardware X86_64, 4GB RAM, 8 cores, 20 GB disk

Figure 2.2. Task Environment Levels and Examples

Examples of environmental components at various levels. More details in

sections [2.2.1H2.2.1.4.

2.2.1.1 Command scope

A ‘do_science.sh’ script can contain all information needed to replicate the exper-
iment. However, this approach can mask valuable information from the user, making
it difficult for another scientist to extend the research in order to explore or build on
the experiment. Requiring additional parameters that are handled by the script may
seem to overcomplicate an experiment, but doing so communicates those decisions
made by the original researcher which are deemed most relevant. Parameterization
can be an important tool for extension. If crafted carefully, parameters can give both
the original researcher and collaborators the ability to easily explore the parameter
space to gain confidence in the validity of the research. Figure starts with an
example of a parameterized command at the top. Parameters can be numbers or
strings in the command scope, but in the data scope (section the parameters

can refer to files.
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2.2.1.2 Data scope

Most scientific research involves some kind of input or starting data in addition
to the final generated results. For reproducibility purposes I will mostly consider this
data to be in the form of files, but it could come in the form of Unix standard output,
literal parameters, etc.

This data could involve network dependencies which can make reproducibility
more challenging. For replicability, these dependencies might be satisfied by recording
the data retrieved over the network and then simulating the network in subsequent
runs of the experiment. However, for other changing factors (especially to the domain
methods and original data) this approach becomes less likely to capture the network
resource adequately. It might be necessary to capture and transfer the entire database
from behind the network resource to ensure that the workflow will still be reproducible
in the presence of changes.

Authorization issues are another common challenge with data, either from a secu-
rity or privacy perspective. Authorization keys are sometimes kept in pre-determined
file or location, and certain data files may include private information. Such infor-
mation should normally be excluded from a publication, but without it, the research
is not reproducible. Accepting this information as an input parameter can identify
a need for the information without publishing the sensitive data, enhancing repro-
ducibility. This could be done in the form of a template.

Templates are programs that expect input parameters for dynamically specifying
the data the program is supposed to operate on. They can be helpful for the original
researcher when the input data is updated incrementally or to compare different
datasets. This form of parameterization is also useful, for extensible reproducibility,
when other researchers have different original data and want to use that to evaluate
the domain methods with.

Using a single command with lots of parameters can get confusing for large ex-
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periments. In the interest of extensible reproducibility, and to simplify things for the
original researcher, it is advisable to break down the experiment into smaller parts
and organize them in a workflow [47, (185, [124]. Different levels at which a workflow
can be composed are discussed in the section [2.3.1]

Descriptions that involve both the command and data scopes are similar to func-
tions (consider ﬁgure, where an external name needs to be given to all arguments
(for the inputs) and the results (for the outputs). The internal names used for that
data inside the function are considered parameters (for the inputs) and returns (for
the outputs). This separation between internal and external names can be important
for workflows because sometimes legacy software expects input from fixed filenames
and uses fixed locations for generated files. In these cases, and when a template
is used multiple times as part of a workflow, the naming of data files can become
complicated from a workflow perspective. More on the issue of naming can be found

in section B.11

2.2.1.3 Software scope

Part of the challenge with software dependencies is that different versions of a
particular software program or library are mostly compatible, but always include
some changes. Even newer versions of software that claim to be backwards compatible
may have unintended differences that can affect reproducibility. Software names can
be ambiguously used without version numbers for ease of use by the scientists, but
for reproducibility, all necessary software should be uniquely identified to ensure
consistent behavior (more in section . Packages can be used to make this process
easier and can include any combination of elements from the command, data, and
software scopes, as shown in figure [2.2]

Also, scientists generally prefer to focus on their science and care less about

lower level resource management [88] handled by system administrators. They are
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more interested in the destination than the journey, in part due to the exploratory
nature of scientific research. Scientific research is more often marked by a desire for
infrastructure independence than with an emphasis on benchmarks and how quickly a
system can execute a workflow. Readers interested in infrastructure and performance
can find more information about system-centric workflow systems and distributed test
beds in [28].

If a given research experiment is infrastructure independent, it will be more easily
reproducible. However, scientists sometimes decide they need a little more control
over the system resources. At this point, the boundary between system administrator
and domain scientist comes into question, which in turn makes the responsibility
for reproducibility more ambiguous. What software should be provided by system
administrators versus how much control should scientists have in setting up their own
domain specific software on generic computing resources?

From a reproducibility perspective, the scientist is generally unaware of modi-
fications made by the system administrators. Even the system administrator may
not put a priority on tracking all aspects of the system’s configuration. The line
between domain methods and system resources also varies between domains, making

it difficult to come up with a reproducibility solution appropriate for all domains.

2.2.1.4 Operating System scope

Occasionally the scientist will want a different version of the operating system than
is available on provided resources, but this is often beyond their control. Containers
such as Docker [138], Kubernetes [27], and Mesos [91] have emerged to address the
need for users to have easier access to specific versions of operating systems. Con-
tainer popularity is evidence that there is a need for this level of specificity in a
description of how computational science is performed.

Containers also depend on a specific kernel in order to work. This means that
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by specifying an appropriate container for computation research, the kernel is also
specified. But it also means that a container depending on one kernel cannot be

initiated on a computer running a different kernel.

2.2.1.5 Kernel scope

Virtual machine images can satisfy the need for all system software in addition to
providing virtual support for some hardware requirements of computational research.
However, the overhead of instantiating virtual machines can be prohibitively high,
especially for short running tasks if a virtual machine is instantiated for each task.
This can cause domain scientists to gear the workflow towards performance, with
larger tasks, rather than extensible reproducibility, with logically sized tasks. These
larger tasks are likely to be more obscure to other scientists than those designed with

logical domain science granularity (see section [2.3.1)).

2.2.1.6 Hardware scope

For workflows executed on a single machine with no network dependencies, the
computer itself could be preserved in a museum or library as a part of reproducibil-
ity [144], but this is clearly not feasible especially for large data sets analyzed on
distributed systems.

Another aspect of the hardware scope not normally handled at the other scopes,
is the concept of finite resources. A scientist focused on domain specific issues can
neglect to preserve the memory, cpu, disk, and perhaps network resources needed for
a workflow and it’s parts. This information is also difficult for system administrators
to track because additional resources are required to monitor the resources used by
a workflow. Both groups are disincentivized to preserve information this detailed,
but it may be difficult for another scientist to reproduce the research without this

information, and will almost certainly make reproducing the results less efficient.
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2.2.2  Source code or binary code?

When attempting to preserve a workflow for reproducibility, decisions must be
made about when to preserve source code and when to preserve the binary code that
was generated by compiling the source code.

Considering reproducibility, source code seems like the obvious choice. But the
compiler then becomes an important part of the workflow and measures need to be
taken to ensure that the compiler is available and can execute on future compute
resources. Some time in the future it might be easier to find a modern replacement
for a compiler than it would be to find a modern way to execute the the binary
code. At some point in this recursive problem, assumptions may need to be made
about what will be available in the future. So just preserving the compiler doesn’t
completely ensure reproducibility in the long term.

Source code more easily communicates to colleagues what each task is doing
and lends itself more easily to modification by those other scientists, making it a
better choice for reproducibility. In fact, important information about the science
is embedded in the source code, whether through comments, structure or naming.
This information is ignored by the computer as irrelevant, but could be considered a
collection of facts that help support the claims made in the published research. Those
facts can add knowledge about a workflow in general and also software components
individually, especially when the components are novel in the scientific domain.

However, in order to use the source code, it must be converted to binary code by
a compiler which can take a significant amount of time. If the compilation is done
on each compute node in a distributed system, the compile time can add significant
costs to executing the workflow. This makes preserving the binary code a better
choice if replicability is all that is needed, not reproducibility.

However, there is no need for a rule that states one option must be chosen at the

expense of the other. If both forms are preserved, the preferred option can be chosen
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Figure 2.3. Visualization of a Genome Analysis Workflow

Data or information (indicated by squares) and actions or processes (indicated by
circles) are connected by a derivation tree, where the root is source data, and any
subset of the remaining generated data components could be considered the results.
later on, when the needs are more clear. For data-intensive workflows, preserving
the source code, compiler and the binary code is unlikely to make an unreasonable

addition to the total storage or communication costs.

Having both options also makes it more likely that one or the other will provide
the level of replicability /reproducibility needed at some future date on some future
compute resources. Indeed, having more than 2 levels of abstraction where the highest
level describes the task or workflow in very broad terms might allow for a task or
workflow to be re-created in a situation when neither the source code nor the binary

code can be executed.
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2.3 Technical barriers to reproducing a workflow

The Workflow Management Coalition [93] defines a workflow as the computerized
facilitation or automation of a business process, in whole or part. For a scientific
workflow, the business process is an experiment with a focus on scientific discovery,
innovation, and/or invention. A set of procedural rules describe the processing and
generation of documents or information. I also focus specifically on solutions for
scientific workflows which are data-intensive [167]. While there may be some scientific
computing efforts that would not be considered workflows, there is value [168] in
applying workflow concepts wherever computers are used as a part of the scientific
research process.

A visualization of a workflow for Genome Analysis is shown in figure [2.3] Data or
information (indicated by squares) and actions or processes (indicated by circles) are
connected by a derivation tree, where the data at the root is source data, and any

subset of the remaining generated data components can be considered the results.

The workflow programming paradigm is seen as a means of managing the
complexity in defining the analysis, executing the necessary computations
on distributed resources, collecting information about the analysis results,
and providing means to record and reproduce the scientific analysis. [177]

The workflow programming paradigm is seen as a means of managing the
complexity in defining the analysis, executing the necessary computations
on distributed resources, collecting information about the analysis results,
and providing means to record and reproduce the scientific analysis. [177]

A workflow management system [I85] provides a bridge between the work people
do and the work the computers do. They are important [I30] in making compu-
tational science more convenient for scientists, but they can also help improve re-
producibility. Unfortunately, there are many workflow management systems, and
there is no common or accepted format or procedure by which a workflow should be

recorded or shared.
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Project Granularity

System Calls || sys_open, sys_gettimeofday || Traced by ReproZip, CDE

Middleware Operations || split/merge, map/reduce || Available in Kepler, Triana, Taverna

| |
| |
| Domain Tasks || simulate(x), analyze(y) || Supported by Makeflow, Pegasus |
| |
| |

Workflow || BWA-GATK, Monte Carlo || Shared through github.com, Galaxy
Workflow History || Get Checkpoint D || Archived in Prune

Figure 2.4. Project Granularity Levels and Examples

Computations can and are preserved at various granularities. Each option has
certain benefits and shortcomings (see sections|2.5.1.142.3.1.4)).

2.3.1 Project granularity

The size of each step in a scientific workflow can as small as a system call, or as
large as a single command that performs a complex system of hidden computations.
For extensible reproducibility the granularity should be domain specific and chosen by
a scientist to reflect the granularity of the scientific concepts involved. Many systems
impose restrictions on the granularity, making it more difficult to use the workflow
as a way to communicate the details of the research between scientists. However,
those restrictions can also make it easier to use and more effective for a specific class
of user. [44] Each of the levels of granularity shown in figure have advantages,
but also disadvantages which can be a barrier to reproducibility. In addition, the
existence of so many options can be a barrier, as a scientist accustomed to using one

level, may have difficult adapting to another.

2.3.1.1 Granularity: system calls

One simple solution for preserving a workflow is to trace [35], 153, [154] and log
all system calls (such as sys_open, sys_stat, sys_gettimeofday, sys_getuid, etc.)

during the execution of a workflow. This system call log can be used to identify which
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files were actually used for the workflow. The remaining files can be excluded from
a package or image that contains the environment the workflow is to be executed in.

While this approach can provide replication for deterministic workflows, it may
not work if the workflow is modified or if part of the workflow is non-deterministic,
since different library files might be needed in a subsequent execution.

And even after eliminating excess files for a given package, duplicates will exist
across packages that are only slightly different from each. This becomes a storage
problem as a workflow evolves through progressive iterations.

Sharing a workflow at this level can definitely provide replicability, but it is dif-
ficult for a colleague to understand what the workflow does. The log itself can be
valuable for a very experienced user, but for a domain scientist, it is probably only

useful as a last resort when other more coarsely organized workflow descriptions fail.

2.3.1.2 Granularity: middleware operations

Another solution is to allow a middleware designer to choose which logical op-
erations can be applied to data. More complex operations must be created by the
scientist composing new operations using a combination of provided logical opera-
tions, such as merge/split operations, or map/reduce operations.

Kepler [4] is an extensible system for the design and execution of scientific work-
flows with a focus on GUI presentation. Directors are execution models with plug-ins
which manage actors or tasks (sources, sinks, transformers, analytical steps, compute
steps). The Triana [I76] workflow environment is designed for managing distributed
applications (P2P, Grid, middleware toolkits). It works at a web services level (GUI
for connecting tasks), but more complex services can be built on the ones provided
by the system. Taverna [97] is a tool for building and running workflows which is
also based on web services.

While better than working with system calls, these low level operations are typ-

29



ically less abstract than a domain scientist would prefer to deal with and make it

difficult to understand the science without an abstraction at higher levels.

2.3.1.3 Granularity: domain tasks

Alternatively, a scientist can choose what happens in a task. As an example, one
task could be designed to simulate events, while another analyzes them. Param-
eters on the task could include things like the numberx of events, their type, and
a seed. Using abstractions at a domain level [46] makes it easier for other users to
understand the workflow when it is shared with them. This flexibility makes domain
tasks a good granularity for extensible reproducibility.

Problem Solving Environments or PSEs provide all the computational facil-
ities necessary to solve a target class of problem. Users can use the language of the
target class of problems, while the PSE fills in the details with appropriate hard-
ware and software. The user does not need not have specialized knowledge of the
underlying hardware or software. [1111 [76], [75]

In effect, they separate problems and solutions from the hardware and software
that carries out the solution. This helps the user focus on their domain [23], and could
also support the use of advancements in hardware and software without additional
effort from the user.

Such systems are particularly well suited for education [I79, [143] because they
allow the focus to be on concepts, not programming. PSEs can also be used in
distributed computing, allowing a researcher to access more computing power with
less effort. [74]

A related topic called Computer Assisted Engineering (CAE) [2] is applied specif-

ically to engineering, but can have some applicability to scientific computing.
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2.3.1.4 Granularity: workflow and history

A scientist can group tasks together into a specific workflow. This level of ab-
straction can identify the results that are used for a publication, but is more effec-
tive for reproducibility when it includes components at lower levels of granularity.
There is also significant information to be found in the evolution of workflows (see
section . Comparing workflows after small changes or comparing between
researchers, can uncover portions that are similar [I0I] or identical. This enhances
reproducibility by allowing scientists to focus on differences rather than comparing
the identical portions.

However, a scientist can’t keep everything forever. The archiving of knowledge
is generally done by libraries who keep records through books. Their influence is
expanding into the digital realm, but their exact role is still unsure. I generally
assume that once a decision has been made to keep something, it is easy to keep it
forever. However, libraries constantly have to make decisions about what to keep
and what to discard, and deal with such issues as copyright and access. Another
publication [160] provides more information about such issues and how they apply

to research data.

2.3.1.5 Abstract vs. concrete

The chosen method for describing a workflow can fall along a spectrum between
abstract and concrete, or can incorporate both abstract and concrete elements which
are connected together. Abstractions can allow the scientist to work with high level
concepts which can be later compiled into more concrete components [128]. The
more abstract the workflow description is, the easier it is for scientists, making it
more likely to be extensibly reproducible. High level visualizations can be used as a
guiding tool for solving specific problems [22].

But at the same time, an abstraction can leave room for unexpected behavior,
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putting even replicability at risk. For example, a graphical user interface can be bad
for reproducibility because unexpected behaviors may go unnoticed.

At the same time, a more abstract workflow might be chosen because it can
be more adaptive to changes in the runtime environment. Especially with the ex-
ploratory nature of scientific computing, the exact number of computations needed
in a particular step may be unknown in advance. In such situations, the importance

of verifying results becomes even more significant.

2.3.1.6 Data management

Data set sizes are increasing in all fields involving computational science. Maybe
not on the order of petabytes such as with high energy physics, but usually large
enough to merit distributed systems for processing and sometimes even simply stor-
age. Most version control systems for managing source code are designed to fit on a
single machine. In addition, with a focus on managing lines of code, data is typically
treated as an inscrutable blob of bytes.

A workflow is of no use without the data it depends on, but with big data, the
data must often be kept separate from information on the workflow with such ver-
sion control systems. The connection between the two can be the first component to
breakdown when attempting to reproduce the workflow. With a little bit of personi-
fication [83], some have come to accept that data needs more public attention.

In addition to large input datasets, the data generated by the workflow might
be too large to share with others practically or efficiently. However, without the
final datasets it is difficult for a collaborator to verify the results of an attempt to
reproduce a workflow.

Data provenance refers to the derivation history of a data product starting from
it’s original sources. Derivation steps could include database queries, command line

strings, executable files, or other similar actions eventually producing some data
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result. Specific examples of ways to preserve provenance for computational tasks
are available [72]. But the exact metadata recorded varies widely depending both
on the requirements of the system and the purpose for the provenance. In fact, a
full survey [167] is dedicated to this topic. Data provenance is not always include

sufficient detail to re-execute the history of operations.

2.3.1.7 Evolution

Designing a scientific workflow is an evolutionary process. Recording the evolu-
tion can be valuable in communicating the validity of research. If another scientist
wants to try changing some parameter in the workflow, the evolution history might
reveal that the path has already been tried. In addition, seeing the various workflow
attempts can help to convince other scientists that sufficient attention has been given
to the parameter space surrounding the final research. The absence of this data is a
missed opportunity for more extensible reproducibility.

This evolutionary workflow data could also be useful in bi-directional research
sharing. If multiple research groups are working in a similar vein, they can benefit
from each others’ efforts. However, this type of data could easily grow beyond the
scientist’s capacity to preserve the workflow evolution data without sorting through
it to find the minimum data that must be recorded, so that derived data does not

have to be stored indefinitely.

2.3.2 Workflow execution

Certain methods for executing the workflow can introduce problems with both
reproducibility and in the validity of the scientific research itself. Research is vulner-
able to measurement bias in many different forms [142] especially when the scientist
can execute code manually.

Automating the execution of all parts of the workflow can resolve some of the
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measurement bias, while at the same time saving time and being more convenient for
the researcher. However, any model used to automate a workflow can be restrictive
to the researcher. This could be because of a concern for performance or, more likely,
the automation language is prohibitively complex for the scientist. Whatever the
reason, scientists are temptated to execute at least some of their workflow manually,
making it hard to maintain a reproducible representation of the workflow.

Even an automated workflow can run into isolation issues where data is available
on the original computing resources, but is not available in the workflow description.
For example, either the scientist or system administrator may be unaware of the
dependency on some resource. In this case, more isolation between the workflow and
the user space would help with reproducibility because such problems would have to
be resolved before the experiment could complete execution in the first place.

In other cases, the resource could also be intentionally unavailable based on pro-
prietary or privacy restrictions in place. In this situation, the isolation between the
workflow and the user space can actually get in the way of reproducibility.

Also, the size of a resource could make it impractical for inclusion in the workflow,
or for performance reasons, the resource could have been made available on a site
specific resource such as a shared or distributed filesystem. In such cases the resource
should be identified in the workflow to satisfy isolation, but the actual run-time
connection to the resource may need to be more flexible. Finding a balance for
isolation which is appropriate for reproducibility is difficult.

There are different ways [197] to make sure data is getting to the right places
for execution. In a user-directed approach, users must identify file locations in the
specification and a method for obtaining them, if not already available. In a central-
1zed approach, a central repository holds all the data and each execution node must
transfer files to/from there. In a mediated approach, a central repository holds only

meta data about files and their locations. The files themselves can be distributed
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across many nodes reducing the bottleneck on the central repository. In a peer-to-peer
approach, no central repository exists, so each execution node has a list of neighbors
that can be queried for the data.

The centralized approach is the most reproducible, assuming the central reposi-
tory remains available. The peer-to-peer approach does not require a central repos-
itory, but a workflow might not be reproducible if even one of the input files can’t
be found. The mediated approach is also more risky since the node(s) containing
the actual data could be unavailable even if the central repository is working. After
long periods of time (such as decades), a user-directed approach might need to be a
fallback for reproducibility purposes, in the event that resources needed for the other
methods are no longer available.

Alternatively, the code can be moved to the data when the data is big and the
code is small. This can be a big boon to performance in some cases, but might
not be supported by a workflow management system designed for a data movement
approach. It is also possible that this mode of execution is not available for another
scientist using different resources, so relying on code movement would decrease the
chances of a workflow being reproducible.

Fault tolerance is a phrase often used when describing distributed systems that
can handle the failure of some nodes in the system. But various levels of fault
tolerance can be appropriate, depending on the scientific domain. For example, in
some stages of high energy physics workflows, not all tasks need to be completed
in order to consider that stage complete. This type of behavior can be a challenge
for reproducibility because the failed tasks might vary between scientists. It can
be difficult to determine whether a workflow is indeed reproducible when different
individual failures exist in two workflow executions, but the number of failures is
acceptable for both executions.

If multiple users are a part of a single workflow, there can be a great deal of
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confusion when someone updates the workflow at an earlier stage. A scientist working
on the later portions of the workflow will need to somehow merge that update into
what they are working on. The update may or may not affect the final results of the
workflow, but it can be complex and challenging to figure out an appropriate and
convenient time at which to incorporate the update.

When multiple users are involved, the naming of objects becomes challenging
because each user would like to have control over naming, but names also need to
identify identical objects across collaborating versions of a workflow. So an overview

of existing approaches to naming on computers is needed.
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CHAPTER 3

RELATED WORK

Many approaches are available for managing scientific workflows. But consider-
ing collaboration between scientists introduces an additional problem with naming
conflicts across scientist repositories. Naming solutions are well established and re-
lated to the challenges in collaborative scientific workflows, so I introduce various

approaches in detail as related work.

3.1 Naming

Due to the exploratory nature of scientific discovery, attempting to introduce too
much organization into the workflow too early can be wasteful. Scientists may prefer
to wait on coming up with a name for certain components (such as ‘analysis’ or
‘simulation’) until they are sure their value in the workflow is proven. Or they might
only give human-centric names to the most significant components. In the meantime,
the computer still needs to distinguish between the remaining objects and must most
likely also group or link them together.

In addition, the names used to identify certain objects at one point in time, can
be repurposed to refer to new objects as the workflow evolves. A workflow could also
evolve in two different directions (perhaps by multiple scientists, or by one scientist
trying two different ideas). Given two workflows with similar origins, it is difficult to
identify which components are the same, and which are different. If this comparison
becomes too difficult, the effort needed to incorporate a colleague’s research can be

greater than the benefits that may come. In fact, a bad experience attempting such
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a comparison can lead to a perception that no benefits from a colleague’s research

can outweigh that cost.

3.1.1 Namespaces

Each scientist, working individually, has full control over their own namespace
which allows them to ensure that names identify the appropriate entity or entities.
The home directory for a particular user on a computer is an example of a namespace.
A user generally has complete control over the file and folder names in their home
directory (except for a few reserved names and characters such as the <. and ‘..’
folders and certain characters not permitted in file names). Users can also create
new namespaces when they create sub-directories.

An entity named ‘analysis’ by one scientist could refer to a completely different
entity by another scientist. When their namespaces are separate, this is not an
issue, but when sharing research methods with other scientists, these collisions can
be impossible for a computer to resolve automatically.

One solution for the merging of namespaces is to take an approach similar to
how directories hierarchies work. Individual scientists are allowed to continue with
their own namespace, and a parent organization (or a super-namespace) is created
to distinguish between the individual namespaces when more than one namespace is
involved. An identifier for each namespace (such as a path or folder name) can be
prefixed before the rest of the name.

However, the prefix can become tedious for frequently used entities that happen
to have been created in a different namespace. A scientist may want to give a new
name for that entity in their own namespace which can also become confusing because
now a single entity has multiple names. If colleagues communicate with names that

are only appropriate in their own namespace, there can be a great of confusion about

what is being referred to.
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DOI (Digital Object Identifier) doi:10.7274/R0Z31WJ1

URI (Uniform Resource Identifier) http://ntrda.me/2IHwdz|

_ Internet.com’ netrEnce com

IP Address (Internet Protocol) 192.168.1.1, 10.0.0.5

MAC address (Media Access Control) 48:65:6¢:60:6f.21

Hardware Ethernet, WiFi

Figure 3.1. Entity Naming

Examples of network and internet entity naming

3.1.2 Persistent identifiers

A scientist will occasionally need to move workflow files to new storage locations.
If the naming of workflow components is tied too closely to their pathname, this
hinders the ability to compare different evolutions of a workflow. On the internet,
the ability to move and replace lower level network components is ensured by creating
a hierarchy of names, each level of which can be modified without affecting the higher
level names. Such higher level names (such as DOIs) are especially relevant when
reproducibility is taken into consideration.

Each device on a network is an entity, identified at the lowest level by a MAC
address (Media Access Control), which is essentially a name for an entity on a network
(see bottom of figure . The MAC address is 6 byte number which is typically
displayed to the user in hexadecimal notation (for example 48:65:6¢:6¢:6f:21). The
purpose of the MAC address is to uniquely identify that specific network device
globally worldwide.

If that device fails and is replaced, the new name must be propagated to everyone

who used the old name. IP addresses were created to mitigate this problem. They
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are a new higher level entity or abstraction designed to identify a computer (rather
than a device), and can be mapped to a specific device as needed behind the scenes.

In general, lower level entity names are typically more effective for replicability.
They help to identify the exact set of operations needed to re-execute an experiment
precisely. The MAC address is better for doing exactly what was done before, but an
IP address makes it easier to account for later changes to the system. This makes IP
addresses a better choice when extensible reproducibility is the goal, since the MAC
addresses will not be appropriate on another set of computing resources.

But IP addresses are still difficult for people to remember, so domain names were
created. Domain names are more human friendly names that identify a new entity
called a site (rather than a computer), and can be mapped to IP addresses.

Each of these namespaces is managed by an organization which allocates sub-
namespaces to other organizations. For example the first 3 bytes of a MAC address
identifies the organization (such as a hardware manufacturer) which manages the last
three bytes. And with domain names, top level domains (such as .com and .org) have
control over the namespaces below that top level.

The identifiers for these namespaces are directly tied to a location, a domain name
resolves down to an individual network device at any given point in time. But there
is also a need for persistent identifiers that are separated from the location of the
entity they refer to. And in addition to identifiers for physical entities, such as a
network device, there is also a need for identifiers for any type of digital entity.

A URI (Uniform Resource Identifier) is designed to identify any resources, with a
URL being the most common type of URI. A URL is connected to a location through
the domain name embedded in it’s identifier, but a URI does not have to include a
location. The Handle System [I74] is also part of the URI specification and is a
namespace for global persistent and unique identifiers with a specific data type, but

no changeable attributes such as location, ownership, permissions, or timestamps.
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One implementation of the Handle System is the DOI (Digital Object Identifier)
system. A DOI can be an identifier for any type of entity, and is associated with a
URL, but the URL can change as needed.

A similar hierarchical approach could enhance extensible reproducibility by pro-
viding names that persist across scientific domains, but such a system is not yet in
place. DOIs are often used for this purpose (to provide a global name for some entity)
and are a great step towards reproducibility. However, their ability to change can
also be a problem over time, because there is no guarantee that a given DOI will hold

the same contents in the future as it did at the time a scientific paper was published.

3.1.3 Immutable identifiers

The ability to change the entity that a name refers to can make it difficult, from a
historical perspective, to effectively communicate what entities were used to generate
research results. For a given name, if an entity is replaced after or even while results
are generated, referring to that name later on will likely prevent reproducibility if the
system does not prevent this behavior.

In between a persistent identifier (which is designed for user convenience) and
the location of an entity (which is all the computer needs) is an immutable identifier
that allows multiple copies of the entity to exist in various locations, but prevents
revisions or alterations to the entity which could prevent reproducibility.

If a central authority exists which manages unique entities, the authority can
assign an immutable identifier to each entity using methods ranging from an incre-
menting number to UUIDs. In a distributed environment, a checksum of only the
significant parts of an entity can provide an immutable identifier using an agreed
upon algorithm. But a significant amount of forethought is needed since there are
many checksum algorithms available, and it can be difficult to distinguish between

significant and changeable attributes of an entity.
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3.1.4 Overloading

Choosing an appropriate system for generating identifiers is further complicated
by the challenges that come from having too many names for an entity or too many
entities for a name.

Reproducibility can be more expensive when there is more than one appropriate
name for an entity. In workflow descriptions, this entity overloading can cause extra
network traffic, storage space, and computational resources because they might be
treated as separate entities. These problems usually cause inefficiencies, but have no
effect on reproducibility in the presence of sufficient time and resources. Filesystems
that support file linking can deal with this problem by allowing a single file entity to
appear to be in multiple folders and/or have multiple filenames.

On the other end of this spectrum, when namespaces are not clearly defined or
managed name overloading can occur. This is a much more significant reproducibility
problem than entity overloading. Imagine a folder on your computer with a single
filename that points to two file entities. When attempting to access the filename the
computer is unable to decide which actual file to open. Perhaps the filesystem could
prompt the user to choose one over the other, but in a script, this is not possible.

The actual solution in most filesystems is that the new file entity replaces the old
one. The user is often prompted to make sure this is the desired behavior, but once
replaced, the old file entity with that name is no longer available. Even if the file
system keeps all versions [164], it is difficult to resolve filenames when the version is
ambiguous or without a desired timestamp, and the system is forced to make a guess.

This is a common occurrence in evolving workflows when there is a progression
of the specific details (or entities) used to achieve some generic purpose. From the
scientists perspective, each progressive version is an improvement on the last, so the
most recent one should be used. However, even a small change in a single entity can

drastically change the final results. So for reproducibility, it is important to uniquely
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identify entities in the workflow, so that the correct entities get used for a historical
workflow. This means that a name alone may not be sufficient if previous versions

need to still be available.

3.1.5 Versioning

A example of this problem that is a common source of reproducibility problems
is the evolving versions of software libraries. The intent may be for all versions to
be backwards compatible, but there can still be subtle changes that alter results. In
addition, for the purposes of reproducibility, forward compatibility might be needed
if the original scientist used a newer version of the library than a later scientist. A
version hierarchy (ex. 1.2.10) is often used to distinguish between updates that are
more or less likely to break a system that relies on the library. In order to identify
relevant entities, this version ‘number” should be used in connection with the name
of the library to uniquely identify an entity such that the name and version is an
immutable snapshot of that library at a specific point in time. The version hierarchy
has meaning to the user, but a computer typically sees it as no different than what
could be achieved with a timestamp or a number that auto-increments with each
new version. The combination of a name and a version provides both; an appropriate
name for the user to understand the purpose of an entity, and an immutable entity

that should be used by the computer.

3.1.6 Hashing

Another problem is that computers are unable to detect similarities between en-
tities the same way humans can. However, they are very good at quickly identifying
when two objects are in fact the same identical entity. A hash function can be used
to map data of some arbitrary size to an identifier (or hash key) of some fixed size.

In order to be useful, hash functions must always produce the same fixed identifier
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for a given data entity. When using a hash function to name a data entity, there
is almost no possibility for entity overloading even without a central authority. A
perfect hash function will always produce a unique identifier with no collisions (i.e.
no name overloading). While a universally perfect hash function is unlikely, a wide
range of hashing algorithms are available with various collision probabilities, many
of which are appropriate for almost all situations.

Unfortunately, despite the advantages, humans find it difficult to work with hash
keys because they appear to be random and need to be fairly large to provide sufficient

assurance that collisions will be avoided.

3.1.7 Distributed hashing

To avoid a central authority, a hash function can be agreed upon as a way to
uniquely identify relevant entities. For example, git [125] uses hashes of file and
directory content to generate a hash that uniquely identifies each commit. A descrip-
tion of the commit is highly encouraged, but is not intended to be unique or to serve
as a key for finding the commit. The description is solely for the benefit of the user.

A central authority is avoided because all participating computers agree upon a
programmatic division of entities. Each computer maintains the data agreed upon by
the groups hashing function, and the system relies on that function to ensure entities

can be found using appropriate names.

3.1.8 Tags

Tags aren’t much different than names, but the word is used to describe objects
with no attempt at or expectation of uniqueness. If fact, they are used more to group
objects than distinguish between them. In a way they are the opposite of versioning.
Versions are a computer friendly addition to human friendly names, while tags are a

human friendly addition to computer friendly unique identifiers (using hashes or an
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authority). Tags are also typically only relevant within some localized namespace.

3.1.9 Lineage

Another approach to naming that is particularly attractive for reproducible re-
search is to embed the lineage or history of a particular entity in the name itself.
For example, in a Merkle Tree [139], the leaves are ordinary data entities without
names, and every other node has a hash key as it’s name. The hash key is generated
using the hash of the sum of the hashes from the child nodes. Other technologies
that incorporate similar techniques include Git [125] and CVMFS [20].

Attempts have been made to create a universal identifier [79] for computational
results. But there are still many different approaches being taken and it seems like
there is more divergence in methods occurring than there is convergence. The con-
flicting goals of naming versus entity identification make it difficult for both humans
and computers to find and distinguish between computational entities.

It should be clear at this point that there are many barriers to overcome, each of
which can distract a scientist from their domain of expertise. All combined together
the barriers seem to form a wall that effectively prevents most computational science

from being reproducible.

3.2 Techniques for achieving reproducibility

Scientists should carefully choose a reproducibility technique that aligns with their
goals for replicability and/or reproducibility. Some techniques are convenient and
provide replicability, but are too complex to be effective for reproducibility. Others
offer limited flexibility, but provide a high level of reproducibility. The following
reproducibility techniques draw from related ideals in computer science or have a

focus on satisfying domain specific needs.
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3.2.1 Track all operations

One simple solution for preserving a workflow is to trace [35] [153], 154} 95] and log
all system calls during the execution of a workflow. As mentioned before, the system
call log can be used to reduce the size of a package or image enabling the execution
environment. This approach works for replicability, but is not always resilient enough
for extensible reproducibility. However, there are other considerations with can make
this approach desirable.

Transparent Result Caching (TREC) [184] is one way to automatically track the
dependencies that are explicitly stated in a Makefile, so the user can just use ordi-
nary shell scripts to execute workflows. If the method needed to generate results is
recorded, the results themselves can be treated as a cache. When an input changes,
cascading results can be prompted for or automatically regenerated. Certain dan-
gers exist with this approach, such as when there are non-deterministic operations,
network communications, and/or failed tasks.

Nectar [86] is a more modern system designed for data centers. It can detect du-
plicate execution requests before they get sent to execution nodes and instead return
the cached results. Since VisTrails [15] is designed to generate images interactively,
caching the results can be a large benefit so that all historically explored images
don’t have to be stored indefinitely. [126] also addresses saving and reusing previous
computations to reduce the amount of traffic that has to be aggregated. They can
also use that information to detect effective file equivalence even when a checksum

comparison says the files are different.

3.2.2 Track all actions within a walled garden

Environment dependencies can also be resolved by requiring all execution [57] to
occur on a shared, public testbed. In such a system, a workflow can be tracked at a

very high level. For example, an interactive text editor [I14] could track lines of a
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script as they are entered by the user and execute them in the background on behalf
of the user.

In order to prevent conflicts between user and system control of the environment,
such executions are more reproducible if performed in a clean sandbox. In other
words, execution should occur in an environment which is both separate from user
space and loaded without implicit dependencies.

This type of system can even support multiple users [80] with the possibility of
some shared state between them. This virtually ensures reproducibility and extension
of workflows, in the short term. However, flexibility is very limited and scalability is
often out of the hands of the researchers, and eventually the shared system will need

to be updated, requiring new consideration of all archived workflows.

3.2.3 Track all actions from an achievable initial state

Some methods assume an implied initial state, but it is a good idea to make the
initial state more explicit. Recording changes in a way to support undo [198] can
provide a way to achieve a consistent initial state that can be shared with others.
If the ability to replay the changes is included, then there may also be the ability
to revise the replay instructions to support extensions to research rather than just
replication. This replay ability also provides good efficiency during execution with
the ability to look at a particular operation in more detail later [4§], without having

to store all details on the fly.

3.2.4 Execute a detailed specification

Rather than let the user perform or request operations on the fly, the user can
be expected to get organized and plan their workflow in advance, evolving the work-
flow as needed to handle the exploratory nature of computational research. Such a

plan should start with a clear recipe for a repeatable environment, and then domain
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Figure 3.2. Conditional Loop

Directional graph with conditional loop.

appropriately sized building blocks can be used to advance the state of the workflow
using that environment.

The relationship between all tasks, in a workflow, and their dependencies can
often be fully described using a DAG (directed acyclic graph). Some tasks may need
to be run in series (a specific order) if they depend on the results of other tasks
in order to be executed. These series tasks contribute to the height of a DAG that
describes the workflow. Tasks without such dependencies on other components can
be run in parallel, and contribute to the width of a DAG.

Some workflow systems [3] only support tasks that can fit into a DAG structure.
Such systems can optimize the use of resources during execution because all required
tasks are known in advance. The DAG could be extended to allow for additional
functionality, such as with conditional DAGs [146], but adding additional components
to a DAG may reduce or negate optimizations that a DAG based system can do.

Tasks whose execution is conditional or tasks within loops (see figure are
beyond the scope of a DAG. However, a higher level abstraction can be used to

describe conditional or looped tasks without losing DAG optimizations as long as the
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conditions and loops can be decided before execution begins. For example 2 tasks
inside a loop that iterates exactly 10 times where one of the tasks only executes on
odd iterations can be easily translated into 15 tasks in a DAG, even if each iteration
of the loop depends on the results of the previous iteration.

However, any loop or condition that relies on run-time results cannot be directly
translated into a DAG before execution. Such workflows must be handled on a more
on-demand basis. Prediction or estimation may be possible [133, 129], but the full
benefits of a DAG are not available. If other elements beyond a DAG are needed,
the description must be more abstract.

A language based workflow description can support large and/or complex work-
flows which can be directly shared with collaborators. Also a person with program-
ming experience may be able to easily write a program (perhaps in their preferred
scripting language) which generates the desired workflow description in the target
language. This allows a user to create more complex (and more abstract) workflows
than are available in the workflow language itself.

Some systems created and use custom languages designed specifically for their
workflow system [73, [77, 148, [159]. Others focus more on adapting the workflow into
a standard language (XML for example) [25] 6, 9] 196, 192]. Somewhere in the middle
there are standardized languages created for use in multiple workflow systems [7, [187].
A language can even be interactive with the ability to run complex workflows pro-
grammatically, while at the same time preserving the workflow in various convenient
languages even before the code is executed [I5§].

There is great value in designing the language to approximate the scientists’ nat-
ural language [04]. This is more convenient for the original scientist, but is also
easier for collaborators to understand. Taken to the extreme, such systems [111]
might remove the need for scientists to deal with any kind of programming, since

the language provides all scientific needs, and the low-level details are handled by
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individuals outside the scientific domain.

However, users often prefer a graph based system (rather than language based)
for workflows (especially new users) because learning a new language can be difficult.
A graph based approach [89] also typically abstracts lower level details away from
the user, forcing/allowing them to focus on higher level concepts which are more
applicable to their scientific research.

Graph based modeling is sometimes implemented in the form of Petri nets [180]
92]. FlowManager [11] is one example. More recently, UML (Unified Modeling
Language) [163] 14, 55] has also been used to address issues with Petri nets.

The best of both graph and language based approaches can be available by ex-
posing both options to the user. In addition, allowing multiple representations of
the workflow [I12§] can offer new insights and capabilities. Grid-Flow [85] includes
a Petri-net based interface and a programmable Grid-Flow Description Language.
XRL/Flower [I91] also uses Petri-nets, but uses XML to support standard parsing
and validation of the language.

For large/complex workflows, a graph based approach can become unwieldy due to
the vast details available. In order to help graphically modeled systems support larger
and more complex workflows, low level details [149] should be abstracted away from
the user. A system of templates [92] can be used to specify sub-portions of a workflow
in a hierarchy of abstractions. Triana [I76] supplies a graphical user interface which
allows users to drag and drop tools and connect them to inputs and outputs. Tools
can then be “grouped” together to both simplify the visualization of the workflow and
to support an abstraction hierarchy. Kepler [129] supports “abstract components”
which collapse the details of a subworkflow to tame complexity. By using WSFL (web
services flow language) to compose workflow elements, each composition can be used
hierarchically as a web service for higher level compositions. [123] Another interesting

approach [7§] is to attempt to automatically generate higher level abstractions on top
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of the low level provenance.

Ideally a user could describe a workflow in very abstract terms and some domain
specific system could flesh out the details automatically. Pegasus [46] combined with
Chimera [70] support this type of approach. Given a somewhat abstract description
of inputs and the desired outputs, Chimera can automatically lookup operations in a
database and those operations can then be used to accomplish the desired behavior.
Pegasus then marshals resources to execute the workflow, generating the results.

For all of the techniques, but especially for a detailed specification, it is helpful
to ensure that a history of the evolution of the workflow is somehow recorded. In
software development, this is done with a version control system where changes to
the software are periodically recorded. This is so that the state at important points
in time can be obtained even after future changes have been made. Such checkpoints
can be automatic (so the user doesn’t forget), or the user must develop a habit of
choosing appropriate times to record the state. More frequent checkpoints make it
easier to isolate and undo bad changes, but they are more work to create and sort
through. Websites such as http://github.com and http://bitbucket.org have made
it convenient to share this information with collaborators, and are often used for
scientific collaboration. However, such systems can break down when large amounts
of data are involved as they are designed more for source code than for data.

Even with reproducible research there is no guarantee that the research results

will be correct. [121]

3.2.5  Verify and/or validate the final state

The above mentioned Pegasus+Chimera method of workflow abstraction is also
an example of another broad technique for reproducibility. This technique is to pay
very close attention to the final result and less to the steps along the way.

Take for example, the difference between Puppet [127] and Chef [I78]. Both are
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systems widely used for system configuration. Chef takes an imperative if-then ap-
proach where the system administrator designs a sequence of statements that specify
exactly what actions should be performed to get the computer in the desired state.
On the other hand, Puppet allows the system administrator to declaratively say what
packages should be on a computer, and Puppet has some freedom in determining the
best way to install those packages.

A declarative evaluation of scientific results is usually merited, with or without
an imperative list of steps required to get there. The responsibility to ensure that
scientific research results pass declarative needs generally rests completely on scien-
tists. With tools that can assist or automate some of this process, scientists can be
responsible to ensure those tools are applicable and appropriate. Sometimes verifi-
cation and validation are as simple as comparing newly generated results to results
which have already been verified or validated.

If it is possible to automatically determine that results from a replication attempt
are equivalent to the results from the original research, then the exact methods used
to achieve those results may need less scrutiny. Verifying and/or validating the final
state could be the only technique needed to reproduce very simple workflows, but
for large workflows, this technique would be more effective when used in conjunction
with another technique focused on the steps along the way.

Ideally, a scientific workflow will be fully deterministic and the generated results
will always be bitwise identical. However, in practice, there are many sources of
non-determinism [104] which contribute to results being different after a workflow
replication attempt. The degree to which small sources of non-determinism affect an
entire experiment [110] 411, [50] is important to consider.

Some tools help with a comparison, but still require a user to make a final decision
on equivalence. For example, a comparison tool called sfuplotdiff [66] is used in

the Madagascar project to compare a plot generated by an established version of a
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workflow with a plot generated by an extended evolution of that workflow. Special
care is given to tolerate precision differences [58] between the computers executing
the workflow, so that a scientist can observe only significant differences between the
plots. Then the scientist can more easily decide whether the differences are justified

depending on how the workflow was extended.

3.2.6 Require formal dependencies

Relying on conventions is more convenient (for most users) than creating elabo-
rately configured frameworks. However, preferring configuration over convention is
helpful for reproducibility.

At the programming language level, dependencies on libraries can be specified
using commands like import, include and require. However, it is unlikely that the
programming language will locate and retrieve those dependencies if they have not
already been installed. A container image [I38] or virtual machine image can be
coupled with the code, to satisfy those dependencies.

The dependencies can also be specified in a functional manner [52] if the de-
pendencies need to be more granular than a single image. Alternatively, a set of
commonly used dependencies can be bundled together [136] so that a single reference
to the bundle can indirectly include all of the dependencies from the hardware to the
command level.

A system that can embed a full environment specification into each component of a
workflow [49] [T00] enables users to ensure that all required dependencies are included.
If the system only executes the workflow using the fully specified environments, then
any generated results have a high likelihood of being at least replicable. In addition to
providing the ability to replicate component execution on similar hardware, this form
of encapsulation [94] could include subcomponents such as a compiler, to make the

environment specification more portable to hardware systems that are less similar
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to the original ones used. This also allows for more separation between domain
science and computer science [I11], reducing the need for domain scientists to be
involved in programming in favor of focusing on their domain, and also increasing

the Reproducibility.

3.2.7 Validate continuously

In software engineering, continuous integration [71] is when developers flag work-
ing updates to a shared codebase as soon as they are ready, and then several times a
day, updates from all developers are merged, tested, and put into production. Various
websites [36, [I81], [108] can be used to support continuous integration. Comprehen-
sive testing (or validation) is typically automated so that unexpected problems can
be quickly identified before going live.

This concept can be applied (in part) to scientific workflows for collaboration.
While the merging is less likely to be valuable several times a day (compared to
internet applications), the measures taken to make that possible can simplify the
collaboration process enough to make it more effective for reproducibility. For this
to work, a few practices need to be adopted.

There is a big difference between a scientist manually reporting the command
they executed and the scientist requesting a command to be executed with the system
automatically reporting the command used. When the scientist manually reports a
command, there is always a possibility that something was left out, or that something
was changed after the report was made. When the reporting is automatic, there may
still be room for implicit dependencies built into the system, but those can be easier
to track and resolve than transient changes based on what a user types into the
command line.

Automation is a good first step to ensure that a workflow, and any sub-components,

are correctly reported in connection with some results. [45] By some definitions [93],
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automation is the purpose of creating a workflow in the first place.

One of the earliest and most prevalent ways to automate a workflow is the Unix
make [135] utility. Early attempts [165] to encourage reproducible research using
make resulted in some success, but over 38% of the files (figures) were not repro-
ducible. In addition, the system was fairly complex including scripts in various
languages and LaTeX macros, the combination of which made it difficult for other
scientists to reproduce. [68]

More recent attempts [67] using the more modern automation utility SCons [115]
(based on Python) were eventually more successful [66], but that success isn’t nec-
essary tied to those utilities alone. There has been more pressure to make research
reproducible in recent years, and some of the successes could be attributed to that
momentum.

In many cases, the benefits of automation may actually contribute to the overall
“ease of experimenting” [28] while at the same time making great strides toward
reproducibility.

In software engineering, test-driven development is where the programmer creates
a test for desired behavior before the behavior is even implemented. [61] This ensures
that even if changes are made to the software, the desired behavior is preserved. Sci-
entific research is generally too exploratory to be able to define the desired workflow
fully in advance. However, once some research has been published reproducibly, it
can be treated as a test in the sense that it can be used as a basis for comparison
as other researchers attempt to replicate or extend the research. Tests are vital for
performing continuous integration [56].

Various systems [84) [141], [8, 113] designed for automatic deployment and task
execution could be used to assist in efforts to validate continuously.

The Madagascar project [66] applies this concept to reproducible research by

running tests whenever someone submits a modification to preserved research. If
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automatic validation fails and no one in the community steps in to correct the error,
the project is removed from the set of maintained research workflows.

Some workflow systems are specifically geared towards automating and preserving
the generation of graphs and figures to be shown in a publication. One approach
combines Git And Org-Mode [169] to handle the execution of a workflow that is fully
documented as it is created. The final result is similar to a lab notebook and can
be published with all details on how to reproduce it. Similarly, Paper maché [24]
manages a workflow and a IXTEX or .doc file, directly inserting images generated
by the workflow into the document for publication. Vistrails [32] is designed to
interactively generate images so that the viewer can explore visualization with custom
arguments to available parameters. These are tools that provide some automation,

but final verification /validation is performed by a user.

3.2.8 Make the environment explicit

The computing environment used by most scientists is provided by system ad-
ministrators who attempt to balance the needs of many users when making decisions
about how to provision hardware. When scientists need system resources that are
not already provided, they may ask the system administrator to install or procure
those new resources for them. They might go as far as choosing a specific version
of an Operating System or even bleeding edge hardware for their research. If those
resources are not automatically provided, some scientists will even take on the some
of the role of system administrator to obtain those resources themselves. Virtual
machines and containers are relatively new technologies which give scientists more

flexibility. Some of these new technologies improve reproducibility at the same time.
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3.2.8.1 Hardware provisioning

The traditional way to provide compute resources to scientists is to consistently
provision dedicated hardware for each research group. This can include a detailed
list of imperative operations [I78] which describe how to install the environment
directly on hardware. Alternatively, a declarative specification [127, [136] lists all the
components that are needed in the environment, but does not dictate how they are
to be installed.

It is also important to consider the community, reliability and usability [150] of

hardware provisioning specifications as they can get very complicated.

3.2.8.2 Virtual machines

A more recent technique involves provisioning the hardware with a generic system
that allows virtual machines to dynamically be instantiated as needed. This provides
the scientist the most flexibility. But more importantly, it automatically provides
an easy to preserve a copy of the full environment used in the original workflow
execution. This virtual machine image can then be easily shared [96] with colleagues
using cloud services.

This approach is quite effective when the research can reasonably fit in a single
virtual machine. However, a networked system can break down with large datasets
or with research that requires distributed execution to complete in a reasonable time-
frame. Vagrant [87] goes one step further by including complex network configura-
tions in addition to managing software within the virtual environment. However, it
is likely that many unneeded files will get included in the virtual machine image,

making the image excessively large and more difficult to curate and share.
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3.2.8.3 Containers

A container image [138] serves many of the same purposes as a virtual machine
image. But while the virtual machine image is a single file with everything needed, a
container image is a progression of new packages added to previous ones. As such, a
container can have less overhead (especially when booting) because it may be able to
rely on already running parts of an Operating System. Except for the fixed Operating
System kernel, a container can provide what appears to be a completely independent
system. This allows more efficient use of RAM and faster startup times, in addition

to layered filesystems and common files that make disk usage more efficient.

3.2.8.4 Package management

A package management system mostly handles changes to installed software li-
braries. However, most package management systems require root access which means
that access to such systems must be restricted [I82] for security reasons. This con-
tributes to a barrier between system administrators and scientists leading to confusion
when attempting to identify and share the environment.

However a few non-root package managers [52, 42] are emerging which take a
functional approach to setting up appropriate environments. Giving the scientist
such control can help ensure that upgrades don’t sneak in leading to unexpected

results, and can help even with heterogeneous [188] devices.

3.2.8.5 Functions

Organizing a workflow into functions is one way to parameterize tasks into ab-
stract components that perform domain specific operations and are organized in a
way logical to scientists. A simple command can be treated as a function if the

executable is designed to work that way (see figures and .
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Figure 3.3. Environment Scopes
The environment can describe anything from a command involving some data, to

the full computational stack down to the hardware specifications.

3.2.8.6 Distributed systems

For workflow that don’t fit in a single node, a connecting structure needs to exist
between instances of an environment. To execute complex multi-cloud and multi-VM
applications reproducibly, cloudinit.d [26] can launch, configure, monitor, and repair
a set of interdependent virtual machines over multiple IaaS clouds. A launch plan
describes a series of run levels, each of which contain tasks that can be run in parallel.
A service handles the launching, configuring, and status of VMs starting with package
management tools like Yum or configuration management tools like Puppet. In the
case where failure is detected and repair actions are needed, cloudinit.d only restarts
the affected sections of a launch plan.

Whatever the method for defining and creating environments, doing so not only
helps with reproducibility, but also allows the scientist to delegate the responsibility

of providing reproducible system resources.
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With many options for representing and defining environments, I proceed with
an overview of PRUNE which I developed to record a user’s intended environment
and instantiate it to execute each task in a workflow. Each task must be executed
in a sandbox so that when the scientist gets results, there is high confidence that no

implicit dependencies on the environment were missed.
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CHAPTER 4

PRUNE OVERVIEW

This chapter introduces a tool used to explore possible solutions to some of the
reproducibility challenges. It relies on some of the related work in previous chap-
ters, and identifies desirable qualities in a workflow management system designed
for reproducibility. Environments are specified independently from the tasks in the
workflow, but each task is coupled with a defined environment. Workflow evolutions
are preserved before tasks are executed, rather than at a user defined time (as with
git), so that changes that led to results are never forgotten and the granularity is
consistently at the task and files levels.

The components and operations used to identify a workflow and it’s parts are
described. Considerations in object naming are explored, including the naming of
objects stored outside of the workflow on the internet. Desirable features, such as
the ability to automatically manage file storage, account for non-determinism, and

collaborate with other scientists are explained.

4.1 A preserving run environment for reproducible scientific computing

To address problems with current tools for reproducible scientific computing,
PRUNE [102], the Preserving Run Environment, was designed and implemented. In
PRUNE, every task to be executed is wrapped in a functional interface and coupled
with a strictly defined environment. The task is then executed by PRUNE rather
than the user to avoid the possibility of implicit dependencies. As a scientific work-

flow evolves in PRUNE, a growing but immutable tree of derived data is created. The
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provenance of every item in the system can be precisely described, facilitating sharing
and modification between collaborating researchers, along with efficient management
of limited storage space.

The simplicity of PRUNE is first demonstrated with a sample merge sort imple-
mentation. A workflow involving the U.S. Censuses demonstrates PRUNE’s ability
to scale to large amounts of data and make efficient use of available storage. Then
computational science workflows from bioinformatics and high energy physics (HEP)
were executed with PRUNE. Initial attempts to efficiently handle the data needed
for dependencies and creating appropriate execution environments caused a cascade
of failures, and it was discovered that linked files are not always equivalent to copied
files. Adjustments to reduce and/or eliminate these problems were effective, but there

is still room for improvement.

4.1.1 “Preserve First” strategy

Preservation is often perceived as an activity undertaken after research has been
completed [24]. But, by the time the results based on a scientific workflow are
accepted for publication, the authors have moved on to other work, students may
have graduated, or the environment in which the work was done has been changed,
upgraded, or destroyed. The funding that supported the research may have expired,
and so it is hard to justify any post-facto effort in preservation. Even when such an
effort is made, the focus is often only on replicability [I57], and more work is needed
to fill in gaps in the preserved form of the research [I§]. This process is shown in
Figure [d.Th.

In contrast, I advocate a preserve-first strategy for reproducible computational
research as shown in Figure 4.1b. I argue that researchers should first (before ex-
ecuting any code in the workflow) preserve (at least locally) the components they

wish to use. Automated execution based on the preserved components can then
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Figure 4.1. Preserve First

Digital items should be preserved first (before use) to avoid ambiguity about results.

ensure all necessary dependencies are included, otherwise the execution fails. Once
the desired research results are obtained, it is then trivial to publish them with full
provenance in a public repository. Then others can build upon the same work with
a high probability of success.

Adopting this strategy requires additional user and computer overhead. But I
believe with this approach, PRUNE moves towards greater structure and oversight
such as with the adoption of: block-structured programming [51]; graph-structured
Make files [64]; and rigorous version control [125].

4.1.2 PRUNE overview

The following sections describe how a user would interact with PRUNE, what
architectural components there are, the interface by which operations are performed

on those components, and how namespaces are handled in PRUNE.

63



79

E1
j Simulate

Analyze < S ) (

[ File

O Task

Environment

PRUNE space /

E1 = envi_add( type='EC2’, image="hep.beta’ )

Workflow Version #2

| E2 = envi_add( type="EC2’, image=‘hep.stable’ ) |‘/

T4 = task_add( cmd="'simulate > output’,
returns=[‘output’], environment=E1)

| F1 = file_add( filename="./observed.dat’ )

_

T6 = task_add(
args=[ T4[0] ], params=['input_data’],
cmd=‘analyze < in_data > out_data’,
returns=[‘out_data'], environment=E2 )

T5 =task_add( args=[F1], ...)
(remaining arguments the same as above)

T7 = task_add( cmd='plot in1 in2 out1 out2’,
args=[ T5[0], T6[0] ], params=[‘in1’,in2’],
returns=[‘out1’,'out2’], environment=E2 )

| export( [ T7[1]], flename="./plot.jpg’ )

»

User interface

Figure 4.2. Prune Overview

Prune automatically manages storage and execution of workflows.

Compute Resources

/ User space

96 06 04 02 6 02 04 06 08
BDT output




4.1.2.1 User’s perspective

An end user begins using PRUNE by creating their own private PRUNE repository,
which may simply exist on their own laptop. The user describes a workflow which ex-
plicitly adds (into the repository) any input data and tasks that should be performed
to derive some result. When the user submits this description, PRUNE detects por-
tions of the workflow that are already in the repository, and records and then adds the
remainder. Observing the results, the user may submit a revised workflow, expanding
the graph in the repository. If space consumption becomes a problem, PRUNE will
automatically delete derived results, because it retains the ability to re-create them
on demand.

Other users or organizations may operate their own repositories. When a user has
a result of interest to be shared, PRUNE can export the appropriate meta-data into
a portable package. The package can contain all the meta-data necessary to describe
how the result was obtained, so that a receiving user can examine, re-execute, or
build upon that result within their own repository. The most interesting results can

be widely disseminated through a public repository.

4.1.2.2 Workflow components

A PRUNE repository contains a graph of immutable objects describing the data
and computational elements needed to execute a workflow. The following 4 basic
objects constitute the nodes of the graph: Files, Tasks, Results, and Environments.
Once a workflow has been described in terms of these objects, the objects can be
shared with collaborators or published as a complete and reproducible description of
the workflow. An overview of how the different elements are connected is shown in
figure [4.2]

A File is an immutable string of bytes, identified by a hash of the content of the

File. Any data the user wishes to use must first exist as a File within a repository.
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A Task is a program to be executed, represented as a brief JSON document that
describes a command line, the input Files, and the Environment in which the Task
should run.

A Result object contains information about the completed execution of a Task,
with identifiers for the output files (which were not known until the Task completed)
along with the time and resources consumed during execution.

An Environment is an explicit statement of the hardware and software needed to
execute a Task. It is generally designed to be appropriate for a range of Tasks, rather
than having a unique Environment for each Task. An Environment can take many
forms, but in concept is distinct from the means used to deliver that Environment
for a specific Task on a specific compute resource.

For example, an Environment could be as simple as a tarball with software to
be added on top of an assumed operating system. Various methods can be used to
deliver that environment. If a compute resource already runs that operating system,
the tarball merely needs to be unpacked in the proper location, then the compute
resource is ready to execute tasks in that Environment. Otherwise a virtual machine
may need to be started up to supply the operating system, before the tarball can be
unpacked. On the other hand, the Environment could be a virtual machine image
which includes the operating system. Any number of virtual machine managers might
be able to load the image and make it available for Tasks.

I assume that an Environment is something created infrequently by working
closely with a system administrator, in the same way that a physical machine’s op-
erating system is infrequently changed and constantly re-used.

If there are few assumptions about what resources will be available in the future,
an Environment should be reproducible for many years to come. For example, using
a virtual machine image in Amazon EC2 or a container image in a public Docker

Hub, both make assumptions about relatively new technologies with a tendency to
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evolve quickly. However, a reference to Amazon EC2 might be more convenient in
the short term.

By separating the Environment from Tasks and reusing a given Environment for
multiple Tasks there should be more opportunities for caching (in addition to being
a convenient way to preserve the environment for reproducibility). When creating an
instance of an Environment from the input file(s), the results of intermediate steps
(such as unzipping) could also be cached to reduce the resources needed to provide
instances of appropriate Environments.

A workflow system generally considers entire files for inclusion or eviction from a
cache. When multiple files are needed for an environment, it might be more useful
to consider the Environment as a single element in the cache rather than a collec-
tion of files which can be individually evicted. This could be done more simply by
bundling those files into a single file, such as a zip file, rather than by creating a more
sophisticated caching system.

A tool called Umbrella [136] can observe the current resources and compare them
against an Environment specification. If the current compute resources matches the
specification, the Task can be immediately executed. If any software or a different
operating system is needed, Umbrella can add the software or even start up a virtual
machine, if necessary, to satisfy the specification. This can be much more efficient
than always starting virtual machines, while still supporting heterogenous resources.

However, this means that it is not known until runtime what data resources are
required. Ideally, even for the cases where a virtual machine image needs to be
transferred to a compute resource, that image should only need to be transferred
once. But without the knowledge of what Environment dependencies will be needed
on a resource until runtime, a workflow scheduler might have a difficult time choosing

the right resources for each Task.
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4.1.2.3 Interface

Prune has six fundamental operations:

id = file_add( filename );
id = task_add( task-description );
id = envi_add( type, image );

execute( available_resources );
export( id-list, filename, options );

import( filename );

Three operations add to the repository: file_add adds a file to the repository
from the local filesystem, and returns an identifier for it’s File object. task_add adds
a Task to be executed to the repository and then immediately returns an identifier.
The Task is queued for execution and the results will become available when time and
resources permit. envi_add adds a new Environment to the repository, specifying
the type of the environment (VMWare, Amazon, Docker, TGZ, etc) and the name
of the image.

The execute command specifies what resources can be used to execute Tasks, and
when they are to be used. The export operation creates a package which includes a
subgraph of the repository. It expects of a query anchor (a list of ids as a starting
point) and optionst that describe which direction(s) to follow derivation lines and
which object types to include in the package. The import operation adds new objects
into the repository from such a package. Because task_add returns an identifier
before executing the Task, it is possible that an export will request File objects that
do not yet exist. It is a matter of preference whether such a request will block or

require the user to poll until objects are available.

68



4.1.2.4 Naming

The issue of naming in computing has long been a challenge and various ap-
proaches have been proposed to resolve the disconnect between computer and human
naming. [I0] PRUNE uses two types of identifiers for objects: content-based identifiers
and derivation-based identifiers.

A content based identifier (CBID) is the fundamental name for all Files, Tasks,
and Environments. It is generated by computing a hash function of either the content
of the object, which is the binary data of a File, or the JSON document representing
a Task or an Environment. Care must be taken to ensure the ordering of JSON
elements (alphanumeric or fixed order keys) so that a CBID does not change as the
item is shared among repositories.

PRUNE also stores some auxiliary meta-data about each object type, such as
owner, creation time, resources consumed, etc. This meta-data is excluded from the
checksum so that the CBID can be used to detect if an object is logically unique.

A derivation-based identifier (DBID) is used to identify files that have not yet
been generated. It consists of the CBID of a Task, followed by a subscript that
selects one of the results of the Task. DBIDs can be used as arguments to later tasks,
so that multiple Tasks can be chained together before the intermediate Files have
even been generated.

For example, suppose that Task T consumes files A and B (which exist in the
repository) and produces files X and Y. The CBIDs for Files A and B are used in
the JSON document that describes Task T. The CBID for Task T is simply the
checksum of its JSON document (38b1d). When Files X and Y are produced, they
can be addressed using the CBIDs computed from their checksums. But they may
also be addressed as 38b1d[0] and 38b1d[1], which indicate they are the first and
second output Files of Task T respectively, as shown in figure [4.3]

In addition to overhead and wall time measurements, Result objects record the
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38b1d[0], 38b1d[1]

Figure 4.3. CBID vs. DBID

An example of the relationship between a CBID and a DBID. The output files X
and Y each have both a CBID and a DBID

mapping between DBIDs and output CBIDs (once the Task has been executed).
Keeping this information separate from the Task allows the Task to remain im-
mutable. Sometimes generated Files are deleted to make room for other Files as
mentioned in section If those Files are needed again, the Task is re-executed,
generating an additional Result object for the Task. If derived Files are deleted, the

checksums in the Result can be used to validate re-generated output Files.

4.1.2.5 Sandboxes

One thing that can help avoid naming conflicts is to isolate tasks from each
other. Before a Task is executed in an Environment it will be placed in a temporary
sandbox. This helps prevent accidental interference with other Tasks, and can also
provide a debugging snapshot when there is an error, while still allowing other Tasks
to continue.

For example, in figure 2.2 a Task refers to a few input and output files. The input
File arguments are mapped to local pathnames within the sandbox ["in.txt","in.dat"]
where they can be accessed via the running command. After the command is exe-
cuted, the output files are retrieved from their expected location ["out.txt","02.txt"]
where they can be extracted and stored within the PRUNE repository as Files and a

Result. Then the entire sandbox can be discarded.
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4.1.2.6 Non-determinism

If a Task is non-deterministic, multiple executions of the Task can generate
Files that are bitwise different, but logically equivalent for a given scientific domain.
PRUNE is unable to detect such logical equivalence. This can be an issue with the
Monte Carlo simulations used in high energy physics workflows. In these cases a
single DBID can refer to multiple CBIDs. Since the input File identifiers are part
of a Task’s checksum, equivalent Tasks could end up with (any number of) different
Task CBIDs.

In an effort mitigate this issue while still allowing workflows to be fully specified
before execution, PRUNE encourages, when possible, the use of DBIDs throughout.
This enhances the ability to effectively collaborate and de-duplicate, which is dis-

cussed in later sections, but CBIDs can also be used if the user desires to.

4.1.3 Storage management

One of the challenges with preserving a workflow is the amount of storage space
required. I observe (and assume) that, in general, the largest portion of the storage
requirement for a scientific workflow consists of Files generated during the execution
of a workflow. These derived Files can be leaf Files (not used as an argument for
any Task) or intermediate Files (used as an argument in one or more Tasks). I
propose treating derived Files as a disposable portion of a workflow as detailed in
section [4.1.3.1] T assume that the second largest portion of the storage requirement is
typically root Files (external input data directly imported into a Prune repository).
I discuss ways to address this challenge in section [£.1.3.2] The smallest portion of
the storage requirement is the data describing the Tasks needed to get from the root

Files to the leaf Files. Reducing the storage requirements in this category is covered

in section {.1.3.3]
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4.1.3.1 Derived file cache

Derived Files can be deleted to save disk space without limiting reproducibility,
since all the information needed to recreate them is found in the Tasks, root Files,
and Environments. In a sense, these derived Files can be treated as a temporary
cache. The Result objects remain in the database for consumed resource statistics
and checksum validation.

The priority used to determine which derived Files to evict first could be as
simple as evicting the oldest derived File. However, more advanced algorithms could
be based on File sizes and their position in the repository graph. The same algorithms
used to follow lineage and progeny in the export operation could also be useful in
deciding which derived Files are the least likely to be used. The cost (financial or

otherwise) of reproducing a File should also be considered.

4.1.3.2 External objects

Since root Files cannot be re-generated, they must be set apart from the derived
Files to prevent the system from disposing of them. An advanced implementation of
PRUNE could extend Tasks to allow input files specified as URLs rather than restrict-
ing them to Files only. In such a case, additional rules (based on the bandwidth, reli-
ability and longevity of the external resource) would be needed to determine whether
the results of such Tasks could be generated again in the future.

For very large workflows, a smaller repository could treat derived Files from
another repository as rooted files, but also include a Task that refers to the full
repository for additional lineage. This permits flexibility in constructing repositories
appropriate for a given researcher, while still ensuring full preservability (spanning
multiple repositories) back to the root Files. In some cases there should be overlap
between repositories for added replication and availability, but for others it would be

sufficient to simply have a well defined line between repositories.
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This is in line with large central data approaches like IVOA [134], IRIS [189], the
LHC [131], etc., but any changes to the data by the managing organization must be

detectable and/or avoidable in the interest of ensuring reproducibility.

4.1.3.3 Workflow merging

Recording each workflow DAG individually in a PRUNE repository satisfies the
need for preservation. However, this can cause unnecessary duplication of Task ob-
jects and their executions. Even with the assumption that Task objects are small
compared to File objects, eliminating duplication at this level can result in more
efficient use of both storage and execution resources.

I observe that as a researcher creates a workflow, there is generally a gradual evo-
lution of that workflow while adjustments are made. Only a portion of the PRUNE ob-
jects describing the workflow will change with each evolution. Especially for changes
made closer to the leaf Files, or by extending from leaf Files, only a small portion
of the objects will differ from a previous version of the workflow. To merge a new
workflow into a repository, PRUNE identifies the duplicates and effectively grafts the
new objects onto a merged repository graph.

The expanded graph after de-duplication describes both the old and the new
workflows simultaneously with shared objects defining the earlier portions of the
workflow. As the workflow continues to evolve the graph continues to expand. This
expanded graph approach makes up a more efficient PRUNE repository. The ability
to detect duplicate Tasks coupled with the ability to treat their generated results as
a cache enables memoization. This optimization technique reduces the time it takes
to execute a workflow which already includes generated Files in the repository.

In order to support queries (such as those for the export operation) on a merged
repository graph, tracing the lineage of the query anchor forward can be enabled by

attaching a workflow identifier to each new object added to the graph. However,
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since any existing duplicate objects are immutable, they cannot be updated with a
list of workflows they were used in. When tracing the progeny of the query anchor
backwards, there may be multiple paths that could be traversed. This could happen,
for example, if two Tasks achieve identical results, but reached those results using a
different approach. In such cases, it can be useful to record the workflow identifier
in addition to a CBID and DBID.

This chapter proposed some of the goals for a reproducible workflow management
system, but intentionally left room for the evaluation of different choices that could
be used to satisfy those needs. The architecture was divided into File, Task, Result,
and Environment components operated on by file_add, task_add, envi_add, execute,
export and import operations to support the proposed goals. The need for both
content based identifiers and derivation based identifiers is expressed to handle for
the possibility of non-deterministic tasks. With such a framework prepared, the
next chapter identifies a specific choice made or options to be compared in order to
implement these ideals. With a single user implementation of PRUNE I then evaluate
our choices with workflows involving high energy physics, bioinformatics, and the

U.S. censuses.
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CHAPTER 5

SINGLE USER EVALUATION

With a framework, in the last chapter, for what high level capabilities are needed
in PRUNE the specific choices are identified in this chapter, and the implementation
is applied to various workflows from a single user perspective. Many of the imple-
mentation details chosen here have other largely equivalent alternatives available,
but alternatives were unlikely to improve the implementation in any significant way.
For example, SHA1 hashes are chosen for the content based identifiers. A larger
hash would be better if this hash was being used for security, but because security is
not the goal, SHA1 should be adequate for gauging uniqueness between objects in a
trusted environment. Since the multi-user aspect of PRUNE is designed at a higher
level than the database level, SQLite is sufficient and a bit more convenient than
MySQL. The high energy physics, bioinformatics, and U.S. censuses workflows used
to validate PRUNE, show that overhead is minimal, the workflows are still scalable,
and PRUNE can adequately manage storage consumption automatically based on a

provided quota.

5.1 Implementation details

PRUNE is written in Python and uses SQLite3 to keep track of all workflows
submitted to it. The user creates a Python script which uses a PRUNE client library
to expose PRUNE operations inside of the Python script. The client library translates

API commands into SQLite3 queries to preserve new workflow objects and ignore
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duplicate objects when detected. The client library can also export or import entire
workflows or portions of workflows.

A PRUNE repository is a database of workflow objects recorded over time. It is
divided into 3 parts; persistence, cache, and status. Both the cache and status
portions can be re-created by PRUNE, but the persistence portion contains objects
that contain irreplaceable information. The cache portion stores generated Files. The
persistence portion stores the remaining objects. The status portion tracks Tasks
that still need to be executed and which of those are ready to execute immediately
as compared to those that depend on Files which are not yet available in the cache.

SHAT1 checksums are computed on object content to create the CBIDs. When the
content is in JSON format (Tasks, Environments, and Results), the keys are sorted
alphanumerically to keep the CBIDs consistent.

DBIDs use a ‘" character after the Task CBID, followed by an index number
to distinguish between outputs of a given Task. To encourage meaningful variable
names in Python task_add returns the list of DBIDs instead of the CBID for the
Task, but the CBID can be derived.

If there are two Tasks which are identical except for the specified environment,
PRUNE still preserves them as separate Tasks in the database. Each Task must be
executed, and each Result stored, but if the generated Files are identical, they are
only stored once (using the CBID and first DBID).

An export in PRUNE creates a single file with all relevant objects embedded. File
content is treated as binary blocks, with the rest of the Files and other objects as
JSON text. In addition to handling the depth of the lineage and/or progeny extracted
from the repository graph, a ‘files” argument allows the scope of the export to be more
specific. For example, this allows the user to select whether or not intermediate Files
should be included in the exported files. This file can be shared with other users of

PRUNE either directly or via the internet.
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If any Files requested in the export command have not been generated or were
evicted from the cache, the user receives a message indicating that Files are not yet

available. The user may then repeat the request or fail, as appropriate.

5.2  Compute resources

Prune can either spawn local worker processes to execute Tasks, or start a Work
Queueﬂ master [30] to coordinate Task execution on remote workers. In local mode,
input Files are linked into Task sandboxes, with the assumption that Tasks will
“play nice” and not modify those files. This is how files are treated when executing
commands outside of PRUNE, and is appropriate for the high energy physics and
census workflows considered. In remote mode, Files are transmitted over the network,
making it more appropriate for computationally intensive Tasks with small inputs.

PRUNE puts all submitted Tasks (which don’t have their output files in the cache)
into the status portion of the database. These Tasks are eagerly evaluated whenever
a prune_worker is running. When the command for a locally run Task returns an
error code, the sandbox is left in tact so the user can see what modifications would
be needed to submit a corrected Task.

PRUNE currently allows Tasks to run without a specified environment (meaning
the default available environment should be used), with a Wrap environment, or with
a local Umbrella [I36] environment. A Wrap environment runs an open command to
prepare the environment for command execution (then an optional close command).
A Wrap environment was used to extract a tarball with software needed for the

workflows used in evaluating PRUNE.

"'Work Queue is a framework for building large master-worker applications that span thousands
of machines drawn from clusters, clouds, and grids. Tasks are executed by a standard worker process
that can run on any available machine. Each worker calls home to the master process, arranges for
data transfer, and executes the tasks. The system handles a wide variety of failures, allowing for
dynamically scalable and robust applications.
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#!/bin/bash

###### Sort stage ######
sort nouns.txt > sorted nouns.txt

#!/usr/bin/env python
from prune import client

prune = client.Connect () #Connect to SQLite3

###### Import sources stage ######
El = prune.env_add(type="EC2', image=_
D1, D2 = prune.file_add( ‘nouns.txt",

###### Sort stage ####FHH

D3, = prune.task_add( returns=[ output.txt'],
env=El, cmd='sort input.txt > output.txt',
args=[D1], params=[ input.txt'] )

D4, = prune.task add( returns=[output.txt'l],

’ env=El, cmd='sort input.txt > output.txt',

~006a98d8 " ="
“verbs.txt' )

sort verbs.txt > sorted verbs.txte

#H##### Merge stage ######
sort -m sorted *.txt > merged.txt

(a) original Workflow script

An example workflow (a) is shown using PRUNE commands (b), with a few of the individual objects that are

args=[D2], params=[ input.txt'] )
(H#444% Merge stage ######

pr

D5, = prune.task_add(
returns=[ ‘merged out.txt'], env=El,
cmd="sort -m input*.txt > merged out.txt',
args=[D3,D4], params=[ inputl.txt', "input2.txt']
)

###### Execute the workflow ######
prune.execute ( worker type='local',
#H#### Export #####4#

prune.export ( D5, ‘merged.txt' )
prune.export ( D5, ‘wf.prune', lineage=2 )

cores=8 )

# Final data
# Workflow

#File object #Environment object
( J _'V( J
"cbid": "29%ae...8cca", "body": {
"size": 144, "engine": "EC2",
"type": "file" "ami": "ami-b06a98d8"
} by
time "cbid": "da39...0709",
person "size": 49,
year "type": "environment"
way }
#Task object
{
"body": {
"args": [ "f908...deef:0", "3194...3b31:0" ],
"cmd": "sort -m input*.txt > merged out.txt",
"env": "da39...0709",
"params": [ "inputl.txt", "input2.txt" ],
"returns": [ "merged out.txt" ]
I
"cbid": "e828...481la",
"size": 322,
"type": "task"
}

(b) Prune workflow (with Python client library)

Figure 5.1. Example Workflow

(c) Prune objects

recorded (c).



5.3 Example workflow

Consider the shell script shown in figure designed to take two input files and
efficiently produce a new file with all lines merged and sorted.

The Python script in figure |5.1p will preserve and execute a workflow equivalent
to figure [5.1p. The last line exports the minimum objects needed to reproduce the
workflow, and saves these objects in the “merge_sort.prune” file.

The PRUNE client library converts the script at figure [5.1b into the PRUNE
(slightly abbreviated) objects at figure which are not exposed directly to the
user. These objects are what is stored in the PRUNE repository.

This may seem verbose compared to the original workflow. But I claim that
the benefits of adopting a preservation-first strategy (beyond just the preservation
benefits) can outweigh the added complexity. The following section evaluates some

of those benefits.

5.4 Evaluation (using U.S. censuses)

In order to evaluate the storage management abilities, computational overhead,
and scalability of PRUNE, it was used to manage workflows doing some analyses on
U.S. Census records. The U.S. Census [62] for years 1850 to 1940 consume 23 GB
using 7-Zip compression. Due to spelling, transcription, and other errors, it is difficult
to find individuals in the census records. In a “Census Name Comparison” workflow
a list of the most frequent surnames in all censuses is created and compared against
the list of all surnames to obtain lists of possible alternate spellings. These alternate
spellings can be used to do a “fuzzy” search for individuals in the censuses. This

workflow is broken down into the following 8 stages:
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Figure 5.2. PRUNE Behavior

When changes to a workflow occur in later stages, PRUNE (a) avoids duplicate execution, (b) avoids extra disk space used to
specify the workflow, (c) caches extra disk space used for generated Files.



Census Name Comparison workflow stages

1 Decompress
(7-Zip unpacking)

2 Normalize
(Standardize field inclusion, names, and order)

3 Count attributes
(Count appearances of field-attribute pairs)

4 Summarize year
(One file per year summarizing pairs in that year)

5 Summarize all
(A single file for summarizing pairs across all years)

6 Filter by field
(A separate file for each field type)

7 Sort by frequency
(Most frequently occurring attribute on top)

8 Similar attributes
(Score similar alternates for most frequent surnames)

Importing original files into PRUNE takes a significant amount of time. But since
that is more a side effect of preserving the original files than a part of the workflow,

I consider this Stage 0.

5.4.1 Conservation

A common approach to preservation is to create a separate folder for each snapshot
of all scripts and files each time a paper is published or some other milestone. In
figures[5.2h, b, and ¢ comparisons are made between this situation where two versions
of the workflow are in separate folders (upper line) compared to a situation where
only one version of the workflow exists (lower line).

The middle line shows the resources consumed by storing both workflow versions
concurrently in PRUNE after making a change to the workflow stage number indicated

on the x-axis.
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TABLE 5.1

WALL CLOCK TIME OVERHEAD
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Import sources  1:21 - - - - 1:21 100% 168 24.37
Decompress 0 0:10 1:41:33 5:19:36  0:25 7:01:43 315% 168 609,984
Normalize 0 0:12 10:16:11 52:30  1:48 11:10:42 9% 167 86,234
Count attributes "0 0:01 5:41:12 0:18 “0 5:41:33 0% 167 4,799
Summarize year 0 0 22:05 0:03 0 22:08 0% 10 819
Summarize all 0 0 4:22 0:01 0 4:24 0% 1 407
Filter by field "0 0 0:07 0:01 0 0:09 24% 16 407
Sort by frequency 0 0 2:02 0:02 0 2:04 1% 16 407
Similar attributes 0:25 2:52  544:18:38 8:26 3:00 | 544:37:39 “0% 10,000 102,689
Total 1:47 7:16 562:26:11 6:20:57 5:13 | 569:01:43 1% 10,713 830,114

NOTE: The overhead of checksumming the files is a significant factor in the first stages, but minimal overall.



In figure [5.2h, the wall time improvements due to memoization are modest in
the first stage since it is not very CPU intensive. The normalization stage is more
significant computationally. The final stage is the next most significant one in terms
of computation. Doing an all-pairs match on surnames using the Jaro-Winkler algo-
rithm [40] is computationally expensive, so even changes to only that final stage still
require a significant amount of work.

The measurements in figures [5.2h, b, and ¢ were taken after doing comparisons
on only 100 of the 11,400,952 unique surnames in the censuses. Executing more
comparisons is covered in the following sections.

In figure File content (but not metadata) is ignored. A workflow change in
the first 3 stages results in a larger database because of the large number of files
generated by those stages. The later stages have a more negligible affect on the
database size. This indicates PRUNE is most effective when evolutionary changes to
a workflow are made at the leaves of the workflow rather than at the roots.

Figure 5.2 shows the intermediate File space. The decompress stage creates large
files with duplicate and extraneous (in this context) fields. This data is included in
the graph even though it is only stored once in the PRUNE database.

The normalize stage then strips much of that out and produces smaller files. All
other stages have comparatively small intermediate Files. This is great for PRUNE
because the unpacked data becomes a better candidate for eviction from the cache
since the normalized data will be used more often than the raw unpacked data.

However, all the data depicted in figure is a candidate for eviction. In extreme

cases, intermediate files could be deleted as soon as they are consumed by later tasks.

5.4.2 Overhead

To measure the overhead of PRUNE, the workflow was executed to produce a list

of similar surnames for each of the 10,000 most frequent surnames (Stage 8). This
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workflow was executed using only local workers because the files were large compared
to the compute resources needed to process them for these stages. The execution time,
wall clock time overhead and data storage requirements for each stage is shown in
table Bl

Stage 0 (the “import sources” stage) is included here as 100% overhead, since
PRUNE must make a copy of all the original data, whereas in preserve later system, the
files in user space would be used directly. It is interesting to note that checksumming
the files after the decompression stage is more than 3 times more computationally
expensive than just decompressing the files. Two options are available to address
this issue. Option 1) Skipping a checksum of Files altogether (perhaps when Files
are large) would result is less computational time, but the system might have to
transfer and store duplicate copies of the data. This might not be bad since this data
is intermediate and can be evicted from the cache anyway. Option 2) Checksumming
in the background could both avoid the immediate delay and the duplicate storage.
However, when Tasks are executed remotely (see the Scaling section below), the data
still has to be transferred twice.

However, while this overhead seems significant when looking at that one stage,
the overall overhead is only around 1%. The low overhead in the CPU intensive final
stage (with a relatively small input file) makes the overhead in the decompress stage
much less significant.

PRUNE chooses to always do duplicate elimination as in some cases this can also
lead to avoiding the re-execution of later stages if the duplicate is caught early on.
Also, this overhead is likely to only occur for the first evolution of the workflow. Only
a change in the environment for stage 1 or a change to the files in stage 0 would result

in having to perform these checksums again.
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Figure 5.3. Prune Scalability
Prune can handle preservation and execution of large scale workflows. 3 million

Tasks were executed within 10 days with a concurrency of O(10k).

5.4.3 Scaling

For the scaling evaluation, the earlier stages of the workflow are mostly disk
intensive, so they were performed using 16 local processes on the server to avoid
network transfer congestion and delays. The final stage is more CPU intensive, so
a Work Queue master in Prune with O(10k) remote workers was used to bring the
total number of surname comparisons to 3 million. Figure[5.3|shows the concurrency
of Tasks running for about 9 days. The total storage space for the entire workflow

after these 3 million+ Tasks was about 28TB.

5.4.4 Storage quota

In any storage-constrained system, it is important to keep the intermediate data
within those constraints. While executing an additional ~864k Tasks of the workflow,
PRUNE was given a quota of 30TB. Prune v1 appropriately removed Files from the
repository cache whenever it observed that generated Files caused the repository to

go over quota.

85



ATB — Virtual size
3 [| — - Quota Zoom |
32TBH — Actual size

30TB 7 V\Z\MM-
28TB .

0 8 16 24 32 40 48 56 64 72 80
Time (hours)

Disk Space

Figure 5.4. Prune Quota Management
Prune can keep disk consumption within a quota during workflow execution. In this
case the quota was 30TB.
Figure shows that PRUNE stayed within 700MB of the quota after reaching

the quota. This was done in the background to avoid interference with the workers.

5.4.5 Collaboration

PRUNE can be used to facilitate evolutionary changes by multiple users concur-
rently. In this other workflow, one user might find an interesting match and wants
to share those results with another user. Examples of commands for exporting a

workflow are shown here:

1: export( [id], ‘result.txt’ )

2: export( [id], ‘result.prune’, lineage=INF )

3: export( [id], ‘result.prune’, lineage=INF,
files=[‘root’, ‘leaf’] )

4: export( [id], ‘result.prune’, lineage=INF,

files=[‘root’, ‘intermediate’, ‘leaf’] )

The first command only exports a single file named result.txt which exists in the
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database with the CBID or DBID in the variable ‘id’. The second command exports a
zipped folder called result.prune which includes the minimum files needed to execute
the workflow or in other words the root Files and all Tasks. The third command
export adds the final generated (leaf) Files also to the minimum Files and Tasks.
The fourth command includes all Tasks and all Files used to generate the file with a
CBID or DBID in the variable ‘id’.

Table lists properties of the exported file with these 4 approaches. A 5th
export approach is used to demonstrate the full scope of the Matching workflow
without limiting it to just the most relevant portion for a specific result.

In addition to the Census Name Comparison workflow just described, I used a
separate workflow that just does matching on exact census records (with no “fuzzi-
ness”). The exported package with all tasks and root and intermediate files resulted
in a 1.5TB file and took 1 hour and 25 minutes to generate. However, it only took
3 seconds to create a 2.6GB package with only the root Files and the Tasks, and it
took 5 minutes and 30 seconds to read the package and recreate the query anchor
File on a separate machine. Even better, In 4 seconds, another 2.6GB package was
created with the Tasks, root Files, and the interesting File. The interesting match
didn’t need to be generated on a separate machine, but all information was available
to reproduce the File if desired.

Re-importing any of these exports back into the original repository has no effect
because PRUNE detects duplicates and ignores them. However, consider a situation
where slight changes are made to the workflow by the collaborator. Importing a new
export received from the collaborator would still result in the detection and ignoring
of duplicate objects, and then any new portions of the workflow would be added to
the repository. The imported/exported file might be larger than it needs to be, but

PRUNE handles the import appropriately.
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TABLE 5.2

PARTIAL EXPORT/IMPORT COSTS
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1: Leaf File for 1 match 0 1 0 0.000232 0 -

2: Root Files + Tasks for 1 match 0:03 22 56 2,604 0:03 5:30

3: Root, Leaf Files + Tasks for 1 match 0:04 23 56 2,604 0:03 (5:38)

4: All Files + Tasks for 1 match 2:10 78 56 74,899 2:18 (2:55)

5: All Files + Tasks 1:25:51 | 58,884 16,118 1,551,581 | 2:22:05 0:02

NOTE: PRUNE enables collaboration by only exporting/importing desired objects from a workflow.



TABLE 5.3

WORKFLOW WALL TIMES

Time spent on

Stage Environment Workflow PRUNE
BWA-GATK: Stage 0 0:00:01 0:35:09  0:00:00
BWA-GATK: Stage 1 0:00:01 0:04:38  0:00:00
BWA-GATK: Stage 2 0:00:00 0:02:03  0:00:00
BWA-GATK: Stage 3 0:00:03 0:05:46  0:00:00
BWA-GATK: Stage 4 0:00:02 0:11:41  0:00:01
BWA-GATK: Stage 5 0:00:00 0:11:32  0:00:02
BWA-GATK: Stage 6 0:00:01 0:06:56  0:00:01
BWA-GATK: Stage 7 0:00:00 0:00:13  0:00:00
BWA-GATK: Stage 8 0:00:08 6:29:19  0:00:05

BWA-GATK: Total 0:00:16 7:47:17  0:00:09
Monte-Carlo: Stage 0 1 day, 17:33:26 14 days, 13:00:20  0:00:23
Monte-Carlo: Stage 1 13:57:01 8 days, 20:55:08  0:00:24
Monte-Carlo: Stage 2 18:04:45 46 days, 9:49:46  0:00:28
Monte-Carlo: Stage 3 13:07:48 1 day, 17:00:26  0:00:25

Monte-Carlo: Total 3 days, 14:43:00 71 days, 12:45:40  0:01:40

NOTE: This shows the distribution of execution time spent on the environ-
ment vs. PRUNE vs. the actual workflow.
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TABLE 5.4

WORKFLOW DATA FOOTPRINT

Unique Input Aggregate Tasks Environment Generated Output
Stage files data files data tasks data files data

BWA-GATK: Stage 0 17 | 7,084 MB 80 | 8,063 MB 10 "0 MB 10 636 MB
BWA-GATK: Stage 1 27 | 7,721 MB 90 | 8,700 MB 10 "0 MB 10 | 8,951 MB
BWA-GATK: Stage 2 12 | 8,989 MB 30 | 9,326 MB 10 "0 MB 100 | 6,883 MB
BWA-GATK: Stage 3 101 | 6,885 MB 200 | 7,018 MB 100 "0 MB 100 | 1,846 MB
BWA-GATK: Stage 4 | 101 | 1,847 MB 200 | 1,937 MB 100 "0 MB 100 | 1,380 MB
BWA-GATK: Stage 5 101 | 1,380 MB 200 | 1,470 MB 100 "0 MB 100 | 1,385 MB
BWA-GATK: Stage 6 101 | 1,386 MB 200 | 1,476 MB 100 "0 MB 100 159 MB
BWA-GATK: Stage 7 12 39 MB 40 98 MB 20 "0 MB 20 62 MB
BWA-GATK: Stage 8 | 232 | 1,691 MB 700 | 7,182 MB 100 "0 MB 100 171 MB
BWA-GATK: Total 704 | 37,022 MB | 1,740 | 45,270 MB | 550 "0 MB 640 | 21,473 MB
Monte-Carlo: Stage 0 2 0 MB | 2,000 3 MB | 1,000 | 7633,848 MB | 2,000 | 6,719 MB
Monte-Carlo: Stage 1 | 1,002 | 6,543 MB | 3,000 | 6,551 MB | 1,000 | 7633,848 MB | 2,000 | 20,552 MB
Monte-Carlo: Stage 2 | 1,003 | 20,352 MB | 4,000 | 22,011 MB | 1,000 | 633,848 MB | 5,000 | 58,675 MB
Monte-Carlo: Stage 3 | 3,002 | 58,662 MB | 5,000 | 58,669 MB | 1,000 | 7633,848 MB | 2,000 | 3,352 MB
Monte-Carlo: Total | 5,009 | 85,557 MB | 14,000 | 87,234 MB | 4,000 | "2,535,392 MB | 11,000 | 89,298 MB

NOTE: The data needs and behaviors of the BWA-GATK and MCProduction workflow are summarized.




5.5 Evaluation (Bioinformatics and HEP)

PRUNE was designed for computational science, so this section evaluates how
effectively it can be applied to a bioinformatics workflow called “BWA-GATK” and
a High Energy Physics workflow I call “MC Production” (short for Monte Carlo

production). The execution and data footprint for these workflows can be found in

tables 5.3 and 5.4

5.5.0.1 BWA-GATK

BWA-GATK is a bioinformatics workflow conceptually divided up into two parts;
BWA is executed first, followed by GATK. BWA is a light-weight alignment tool for
performing queries on genomes. It supports paired-end mapping, gapped alignment,
various file formats, and employs the Burrows Wheeler Transform algorithm to align
the genome queries. GATK takes the SAM (Sequence Alignment Map) output from
BWA and applies a sophisticated Bayesian algorithm to compare aligned sequences
with the reference. The final output expresses how closely alignments match with
additional information about the analysis as a whole.

This workflow was chosen because there are many stages, each of which could be

an opportunity for changes in an evolving workflow.

5.5.0.2 MCProduction

The MCProduction (Monte Carlo Production) workflow consists of 4 steps that
make up a chain of tasks used to simulate possible collision events. This is done using
models based on the real events observed through detectors in the Large Hadron
Collider. This workflow was chosen because it has a highly complex environment and
is non-deterministic [104] by design, sometimes unavoidably. Each of the 4 steps is
described below, and the output generated from earlier steps is used as the input for

later steps.
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Physics Simulation (step #1 - LHE): This is a simulation of the first part of
the physics involved in the collision. There is no attempt to account for the detector
at this stage. The acronym LHE stands for Les Houches Event [3].

Detector Simulation (step #2 - GEN-SIM): For very technical reasons,
there is a second part of simulating the physics of the collision that happens in this
step. After this, the effects of the detector are simulated, but the data format read
out is not the same as what the detector readout produces.

Reconstruction (step #3 - DIGI-RECO): The next step, is actually broken
into two separate sub-steps that are run sequentially: The DIGI step takes the sim-
ulation file output and changes it into a format that is identical to what the detector
produces. After this step, no distinction needs to be made in the software between
running on simulated and real data. The RECO step is the same reconstruction that’s
applied to real data which takes detector signals and figures out which particles would
have made those signals in the detector.

Data Reduction (step #4 - MiniAOD): This last step takes the output of
the RECO step (which is in a format called AOD for Analysis Object Data), and
simplifies it into a reduced data format that contains the information that almost
all scientists use to do their research. Some small fraction of analyses actually need
the level of detail in AOD and can’t use MiniAOD, but most researchers use the

MiniAOD data.

5.5.1 Caching

When all computations for a workflow can be performed on a single machine and
the relevant data is on a disk on that machine, the computer automatically manages
when to move data from the disk into the hierarchy of caches closer to the CPU for
processing. Carefully designed algorithms determine when to replace data in these

caches in the hope of avoiding data transfer when the same data might be used more
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than once. When many computers are working together, connected by a network,
data needs to be moved to each computer that is doing some computations. As with
the data in the CPU caches, there is a chance that a given datum could be useful
more than once on a multi-processor computer. Ideally any given file would only get
transferred to a specific physical computer on a network a maximum of one time.

In Work Queue, the user must specify whether or not each input/output file should
be cached. With the delays involved in network transfer being so much more expen-
sive and less predictable than transfers from disk into a CPU cache, the added user
burden of making such choices is merited. In fact, as disks are generally much more
capacious than RAM, making good choices in this area could allow the computers in
a network to avoid transferring any file more than once.

In addition, Work Queue keeps track of the cache contents for workers so that
new Tasks can be assigned to workers that already have needed files if such workers
are available.

In general, the workflows had few (and/or small) dependencies shared between
Tasks in a given stage. In table on BWA-GATK: Stage 8, there is only 1.7GB
of unique input data, but for full concurrency without a per machine cache and
multiple Tasks per machine, 7.2GB of data would need to be transferred to satisfy
those dependencies.

Based on the input data PRUNE is aware of, this appears to be the only stage
that would benefit significantly from caching files on each machine, and only if there
are multiple Tasks running on that machine. However, in the environment column
of that table are approximations of how much data is depended on by the Umbrella
Environment. Environment dependencies were treated somewhat differently than the

data dependencies, and more on this is in the next section.
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5.5.2 Environment dependencies

When the compute resource Umbrella is running on does not even closely match
what is needed in the Environment specification, large virtual machine images are
needed to create an instance. In a worst case scenario, where each compute resource
requires a virtual machine, the data transfer requirements are significant, as show in
table [5.4| under Monte-Carlo and Environment. The data requirements for providing
environments can far supersede what is needed for the workflow itself.

Initially PRUNE configured Umbrella to use the same pathname for the cache.
Rather than copy files from the cache into each sandbox for executing Tasks, Umbrella
links to the cached files. This seemed more efficient and still acceptable because
Umbrella is in charge of that folder and expects the Tasks to 'behave’ and stay
within their own namespace.

However, there appeared to be cache integrity issues with multiple concurrent
instances of Umbrella working from a single folder on a given computer. In a very
naive attempt to eliminate stale cached information, PRUNE was modified to delete
the Umbrella cache folder each time it attempted to execute a Task using Umbrella.

Unfortunately, this clearing of the cache usually occurred while an existing in-
stance of the Environment was still running and linked into that folder. Tasks quickly
started failing as their Environments were deleted, and the 'worst case scenario’ of
transferring large virtual machine images to every Task became orders of magnitude
worse as the progress of every computer with multiple such Tasks ground to a halt.
Tasks restarted over and over again as they failed, overloading the system providing
the virtual machine images, which prevented even machines with only one Task per
computer from progressing. After too many failures each machine was added to a
blacklist, and many of the machines with only one Task received more Tasks and
joined the cycle of failures then blacklisting.

In the end, the ’worst case scenario’ was better than this new situation and
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caching was effectively turned off by using a unique cache folder for every Task. A

more appropriate long term solutions are proposed in the next section.

5.5.3 Solutions

The bottleneck encountered was with Tasks at the same hierarchical level in the
workflow concurrently depending on the same files. This is in contrast to sequential
dependencies in the workflow from one Task to the next. Sequential dependencies are
the obvious job of a workflow manager, and often come in the form of recently finished
workers having generated the data needed as an input for the next Task. In an ideal
environment, static concurrent dependencies can be easily satisfied by keeping a copy
of that data on all computers used in the workflow. However, in a heterogeneous (and
perhaps opportunistic) system such assumptions cannot be made, placing a higher
realtime burden on the workflow management system. However, in addition to being
a bottleneck, in the case of multiple Tasks running on a single machine, satisfying

these concurrent dependencies can cause conflicts and failures.

5.5.3.1 Locking/concurrency in the Environment cache

One obvious solution is to design the system that creates instances of the envi-
ronment to prevent conflicts, and in so doing prevent this type of failures. However,
sometimes the necessary Environment provider is not designed to handle such a case,

and it is not always feasible to request or implement this as a new feature.

5.5.3.2 Hoisting dependencies

Another solution is to make the Environment dependency a part of the workflow
dependencies. This allows the workflow system to manage getting the file to the right
places, which will work to avoid conflicts, as long as the workflow system is designed

to handle concurrent Tasks on a single machine.

95



However, it might be not known in advance what dependencies need to be satisfied
to instantiate the Environment. In the case of Umbrella, there are a few different
methods that are acceptable for creating the environment. If Umbrella finds that the
virtual machine image is not required on a particular machine, then bandwidth was

wasted transferring the image to the machine.

5.5.3.3 Only prepared workers

Another option is to only use computers for executing the workflow which have
been prepared for the necessary environment. This doesn’t mean that all machines
must match the requirements, but certain resources must be available on each ma-
chine before it is considered a part of the compute resources available for the workflow.
This could just mean that a virtual machine image is placed in a known location on
the machine in advance. Or it could mean that the virtual machine is instantiated
before making itself available to the workflow.

Notre Dame physicists are using Singularityﬂ with the later method [117]. Sin-
gularity is used to instantiate a given virtual machine image, and then the instance

announces itself to the workflow manager as available for execution.

5.5.4 More linking problems

Another problem with symbolic file linking occurred with the BWA-GATK work-
flow. One of the stages was consistently failing when using Work Queue, but it would
work fine running locally with the same Tasks. I put a check into Prune to verify that
the contents of the files existed just before executing a Task in Work Queue and the
files existed, but it would still fail. T eventually figured out that the Task was unable

to handle linked files. The problem was resolved by modifying the Task to make a

2Singularity is a container technology designed to enable the user to have full control of their
environment. It can be used to package entire scientific workflows, software and libraries, and even
data.
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copy of the file before executing the command. This was not a problem because the
file was small (unlike the Umbrella Environment files above).

However this situation is a great example of the unexpected challenges that often
appear when reproducibility is attempted. The code had an implicit requirement
that the file be real and not a symbolic link. Even seemingly trivial changes to the
data or environment can break a workflow despite attempts to make it reproducible.

This chapter included implementation details used to implement the PRUNE ideals
and applied this implementation to 3 complex and/or large workflows. A few chal-
lenges were uncovered which were not anticipated, but in all, the tool was successful
at managing storage space automatically without incurring excessive overhead. It was
also still scalable to tens of thousands of CPU cores. The export of a workflow com-
ponents after the execution of the workflow was touched on in this chapter, but more
exploration is needed into the options for collaboration. The next chapter describes
5 collaboration modes that can be used make working on partial workflow sharing
easier. The estimated temporal and financial cost of each mode is then applied to

the MCProduction, and BWA-GATK workflows.
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CHAPTER 6

COLLABORATION EFFICIENCY

The previous chapter on the implementation and evaluation of PRUNE focuses
on all the requirements and features for a single user using PRUNE to automatically
track evolutions to their workflow so that they can be shared with other scientists.
However, the quantitative benefits of being able to selectively include or exclude
generated files when exporting a partial workflow were only lightly addressed. This
chapter defines 5 collaboration modes that can be considered and chosen at any
time (not just in advance). Most workflow management systems only include 2 of
these modes, or require all workflow execution to be performed on dedicated cloud
resources managed by the workflow management system maintainers. The advantages
and disadvantages of each mode are explained and quantified for the MCProduction
and BWA-GATK workflows. Then the temporal and financial costs of each mode
are estimated for each workflow. While the results do not indicate that one mode is
always better than another, it is clear that certain modes can have dramatic reduction

in the more quantitative aspects of collaboration.

6.1 Typical collaboration

A common approach to preserving scientific workflows is to make a copy of the
working directory containing the final results and all files and code used in it’s gen-
eration. Any refinements can then be made to the original workflow as new ideas are
explored, without a concern that the workflow connected to the publication will no

longer be available. The copied folder might be archived for up to a year after a paper
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is published just in case something is needed. For example Notre Dame has a shared
drive called /scratch365 where such data can be stored, but files are automatically
deleted when they reach 365 days old. This resource is specific to the University of
Notre Dame, but similar services are common at most HPC centers.

This archived folder could be sent to collaborators if desired, but if changes are
made to both copies of the workflow, it is typically very difficult to reconcile the
changes and share them between collaborators again. In addition to the inconvenience
of manually identifying changes in the workflow and choosing which version to use in
the case of a conflict, there is also a cost to transferring and /or re-executing portions
of the workflow that have already be executed.

PRUNE is designed to simplify the user effort involved in reconciling changes to
multiple related evolving workflows, but quantifying user effort is difficult. In addition
to the user benefits, there are some quantifiable benefits to knowing what portions of
a workflow already exist on a collaborator’s system. A balance between re-execution
and transfer of execution results can be achieved, saving network bandwidth and
computational effort.

However, in order to ensure that the system is meeting the needs of the col-
laborating users while this optimization is being performed, I propose three basic
requirements that should exist in any workflow management system designed for

collaboration:

1. Collaborators must get all code, environments and input files needed to create
the final results.

2. Collaborators must re-generate or at least transfer those final results onto their
own system.

3. Collaborators must not lose any changes they have made to the workflow in
order to obtain someone else’s results.
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TABLE 6.1

TRANSFER MODE PROPERTIES

Changed Prl | Pr2 | Pr3 | Pr4 | Pr5

Transfer files A A |AZ | * *

Transfer new
workflow or | Transfer tasks | * * * * *
changed input

Execute tasks * * - _ _
Transfer files - - 7 D+ *
Transfer
changes Transfer tasks * D+ | D+ | D+ | *
on stage D
Execute tasks * D+ . , -
Most CPU Least CPU
Key

Prune (various modes) | Pr#

Input files for the workflow | A

Final results for the workflow Z

Items at change and beyond | D+

All items *

No items -

NOTE: These 5 different options for dealing with collaboration needs
have an impact on the network transfer and CPU execution connected to
the collaboration.

6.2 Collaboration modes

With those requirements in mind there are a few modes of workflow operation
that are available within these constraints. Figure [6.1| summarizes these modes, and

they are described in more detail as follows.
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6.2.1 Prl mode

In this mode all generated results are ignored so that only the minimum amount
of data needs to be transferred to a collaborator. For a brand new workflow being
sent from one computer to another, only the input files (‘A’ in figure next to
Transfer files) and the code used to execute the entire workflow (“*” in figure |6.1| next
to Transfer tasks) need to be transferred. These numbers could be reduced if some
of the workflow (perhaps input data) happens to already exists on the collaborators
system, but the assumption is made that an entirely new workflow is what is being
transferred. However, the cost for this minimization of network traffic is that in order
to satisfy requirement #2, all the code must be re-executed on the destination system
(‘*” in figure [6.1] next to Execute tasks).

It is not unusual for a workflow system to have the option to delete all generated
files so they can be regenerated after changes to the workflow have been made. In one
system called Makeflow [3] [] all generated files are deleted when ‘makeflow —clean’
is executed. Immediately after this operation the workflow could be transferred
minimally to a collaborator. However, in addition to re-executing on the destination
system, it would likely need to be re-executed on the source system or a full copy of
the workflow would need to be made prior to executing ‘makeflow —clean’.

The data in PRUNE’s immutable tree makes this ‘Prl’ mode possible as shown
in figure [6.1} The initial export of the workflow would be performed with a PRUNE

command like this:

export( <list of CBID/DBIDs for final result Files>, ‘result.prune’,

lineage=float(‘inf’), files=[‘root’] )

In ‘Prl” mode, after changes have been made on both sides of the collaboration,

'Makeflow is a workflow system for executing large complex workflows on clusters, clouds, and
grids. It is designed to have syntax similar to the familiar Makefile approach and is used for large
scale workflow execution on a large number of different systems.
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any sharing in a typical workflow management system would require a fully separate
copy of the shared workflow in order to satisfy requirement #3 and not lose the most
recent evolution on either side. However, it could be possible to share the input files
in this mode (see the ‘-’ in figure |6.1| next to Transfer files). This could be performed

in PRUNE like this:

export( <list of CBID/DBIDs for final result Files>, ‘result.prune’,

lineage=float(‘inf’), files=[] )

While ‘Prl” mode requires the most execution, it also provides an opportunity to

test the reproducibility by executing the workflow on the collaborator’s system.

6.2.2 Prb mode

On the opposite end of the spectrum, execution is conserved by copying all data
including intermediate files and the final results. This conservation of execution
comes at the cost of additional network transfer bandwidth and the associated delays.
Nothing out of the ordinary needs to be done with Makeflow to operate in the mode.
Collaboration is done by copying the entire workflow as is. PRUNE could also operate

in this manner with the following command.

export( <list of CBID/DBIDs for final result Files>, ‘result.prune’,

lineage=float(‘inf’), files=‘all’ )

In order to satisfy requirement #3, the exact command above would be used both
when a new workflow is shared and when an existing workflow is modified.

While ‘Pr5” mode is likely to take the longest to transfer, it would be provide
the most opportunity to identify and resolve reproducibility problems introduced by

switching to the collaborator’s system.
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6.2.3 Pr2 mode

In this mode, new workflow transfers are performed identically as in Prl, by
copying the input files and all executable code for the workflow. However, using
the data available in the PRUNE database, namely the content-based identifiers and
derivation-based identifiers, tasks which already exist in the databases can easily be
identified. So any data before a change in the workflow need not be transferred.
Continuing with the goal of minimizing network traffic, no intermediate files or final
results are transferred, so in order to satisfy requirement #2 all tasks from the change
in the workflow and beyond must be re-executed on the destination system.

This mode is not possible with Makeflow or with typical workflow management
systems. For a new workflow the PRUNE command is the same as with Pr1 mode, but
with a modified workflow, only the changes need to be exported with the following

command [ ;

export( <list of CBID/DBIDs for final result Files>, ‘result.prune’,

lineage=<number of stages from change to results>, files=[] )

6.2.4 Pr4d mode

In Pr4 mode, new workflows are transferred as in Prb mode, all files and tasks,
S0 no re-execution is necessary. After a change in the workflow, all tasks and their
generated files are transferred from the point of change to the end of the workflow.
In the end, the PRUNE database holds the original workflow, the new local workflow,
and the new remote workflow, all at the same time. No re-execution is necessary.

For a new workflow the PRUNE command is the same as with Pr5 mode, but with

a modified workflow, only the changes and changed files need to be exported with

2However, the number of stages from the stage where the origin and target systems diverge and
the final results must be tracked and derived through manual discussions between the collaborators.
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the following command [ :

export( <list of CBID/DBIDs for final result Files>, ‘result.prune’,

lineage=<number of stages from change to results>, files=‘all’ )

6.2.5 Pr3 mode

This mode starts with the input files and all workflow tasks, as with Pr1 and Pr2.
But by adding the final results without any intermediate files, requirement #2 can
be satisfied without the need for any re-execution. When the workflow is changed,
all changed tasks must be transferred, and transferring the new final results again
keeps the network traffic low without the need for re-execution. All 3 requirements
are satisfied. This is likely to be the best option available, but depending on the costs
of execution and network traffic, one of the other modes might be less costly.

Here is the command for a new workflow using PRUNE:

export( <list of CBID/DBIDs for final result Files>,
lineage=<number of stages from change to results>,

‘result.prune’, files=[‘root’, ‘leaf’] )
Here is the command for a modified workflow:

export( <list of CBID/DBIDs for final result Files>,
lineage=<number of stages from change to results>,

‘result.prune’, files=[‘leaf’] )

However, assuming the number of stages parameter is chosen properly, the 2
commands above should behave identically.
While this appears to be the most appealing choice, there is some value in choosing

the least appealing approach of doing both ‘Pr1’ and ‘Pr5’. This least appealing

3 Again, the number of stages from the stage where the origin and target systems diverge and the
final results must be tracked and derived through manual discussions between the collaborators.
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case provides the best chances both to test reproducibility and identify and resolve

reproducibility issues.

6.3 Case studies

In Makeflow, switching from Pr5 to Prl mode is permanent because all generated
files are deleted, and the original workflow must be re-executed to make the final
results available again. This is not desirable for large workflows and magnifies the
CPU execution cost proportional to the frequency of workflow evolutions amongst
all the collaborators.

Currently PRUNE is able to operate in all 5 of these modes using the methods
described in and all modes are available concurrently depending on which one
is best in a given situation. However, negotiation of the best choice based on what
might already be available to the destination system has not been implemented. The
users would currently have to have a detailed conversation about what is already
available and what needs to be transferred in order to fully operate in these modes.
The best mode to use in a given situation depends both on the inherent properties
of the workflow, the nature of the evolution between collaborators in the workflow
the history of collaboration on those evolutions. Each workflow evolution could be
individually optimized to meet the collaborator’s preferences. However, PRUNE could
be extended such that the two systems could automatically negotiate the best transfer
solution based on a user’s priority in avoiding network traffic or re-execution. Also,
the work required to create a package to perform these operations ignored below, but
was measured and reported on in |5.4.5|

Given the same two use cases used in the implementation chapter, the behavior
of evolutions under each collaboration mode and at each stage is shown in table
and table [6.3 For all workflows, modes Pr3-Pr5 require no re-execution on the

collaborator’s system.
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TABLE 6.2

MCPRODUCTION WORKFLOW MB+DAYS

Changed Prl | Pr2 Pr3 Pr4 Prb
Files (MB) 1 1 | 20,554 | 89,299 | 89,299
All | Tasks (MB) | 2 2 2 2 2
Exec (days) | 75.15 | 75.15 | 0.00 0.00 0.00
Files (MB) | <1 | <1 |20,552 | 85,559 | 89,299
Stage 0 | Tasks (MB) | 2 2 2 2 2
Exec (days) | 75.15 | 75.15 | 0.00 | 0.00 | 0.00
Files (MB) | <1 | <1 | 20,552 | 85,559 | 89,299
Stage 1 | Tasks (MB) | 2 2 2 2 2
Exec (days) | 75.15 | 58.87 | 0.00 0.00 0.00
Files (MB) | <1 | <1 |20,552 | 79,015 | 89,299
Stage 2 | Tasks (MB) | 2 1 1 1 2
Exec (days) | 75.15 | 49.42 | 0.00 0.00 0.00
Files (MB) | <1 | <1 |20,552 | 58,662 | 89,299
Stage 3 | Tasks (MB) | 2 <1 <1 <1 2
Exec (days) | 75.15 | 2.26 | 0.00 | 0.00 | 0.00
Most CPU Least CPU

NOTE: Estimated costs of doing collaboration on an MCProduction
workflow when the workflow evolves at different stages and different Prune
modes are used.
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6.3.1 MCProduction

In table [6.2] since modes Pr3-Pr5 all avoid any re-execution, the only metrics to
consider are the network transfers. Because MCProduction is a simulation, there is
very little input data. In Pr3 mode all stages only need to transfer the final results
(plus negligible task transfers), which are 23% of the full data required in Pr5 mode.
Pr4 mode reduces the data transfer down to about 66% of Pr5 in the best case,
with no reduction at all in the worst case where the input files change. The network
transfer for Pr4 is reduced to 89% of Prb on average.

Modes Prl and Pr2 have negligible differences in network transfers, but Pr2 can
reduce the re-execution to as little as 3% of Prl in the best scenario. The average
re-execution reduction is 69% of the maximum.

Based only on the 3 collaboration requirements, the best choices for the collabo-
rator are likely to be 1) elimination of re-execution and reduction of network transfer
to 23% with Pr3 or 2) minimization of network transfer and reduction of re-execution

to an average of 69% with Pr2.

6.3.2 BWA-GATK

In table [6.3] modes Pr3-Pr5 again avoid all re-execution. However, in the BWA-
GATK workflow, the original input files are much larger than the final results. In Pr3
mode all stages only need to transfer the final results (plus negligible task transfers),
which are only 6% of the full data required in Pr5 mode. Pr4 mode reduces the data
transfer down to less than 8% of Pr5 in the best case, with again no reduction at
all in the worst case where the input files change. The network transfer for Pr4 is
reduced to about 73% of Pr5 on average.

Modes Prl and Pr2 have negligible differences in network transfers, and Pr2 can
reduce the re-execution only to 84% of Prl even in the best scenario. The average

re-execution reduction is negligible.
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TABLE 6.3

BWA-GATK WORKFLOW MB+DAYS

Changed Pr1 Pr2 Pr3 Pr4 Prb

Files (MB) | 7,173 | 7,173 | 8,553 | 21,478 | 21,478
All | Tasks (MB) | <1 <1 <1 <1 <1
Exec (days) | 0.32 | 0.32 | 0.00 | 0.00 | 0.00

Files (MB) | <1 | <1 | 1,380 | 37,026 | 21,478
Stage 0 | Tasks (MB) | <1 <1 <1 <1 <1
Exec (days) | 0.32 | 0.32 | 0.00 | 0.00 0.00

Files (MB) | <1 | <1 | 1,380 | 29,942 | 21,478
Stage 1 | Tasks (MB) | <1 <1 <1 <1 <1
Exec (days) | 0.32 | 0.30 | 0.00 | 0.00 0.00

Files (MB) <1 <1 | 1,380 | 22,221 | 21,478
Stage 2 | Tasks (MB) | <1 <1 <1 <1 <1
Exec (days) | 0.32 | 0.30 | 0.00 | 0.00 0.00

Files (MB) <1 <1 | 1,380 | 13,232 | 21,478
Stage 3 | Tasks (MB) | <1 <1 <1 <1 <1
Exec (days) | 0.32 | 0.30 | 0.00 | 0.00 | 0.00

Files (MB) | <1 | <1 | 1,380 | 6,346 | 21,478
Stage 4 | Tasks (MB) | <1 <1 <1 <1 <1
Exec (days) | 0.32 | 0.29 | 0.00 | 0.00 0.00

Files (MB) | <l | <l | 1,380 | 4,499 | 21478
Stage 5 | Tasks (MB) | <1 <1 <1 <1 <1
Exec (days) | 0.32 | 0.28 | 0.00 | 0.00 0.00

Files (MB) | <1 | <1 | 1,380 | 3,118 | 21,478
Stage 6 | Tasks (MB) | <1 <1 <1 <1 <1
Exec (days) | 0.32 | 0.28 | 0.00 | 0.00 0.00

Files (MB) <1 <1 |1,380 | 1,731 | 21,478
Stage 7 | Tasks (MB) | <1 <1 <1 <1 <1
Exec (days) | 0.32 | 0.27 | 0.00 0.00 0.00

Files (MB) | <1 | <1 | 1,380 | 1,691 | 21,478
Stage 8 | Tasks (MB) | <1 <1 <1 <1 <1
Exec (days) | 0.32 | 0.27 | 0.00 | 0.00 | 0.00

Most CPU Least CPU

NOTE: Estimated costs of doing collaboration on an BWA-GATK work-
flow when the workflow evolves at different stages and different Prune modes

are used.
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Based only on the 3 collaboration requirements, the best choices for the collab-
orator are 1) elimination of re-execution and reduction of network transfer to 6%
with Pr3 or 2) minimization of network transfer and reduction of re-execution to an

average of 84% with Pr2.

6.3.3 Partial workflow (Pr3) disadvantage

Transferring the final results and all tasks, but no intermediate files in Pr3 mode
satisfies all 3 collaboration requirements. However, there is another desirable collab-
oration property that the Pr3 mode does not provide. If there is a chance that the
collaborator will make a change to the evolved workflow at any stage, the collabo-
rator’s workflow reverts to Pr2 mode since the generated input file at that stage are
not present. The generated files before that stage could be transferred, but otherwise
the full workflow must be re-executed to obtain those files. Both Pr2 and Pr4 modes

have this 4 collaboration property and can be chosen when it is needed.

6.4 Estimated cost comparison

Collaboration would not require EC2, however, their pricing model can be an
effective way to estimate costs for the purposes of this dissertation. The current
financial cost per GB for typical network transfer out of Amazon EC2 is $0.09 per
GB. Transferring data into EC2 is free, but since the estimate is more important
than the particulars of EC2, I will use $0.09 per GB as the basis for estimating all
network traffic. Proclaimed throughput varies from to 62-1,750 Mbps depending on
the EC2 instances used. For the temporal cost (the amount of time required) for
network traffic, a full 100 MBps will be assumed for estimating bandwidth. This
is approximately what could be sustained on a 1 Gigabit internet connection after
considering overhead.

Estimating the computing costs is a little more challenging. Amazon uses an
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ECU metric to measure the compute capabilities of their EC2 resources. An ECU
can be assumed to be approximately equivalent to a computing core available at
Notre Dame’s Center for Research Computing (CRC). So the cost of an ECU will
be the basis for estimating computing costs, regardless of RAM, disk or any other
features that might be available. Amazon charges $0.0096 per ECU hour based on
an mb.large instance which is currently the cheapest instance that lists a fixed (not
variable) ECU. However, startup/shutdown costs for server instances will be ignored
for the sake of simplicity in these estimates. With these assumptions in mind, the
temporal computing cost depends on the level of concurrency possible in the workflow
and the concurrency available with compute resources. Maximum concurrency can be
calculated from the PRUNE database. The temporal cost will be estimated without
placing a limit on the number of compute resources concurrently available.

Table estimes the temporal costs of network traffic in this theoretical situation
with no limit on concurrent compute resources and no startup/shutdown cost needed
in order to execute tasks in the workflow. The slowest task in the tables is simply one
that took the longest to complete, in that stage, when the workflow was originally
executed. The hours on the right are the time to complete that stage based on
completion of the slowest task. It is assumed that all other tasks can complete more
quickly than the slowest one since it is likely that a re-execution of the workflow will
have the same performance properties. The times on the right side of table [6.4] are
cumulative. In other words, if a change to the workflow occurred in Stage 0, all stages
must be re-executed. The time listed in the table on the top-right side is how long it
would take to perform a full re-execution of the BWA-GATK workflow in this ideal
or best case scenario.

Table shows the temporal cost (wait time) due to network traffic that might
be experienced in each of the collaboration modes. Again, a 1 Gbps connection is

assumed with actual available bandwidth of 100 MBps. The tables show that to some
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TABLE 6.4

TEMPORAL COST OF EXECUTION

Stage changed  Slowest task (minutes) Hours to final results

BWA-GATK 0 6 (10 cores) 0.28
BWA-GATK 1 <1 (10 cores) 0.18
BWA-GATK 2 <1 (10 cores) 0.17
BWA-GATK 3 <1 (100 cores) 0.16
BWA-GATK 4 <1 (100 cores) 0.16
BWA-GATK 5 <1 (100 cores) 0.15
BWA-GATK 6 <1 (100 cores) 0.14
BWA-GATK 7 <1 (20 cores) 0.14
BWA-GATK 8 8 (100 cores) 0.14
MCProduction 0 56 (1000 cores) 3.29
MCProduction 1 32 (1000 cores) 2.34
MCProduction 2 99 (1000 cores) 1.80
MCProduction 3 8 (1000 cores) 0.14
Census 0 25 (227 cores) 3.45
Census 1 5 (227 cores) 3.02
Census 2 6 (10 cores) 2.93
Census 3 <1 (10 cores) 2.82
Census 4 1 (1 cores) 2.82
Census 5 5 (1 cores) 2.79
Census 6 139 (681342 cores) 2.70
Census 7 22 (682 cores) 0.38

NOTE: Temporal cost of re-executing the workflow after evolutions in
each stage in Prl mode (assuming the shown number of cores can be used
concurrently, and that one stage must complete before the next one starts).
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TABLE 6.5

TEMPORAL COST OF NETWORK

Transfer time (hours:minutes:seconds)

Changed Prl Pr2 Pr3 Pr4 Pr5
BWA-GATK 0  00:01:11 00:01:11 00:01:18 00:04:46 00:04:46
BWA-GATK 1  00:01:11 <0:00:01 00:00:07 00:03:33 00:04:46
BWA-GATK 2  00:01:11 <0:00:01 00:00:07 00:03:33 00:04:46
BWA-GATK 3  00:01:11 <0:00:01 00:00:07 00:03:31 00:04:46
BWA-GATK 4  00:01:11 <0:00:01 00:00:07 00:03:17 00:04:46
BWA-GATK 5 00:01:11 <0:00:01 00:00:07 00:03:04 00:04:46
BWA-GATK 6  00:01:11 <0:00:01 00:00:07 00:02:45 00:04:46
BWA-GATK 7  00:01:11 <0:00:01 00:00:07 00:01:36 00:04:46
BWA-GATK 8 00:01:11 <0:00:01 00:00:06 00:00:06 00:04:46

MCProduction 0  <0:00:01 <0:00:01 00:01:07 00:14:53 00:14:53
MCProduction 1  <0:00:01 <0:00:01 00:01:07 00:14:19 00:14:53
MCProduction 2 <0:00:01 <0:00:01 00:01:07 00:04:32 00:14:53
MCProduction 3 <0:00:01 <0:00:01 00:01:07 00:01:07 00:14:53

Census 0 00:05:59  00:05:59 00:07:08 02:00:07 02:00:07

Census 1 00:05:59  00:00:13 00:01:21 01:53:50 02:00:07

Census 2 00:05:59  00:00:13 00:01:21 00:02:25 02:00:07

Census 3 00:05:59  00:00:13 00:01:21 00:02:23 02:00:07

Census 4 00:05:59  00:00:13 00:01:21 00:02:22 02:00:07

Census 5 00:05:59  00:00:13 00:01:21 00:02:16 02:00:07

Census 6 00:05:59  00:00:13 00:01:21 00:02:08 02:00:07

Census 7 00:05:59  00:00:06 00:01:14 00:01:14 02:00:07

NOTE: Temporal cost of network traffic after evolutions in each stage and in
each of the collaboration modes.
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degree the collaboration modes each have some advantages and disadvantages. To get
a better picture the financial cost of each collaboration mode should be considered.

Figure[6.1| plots detailed behavior of the 3 workflows each with the 5 collaboration
modes. The Census and BWA-GATK workflows are similar because they both have
a lot of input data in Stage 0. The green triangles on the left images show how
significant the input data is compared to all the data in the entire workflow. Both
Pr2 and Pr3 come with a significant decrease in network traffic for almost all stages.
Prl mode (again the green triangles) has a decent reduction in network traffic, but at
the high execution cost for all workflows. The axes in the middle show the financial
cost of using the resources indicated on the outer axes. The costs are very low in
BWA-GATK with the execution cost never getting above a dollar. That scale may
not merit even asking the question of which collaboration mode to use. However,
looking at BWA-GATK and MCProduction can provide some insight about which
mode might be the best choice if those workflows were to scale up proportionally.

A larger scale workflow can also give a better picture, and there just so happens
to be one in the Census example. In that figure the execution cost estimates get
over $5,000. In addition, it appears that most of that cost is in the latter stages,
because Pr2 mode doesn’t really see much benefit until the final stage. Pr3-Pr5 are
the clear winners in terms of financial cost for the Census workflow, but it is not
so clear for the other workflows. The temporal cost to transfer the Census data is
over 2 hours for Pr5 (and the worst case for Pr4) in table . The temporal cost to
re-execute the Census workflow is about 3.45 hours in table [6.4] Unless the makeup
of the census workflow changes drastically, it should clearly use Pr1-Pr3, as Pr4,Pr5

are significantly more expensive both temporally and financially.
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Figure 6.1. Financial Cost of Network/Execution

Plots of network and execution requirements of workflows in each of the
collaboration modes. Financial costs are incorporated in the middle.
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Once familiar with these plots, even just looking at them can help inform the
right decision. Again in the census plot, it is clear that Pr2 is only better than Prl
if changes happen at the last stage of the workflow. On the left side Pr4 provides
significant reductions all the way down to Stage 2, when it ceases to be one of the best
options. The cutoff is not so clear in the other workflows, as Pr2 and Pr4 demonstrate

much more gradual usefulness in figure [6.1]

115



CHAPTER 7

CONCLUSION

7.1 Summary

In summary, a shift in intent and a greater focus on reproducibility needs to be
adopted by researching scientists. Many existing efforts [94] to provide frameworks,
middleware, and environments to support computational science are available. How-
ever, in general, reproducible research needs to be perceived by all involved as a
more valuable contribution to science than non-reproducible research, rather than
an inconvenient and somewhat unachievable ideal. There are differing opinions on
the definition of reproducibility and many related terms. But the main goal is to
encapsulate a scientific experiment executed by computers into a form that allows
other collaborating scientists to re-execute part or all of that experiment.

However, just preserving and sharing the bits needed to execute the workflow is
insufficient. Binary code and data can communicate low level operations between
computers, but a higher level representation of the operations needs to be available
which is designed for humans to understand. This higher level representation can be
more useful to scientists especially when it can be modified to explore the parameters,
operations can be replaced as desired, and other operations can be incorporated into
a collaborator’s work.

If the scientist can choose the granularity of these operations, they will be more
effective as a collaborative communication tool than if the operations are based on

generic system provided actions such as system calls.
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Science can advance more quickly by building on the work of others than by
competing for the greatest accomplishments and then allowing them to be obscured
for others. However, just making something reproducible in all of these ways does
not absolve scientists from an obligation to make sure the conclusions they draw from
an experiment are appropriate and correct.

This encapsulation is difficult because there must necessarily be assumptions on
what capabilities are required to interpret the encapsulation by scientists and by a
computer. There may be an implicit assumption that a certain version of a library
will be available, or a certain operating system. Or there may even an assumption
that certain hardware will be available to other scientists, such as GPUs, x86, or
ARM architectures. This work, in part, asserts that separating these assumptions
(the environment) from the operations in a workflow is useful because the scientist
can become accustomed to the assumptions and focus on their domain. If all as-
sumptions are made explicit, system administrators can then be separately tasked
with appropriately satisfying them.

Computers often use obscure names to guarantee uniqueness when referring to
objects. Scientists want names to convey the purpose or place for those objects, and
often redirect the name to something new when their workflow evolves. Attaching a
version or timestamp to the scientist defined names helps to identify when something
has changed, similar to the incrementing version numbers associated with evolution
of software libraries. However, this can become even more difficult in a collaborative
setting where multiple people use the same name for different objects concurrently.
Usually the solution is to either force users to adopt a common namespace or give
each their own namespace and affix the username to the name for an object. In
this dissertation an approach is proposed where each user has their own namespace,
but content and derivation based identifiers are also affixed to objects to provide the

ability to recognize identical objects between workflow.
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The derivation based identifiers are especially important in light of a Preserve
First mentality which is needed in computational science. Even before tasks are ex-
ecuted derivation based identifiers are available for their generated results. These
identifiers can immediately be shared with collaborators and both users could po-
tentially execute a workflow concurrently while retaining the ability to identify those
objects as the same from a global system perspective.

The additional use of content based identifiers can enable the collaborators to
confirm that results are identical in the case of a deterministic workflow, but with a
non-deterministic workflow, collaborators must rely on the derivation based workflows
and an assumption that both systems are behaving equivalently. Unfortunately it is
not always possible to ensure non-deterministic behavior in a workflow.

Also, the Preserve First ideal also helps avoid implicit assumptions when the
tasks are executed in a sandbox. Finally, with the Preserve First approach enables
intermediate files to be treated like a cache which can be flushed if storage resources
become overloaded, because the system can re-execute the task to retrieve it’s results
if they are needed later on.

These additional features come at a cost, but in the experiments used the cost
was negligible compared to the workflow tasks themselves. And the workflows were
still able to scale in spite of the additional actions.

But perhaps the most significant benefit of applying these capabilities to a work-
flow system is the ability to minimize collaboration overhead. Significant reductions
to re-execution and network transfer are possible while still achieving the most valu-
able requirements for a collaborative system. In addition the choice of collaboration
modes does not need to be made in advance. The optimal solution in specific cir-
cumstances can be calculated based on the relative cost of execution compared to

network traffic.
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7.2  Successes

The overhead of obtaining content based identifiers for all Files was around 1%
of a large workflow, but made it so that identical files across collaborating systems
could be easily identified and transferring those files could be avoided.

Forcing the user to specify desired tasks and letting them be executed by the
system rather than executing them directly enabled the ability to successfully put a
quota on the disk usage of the workflow without losing any information about the
historical evolution of the workflow.

PRUNE enables new collaboration modes which allow the user to choose between
two optimized options. 1) Eliminate re-execution for the collaborator and reduce
network traffic to 6%-23% of the full workflow amount on average, or 2) Minimize
network transfer to negligible amounts, and reduce re-execution down to 69%-84% of

the full workflow execution time on average.

7.3 Limitations

As shown in figure the specification of a workflow is much more verbose in
PRUNE than in a simple script. It is likely that the syntax could be simplified, but is
still likely to be more complicated than a workflow specified without PRUNE. This
intellectual overhead is a significant drawback, and can only be offset by separate
benefits such as a disk quota and easier collaboration which can help to reduce the
intellectual overhead.

There could be more external motivation to ensure scientific computing publica-
tions are reproducible, that go beyond what technologies are likely to do. Perhaps
a metric needs to be created to measure reproducibility so that a sizable prize [19]
could be offered to the most reproducible scientific computing publication. In the

absence of a funding source, maybe publishers could simply start offering a Most Re-
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producible Paper Award similar to the Best Paper Awards commonly given. A little
notoriety could go a long way in encouraging scientists to strive for reproducibility.

Scientists could also benefit from more exposure to any good software development
practices [193], that are not included in their education or training. There is no guar-
antee that even the most reproducible techniques available today will be reproducible
at any given date in the future. Therefore, a community of experts is needed who are
willing to maintain a collection of relevant research. This community would secure
funds, decide what research is no longer relevant, what research needs to be updated
to accommodate technological advances, and develop additional tools to encourage
new commitments to the reproducibility of computational scientific research.

Even research that was fully reproducible at the time of publication may cease
to be usable in the ensuing year as a result of unexpected hardware or software
evolution. The Madagascar project [69] and observations of it’s use after a couple of
years [66] make a strong arguments for making research preservation a community
effort, rather than placing the burden entirely on the original researcher.

This is not an easy task and generic open source software techniques [65] are
not always applicable. Strides have been made and lessons learned in very specific

situations [I83], but more needs to be done for scientific workflows as a whole.

7.4 Future work

Scientists rightly feel some ownership over their discoveries. They deserve credit
or acclaim for their work, and they should have some control over the distribution
of their efforts. They should be able to manage the integration of other published
research into their own work, without having to re-implement everything themselves.
However, currently, these abilities often come in the form of decreased convenience
and/or performance, and are too often sacrificed in fear of publication delays. In

such cases, scientists may prefer to work completely on their own, planning for re-
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producibility later on.

7.4.1 Distribution

Access requests for objects that are restricted for any reason could be automated
and alternatives could be provided when access is not possible. Also, a scientist might
want to grant access to any portion of their workflow on a case-by-case basis. For
other portions of the workflow, it might be acceptable to grant access automatically
under certain conditions. Appropriate conditions could be membership in some sort of
group or organization, or agreement to attribute credit for borrowed portions in future
publications. Content-based IDs for shared objects may help identify provenance in

cases where attribution is not retained for whatever reason.

7.4.2 Integration

Ideally computational science could be a very collaborative effort with improve-
ments frequently being published at all levels of a workflow. Even with highly sen-
sitive information, if a ‘scrubbed’ but statistically equivalent version of that infor-
mation is available, individuals without special access could potentially contribute to
improvements in the workflow. Scientists could configure when notifications about
new versions of a shared object are available and how to deal with incorporating

those changes into their own research.

7.4.3 Convenience

A balance between user convenience and computer requirements can be difficult
to achieve. A mapping between the two is often used, such as when source code (for
users) is translated into machine code (for computers). Object naming in a collabo-
rative workflow is even more difficult because the preferences of multiple users should

be accommodated. Another problem is managing storage space not just in a single
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repository (as in my previous research), but also across a collaborative workflow.
These seem to be the most significant pain points, but other situations might be big-
ger problems in other sciences. Users might tolerate extra effort for reproducibility
if even more effort is eliminated in other challenging areas. More research is needed
to discover the worst pain points for users in scientific computing in general.

With that in mind and with a focus on usability, additional tools are needed to
reduce the intellectual load on scientists so that they and their collaborators can
focus on their scientific domain instead of on the computer science. In general, the
less work the scientist has to do to execute their research workflows and evolutions
of their workflows, the more likely it is that their collaborators will be able to accept
and benefit from that research. In this vein, efforts in various other areas can be con-
tinued, including; validation, infrastructure independent and performant execution,

recording, sharing and synchronizing of workflows.

7.4.4 Performance

Scientists are concerned with how quickly results can be achieved without ex-
cessive financial costs or delays. If reproducibility increases either of those barriers,
scientists will be less likely to collaborate. Cloud resources, such as Amazon EC2
or GCE can greatly reduce delays, and shared resources between collaborators could
reduce the costs. KEither one of these could outweigh the barrier to reproducibility
compared to existing solutions without such resources. Better tools for estimating the
(financial or temporal) cost of computing need to be created in order derive mutual

benefits from shared resources.

7.5 Reproducibility of this paper

As I mentioned previously, issues were encountered with satisfying data depen-

dencies with each workflow both from technical and legal perspectives. Obtaining
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permission to publicly share these workflows in their entirety turned out to be less
successful than addressing the technical challenges. I share all files and data that I
was permitted to.

The shareable result of using PRUNE comes in the form of an exported file that
includes the Files, Tasks, and Environments used to execute the workflow. These
final files are available on gitlab and include all the data we are permitted to share:

https://gitlab.com/pivie/ccpe-prune/

doi:10.7274/ROTDIVDQ
http://bit.ly/2hNNqD5

These files can be loaded into a PRUNE repository by executing the included Python

scripts. For more information the PRUNE User’s Manual can be found at:

http://ccl.cse.nd.edu/software /prune/
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