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A WORKFLOW MANAGEMENT SYSTEM TO FACILITATE

REPRODUCIBILITY OF SCIENTIFIC COMPUTING APPLICATIONS

Abstract

by

Peter Ivie

Reproducibility is becoming an increasingly challenging requirement of the sci-

entific process. Compared to more human intensive scientific procedures, it would

seem that scientific applications executed on computers could easily produce identi-

cal results despite slight changes to hardware, software, or simply timing. However,

implicit dependencies on data and execution environment, coupled with ambiguous

definitions of identity and equivalence throughout the process, make reproducibility

rarely possible. To address this problem, I created PRUNE, the Preserving Run En-

vironment. In PRUNE, every task to be executed is wrapped in a functional interface

and coupled with a strictly defined environment. With this information PRUNE can

directly execute each task. As a scientific workflow evolves in PRUNE, a growing

but immutable tree of derived data is created. The provenance of every item in the

system can be precisely described, facilitating sharing and modification between col-

laborating researchers, along with efficient management of limited storage space. I

show that with a minimal amount of overhead, these capabilities can be available

for large scale and complex workflows, such as an analysis of high-energy physics

data, a bio-informatics application, and processing of U.S. census data. PRUNE also

minimizes the cost of collaborative development of computational science.
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CHAPTER 1

INTRODUCTION

Growing concerns about the usefulness of some scientific publications have gen-

erated an increased focus on the concept of reproducible computational science [12].

Scientists may disagree on the use of the term reproducibility [63, 82, 54], but few

seem to dispute it’s importance. I consider computational science to be reproducible

if results can be achieved which are equivalent to the original results when an exper-

iment is re-executed where conditions differ only in ways that are not expected to be

significant. Ideally, reproducible experiments would contain sufficient details to be

effectively incorporated into the research of other scientists, with observations that

are correct and can be sufficiently validated. Scientific discovery is often stumbled

upon, but must still be separated from transient circumstances.

Knowing that some results can be obtained on demand by re-executing a work-

flow1 is an important step towards enabling a skeptic to perform an equivalent exper-

iment and thereby confirm or refute the results. Ideally, the main responsibility to

ensure the correctness of publications would rest on the author, with the peer review-

ing providing secondary confirmation. However, even without considering the cost

of re-executing scientific workflows in an age of widespread big data, the difficulty of

even getting set up to re-execute the workflow is too daunting of a task for most peer

reviewers to undertake.

1A scientific workflow is the collection of data and tasks that are used to execute computational
scientific research.
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In recent years, serious questions have been raised about the reproducibility of

scientific work in general, and scientific computing more specifically. While there

appears to be a general sense that most scientific computing is not as easily repro-

duced as it could be, there is no general agreement on what, precisely, reproducibility

entails, and what mechanisms are needed to achieve it.

Some argue that this situation has reached crisis proportions:

In the biotech industry, Amgen [17] attempted to confirm the findings in 53 “land-

mark” articles in cancer research. These attempts were not merely computational,

but also involved working in the original labs under the direction of the original au-

thors in attempts to resolve discrepant findings. They only succeeded with 10% of

them. In pharmaceuticals, Bayer [156] had slightly better results and were able to

verify 21% of 67 different projects. These efforts involved scientific research where

the computational resources required were generally low.

In principle, computational experiments should be easy to reproduce, when com-

pared with physical experiments. Assuming that a computer is a deterministic ma-

chine, then simply applying the same program to the same inputs on an equivalent

architecture should yield equivalent results. Many design principles and recommen-

dations surrounding scientific computing have been encouraged [23] for years. But

in practice, the complexity of today’s software and hardware makes it surprisingly

difficult to even accurately describe the inputs, construct a deterministic program,

or identify equivalent hardware. Many of the difficulties stem from a need to simul-

taneously satisfy the needs of both the computer and a human as summarized in

figure 1.1, rather than being able to focus exclusively on one or the other.

1.1 Scope and contributions

In high-performance computing, the overhead of starting and stopping processes

is often minimized by allowing long running processes to send intermediate results
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Figure 1.1. Overall Perspective

Overall Perspective for the Reproducibility of Computational Science

to other processes during run-time. As the duration and scale of such workflows

grow, there is an increasing risk that at least one process in the system will fail.

This typically forces the entire workflow to fail unless checkpoints of the entire state

of the workflow are stored on a regular basis. In the case of a system failure with

checkpoints, the workflow can resume from the last successful checkpoint. There can

be a significant amount of redundancy between checkpoints, and each checkpoint

can slow down the workflow. So a tradeoff has to be made between the overhead

of creating more frequent checkpoints as compared to the overhead of stopping all

processes when any failures occurs and re-executing from the last checkpoint.

In a high-throughput workflow, the checkpointing is often minimized by breaking

the workflow into tasks that do not pass messages during run-time, but provide final

results when the task is completed that can be used by other tasks. In essence,

checkpointing is done at the task level rather than the workflow level. In these cases

the overhead for system failures is limited to the duration of the tasks that failed, and

only the tasks need to be restarted, not the entire workflow. However, the overhead
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of starting and stopping each task is a significant factor.

For workflows where the intermediate data (in passed messages) is relatively small

compared to the processing requirements, high-performance computing can be a more

efficient choice. However, in the presence of opportunistic or heterogeneous comput-

ing resources, the failure rates are often higher, so the cost of restarting the entire

workflow is high. And when a workflow has both a lot of data that would need to

be check-pointed and uses opportunistic and/or heterogeneous computing resources,

the high-performance approach is poorly suited as a solution. In such cases, inter-

mediate data can be stored and transferred as files in any format. Tasks need to

fit the compute resources upon which they execute, or they must be able to modify

the resource to satisfy their needs. Upon failure, a task can easily be moved to an

alternative compute resource without interrupting other running processes.

The computational science we have encountered is more suited to a task-based

workflow with no message passing. This eliminates the need to consider race condi-

tions or how message passing affects parallelism at the workflow level. An individual

task may utilize parallelism in this model, but it may not communicate with other

tasks in real-time.

In terms of reproducibility, heterogenous computing resources come with an in-

herent chance for results to be affected by the configuration of the underlying re-

source. With such resources, a scientist should work in collaboration with a system

administrator to ensure that resources are appropriate for the desired task, or can

be modified in real-time to become appropriate. In addition, the scientist should

assume the responsibility to either personally or programmatically verify that the

results are correct. Part of the scientific process is to perform an experiment more

than once to ensure that the results can be trusted. Computational science should

not be absolved of this responsibility based on an assumption that any computing

resources, heterogenous or not, are more predictable than a more human dependent
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experiment (because they might not be).

To further limit the scope of this dissertation, I focus primarily on technical

problems in scientific computing, and refer the reader to other publications that

address the broader questions of publication habits [166], the role of funding agen-

cies [122, 172], fraud [118, 43], legal issues [173], similar questions [145], and related

fields such as computer aided engineering [59]. Elements of scientific discovery that

do not involve computers are not the focus of this dissertation.

Computer aided engineering (CAE) is a similar field where computer software

is used to help perform engineering analysis tasks, rather than scientific workflows.

While not applied to the same domain, some of the concepts used can have applica-

bility to scientific computing, such as executing simulations of a model can be used to

evaluate the validity of the model in both CAE [120] and scientific computing [147].

The work presented in this dissertation is intended to expose techniques and

approaches that lead to more effective reproducibility. This is done by identifying

important properties relating to reproducibility that can be included in a system used

for computational science. It is not intended as a new utility that in and of itself will

solve the challenges encountered when trying to make scientific results reproducible.

As such, most of the evaluations and comparisons will focus on the presence vs.

absence of various characteristics. While there may be some comparisons to other

workflow management systems, I recognize that some components needed for an

effective workflow management system were left out because they were not needed

for reproducibility. Specific contributions include:

First, this work identifies and summarizes barriers to reproducibility, a wide range

of existing solutions to those problems, and tradeoffs that need to be considered in

particular cases.

Second, it asserts the importance of a Preserve First approach to workflow execu-

tion, where tasks are preserved and then executed by the system to help ensure that
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implicit dependencies do not exist. This approach also makes it so that intermediate

data can be treated like a cache, since the data can be re-executed if needed.

Third, it introduces a way to name workflow objects based on the derivation tree.

This enables the system to uniquely and consistently identify objects shared as a

part of a collaboration and to distinguish between them and new objects even in the

presence of non-determinism.

Fourth, it demonstrates that in large workflows the overhead of these added efforts

can be computationally minimal in comparison to the workflow execution.

Fifth, it quantifies the benefits of the Preserve First and derivation based ID

combination as applied to a collaborative arrangement, and estimates the cost of

various options for transferring workflow evolutions from one collaborator to another.

1.2 Publications

The following publications contributed to this dissertation as I, and the others

involved, wrestled with behaviors that made reproducibility challenging, but also

emphasized the need for more reproducible computational science.

DeltaDB: A Scalable Database Design for Time-Varying Schema-Free Data. In

IEEE International Congress on Big Data (BigData), 2014. [99] DeltaDB is a log

based database with an algebra for performing operations on the log to summarize

the records for reports. It reduced what would have been stored in 5TB of snapshots

down to 11GB.

Data Intensive Physics Applications to 10k Cores on Non-Dedicated Clusters with

Lobster. In IEEE Conference on Cluster Computing, 2015 [194] Lobster is a sys-

tem designed to perform high energy physics on compute resources outside of the

dedicated clusters designed for such activities. Shown to work with over 10,000 con-

current cores, it produces throughput comparable with the largest dedicated clusters

a part of the LHC infrastructure.
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Techniques for Preserving Scientific Software Executions: Preserve the Mess or

Encourage Cleanliness? at the 2015 International Conference on Digital Preservation

(iPres) [180] An overview of what challenges exist in attempting to preserve scientific

software research for reproducibility. Preserving the mess and encouraging cleanliness

are two generic ways to make this happen.

A Case Study in Preserving a High Energy Physics Application with Parrot in

the Journal of Physics: Conference Series (JPCS) [137] Preserving a complex high

energy physics application such as Tau-Roast is challenging. The Parrot Packaging

Tool can be used to capture a minimum execution environment package for a scientific

application. Various technologies can be used to instantiate this package, making it

more likely to be reproducible in the future.

An Analysis of Reproducibility and Non- Determinism in HEP Software and

ROOT Data. In International Conference on Computing in High Energy and Nuclear

Physics, 2016. [105] Generically comparing high energy physics ROOT files generated

with the same parameters can lead to an evaluation on the equivalence level of the

results. Another approach attempted is to capture all system calls and provide pre-

dictable responses to those calls so that application doesn’t know anything is different.

This achieved deterministic results in some cases.

PRUNE: A Preserving Run Environment for Reproducible Computing. IEEE

Conference on e-Science, 2016. [102] In PRUNE, tasks are wrapped in a functional

interface and coupled with a strictly defined environment. The task is then executed

by PRUNE rather than the user to ensure reproducibility. As a scientific workflow

evolves in PRUNE, a growing but immutable tree of derived data is created. This

tree can be used for reproducibility storage management and collaboration.

7



1.3 Dissertation overview

So far, this chapter has painted a high level view of what reproducibility is, why

it is important and how effective current strategies are at satisfying the need for

reproducibility. Then the scope and contributions of this work were presented and

papers that led to the completion of this work were summarized.

CHAPTER 2: THE REPRODUCIBILITY PROBLEM DEFINED includes de-

tailed definitions not only for reproducibility, but also for terms surrounding repro-

ducibility. It also includes explanations for why it is difficult to actualize reproducibil-

ity for single commands not only because of implicit dependencies on the environment,

but also due to a mismatch between the needs of the computer and the needs of the

user. And then additional challenges related to workflows are discussed, such as the

tradeoffs between finely and coarsely granulated preservation and difficulties in the

execution of the workflow.

CHAPTER 3: RELATED WORK addresses the topic of object naming and de-

scribes categories of existing choices for executing workflows each with example sys-

tems as related work. Object naming is both challenging and important because it

is what computers and humans both use to uniquely identify objects in the workflow

so that changes to a workflow can be distinguished from previously included objects.

The categories of existing solutions range from tracing all system calls initiated dur-

ing the execution of a workflow to forcing the use of dedicated clusters in a walled

garden to ensure no implicit dependencies exist.

CHAPTER 4: PRUNE OVERVIEW introduces a few ideas and practices de-

signed to encourage the use and development of reproducibility focused workflow

management systems. The ideology of Preserve First eliminates the chance of forget-

ting to preserve the workflow or of disparities between provenance and practice. It

also helps avoid hidden implicit dependencies on the environment. The components

of Prune are identified with the idea that the components make up an ever growing
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tree of immutable tasks that describe every evolution of the workflow without hav-

ing to store all intermediate files. The reasoning behind combining a context based

identifier with a derivation based identifier for each object is then explained.

CHAPTER 5: PRUNE SINGLE USER EVALUATION lists specific technologies

that are chosen for the various components of Prune. A simple merge sort workflow

is shown with the equivalent operations described as a Prune workflow. Examples of

the underlying immutable objects are included. An workflow using U.S. Census data

is used as a proof of concept and reproducibility relevant metrics are recorded during

execution of the workflow. Storage savings for re-executing the workflow after changes

a various stages compared to creating a new folder are presented. Overhead is shown

to be negligible compared to the execution of workflow tasks, and a quota system is

put into action to keep storage consumption within specific bounds. Prune is then

applied to both bioinformatics and high energy physics workflows and the results are

used to confirm the overhead measurements. However, a few problems that arose are

described with solutions to those problems.

CHAPTER 6: PRUNE COLLABORATION shows how the data stored in Prune

is used to estimate the financial and temporal cost of attempting to minimize re-

execution of tasks on a collaborators system vs. attempting to minimize the transfer

of intermediate files over a network. Prune to obtain and transfer either the inter-

mediate results or task information on a task by task basis. That coupled with the

ability to detect matching object using the content and derivation based identifiers

allows evolutions to a workflow to be transferred to collaborators in much more effi-

cient modes. These modes can also be chosen after the fact, which is helpful because

the optimal mode can change depending on the circumstances. The method for es-

timating network and compute costs are detailed and applied to all modes for the

bioinformatics and high energy physics workflows to show the benefits of the newly

available modes.
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CHAPTER 7: CONCLUSION summarizes the dissertation and reflects on the

successes and failures that were encountered. Future directions that could further ad-

vance the convenience and viability of making scientific results reproducible are then

illustrated. Followed by a section on how to reproduce the results of the workflows

used in this paper. I will note upfront that ssues were encountered with satisfying

data dependencies with each workflow both from technical and legal perspectives.

Obtaining permission to publicly share these workflows in their entirety turned out

to be less successful than addressing the technical challenges. I share all files and

data that I was permitted to. A link to this data is found in section 7.5.
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CHAPTER 2

THE REPRODUCIBILITY PROBLEM DEFINED

2.1 Perspectives on reproducibility

It is commonly expressed that reproducibility of computational science is a de-

sirable quality, and that there is a need to move the beyond the printed paper as a

means of communicating results. [151, 170]

An article about computational science in a scientific publication is not
the scholarship itself, it is merely advertising of the scholarship. The
actual scholarship is the complete software development environment and
the complete set of instructions which generated the figures. [29]

This type of information can get very complex and detailed very quickly, but from

a user perspective it can be easier than it sounds with the proper tools and mindset.

It is a big chore for one researcher to reproduce the analysis and compu-
tational results of another [...] I discovered that this problem has a simple
technological solution: illustrations (figures) in a technical document are
made by programs and command scripts that along with required data
should be linked to the document itself [...] This is hardly any extra work
for the author, but it makes the document much more valuable to readers
who possess the document in electronic form because they are able to
track down the computations that lead to the illustrations. [39]

Researchers at the University of Arizona [157] considered the repeatability of

402 ACM papers published in computer systems conferences. In this work, minimal

repeatability was defined simply as the ability to download and build the source code

within a reasonable amount of time. They were able to build 32.3% of them within

30 minutes. 15.9% more took over 30 minutes and 5.7% more with additional but
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reasonable effort. The code failed to build in 2.2% of the cases, and the authors

declined to provide code in 7.5% of the cases. 36.3% of the authors never responded

to requests for the code. The subjects of the study were invited to post corrections

or addenda to the material, and the responses resulted in a wide variety of strong

opinions about the procedure.

All these numbers are definitely dismal, but is it really a crisis? Future compu-

tational science is likely to become even more complex [161] and resource intensive,

making reproducibility even more challenging. To understand why this is such a

problem, I will expound upon some of the reasons for, and benefits that come from

making research reproducible.

2.1.1 How is reproducibility defined?

A wide variety of authors have defined reproducibility and related terms in some-

what different ways. [106, 81, 190, 1, 195, 132, 171, 147] Although complete consensus

has not been achieved on these terms, I will use them in the following way:

To replicate an experiment [54] is to carry out exactly the same task as the

original researcher, with the expectation that the result will be the same. In scientific

computing, exact replication would constitute building the same program with the

same compiler running on the same hardware and the same operating system as the

original. Obviously, it may be difficult or impossible to replicate every last detail.

Seemingly innocuous details (like the system time [104]) may affect the final result.

To reproduce an experiment [195] is to carry out tasks that are equivalent in

substance to the original, but may differ in ways that are not expected to be significant

to the final result. In scientific computing, these differences could range from minor

to sweeping. One attempt to reproduce might run the same version of the software

on a new version of an operating system, while another attempt to reproduce might

involve writing a new piece of software that implements the same algorithm.
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The terms verify and validate are often used interchangeably. In the broader

literature [21, 147], they are used to indicate technical correctness and fitness for

purpose, respectively. In the context of scientific computing reproducibility, I define

verification as the task of replicating an experiment to see if it produces the claimed

output, while validation is the task of evaluating a result to see if the author’s

conclusions are warranted. One experiment corroborates another when they reach

the same overall conclusions.

When the components underlying an experiment are easily named and shared, it

becomes possible to make use of them in other contexts. This is known as variation

or reuse or extension.

The term provenance is used broadly to describe retrospectively the many po-

tential sources of input or variation to a program. For example, when a program is

run in a distributed system, it may be desirable to record the incidental details of the

machine on which it ran (architecture, operating system, system time) in case those

details are later found to be significant. Or, if a program B consumes input data

X that was the output of a previous program A, then it may be fruitful to record

that A→ X → B to note that the output of B originally depended on the output of

A. [112, 78, 31, 175, 60, 162, 119, 167]

A deterministic program always produces the same result when run with the

same input in the same computing environment. Some programs are non-deterministic

by design: for example, a Monte Carlo simulation uses a random number gen-

erator to evaluate a function with randomly chosen inputs. Other programs are

non-deterministic by accident: concurrency, operating system services, or the va-

garies of floating point math may all introduce differences where they are not de-

sired [58]. For example, even a Monte Carlo simulation with a fixed seed can produce

non-deterministic results [103]. There may be ways to avoid some sources of non-

determinism, but it is difficult (if not impossible) to avoid all of them. Efforts can
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Figure 2.1. Equivalence levels and Examples

Equivalence can be gauged with different methods depending on the desired focus.
Discussed in detail in section 2.1.1.1

be made to detect [16], or mitigate such behavior, even at large scales [34], but there

is still a need to support better reproducibility at the system level.

2.1.1.1 Equivalence

I must also be careful to define what constitutes the “same result” when comparing

two experiments (see figure 2.1):

• Two experiments could produce the exact same bits.

• Two experiments could produce the same data in the sense that they encode
the same numeric contents, but differ in some irrelevant detail. For example,
an output file might incidentally contain the system time and the name of the
user who ran the program.

• Two experiments could produce statistically equivalent results, in that the
numeric values are different, but they both conform to the same statistical
distribution, modulo some error tolerance.

• Two experiments could observe the same phenomenon but not the same
data.

These distinctions have an important bearing on whether a result can be verified

automatically. If equivalence is defined by the same bits or the same data, then
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simple technical tools can be used to perform the comparisons. Evaluating statisti-

cally equivalent results requires a domain-specific tool, while comparing phenomena

requires a human with domain-specific knowledge. Consequently, it is desirable to

achieve reproducibility at the lowest level at which it is feasible, so that verification

can be performed automatically.

A part of reproducibility is communicating methods and intent [54], in addition

to communicating how to obtain identical results. When tools for logical equivalence

are not available, the burden of comparison rests on the scientist.

When the computer itself is the object of study, then performance or resource

consumption may be the primary result. In other cases, issues of performance are

relevant in terms of cost and/or convenience, but are not the focus of their research.

Various systems exist which are both appropriate for computational science and have

a focus on maximizing, measuring, or repeating performance goals. [109, 107, 33,

116, 169, 53] Repeatability can refer to the ability to get the same performance [1]

in the presence of changing conditions in the underlying system. I will assume that

for the general case a focus more on reproducibility has benefits that outweigh the

advantages of a focus more on performance.

Topics discussed in other works, but not addressed in the paper include best

practices beyond the technical aspects [171] and roles of not only the scientist, but

the funding agency and the journal editor [195].

Several authors [152, 132] have presented these reproducibility concepts as a spec-

trum starting with replicability by a single researcher as the minimum level of scien-

tific integrity, and increasing through verification, reproduction, validation, extension,

and reuse by many researchers. Each stage requires a greater amount of work but

has increasing value to the community at large.
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2.1.2 Why should computing be reproducible?

There are a variety of reasons underlying the need for reproducibility:

To verify (or disprove) other’s results. [140] argues that the basic function

of a paper is to both announce some result and convince the reader that the result

is correct. However, [98] claims that the majority of published research findings are

false, due to small sample sizes, statistical noise, confirmation bias, and publication

bias. In most fields, peer-reviews serve to evaluate whether the work, as described,

is sound, significant, and interesting. With rare exceptions, reviewers do not have

the time, inclination, or skills to perform and verify the work described in a paper,

particularly if it requires access to unusual or expensive methods and facilities.

However, scientific computing has the unique advantage that any computational

activity is potentially reproducible, given the same code and input data and execution

on a compatible machine.

This has given rise to the concept of “reproducible research” [38] or an “executable

paper” [24, 32] in which the source code and data used to reach a conclusion are

coupled and distributed with the paper itself. In principle, this should allow the

reviewer and the reader to carry out the same action and evaluate the conclusions.

This concept has been offered as part of a number of special issues and efforts, but

has not been accepted broadly by research communities as of this writing. This may

be due to the fact that peer review considers more broadly the novelty, significance

and correctness of a work. For example, [121] notes that merely re-running the

same code does not guarantee that the research results are correct. There are also

many cases where accessibility of the code and data is not sufficient: the results may

require access to specialized or high performance hardware, and may still require a

large amount of time or other resources to complete.

To verify one’s own results. In practice, I have encountered relatively few

researchers who wish to actively develop an adversarial relationship with others by
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disproving their work. However, some have argued that a healthy distrust of one’s

own work should drive reproducibility:

We do not take even our own observations quite seriously, or accept them
as scientific observations, until we have repeated and tested them. Only
by such repetitions can we convince ourselves that we are not dealing with
a mere isolated coincidence, but with events which, on account of their
regularity and reproducibility, are in principle intersubjectively testable.
[155]

To improve one’s own productivity. Some researchers perceive that efforts

to make their research reproducible will result in decreased productivity [13] as effort

is shifted towards technologies instead of their primary work. Others have argued the

opposite. For example, Jon Claerbout (who coined the term “reproducible research”)

made the following statement after many years working towards that end:

It takes some effort to organize your research to be reproducible. We found
that although the effort seems to be directed to helping other people stand
up on your shoulders, the principal beneficiary is generally the author
herself. This is because time turns each one of us into another person,
and by making effort to communicate with strangers, we help ourselves
to communicate with our future selves. [37]

To enable extension by others. Frequently, one researcher may wish to build

upon another’s work positively by augmenting it or evaluating it against a new dataset

or situation. This is easier said than done. Even when two researchers working

contemporaneously can share notes and advice, moving a code from one institution to

another can take months before the same setup is “working” in the new context. [79]

It becomes even harder when the original researcher is no longer available: they

may have graduated, have taken a new job, or have died. If the goal is to enable

reproducibility on the scale of 10-20 years [29], significant care is needed to record

all the necessary details. A focus on the human side of scientific computing [90] can

also make it so that others can understand and incorporate published research into

their future efforts.
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To survive technology evolution. Many research codes depend on a large

number of sub-components like libraries, compilers, runtime systems that must be

independently installed, configured, and tested on a given operating system. A large

computing site must occasionally go through an upgrade cycle to activate new hard-

ware, change system facilities, or upgrade the operating system. These are frequently

not backwards-compatible changes, and so all the supporting components must be

re-built to accommodate the new environment. The unsuspecting user may face an

enormous amount of work to reconstruct all these components. Reproducibility tech-

niques can assist in recreating the dependency tree (and testing it) after a major

upgrade, hopefully for years to come.

To enable community maintenance and support. A code developed by a

single researcher typically has a short productive lifetime. Keeping the code work-

ing on multiple platforms and relevant to current research trends takes time, and

eventually the researcher moves on to other activities, leaving “orphan” code be-

hind. However, if reproducibility techniques make it easy to execute a code in many

different contexts, responsibility for the code can be held by a larger community.

When multiple stakeholders are familiar with the code, technical problems are more

easily solved. Even automated techniques can be employed to perform maintenance

on an experiment when the research is adequately reproducible. [66] By publishing

reproducible research, ownership of maintenance is effectively transferred to the com-

munity [69] level. This allows the publishing scientist(s) to focus more on future work

than previous work.

In summary, computational scientists are often encouraged to make their research

reproducible so that that other scientists can verify, reproduce, and extend their

computational experiments, but there may be personal benefits also.
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2.2 Technical barriers to replicating a single command

Let us begin by considering the technical challenges of reproducing just a single

command. Suppose that an end user connects to a university computing facility and

enters the following command:

do_science.sh lab.dat model.csv 8 plot.jpg > stdout.csv

From the user’s perspective, the command string is the only visible evidence of

the program. The command itself provides the most superficial form of replicability:

by entering the exact same command into the same terminal later that day, there is

a good chance that exactly the same outputs will be produced.

However, there is no guarantee that the same command applied by a different

user on the same machine, much less a different user on a different machine, will

succeed at all, much less produce the same output. This is because the command

string replies on a large number of dependencies in the form of hardware, software,

and data, as shown in Figure 2.2 Some of these dependencies are explicitly mentioned

on the command line (like the file model.csv) while others are implicitly provided

by the system.

The following sections cover such environmental challenges, in addition to chal-

lenges connected with abstractions, run-time anomalies, verification of results, and a

discussion about whether source or binary code should be the target of preservation.

2.2.1 Environment

I define the environment as both the system resources and the domain methods

used to perform the computational side of scientific research. The scope at which

systems preserve or describe the environment varies widely. Research is more likely to

be reproducible when all levels of the environment are preserved or at least identified.
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Figure 2.2. Task Environment Levels and Examples

Examples of environmental components at various levels. More details in
sections 2.2.1-2.2.1.6.

2.2.1.1 Command scope

A ‘do science.sh’ script can contain all information needed to replicate the exper-

iment. However, this approach can mask valuable information from the user, making

it difficult for another scientist to extend the research in order to explore or build on

the experiment. Requiring additional parameters that are handled by the script may

seem to overcomplicate an experiment, but doing so communicates those decisions

made by the original researcher which are deemed most relevant. Parameterization

can be an important tool for extension. If crafted carefully, parameters can give both

the original researcher and collaborators the ability to easily explore the parameter

space to gain confidence in the validity of the research. Figure 2.2 starts with an

example of a parameterized command at the top. Parameters can be numbers or

strings in the command scope, but in the data scope (section 2.2.1.2) the parameters

can refer to files.
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2.2.1.2 Data scope

Most scientific research involves some kind of input or starting data in addition

to the final generated results. For reproducibility purposes I will mostly consider this

data to be in the form of files, but it could come in the form of Unix standard output,

literal parameters, etc.

This data could involve network dependencies which can make reproducibility

more challenging. For replicability, these dependencies might be satisfied by recording

the data retrieved over the network and then simulating the network in subsequent

runs of the experiment. However, for other changing factors (especially to the domain

methods and original data) this approach becomes less likely to capture the network

resource adequately. It might be necessary to capture and transfer the entire database

from behind the network resource to ensure that the workflow will still be reproducible

in the presence of changes.

Authorization issues are another common challenge with data, either from a secu-

rity or privacy perspective. Authorization keys are sometimes kept in pre-determined

file or location, and certain data files may include private information. Such infor-

mation should normally be excluded from a publication, but without it, the research

is not reproducible. Accepting this information as an input parameter can identify

a need for the information without publishing the sensitive data, enhancing repro-

ducibility. This could be done in the form of a template.

Templates are programs that expect input parameters for dynamically specifying

the data the program is supposed to operate on. They can be helpful for the original

researcher when the input data is updated incrementally or to compare different

datasets. This form of parameterization is also useful, for extensible reproducibility,

when other researchers have different original data and want to use that to evaluate

the domain methods with.

Using a single command with lots of parameters can get confusing for large ex-
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periments. In the interest of extensible reproducibility, and to simplify things for the

original researcher, it is advisable to break down the experiment into smaller parts

and organize them in a workflow [47, 185, 124]. Different levels at which a workflow

can be composed are discussed in the section 2.3.1.

Descriptions that involve both the command and data scopes are similar to func-

tions (consider figure 2.2), where an external name needs to be given to all arguments

(for the inputs) and the results (for the outputs). The internal names used for that

data inside the function are considered parameters (for the inputs) and returns (for

the outputs). This separation between internal and external names can be important

for workflows because sometimes legacy software expects input from fixed filenames

and uses fixed locations for generated files. In these cases, and when a template

is used multiple times as part of a workflow, the naming of data files can become

complicated from a workflow perspective. More on the issue of naming can be found

in section 3.1.

2.2.1.3 Software scope

Part of the challenge with software dependencies is that different versions of a

particular software program or library are mostly compatible, but always include

some changes. Even newer versions of software that claim to be backwards compatible

may have unintended differences that can affect reproducibility. Software names can

be ambiguously used without version numbers for ease of use by the scientists, but

for reproducibility, all necessary software should be uniquely identified to ensure

consistent behavior (more in section 3.1). Packages can be used to make this process

easier and can include any combination of elements from the command, data, and

software scopes, as shown in figure 2.2.

Also, scientists generally prefer to focus on their science and care less about

lower level resource management [88] handled by system administrators. They are
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more interested in the destination than the journey, in part due to the exploratory

nature of scientific research. Scientific research is more often marked by a desire for

infrastructure independence than with an emphasis on benchmarks and how quickly a

system can execute a workflow. Readers interested in infrastructure and performance

can find more information about system-centric workflow systems and distributed test

beds in [28].

If a given research experiment is infrastructure independent, it will be more easily

reproducible. However, scientists sometimes decide they need a little more control

over the system resources. At this point, the boundary between system administrator

and domain scientist comes into question, which in turn makes the responsibility

for reproducibility more ambiguous. What software should be provided by system

administrators versus how much control should scientists have in setting up their own

domain specific software on generic computing resources?

From a reproducibility perspective, the scientist is generally unaware of modi-

fications made by the system administrators. Even the system administrator may

not put a priority on tracking all aspects of the system’s configuration. The line

between domain methods and system resources also varies between domains, making

it difficult to come up with a reproducibility solution appropriate for all domains.

2.2.1.4 Operating System scope

Occasionally the scientist will want a different version of the operating system than

is available on provided resources, but this is often beyond their control. Containers

such as Docker [138], Kubernetes [27], and Mesos [91] have emerged to address the

need for users to have easier access to specific versions of operating systems. Con-

tainer popularity is evidence that there is a need for this level of specificity in a

description of how computational science is performed.

Containers also depend on a specific kernel in order to work. This means that
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by specifying an appropriate container for computation research, the kernel is also

specified. But it also means that a container depending on one kernel cannot be

initiated on a computer running a different kernel.

2.2.1.5 Kernel scope

Virtual machine images can satisfy the need for all system software in addition to

providing virtual support for some hardware requirements of computational research.

However, the overhead of instantiating virtual machines can be prohibitively high,

especially for short running tasks if a virtual machine is instantiated for each task.

This can cause domain scientists to gear the workflow towards performance, with

larger tasks, rather than extensible reproducibility, with logically sized tasks. These

larger tasks are likely to be more obscure to other scientists than those designed with

logical domain science granularity (see section 2.3.1).

2.2.1.6 Hardware scope

For workflows executed on a single machine with no network dependencies, the

computer itself could be preserved in a museum or library as a part of reproducibil-

ity [144], but this is clearly not feasible especially for large data sets analyzed on

distributed systems.

Another aspect of the hardware scope not normally handled at the other scopes,

is the concept of finite resources. A scientist focused on domain specific issues can

neglect to preserve the memory, cpu, disk, and perhaps network resources needed for

a workflow and it’s parts. This information is also difficult for system administrators

to track because additional resources are required to monitor the resources used by

a workflow. Both groups are disincentivized to preserve information this detailed,

but it may be difficult for another scientist to reproduce the research without this

information, and will almost certainly make reproducing the results less efficient.
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2.2.2 Source code or binary code?

When attempting to preserve a workflow for reproducibility, decisions must be

made about when to preserve source code and when to preserve the binary code that

was generated by compiling the source code.

Considering reproducibility, source code seems like the obvious choice. But the

compiler then becomes an important part of the workflow and measures need to be

taken to ensure that the compiler is available and can execute on future compute

resources. Some time in the future it might be easier to find a modern replacement

for a compiler than it would be to find a modern way to execute the the binary

code. At some point in this recursive problem, assumptions may need to be made

about what will be available in the future. So just preserving the compiler doesn’t

completely ensure reproducibility in the long term.

Source code more easily communicates to colleagues what each task is doing

and lends itself more easily to modification by those other scientists, making it a

better choice for reproducibility. In fact, important information about the science

is embedded in the source code, whether through comments, structure or naming.

This information is ignored by the computer as irrelevant, but could be considered a

collection of facts that help support the claims made in the published research. Those

facts can add knowledge about a workflow in general and also software components

individually, especially when the components are novel in the scientific domain.

However, in order to use the source code, it must be converted to binary code by

a compiler which can take a significant amount of time. If the compilation is done

on each compute node in a distributed system, the compile time can add significant

costs to executing the workflow. This makes preserving the binary code a better

choice if replicability is all that is needed, not reproducibility.

However, there is no need for a rule that states one option must be chosen at the

expense of the other. If both forms are preserved, the preferred option can be chosen
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Figure 2.3. Visualization of a Genome Analysis Workflow

Data or information (indicated by squares) and actions or processes (indicated by
circles) are connected by a derivation tree, where the root is source data, and any

subset of the remaining generated data components could be considered the results.

later on, when the needs are more clear. For data-intensive workflows, preserving

the source code, compiler and the binary code is unlikely to make an unreasonable

addition to the total storage or communication costs.

Having both options also makes it more likely that one or the other will provide

the level of replicability/reproducibility needed at some future date on some future

compute resources. Indeed, having more than 2 levels of abstraction where the highest

level describes the task or workflow in very broad terms might allow for a task or

workflow to be re-created in a situation when neither the source code nor the binary

code can be executed.
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2.3 Technical barriers to reproducing a workflow

The Workflow Management Coalition [93] defines a workflow as the computerized

facilitation or automation of a business process, in whole or part. For a scientific

workflow, the business process is an experiment with a focus on scientific discovery,

innovation, and/or invention. A set of procedural rules describe the processing and

generation of documents or information. I also focus specifically on solutions for

scientific workflows which are data-intensive [167]. While there may be some scientific

computing efforts that would not be considered workflows, there is value [168] in

applying workflow concepts wherever computers are used as a part of the scientific

research process.

A visualization of a workflow for Genome Analysis is shown in figure 2.3. Data or

information (indicated by squares) and actions or processes (indicated by circles) are

connected by a derivation tree, where the data at the root is source data, and any

subset of the remaining generated data components can be considered the results.

The workflow programming paradigm is seen as a means of managing the
complexity in defining the analysis, executing the necessary computations
on distributed resources, collecting information about the analysis results,
and providing means to record and reproduce the scientific analysis. [177]

The workflow programming paradigm is seen as a means of managing the
complexity in defining the analysis, executing the necessary computations
on distributed resources, collecting information about the analysis results,
and providing means to record and reproduce the scientific analysis. [177]

A workflow management system [185] provides a bridge between the work people

do and the work the computers do. They are important [130] in making compu-

tational science more convenient for scientists, but they can also help improve re-

producibility. Unfortunately, there are many workflow management systems, and

there is no common or accepted format or procedure by which a workflow should be

recorded or shared.
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Figure 2.4. Project Granularity Levels and Examples

Computations can and are preserved at various granularities. Each option has
certain benefits and shortcomings (see sections 2.3.1.1-2.3.1.4).

2.3.1 Project granularity

The size of each step in a scientific workflow can as small as a system call, or as

large as a single command that performs a complex system of hidden computations.

For extensible reproducibility the granularity should be domain specific and chosen by

a scientist to reflect the granularity of the scientific concepts involved. Many systems

impose restrictions on the granularity, making it more difficult to use the workflow

as a way to communicate the details of the research between scientists. However,

those restrictions can also make it easier to use and more effective for a specific class

of user. [44] Each of the levels of granularity shown in figure 2.4 have advantages,

but also disadvantages which can be a barrier to reproducibility. In addition, the

existence of so many options can be a barrier, as a scientist accustomed to using one

level, may have difficult adapting to another.

2.3.1.1 Granularity: system calls

One simple solution for preserving a workflow is to trace [35, 153, 154] and log

all system calls (such as sys open, sys stat, sys gettimeofday, sys getuid, etc.)

during the execution of a workflow. This system call log can be used to identify which
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files were actually used for the workflow. The remaining files can be excluded from

a package or image that contains the environment the workflow is to be executed in.

While this approach can provide replication for deterministic workflows, it may

not work if the workflow is modified or if part of the workflow is non-deterministic,

since different library files might be needed in a subsequent execution.

And even after eliminating excess files for a given package, duplicates will exist

across packages that are only slightly different from each. This becomes a storage

problem as a workflow evolves through progressive iterations.

Sharing a workflow at this level can definitely provide replicability, but it is dif-

ficult for a colleague to understand what the workflow does. The log itself can be

valuable for a very experienced user, but for a domain scientist, it is probably only

useful as a last resort when other more coarsely organized workflow descriptions fail.

2.3.1.2 Granularity: middleware operations

Another solution is to allow a middleware designer to choose which logical op-

erations can be applied to data. More complex operations must be created by the

scientist composing new operations using a combination of provided logical opera-

tions, such as merge/split operations, or map/reduce operations.

Kepler [4] is an extensible system for the design and execution of scientific work-

flows with a focus on GUI presentation. Directors are execution models with plug-ins

which manage actors or tasks (sources, sinks, transformers, analytical steps, compute

steps). The Triana [176] workflow environment is designed for managing distributed

applications (P2P, Grid, middleware toolkits). It works at a web services level (GUI

for connecting tasks), but more complex services can be built on the ones provided

by the system. Taverna [97] is a tool for building and running workflows which is

also based on web services.

While better than working with system calls, these low level operations are typ-
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ically less abstract than a domain scientist would prefer to deal with and make it

difficult to understand the science without an abstraction at higher levels.

2.3.1.3 Granularity: domain tasks

Alternatively, a scientist can choose what happens in a task. As an example, one

task could be designed to simulate events, while another analyzes them. Param-

eters on the task could include things like the numberx of events, their type, and

a seed. Using abstractions at a domain level [46] makes it easier for other users to

understand the workflow when it is shared with them. This flexibility makes domain

tasks a good granularity for extensible reproducibility.

Problem Solving Environments or PSEs provide all the computational facil-

ities necessary to solve a target class of problem. Users can use the language of the

target class of problems, while the PSE fills in the details with appropriate hard-

ware and software. The user does not need not have specialized knowledge of the

underlying hardware or software. [111, 76, 75]

In effect, they separate problems and solutions from the hardware and software

that carries out the solution. This helps the user focus on their domain [23], and could

also support the use of advancements in hardware and software without additional

effort from the user.

Such systems are particularly well suited for education [179, 143] because they

allow the focus to be on concepts, not programming. PSEs can also be used in

distributed computing, allowing a researcher to access more computing power with

less effort. [74]

A related topic called Computer Assisted Engineering (CAE) [2] is applied specif-

ically to engineering, but can have some applicability to scientific computing.
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2.3.1.4 Granularity: workflow and history

A scientist can group tasks together into a specific workflow. This level of ab-

straction can identify the results that are used for a publication, but is more effec-

tive for reproducibility when it includes components at lower levels of granularity.

There is also significant information to be found in the evolution of workflows (see

section 2.3.1.7). Comparing workflows after small changes or comparing between

researchers, can uncover portions that are similar [101] or identical. This enhances

reproducibility by allowing scientists to focus on differences rather than comparing

the identical portions.

However, a scientist can’t keep everything forever. The archiving of knowledge

is generally done by libraries who keep records through books. Their influence is

expanding into the digital realm, but their exact role is still unsure. I generally

assume that once a decision has been made to keep something, it is easy to keep it

forever. However, libraries constantly have to make decisions about what to keep

and what to discard, and deal with such issues as copyright and access. Another

publication [160] provides more information about such issues and how they apply

to research data.

2.3.1.5 Abstract vs. concrete

The chosen method for describing a workflow can fall along a spectrum between

abstract and concrete, or can incorporate both abstract and concrete elements which

are connected together. Abstractions can allow the scientist to work with high level

concepts which can be later compiled into more concrete components [128]. The

more abstract the workflow description is, the easier it is for scientists, making it

more likely to be extensibly reproducible. High level visualizations can be used as a

guiding tool for solving specific problems [22].

But at the same time, an abstraction can leave room for unexpected behavior,
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putting even replicability at risk. For example, a graphical user interface can be bad

for reproducibility because unexpected behaviors may go unnoticed.

At the same time, a more abstract workflow might be chosen because it can

be more adaptive to changes in the runtime environment. Especially with the ex-

ploratory nature of scientific computing, the exact number of computations needed

in a particular step may be unknown in advance. In such situations, the importance

of verifying results becomes even more significant.

2.3.1.6 Data management

Data set sizes are increasing in all fields involving computational science. Maybe

not on the order of petabytes such as with high energy physics, but usually large

enough to merit distributed systems for processing and sometimes even simply stor-

age. Most version control systems for managing source code are designed to fit on a

single machine. In addition, with a focus on managing lines of code, data is typically

treated as an inscrutable blob of bytes.

A workflow is of no use without the data it depends on, but with big data, the

data must often be kept separate from information on the workflow with such ver-

sion control systems. The connection between the two can be the first component to

breakdown when attempting to reproduce the workflow. With a little bit of personi-

fication [83], some have come to accept that data needs more public attention.

In addition to large input datasets, the data generated by the workflow might

be too large to share with others practically or efficiently. However, without the

final datasets it is difficult for a collaborator to verify the results of an attempt to

reproduce a workflow.

Data provenance refers to the derivation history of a data product starting from

it’s original sources. Derivation steps could include database queries, command line

strings, executable files, or other similar actions eventually producing some data
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result. Specific examples of ways to preserve provenance for computational tasks

are available [72]. But the exact metadata recorded varies widely depending both

on the requirements of the system and the purpose for the provenance. In fact, a

full survey [167] is dedicated to this topic. Data provenance is not always include

sufficient detail to re-execute the history of operations.

2.3.1.7 Evolution

Designing a scientific workflow is an evolutionary process. Recording the evolu-

tion can be valuable in communicating the validity of research. If another scientist

wants to try changing some parameter in the workflow, the evolution history might

reveal that the path has already been tried. In addition, seeing the various workflow

attempts can help to convince other scientists that sufficient attention has been given

to the parameter space surrounding the final research. The absence of this data is a

missed opportunity for more extensible reproducibility.

This evolutionary workflow data could also be useful in bi-directional research

sharing. If multiple research groups are working in a similar vein, they can benefit

from each others’ efforts. However, this type of data could easily grow beyond the

scientist’s capacity to preserve the workflow evolution data without sorting through

it to find the minimum data that must be recorded, so that derived data does not

have to be stored indefinitely.

2.3.2 Workflow execution

Certain methods for executing the workflow can introduce problems with both

reproducibility and in the validity of the scientific research itself. Research is vulner-

able to measurement bias in many different forms [142] especially when the scientist

can execute code manually.

Automating the execution of all parts of the workflow can resolve some of the
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measurement bias, while at the same time saving time and being more convenient for

the researcher. However, any model used to automate a workflow can be restrictive

to the researcher. This could be because of a concern for performance or, more likely,

the automation language is prohibitively complex for the scientist. Whatever the

reason, scientists are temptated to execute at least some of their workflow manually,

making it hard to maintain a reproducible representation of the workflow.

Even an automated workflow can run into isolation issues where data is available

on the original computing resources, but is not available in the workflow description.

For example, either the scientist or system administrator may be unaware of the

dependency on some resource. In this case, more isolation between the workflow and

the user space would help with reproducibility because such problems would have to

be resolved before the experiment could complete execution in the first place.

In other cases, the resource could also be intentionally unavailable based on pro-

prietary or privacy restrictions in place. In this situation, the isolation between the

workflow and the user space can actually get in the way of reproducibility.

Also, the size of a resource could make it impractical for inclusion in the workflow,

or for performance reasons, the resource could have been made available on a site

specific resource such as a shared or distributed filesystem. In such cases the resource

should be identified in the workflow to satisfy isolation, but the actual run-time

connection to the resource may need to be more flexible. Finding a balance for

isolation which is appropriate for reproducibility is difficult.

There are different ways [197] to make sure data is getting to the right places

for execution. In a user-directed approach, users must identify file locations in the

specification and a method for obtaining them, if not already available. In a central-

ized approach, a central repository holds all the data and each execution node must

transfer files to/from there. In a mediated approach, a central repository holds only

meta data about files and their locations. The files themselves can be distributed
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across many nodes reducing the bottleneck on the central repository. In a peer-to-peer

approach, no central repository exists, so each execution node has a list of neighbors

that can be queried for the data.

The centralized approach is the most reproducible, assuming the central reposi-

tory remains available. The peer-to-peer approach does not require a central repos-

itory, but a workflow might not be reproducible if even one of the input files can’t

be found. The mediated approach is also more risky since the node(s) containing

the actual data could be unavailable even if the central repository is working. After

long periods of time (such as decades), a user-directed approach might need to be a

fallback for reproducibility purposes, in the event that resources needed for the other

methods are no longer available.

Alternatively, the code can be moved to the data when the data is big and the

code is small. This can be a big boon to performance in some cases, but might

not be supported by a workflow management system designed for a data movement

approach. It is also possible that this mode of execution is not available for another

scientist using different resources, so relying on code movement would decrease the

chances of a workflow being reproducible.

Fault tolerance is a phrase often used when describing distributed systems that

can handle the failure of some nodes in the system. But various levels of fault

tolerance can be appropriate, depending on the scientific domain. For example, in

some stages of high energy physics workflows, not all tasks need to be completed

in order to consider that stage complete. This type of behavior can be a challenge

for reproducibility because the failed tasks might vary between scientists. It can

be difficult to determine whether a workflow is indeed reproducible when different

individual failures exist in two workflow executions, but the number of failures is

acceptable for both executions.

If multiple users are a part of a single workflow, there can be a great deal of
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confusion when someone updates the workflow at an earlier stage. A scientist working

on the later portions of the workflow will need to somehow merge that update into

what they are working on. The update may or may not affect the final results of the

workflow, but it can be complex and challenging to figure out an appropriate and

convenient time at which to incorporate the update.

When multiple users are involved, the naming of objects becomes challenging

because each user would like to have control over naming, but names also need to

identify identical objects across collaborating versions of a workflow. So an overview

of existing approaches to naming on computers is needed.
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CHAPTER 3

RELATED WORK

Many approaches are available for managing scientific workflows. But consider-

ing collaboration between scientists introduces an additional problem with naming

conflicts across scientist repositories. Naming solutions are well established and re-

lated to the challenges in collaborative scientific workflows, so I introduce various

approaches in detail as related work.

3.1 Naming

Due to the exploratory nature of scientific discovery, attempting to introduce too

much organization into the workflow too early can be wasteful. Scientists may prefer

to wait on coming up with a name for certain components (such as ‘analysis’ or

‘simulation’) until they are sure their value in the workflow is proven. Or they might

only give human-centric names to the most significant components. In the meantime,

the computer still needs to distinguish between the remaining objects and must most

likely also group or link them together.

In addition, the names used to identify certain objects at one point in time, can

be repurposed to refer to new objects as the workflow evolves. A workflow could also

evolve in two different directions (perhaps by multiple scientists, or by one scientist

trying two different ideas). Given two workflows with similar origins, it is difficult to

identify which components are the same, and which are different. If this comparison

becomes too difficult, the effort needed to incorporate a colleague’s research can be

greater than the benefits that may come. In fact, a bad experience attempting such
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a comparison can lead to a perception that no benefits from a colleague’s research

can outweigh that cost.

3.1.1 Namespaces

Each scientist, working individually, has full control over their own namespace

which allows them to ensure that names identify the appropriate entity or entities.

The home directory for a particular user on a computer is an example of a namespace.

A user generally has complete control over the file and folder names in their home

directory (except for a few reserved names and characters such as the ‘.’ and ‘..’

folders and certain characters not permitted in file names). Users can also create

new namespaces when they create sub-directories.

An entity named ‘analysis’ by one scientist could refer to a completely different

entity by another scientist. When their namespaces are separate, this is not an

issue, but when sharing research methods with other scientists, these collisions can

be impossible for a computer to resolve automatically.

One solution for the merging of namespaces is to take an approach similar to

how directories hierarchies work. Individual scientists are allowed to continue with

their own namespace, and a parent organization (or a super-namespace) is created

to distinguish between the individual namespaces when more than one namespace is

involved. An identifier for each namespace (such as a path or folder name) can be

prefixed before the rest of the name.

However, the prefix can become tedious for frequently used entities that happen

to have been created in a different namespace. A scientist may want to give a new

name for that entity in their own namespace which can also become confusing because

now a single entity has multiple names. If colleagues communicate with names that

are only appropriate in their own namespace, there can be a great of confusion about

what is being referred to.
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Figure 3.1. Entity Naming

Examples of network and internet entity naming

3.1.2 Persistent identifiers

A scientist will occasionally need to move workflow files to new storage locations.

If the naming of workflow components is tied too closely to their pathname, this

hinders the ability to compare different evolutions of a workflow. On the internet,

the ability to move and replace lower level network components is ensured by creating

a hierarchy of names, each level of which can be modified without affecting the higher

level names. Such higher level names (such as DOIs) are especially relevant when

reproducibility is taken into consideration.

Each device on a network is an entity, identified at the lowest level by a MAC

address (Media Access Control), which is essentially a name for an entity on a network

(see bottom of figure 4.1.2.4). The MAC address is 6 byte number which is typically

displayed to the user in hexadecimal notation (for example 48:65:6c:6c:6f:21). The

purpose of the MAC address is to uniquely identify that specific network device

globally worldwide.

If that device fails and is replaced, the new name must be propagated to everyone

who used the old name. IP addresses were created to mitigate this problem. They
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are a new higher level entity or abstraction designed to identify a computer (rather

than a device), and can be mapped to a specific device as needed behind the scenes.

In general, lower level entity names are typically more effective for replicability.

They help to identify the exact set of operations needed to re-execute an experiment

precisely. The MAC address is better for doing exactly what was done before, but an

IP address makes it easier to account for later changes to the system. This makes IP

addresses a better choice when extensible reproducibility is the goal, since the MAC

addresses will not be appropriate on another set of computing resources.

But IP addresses are still difficult for people to remember, so domain names were

created. Domain names are more human friendly names that identify a new entity

called a site (rather than a computer), and can be mapped to IP addresses.

Each of these namespaces is managed by an organization which allocates sub-

namespaces to other organizations. For example the first 3 bytes of a MAC address

identifies the organization (such as a hardware manufacturer) which manages the last

three bytes. And with domain names, top level domains (such as .com and .org) have

control over the namespaces below that top level.

The identifiers for these namespaces are directly tied to a location, a domain name

resolves down to an individual network device at any given point in time. But there

is also a need for persistent identifiers that are separated from the location of the

entity they refer to. And in addition to identifiers for physical entities, such as a

network device, there is also a need for identifiers for any type of digital entity.

A URI (Uniform Resource Identifier) is designed to identify any resources, with a

URL being the most common type of URI. A URL is connected to a location through

the domain name embedded in it’s identifier, but a URI does not have to include a

location. The Handle System [174] is also part of the URI specification and is a

namespace for global persistent and unique identifiers with a specific data type, but

no changeable attributes such as location, ownership, permissions, or timestamps.
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One implementation of the Handle System is the DOI (Digital Object Identifier)

system. A DOI can be an identifier for any type of entity, and is associated with a

URL, but the URL can change as needed.

A similar hierarchical approach could enhance extensible reproducibility by pro-

viding names that persist across scientific domains, but such a system is not yet in

place. DOIs are often used for this purpose (to provide a global name for some entity)

and are a great step towards reproducibility. However, their ability to change can

also be a problem over time, because there is no guarantee that a given DOI will hold

the same contents in the future as it did at the time a scientific paper was published.

3.1.3 Immutable identifiers

The ability to change the entity that a name refers to can make it difficult, from a

historical perspective, to effectively communicate what entities were used to generate

research results. For a given name, if an entity is replaced after or even while results

are generated, referring to that name later on will likely prevent reproducibility if the

system does not prevent this behavior.

In between a persistent identifier (which is designed for user convenience) and

the location of an entity (which is all the computer needs) is an immutable identifier

that allows multiple copies of the entity to exist in various locations, but prevents

revisions or alterations to the entity which could prevent reproducibility.

If a central authority exists which manages unique entities, the authority can

assign an immutable identifier to each entity using methods ranging from an incre-

menting number to UUIDs. In a distributed environment, a checksum of only the

significant parts of an entity can provide an immutable identifier using an agreed

upon algorithm. But a significant amount of forethought is needed since there are

many checksum algorithms available, and it can be difficult to distinguish between

significant and changeable attributes of an entity.
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3.1.4 Overloading

Choosing an appropriate system for generating identifiers is further complicated

by the challenges that come from having too many names for an entity or too many

entities for a name.

Reproducibility can be more expensive when there is more than one appropriate

name for an entity. In workflow descriptions, this entity overloading can cause extra

network traffic, storage space, and computational resources because they might be

treated as separate entities. These problems usually cause inefficiencies, but have no

effect on reproducibility in the presence of sufficient time and resources. Filesystems

that support file linking can deal with this problem by allowing a single file entity to

appear to be in multiple folders and/or have multiple filenames.

On the other end of this spectrum, when namespaces are not clearly defined or

managed name overloading can occur. This is a much more significant reproducibility

problem than entity overloading. Imagine a folder on your computer with a single

filename that points to two file entities. When attempting to access the filename the

computer is unable to decide which actual file to open. Perhaps the filesystem could

prompt the user to choose one over the other, but in a script, this is not possible.

The actual solution in most filesystems is that the new file entity replaces the old

one. The user is often prompted to make sure this is the desired behavior, but once

replaced, the old file entity with that name is no longer available. Even if the file

system keeps all versions [164], it is difficult to resolve filenames when the version is

ambiguous or without a desired timestamp, and the system is forced to make a guess.

This is a common occurrence in evolving workflows when there is a progression

of the specific details (or entities) used to achieve some generic purpose. From the

scientists perspective, each progressive version is an improvement on the last, so the

most recent one should be used. However, even a small change in a single entity can

drastically change the final results. So for reproducibility, it is important to uniquely
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identify entities in the workflow, so that the correct entities get used for a historical

workflow. This means that a name alone may not be sufficient if previous versions

need to still be available.

3.1.5 Versioning

A example of this problem that is a common source of reproducibility problems

is the evolving versions of software libraries. The intent may be for all versions to

be backwards compatible, but there can still be subtle changes that alter results. In

addition, for the purposes of reproducibility, forward compatibility might be needed

if the original scientist used a newer version of the library than a later scientist. A

version hierarchy (ex. 1.2.10) is often used to distinguish between updates that are

more or less likely to break a system that relies on the library. In order to identify

relevant entities, this version “number” should be used in connection with the name

of the library to uniquely identify an entity such that the name and version is an

immutable snapshot of that library at a specific point in time. The version hierarchy

has meaning to the user, but a computer typically sees it as no different than what

could be achieved with a timestamp or a number that auto-increments with each

new version. The combination of a name and a version provides both; an appropriate

name for the user to understand the purpose of an entity, and an immutable entity

that should be used by the computer.

3.1.6 Hashing

Another problem is that computers are unable to detect similarities between en-

tities the same way humans can. However, they are very good at quickly identifying

when two objects are in fact the same identical entity. A hash function can be used

to map data of some arbitrary size to an identifier (or hash key) of some fixed size.

In order to be useful, hash functions must always produce the same fixed identifier
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for a given data entity. When using a hash function to name a data entity, there

is almost no possibility for entity overloading even without a central authority. A

perfect hash function will always produce a unique identifier with no collisions (i.e.

no name overloading). While a universally perfect hash function is unlikely, a wide

range of hashing algorithms are available with various collision probabilities, many

of which are appropriate for almost all situations.

Unfortunately, despite the advantages, humans find it difficult to work with hash

keys because they appear to be random and need to be fairly large to provide sufficient

assurance that collisions will be avoided.

3.1.7 Distributed hashing

To avoid a central authority, a hash function can be agreed upon as a way to

uniquely identify relevant entities. For example, git [125] uses hashes of file and

directory content to generate a hash that uniquely identifies each commit. A descrip-

tion of the commit is highly encouraged, but is not intended to be unique or to serve

as a key for finding the commit. The description is solely for the benefit of the user.

A central authority is avoided because all participating computers agree upon a

programmatic division of entities. Each computer maintains the data agreed upon by

the groups hashing function, and the system relies on that function to ensure entities

can be found using appropriate names.

3.1.8 Tags

Tags aren’t much different than names, but the word is used to describe objects

with no attempt at or expectation of uniqueness. If fact, they are used more to group

objects than distinguish between them. In a way they are the opposite of versioning.

Versions are a computer friendly addition to human friendly names, while tags are a

human friendly addition to computer friendly unique identifiers (using hashes or an
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authority). Tags are also typically only relevant within some localized namespace.

3.1.9 Lineage

Another approach to naming that is particularly attractive for reproducible re-

search is to embed the lineage or history of a particular entity in the name itself.

For example, in a Merkle Tree [139], the leaves are ordinary data entities without

names, and every other node has a hash key as it’s name. The hash key is generated

using the hash of the sum of the hashes from the child nodes. Other technologies

that incorporate similar techniques include Git [125] and CVMFS [20].

Attempts have been made to create a universal identifier [79] for computational

results. But there are still many different approaches being taken and it seems like

there is more divergence in methods occurring than there is convergence. The con-

flicting goals of naming versus entity identification make it difficult for both humans

and computers to find and distinguish between computational entities.

It should be clear at this point that there are many barriers to overcome, each of

which can distract a scientist from their domain of expertise. All combined together

the barriers seem to form a wall that effectively prevents most computational science

from being reproducible.

3.2 Techniques for achieving reproducibility

Scientists should carefully choose a reproducibility technique that aligns with their

goals for replicability and/or reproducibility. Some techniques are convenient and

provide replicability, but are too complex to be effective for reproducibility. Others

offer limited flexibility, but provide a high level of reproducibility. The following

reproducibility techniques draw from related ideals in computer science or have a

focus on satisfying domain specific needs.
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3.2.1 Track all operations

One simple solution for preserving a workflow is to trace [35, 153, 154, 95] and log

all system calls during the execution of a workflow. As mentioned before, the system

call log can be used to reduce the size of a package or image enabling the execution

environment. This approach works for replicability, but is not always resilient enough

for extensible reproducibility. However, there are other considerations with can make

this approach desirable.

Transparent Result Caching (TREC) [184] is one way to automatically track the

dependencies that are explicitly stated in a Makefile, so the user can just use ordi-

nary shell scripts to execute workflows. If the method needed to generate results is

recorded, the results themselves can be treated as a cache. When an input changes,

cascading results can be prompted for or automatically regenerated. Certain dan-

gers exist with this approach, such as when there are non-deterministic operations,

network communications, and/or failed tasks.

Nectar [86] is a more modern system designed for data centers. It can detect du-

plicate execution requests before they get sent to execution nodes and instead return

the cached results. Since VisTrails [15] is designed to generate images interactively,

caching the results can be a large benefit so that all historically explored images

don’t have to be stored indefinitely. [126] also addresses saving and reusing previous

computations to reduce the amount of traffic that has to be aggregated. They can

also use that information to detect effective file equivalence even when a checksum

comparison says the files are different.

3.2.2 Track all actions within a walled garden

Environment dependencies can also be resolved by requiring all execution [57] to

occur on a shared, public testbed. In such a system, a workflow can be tracked at a

very high level. For example, an interactive text editor [114] could track lines of a
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script as they are entered by the user and execute them in the background on behalf

of the user.

In order to prevent conflicts between user and system control of the environment,

such executions are more reproducible if performed in a clean sandbox. In other

words, execution should occur in an environment which is both separate from user

space and loaded without implicit dependencies.

This type of system can even support multiple users [80] with the possibility of

some shared state between them. This virtually ensures reproducibility and extension

of workflows, in the short term. However, flexibility is very limited and scalability is

often out of the hands of the researchers, and eventually the shared system will need

to be updated, requiring new consideration of all archived workflows.

3.2.3 Track all actions from an achievable initial state

Some methods assume an implied initial state, but it is a good idea to make the

initial state more explicit. Recording changes in a way to support undo [198] can

provide a way to achieve a consistent initial state that can be shared with others.

If the ability to replay the changes is included, then there may also be the ability

to revise the replay instructions to support extensions to research rather than just

replication. This replay ability also provides good efficiency during execution with

the ability to look at a particular operation in more detail later [48], without having

to store all details on the fly.

3.2.4 Execute a detailed specification

Rather than let the user perform or request operations on the fly, the user can

be expected to get organized and plan their workflow in advance, evolving the work-

flow as needed to handle the exploratory nature of computational research. Such a

plan should start with a clear recipe for a repeatable environment, and then domain
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Figure 3.2. Conditional Loop

Directional graph with conditional loop.

appropriately sized building blocks can be used to advance the state of the workflow

using that environment.

The relationship between all tasks, in a workflow, and their dependencies can

often be fully described using a DAG (directed acyclic graph). Some tasks may need

to be run in series (a specific order) if they depend on the results of other tasks

in order to be executed. These series tasks contribute to the height of a DAG that

describes the workflow. Tasks without such dependencies on other components can

be run in parallel, and contribute to the width of a DAG.

Some workflow systems [3] only support tasks that can fit into a DAG structure.

Such systems can optimize the use of resources during execution because all required

tasks are known in advance. The DAG could be extended to allow for additional

functionality, such as with conditional DAGs [146], but adding additional components

to a DAG may reduce or negate optimizations that a DAG based system can do.

Tasks whose execution is conditional or tasks within loops (see figure 3.2) are

beyond the scope of a DAG. However, a higher level abstraction can be used to

describe conditional or looped tasks without losing DAG optimizations as long as the
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conditions and loops can be decided before execution begins. For example 2 tasks

inside a loop that iterates exactly 10 times where one of the tasks only executes on

odd iterations can be easily translated into 15 tasks in a DAG, even if each iteration

of the loop depends on the results of the previous iteration.

However, any loop or condition that relies on run-time results cannot be directly

translated into a DAG before execution. Such workflows must be handled on a more

on-demand basis. Prediction or estimation may be possible [133, 129], but the full

benefits of a DAG are not available. If other elements beyond a DAG are needed,

the description must be more abstract.

A language based workflow description can support large and/or complex work-

flows which can be directly shared with collaborators. Also a person with program-

ming experience may be able to easily write a program (perhaps in their preferred

scripting language) which generates the desired workflow description in the target

language. This allows a user to create more complex (and more abstract) workflows

than are available in the workflow language itself.

Some systems created and use custom languages designed specifically for their

workflow system [73, 77, 148, 159]. Others focus more on adapting the workflow into

a standard language (XML for example) [25, 6, 9, 196, 192]. Somewhere in the middle

there are standardized languages created for use in multiple workflow systems [7, 187].

A language can even be interactive with the ability to run complex workflows pro-

grammatically, while at the same time preserving the workflow in various convenient

languages even before the code is executed [158].

There is great value in designing the language to approximate the scientists’ nat-

ural language [94]. This is more convenient for the original scientist, but is also

easier for collaborators to understand. Taken to the extreme, such systems [111]

might remove the need for scientists to deal with any kind of programming, since

the language provides all scientific needs, and the low-level details are handled by
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individuals outside the scientific domain.

However, users often prefer a graph based system (rather than language based)

for workflows (especially new users) because learning a new language can be difficult.

A graph based approach [89] also typically abstracts lower level details away from

the user, forcing/allowing them to focus on higher level concepts which are more

applicable to their scientific research.

Graph based modeling is sometimes implemented in the form of Petri nets [186,

92]. FlowManager [11] is one example. More recently, UML (Unified Modeling

Language) [163, 14, 55] has also been used to address issues with Petri nets.

The best of both graph and language based approaches can be available by ex-

posing both options to the user. In addition, allowing multiple representations of

the workflow [128] can offer new insights and capabilities. Grid-Flow [85] includes

a Petri-net based interface and a programmable Grid-Flow Description Language.

XRL/Flower [191] also uses Petri-nets, but uses XML to support standard parsing

and validation of the language.

For large/complex workflows, a graph based approach can become unwieldy due to

the vast details available. In order to help graphically modeled systems support larger

and more complex workflows, low level details [149] should be abstracted away from

the user. A system of templates [92] can be used to specify sub-portions of a workflow

in a hierarchy of abstractions. Triana [176] supplies a graphical user interface which

allows users to drag and drop tools and connect them to inputs and outputs. Tools

can then be “grouped” together to both simplify the visualization of the workflow and

to support an abstraction hierarchy. Kepler [129] supports “abstract components”

which collapse the details of a subworkflow to tame complexity. By using WSFL (web

services flow language) to compose workflow elements, each composition can be used

hierarchically as a web service for higher level compositions. [123] Another interesting

approach [78] is to attempt to automatically generate higher level abstractions on top
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of the low level provenance.

Ideally a user could describe a workflow in very abstract terms and some domain

specific system could flesh out the details automatically. Pegasus [46] combined with

Chimera [70] support this type of approach. Given a somewhat abstract description

of inputs and the desired outputs, Chimera can automatically lookup operations in a

database and those operations can then be used to accomplish the desired behavior.

Pegasus then marshals resources to execute the workflow, generating the results.

For all of the techniques, but especially for a detailed specification, it is helpful

to ensure that a history of the evolution of the workflow is somehow recorded. In

software development, this is done with a version control system where changes to

the software are periodically recorded. This is so that the state at important points

in time can be obtained even after future changes have been made. Such checkpoints

can be automatic (so the user doesn’t forget), or the user must develop a habit of

choosing appropriate times to record the state. More frequent checkpoints make it

easier to isolate and undo bad changes, but they are more work to create and sort

through. Websites such as http://github.com and http://bitbucket.org have made

it convenient to share this information with collaborators, and are often used for

scientific collaboration. However, such systems can break down when large amounts

of data are involved as they are designed more for source code than for data.

Even with reproducible research there is no guarantee that the research results

will be correct. [121]

3.2.5 Verify and/or validate the final state

The above mentioned Pegasus+Chimera method of workflow abstraction is also

an example of another broad technique for reproducibility. This technique is to pay

very close attention to the final result and less to the steps along the way.

Take for example, the difference between Puppet [127] and Chef [178]. Both are
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systems widely used for system configuration. Chef takes an imperative if-then ap-

proach where the system administrator designs a sequence of statements that specify

exactly what actions should be performed to get the computer in the desired state.

On the other hand, Puppet allows the system administrator to declaratively say what

packages should be on a computer, and Puppet has some freedom in determining the

best way to install those packages.

A declarative evaluation of scientific results is usually merited, with or without

an imperative list of steps required to get there. The responsibility to ensure that

scientific research results pass declarative needs generally rests completely on scien-

tists. With tools that can assist or automate some of this process, scientists can be

responsible to ensure those tools are applicable and appropriate. Sometimes verifi-

cation and validation are as simple as comparing newly generated results to results

which have already been verified or validated.

If it is possible to automatically determine that results from a replication attempt

are equivalent to the results from the original research, then the exact methods used

to achieve those results may need less scrutiny. Verifying and/or validating the final

state could be the only technique needed to reproduce very simple workflows, but

for large workflows, this technique would be more effective when used in conjunction

with another technique focused on the steps along the way.

Ideally, a scientific workflow will be fully deterministic and the generated results

will always be bitwise identical. However, in practice, there are many sources of

non-determinism [104] which contribute to results being different after a workflow

replication attempt. The degree to which small sources of non-determinism affect an

entire experiment [110, 41, 50] is important to consider.

Some tools help with a comparison, but still require a user to make a final decision

on equivalence. For example, a comparison tool called sfvplotdiff [66] is used in

the Madagascar project to compare a plot generated by an established version of a
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workflow with a plot generated by an extended evolution of that workflow. Special

care is given to tolerate precision differences [58] between the computers executing

the workflow, so that a scientist can observe only significant differences between the

plots. Then the scientist can more easily decide whether the differences are justified

depending on how the workflow was extended.

3.2.6 Require formal dependencies

Relying on conventions is more convenient (for most users) than creating elabo-

rately configured frameworks. However, preferring configuration over convention is

helpful for reproducibility.

At the programming language level, dependencies on libraries can be specified

using commands like import, include and require. However, it is unlikely that the

programming language will locate and retrieve those dependencies if they have not

already been installed. A container image [138] or virtual machine image can be

coupled with the code, to satisfy those dependencies.

The dependencies can also be specified in a functional manner [52] if the de-

pendencies need to be more granular than a single image. Alternatively, a set of

commonly used dependencies can be bundled together [136] so that a single reference

to the bundle can indirectly include all of the dependencies from the hardware to the

command level.

A system that can embed a full environment specification into each component of a

workflow [49, 100] enables users to ensure that all required dependencies are included.

If the system only executes the workflow using the fully specified environments, then

any generated results have a high likelihood of being at least replicable. In addition to

providing the ability to replicate component execution on similar hardware, this form

of encapsulation [94] could include subcomponents such as a compiler, to make the

environment specification more portable to hardware systems that are less similar
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to the original ones used. This also allows for more separation between domain

science and computer science [111], reducing the need for domain scientists to be

involved in programming in favor of focusing on their domain, and also increasing

the Reproducibility.

3.2.7 Validate continuously

In software engineering, continuous integration [71] is when developers flag work-

ing updates to a shared codebase as soon as they are ready, and then several times a

day, updates from all developers are merged, tested, and put into production. Various

websites [36, 181, 108] can be used to support continuous integration. Comprehen-

sive testing (or validation) is typically automated so that unexpected problems can

be quickly identified before going live.

This concept can be applied (in part) to scientific workflows for collaboration.

While the merging is less likely to be valuable several times a day (compared to

internet applications), the measures taken to make that possible can simplify the

collaboration process enough to make it more effective for reproducibility. For this

to work, a few practices need to be adopted.

There is a big difference between a scientist manually reporting the command

they executed and the scientist requesting a command to be executed with the system

automatically reporting the command used. When the scientist manually reports a

command, there is always a possibility that something was left out, or that something

was changed after the report was made. When the reporting is automatic, there may

still be room for implicit dependencies built into the system, but those can be easier

to track and resolve than transient changes based on what a user types into the

command line.

Automation is a good first step to ensure that a workflow, and any sub-components,

are correctly reported in connection with some results. [45] By some definitions [93],
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automation is the purpose of creating a workflow in the first place.

One of the earliest and most prevalent ways to automate a workflow is the Unix

make [135] utility. Early attempts [165] to encourage reproducible research using

make resulted in some success, but over 38% of the files (figures) were not repro-

ducible. In addition, the system was fairly complex including scripts in various

languages and LaTeX macros, the combination of which made it difficult for other

scientists to reproduce. [68]

More recent attempts [67] using the more modern automation utility SCons [115]

(based on Python) were eventually more successful [66], but that success isn’t nec-

essary tied to those utilities alone. There has been more pressure to make research

reproducible in recent years, and some of the successes could be attributed to that

momentum.

In many cases, the benefits of automation may actually contribute to the overall

“ease of experimenting” [28] while at the same time making great strides toward

reproducibility.

In software engineering, test-driven development is where the programmer creates

a test for desired behavior before the behavior is even implemented. [61] This ensures

that even if changes are made to the software, the desired behavior is preserved. Sci-

entific research is generally too exploratory to be able to define the desired workflow

fully in advance. However, once some research has been published reproducibly, it

can be treated as a test in the sense that it can be used as a basis for comparison

as other researchers attempt to replicate or extend the research. Tests are vital for

performing continuous integration [56].

Various systems [84, 141, 8, 113] designed for automatic deployment and task

execution could be used to assist in efforts to validate continuously.

The Madagascar project [66] applies this concept to reproducible research by

running tests whenever someone submits a modification to preserved research. If
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automatic validation fails and no one in the community steps in to correct the error,

the project is removed from the set of maintained research workflows.

Some workflow systems are specifically geared towards automating and preserving

the generation of graphs and figures to be shown in a publication. One approach

combines Git And Org-Mode [169] to handle the execution of a workflow that is fully

documented as it is created. The final result is similar to a lab notebook and can

be published with all details on how to reproduce it. Similarly, Paper mâché [24]

manages a workflow and a LATEX or .doc file, directly inserting images generated

by the workflow into the document for publication. Vistrails [32] is designed to

interactively generate images so that the viewer can explore visualization with custom

arguments to available parameters. These are tools that provide some automation,

but final verification/validation is performed by a user.

3.2.8 Make the environment explicit

The computing environment used by most scientists is provided by system ad-

ministrators who attempt to balance the needs of many users when making decisions

about how to provision hardware. When scientists need system resources that are

not already provided, they may ask the system administrator to install or procure

those new resources for them. They might go as far as choosing a specific version

of an Operating System or even bleeding edge hardware for their research. If those

resources are not automatically provided, some scientists will even take on the some

of the role of system administrator to obtain those resources themselves. Virtual

machines and containers are relatively new technologies which give scientists more

flexibility. Some of these new technologies improve reproducibility at the same time.
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3.2.8.1 Hardware provisioning

The traditional way to provide compute resources to scientists is to consistently

provision dedicated hardware for each research group. This can include a detailed

list of imperative operations [178] which describe how to install the environment

directly on hardware. Alternatively, a declarative specification [127, 136] lists all the

components that are needed in the environment, but does not dictate how they are

to be installed.

It is also important to consider the community, reliability and usability [150] of

hardware provisioning specifications as they can get very complicated.

3.2.8.2 Virtual machines

A more recent technique involves provisioning the hardware with a generic system

that allows virtual machines to dynamically be instantiated as needed. This provides

the scientist the most flexibility. But more importantly, it automatically provides

an easy to preserve a copy of the full environment used in the original workflow

execution. This virtual machine image can then be easily shared [96] with colleagues

using cloud services.

This approach is quite effective when the research can reasonably fit in a single

virtual machine. However, a networked system can break down with large datasets

or with research that requires distributed execution to complete in a reasonable time-

frame. Vagrant [87] goes one step further by including complex network configura-

tions in addition to managing software within the virtual environment. However, it

is likely that many unneeded files will get included in the virtual machine image,

making the image excessively large and more difficult to curate and share.
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3.2.8.3 Containers

A container image [138] serves many of the same purposes as a virtual machine

image. But while the virtual machine image is a single file with everything needed, a

container image is a progression of new packages added to previous ones. As such, a

container can have less overhead (especially when booting) because it may be able to

rely on already running parts of an Operating System. Except for the fixed Operating

System kernel, a container can provide what appears to be a completely independent

system. This allows more efficient use of RAM and faster startup times, in addition

to layered filesystems and common files that make disk usage more efficient.

3.2.8.4 Package management

A package management system mostly handles changes to installed software li-

braries. However, most package management systems require root access which means

that access to such systems must be restricted [182] for security reasons. This con-

tributes to a barrier between system administrators and scientists leading to confusion

when attempting to identify and share the environment.

However a few non-root package managers [52, 42] are emerging which take a

functional approach to setting up appropriate environments. Giving the scientist

such control can help ensure that upgrades don’t sneak in leading to unexpected

results, and can help even with heterogeneous [188] devices.

3.2.8.5 Functions

Organizing a workflow into functions is one way to parameterize tasks into ab-

stract components that perform domain specific operations and are organized in a

way logical to scientists. A simple command can be treated as a function if the

executable is designed to work that way (see figures 2.2 and 3.3).
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Figure 3.3. Environment Scopes

The environment can describe anything from a command involving some data, to
the full computational stack down to the hardware specifications.

3.2.8.6 Distributed systems

For workflow that don’t fit in a single node, a connecting structure needs to exist

between instances of an environment. To execute complex multi-cloud and multi-VM

applications reproducibly, cloudinit.d [26] can launch, configure, monitor, and repair

a set of interdependent virtual machines over multiple IaaS clouds. A launch plan

describes a series of run levels, each of which contain tasks that can be run in parallel.

A service handles the launching, configuring, and status of VMs starting with package

management tools like Yum or configuration management tools like Puppet. In the

case where failure is detected and repair actions are needed, cloudinit.d only restarts

the affected sections of a launch plan.

Whatever the method for defining and creating environments, doing so not only

helps with reproducibility, but also allows the scientist to delegate the responsibility

of providing reproducible system resources.
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With many options for representing and defining environments, I proceed with

an overview of Prune which I developed to record a user’s intended environment

and instantiate it to execute each task in a workflow. Each task must be executed

in a sandbox so that when the scientist gets results, there is high confidence that no

implicit dependencies on the environment were missed.
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CHAPTER 4

PRUNE OVERVIEW

This chapter introduces a tool used to explore possible solutions to some of the

reproducibility challenges. It relies on some of the related work in previous chap-

ters, and identifies desirable qualities in a workflow management system designed

for reproducibility. Environments are specified independently from the tasks in the

workflow, but each task is coupled with a defined environment. Workflow evolutions

are preserved before tasks are executed, rather than at a user defined time (as with

git), so that changes that led to results are never forgotten and the granularity is

consistently at the task and files levels.

The components and operations used to identify a workflow and it’s parts are

described. Considerations in object naming are explored, including the naming of

objects stored outside of the workflow on the internet. Desirable features, such as

the ability to automatically manage file storage, account for non-determinism, and

collaborate with other scientists are explained.

4.1 A preserving run environment for reproducible scientific computing

To address problems with current tools for reproducible scientific computing,

Prune [102], the Preserving Run Environment, was designed and implemented. In

Prune, every task to be executed is wrapped in a functional interface and coupled

with a strictly defined environment. The task is then executed by Prune rather

than the user to avoid the possibility of implicit dependencies. As a scientific work-

flow evolves in Prune, a growing but immutable tree of derived data is created. The
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provenance of every item in the system can be precisely described, facilitating sharing

and modification between collaborating researchers, along with efficient management

of limited storage space.

The simplicity of Prune is first demonstrated with a sample merge sort imple-

mentation. A workflow involving the U.S. Censuses demonstrates Prune’s ability

to scale to large amounts of data and make efficient use of available storage. Then

computational science workflows from bioinformatics and high energy physics (HEP)

were executed with Prune. Initial attempts to efficiently handle the data needed

for dependencies and creating appropriate execution environments caused a cascade

of failures, and it was discovered that linked files are not always equivalent to copied

files. Adjustments to reduce and/or eliminate these problems were effective, but there

is still room for improvement.

4.1.1 “Preserve First” strategy

Preservation is often perceived as an activity undertaken after research has been

completed [24]. But, by the time the results based on a scientific workflow are

accepted for publication, the authors have moved on to other work, students may

have graduated, or the environment in which the work was done has been changed,

upgraded, or destroyed. The funding that supported the research may have expired,

and so it is hard to justify any post-facto effort in preservation. Even when such an

effort is made, the focus is often only on replicability [157], and more work is needed

to fill in gaps in the preserved form of the research [18]. This process is shown in

Figure 4.1a.

In contrast, I advocate a preserve-first strategy for reproducible computational

research as shown in Figure 4.1b. I argue that researchers should first (before ex-

ecuting any code in the workflow) preserve (at least locally) the components they

wish to use. Automated execution based on the preserved components can then
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Figure 4.1. Preserve First

Digital items should be preserved first (before use) to avoid ambiguity about results.

ensure all necessary dependencies are included, otherwise the execution fails. Once

the desired research results are obtained, it is then trivial to publish them with full

provenance in a public repository. Then others can build upon the same work with

a high probability of success.

Adopting this strategy requires additional user and computer overhead. But I

believe with this approach, Prune moves towards greater structure and oversight

such as with the adoption of: block-structured programming [51]; graph-structured

Make files [64]; and rigorous version control [125].

4.1.2 PRUNE overview

The following sections describe how a user would interact with Prune, what

architectural components there are, the interface by which operations are performed

on those components, and how namespaces are handled in Prune.
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Figure 4.2. Prune Overview

Prune automatically manages storage and execution of workflows.
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4.1.2.1 User’s perspective

An end user begins using Prune by creating their own private Prune repository,

which may simply exist on their own laptop. The user describes a workflow which ex-

plicitly adds (into the repository) any input data and tasks that should be performed

to derive some result. When the user submits this description, Prune detects por-

tions of the workflow that are already in the repository, and records and then adds the

remainder. Observing the results, the user may submit a revised workflow, expanding

the graph in the repository. If space consumption becomes a problem, Prune will

automatically delete derived results, because it retains the ability to re-create them

on demand.

Other users or organizations may operate their own repositories. When a user has

a result of interest to be shared, Prune can export the appropriate meta-data into

a portable package. The package can contain all the meta-data necessary to describe

how the result was obtained, so that a receiving user can examine, re-execute, or

build upon that result within their own repository. The most interesting results can

be widely disseminated through a public repository.

4.1.2.2 Workflow components

A Prune repository contains a graph of immutable objects describing the data

and computational elements needed to execute a workflow. The following 4 basic

objects constitute the nodes of the graph: Files, Tasks, Results, and Environments.

Once a workflow has been described in terms of these objects, the objects can be

shared with collaborators or published as a complete and reproducible description of

the workflow. An overview of how the different elements are connected is shown in

figure 4.2.

A File is an immutable string of bytes, identified by a hash of the content of the

File. Any data the user wishes to use must first exist as a File within a repository.
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A Task is a program to be executed, represented as a brief JSON document that

describes a command line, the input Files, and the Environment in which the Task

should run.

A Result object contains information about the completed execution of a Task,

with identifiers for the output files (which were not known until the Task completed)

along with the time and resources consumed during execution.

An Environment is an explicit statement of the hardware and software needed to

execute a Task. It is generally designed to be appropriate for a range of Tasks, rather

than having a unique Environment for each Task. An Environment can take many

forms, but in concept is distinct from the means used to deliver that Environment

for a specific Task on a specific compute resource.

For example, an Environment could be as simple as a tarball with software to

be added on top of an assumed operating system. Various methods can be used to

deliver that environment. If a compute resource already runs that operating system,

the tarball merely needs to be unpacked in the proper location, then the compute

resource is ready to execute tasks in that Environment. Otherwise a virtual machine

may need to be started up to supply the operating system, before the tarball can be

unpacked. On the other hand, the Environment could be a virtual machine image

which includes the operating system. Any number of virtual machine managers might

be able to load the image and make it available for Tasks.

I assume that an Environment is something created infrequently by working

closely with a system administrator, in the same way that a physical machine’s op-

erating system is infrequently changed and constantly re-used.

If there are few assumptions about what resources will be available in the future,

an Environment should be reproducible for many years to come. For example, using

a virtual machine image in Amazon EC2 or a container image in a public Docker

Hub, both make assumptions about relatively new technologies with a tendency to
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evolve quickly. However, a reference to Amazon EC2 might be more convenient in

the short term.

By separating the Environment from Tasks and reusing a given Environment for

multiple Tasks there should be more opportunities for caching (in addition to being

a convenient way to preserve the environment for reproducibility). When creating an

instance of an Environment from the input file(s), the results of intermediate steps

(such as unzipping) could also be cached to reduce the resources needed to provide

instances of appropriate Environments.

A workflow system generally considers entire files for inclusion or eviction from a

cache. When multiple files are needed for an environment, it might be more useful

to consider the Environment as a single element in the cache rather than a collec-

tion of files which can be individually evicted. This could be done more simply by

bundling those files into a single file, such as a zip file, rather than by creating a more

sophisticated caching system.

A tool called Umbrella [136] can observe the current resources and compare them

against an Environment specification. If the current compute resources matches the

specification, the Task can be immediately executed. If any software or a different

operating system is needed, Umbrella can add the software or even start up a virtual

machine, if necessary, to satisfy the specification. This can be much more efficient

than always starting virtual machines, while still supporting heterogenous resources.

However, this means that it is not known until runtime what data resources are

required. Ideally, even for the cases where a virtual machine image needs to be

transferred to a compute resource, that image should only need to be transferred

once. But without the knowledge of what Environment dependencies will be needed

on a resource until runtime, a workflow scheduler might have a difficult time choosing

the right resources for each Task.
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4.1.2.3 Interface

Prune has six fundamental operations:

id = file_add( filename );

id = task_add( task-description );

id = envi_add( type, image );

execute( available_resources );

export( id-list, filename, options );

import( filename );

Three operations add to the repository: file_add adds a file to the repository

from the local filesystem, and returns an identifier for it’s File object. task_add adds

a Task to be executed to the repository and then immediately returns an identifier.

The Task is queued for execution and the results will become available when time and

resources permit. envi_add adds a new Environment to the repository, specifying

the type of the environment (VMWare, Amazon, Docker, TGZ, etc) and the name

of the image.

The execute command specifies what resources can be used to execute Tasks, and

when they are to be used. The export operation creates a package which includes a

subgraph of the repository. It expects of a query anchor (a list of ids as a starting

point) and optionst that describe which direction(s) to follow derivation lines and

which object types to include in the package. The import operation adds new objects

into the repository from such a package. Because task_add returns an identifier

before executing the Task, it is possible that an export will request File objects that

do not yet exist. It is a matter of preference whether such a request will block or

require the user to poll until objects are available.
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4.1.2.4 Naming

The issue of naming in computing has long been a challenge and various ap-

proaches have been proposed to resolve the disconnect between computer and human

naming. [10] Prune uses two types of identifiers for objects: content-based identifiers

and derivation-based identifiers.

A content based identifier (CBID) is the fundamental name for all Files, Tasks,

and Environments. It is generated by computing a hash function of either the content

of the object, which is the binary data of a File, or the JSON document representing

a Task or an Environment. Care must be taken to ensure the ordering of JSON

elements (alphanumeric or fixed order keys) so that a CBID does not change as the

item is shared among repositories.

Prune also stores some auxiliary meta-data about each object type, such as

owner, creation time, resources consumed, etc. This meta-data is excluded from the

checksum so that the CBID can be used to detect if an object is logically unique.

A derivation-based identifier (DBID) is used to identify files that have not yet

been generated. It consists of the CBID of a Task, followed by a subscript that

selects one of the results of the Task. DBIDs can be used as arguments to later tasks,

so that multiple Tasks can be chained together before the intermediate Files have

even been generated.

For example, suppose that Task T consumes files A and B (which exist in the

repository) and produces files X and Y. The CBIDs for Files A and B are used in

the JSON document that describes Task T. The CBID for Task T is simply the

checksum of its JSON document (38b1d). When Files X and Y are produced, they

can be addressed using the CBIDs computed from their checksums. But they may

also be addressed as 38b1d[0] and 38b1d[1], which indicate they are the first and

second output Files of Task T respectively, as shown in figure 4.3.

In addition to overhead and wall time measurements, Result objects record the
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Figure 4.3. CBID vs. DBID

An example of the relationship between a CBID and a DBID. The output files X
and Y each have both a CBID and a DBID

mapping between DBIDs and output CBIDs (once the Task has been executed).

Keeping this information separate from the Task allows the Task to remain im-

mutable. Sometimes generated Files are deleted to make room for other Files as

mentioned in section 4.1.2.1. If those Files are needed again, the Task is re-executed,

generating an additional Result object for the Task. If derived Files are deleted, the

checksums in the Result can be used to validate re-generated output Files.

4.1.2.5 Sandboxes

One thing that can help avoid naming conflicts is to isolate tasks from each

other. Before a Task is executed in an Environment it will be placed in a temporary

sandbox. This helps prevent accidental interference with other Tasks, and can also

provide a debugging snapshot when there is an error, while still allowing other Tasks

to continue.

For example, in figure 2.2 a Task refers to a few input and output files. The input

File arguments are mapped to local pathnames within the sandbox ["in.txt","in.dat"]

where they can be accessed via the running command. After the command is exe-

cuted, the output files are retrieved from their expected location ["out.txt","o2.txt"]

where they can be extracted and stored within the Prune repository as Files and a

Result. Then the entire sandbox can be discarded.
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4.1.2.6 Non-determinism

If a Task is non-deterministic, multiple executions of the Task can generate

Files that are bitwise different, but logically equivalent for a given scientific domain.

Prune is unable to detect such logical equivalence. This can be an issue with the

Monte Carlo simulations used in high energy physics workflows. In these cases a

single DBID can refer to multiple CBIDs. Since the input File identifiers are part

of a Task’s checksum, equivalent Tasks could end up with (any number of) different

Task CBIDs.

In an effort mitigate this issue while still allowing workflows to be fully specified

before execution, Prune encourages, when possible, the use of DBIDs throughout.

This enhances the ability to effectively collaborate and de-duplicate, which is dis-

cussed in later sections, but CBIDs can also be used if the user desires to.

4.1.3 Storage management

One of the challenges with preserving a workflow is the amount of storage space

required. I observe (and assume) that, in general, the largest portion of the storage

requirement for a scientific workflow consists of Files generated during the execution

of a workflow. These derived Files can be leaf Files (not used as an argument for

any Task) or intermediate Files (used as an argument in one or more Tasks). I

propose treating derived Files as a disposable portion of a workflow as detailed in

section 4.1.3.1. I assume that the second largest portion of the storage requirement is

typically root Files (external input data directly imported into a Prune repository).

I discuss ways to address this challenge in section 4.1.3.2. The smallest portion of

the storage requirement is the data describing the Tasks needed to get from the root

Files to the leaf Files. Reducing the storage requirements in this category is covered

in section 4.1.3.3.
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4.1.3.1 Derived file cache

Derived Files can be deleted to save disk space without limiting reproducibility,

since all the information needed to recreate them is found in the Tasks, root Files,

and Environments. In a sense, these derived Files can be treated as a temporary

cache. The Result objects remain in the database for consumed resource statistics

and checksum validation.

The priority used to determine which derived Files to evict first could be as

simple as evicting the oldest derived File. However, more advanced algorithms could

be based on File sizes and their position in the repository graph. The same algorithms

used to follow lineage and progeny in the export operation could also be useful in

deciding which derived Files are the least likely to be used. The cost (financial or

otherwise) of reproducing a File should also be considered.

4.1.3.2 External objects

Since root Files cannot be re-generated, they must be set apart from the derived

Files to prevent the system from disposing of them. An advanced implementation of

Prune could extend Tasks to allow input files specified as URLs rather than restrict-

ing them to Files only. In such a case, additional rules (based on the bandwidth, reli-

ability and longevity of the external resource) would be needed to determine whether

the results of such Tasks could be generated again in the future.

For very large workflows, a smaller repository could treat derived Files from

another repository as rooted files, but also include a Task that refers to the full

repository for additional lineage. This permits flexibility in constructing repositories

appropriate for a given researcher, while still ensuring full preservability (spanning

multiple repositories) back to the root Files. In some cases there should be overlap

between repositories for added replication and availability, but for others it would be

sufficient to simply have a well defined line between repositories.
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This is in line with large central data approaches like IVOA [134], IRIS [189], the

LHC [131], etc., but any changes to the data by the managing organization must be

detectable and/or avoidable in the interest of ensuring reproducibility.

4.1.3.3 Workflow merging

Recording each workflow DAG individually in a Prune repository satisfies the

need for preservation. However, this can cause unnecessary duplication of Task ob-

jects and their executions. Even with the assumption that Task objects are small

compared to File objects, eliminating duplication at this level can result in more

efficient use of both storage and execution resources.

I observe that as a researcher creates a workflow, there is generally a gradual evo-

lution of that workflow while adjustments are made. Only a portion of the Prune ob-

jects describing the workflow will change with each evolution. Especially for changes

made closer to the leaf Files, or by extending from leaf Files, only a small portion

of the objects will differ from a previous version of the workflow. To merge a new

workflow into a repository, Prune identifies the duplicates and effectively grafts the

new objects onto a merged repository graph.

The expanded graph after de-duplication describes both the old and the new

workflows simultaneously with shared objects defining the earlier portions of the

workflow. As the workflow continues to evolve the graph continues to expand. This

expanded graph approach makes up a more efficient Prune repository. The ability

to detect duplicate Tasks coupled with the ability to treat their generated results as

a cache enables memoization. This optimization technique reduces the time it takes

to execute a workflow which already includes generated Files in the repository.

In order to support queries (such as those for the export operation) on a merged

repository graph, tracing the lineage of the query anchor forward can be enabled by

attaching a workflow identifier to each new object added to the graph. However,
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since any existing duplicate objects are immutable, they cannot be updated with a

list of workflows they were used in. When tracing the progeny of the query anchor

backwards, there may be multiple paths that could be traversed. This could happen,

for example, if two Tasks achieve identical results, but reached those results using a

different approach. In such cases, it can be useful to record the workflow identifier

in addition to a CBID and DBID.

This chapter proposed some of the goals for a reproducible workflow management

system, but intentionally left room for the evaluation of different choices that could

be used to satisfy those needs. The architecture was divided into File, Task, Result,

and Environment components operated on by file add, task add, envi add, execute,

export and import operations to support the proposed goals. The need for both

content based identifiers and derivation based identifiers is expressed to handle for

the possibility of non-deterministic tasks. With such a framework prepared, the

next chapter identifies a specific choice made or options to be compared in order to

implement these ideals. With a single user implementation of Prune I then evaluate

our choices with workflows involving high energy physics, bioinformatics, and the

U.S. censuses.
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CHAPTER 5

SINGLE USER EVALUATION

With a framework, in the last chapter, for what high level capabilities are needed

in Prune the specific choices are identified in this chapter, and the implementation

is applied to various workflows from a single user perspective. Many of the imple-

mentation details chosen here have other largely equivalent alternatives available,

but alternatives were unlikely to improve the implementation in any significant way.

For example, SHA1 hashes are chosen for the content based identifiers. A larger

hash would be better if this hash was being used for security, but because security is

not the goal, SHA1 should be adequate for gauging uniqueness between objects in a

trusted environment. Since the multi-user aspect of Prune is designed at a higher

level than the database level, SQLite is sufficient and a bit more convenient than

MySQL. The high energy physics, bioinformatics, and U.S. censuses workflows used

to validate Prune, show that overhead is minimal, the workflows are still scalable,

and Prune can adequately manage storage consumption automatically based on a

provided quota.

5.1 Implementation details

Prune is written in Python and uses SQLite3 to keep track of all workflows

submitted to it. The user creates a Python script which uses a Prune client library

to expose Prune operations inside of the Python script. The client library translates

API commands into SQLite3 queries to preserve new workflow objects and ignore
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duplicate objects when detected. The client library can also export or import entire

workflows or portions of workflows.

A Prune repository is a database of workflow objects recorded over time. It is

divided into 3 parts; persistence, cache, and status. Both the cache and status

portions can be re-created by Prune, but the persistence portion contains objects

that contain irreplaceable information. The cache portion stores generated Files. The

persistence portion stores the remaining objects. The status portion tracks Tasks

that still need to be executed and which of those are ready to execute immediately

as compared to those that depend on Files which are not yet available in the cache.

SHA1 checksums are computed on object content to create the CBIDs. When the

content is in JSON format (Tasks, Environments, and Results), the keys are sorted

alphanumerically to keep the CBIDs consistent.

DBIDs use a ‘:’ character after the Task CBID, followed by an index number

to distinguish between outputs of a given Task. To encourage meaningful variable

names in Python task_add returns the list of DBIDs instead of the CBID for the

Task, but the CBID can be derived.

If there are two Tasks which are identical except for the specified environment,

Prune still preserves them as separate Tasks in the database. Each Task must be

executed, and each Result stored, but if the generated Files are identical, they are

only stored once (using the CBID and first DBID).

An export in Prune creates a single file with all relevant objects embedded. File

content is treated as binary blocks, with the rest of the Files and other objects as

JSON text. In addition to handling the depth of the lineage and/or progeny extracted

from the repository graph, a ‘files’ argument allows the scope of the export to be more

specific. For example, this allows the user to select whether or not intermediate Files

should be included in the exported files. This file can be shared with other users of

Prune either directly or via the internet.
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If any Files requested in the export command have not been generated or were

evicted from the cache, the user receives a message indicating that Files are not yet

available. The user may then repeat the request or fail, as appropriate.

5.2 Compute resources

Prune can either spawn local worker processes to execute Tasks, or start a Work

Queue1 master [30] to coordinate Task execution on remote workers. In local mode,

input Files are linked into Task sandboxes, with the assumption that Tasks will

“play nice” and not modify those files. This is how files are treated when executing

commands outside of Prune, and is appropriate for the high energy physics and

census workflows considered. In remote mode, Files are transmitted over the network,

making it more appropriate for computationally intensive Tasks with small inputs.

Prune puts all submitted Tasks (which don’t have their output files in the cache)

into the status portion of the database. These Tasks are eagerly evaluated whenever

a prune worker is running. When the command for a locally run Task returns an

error code, the sandbox is left in tact so the user can see what modifications would

be needed to submit a corrected Task.

Prune currently allows Tasks to run without a specified environment (meaning

the default available environment should be used), with a Wrap environment, or with

a local Umbrella [136] environment. A Wrap environment runs an open command to

prepare the environment for command execution (then an optional close command).

A Wrap environment was used to extract a tarball with software needed for the

workflows used in evaluating Prune.

1Work Queue is a framework for building large master-worker applications that span thousands
of machines drawn from clusters, clouds, and grids. Tasks are executed by a standard worker process
that can run on any available machine. Each worker calls home to the master process, arranges for
data transfer, and executes the tasks. The system handles a wide variety of failures, allowing for
dynamically scalable and robust applications.
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Figure 5.1. Example Workflow

An example workflow (a) is shown using Prune commands (b), with a few of the individual objects that are recorded (c).
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5.3 Example workflow

Consider the shell script shown in figure 5.1a designed to take two input files and

efficiently produce a new file with all lines merged and sorted.

The Python script in figure 5.1b will preserve and execute a workflow equivalent

to figure 5.1a. The last line exports the minimum objects needed to reproduce the

workflow, and saves these objects in the “merge sort.prune” file.

The Prune client library converts the script at figure 5.1b into the Prune

(slightly abbreviated) objects at figure 5.1c which are not exposed directly to the

user. These objects are what is stored in the Prune repository.

This may seem verbose compared to the original workflow. But I claim that

the benefits of adopting a preservation-first strategy (beyond just the preservation

benefits) can outweigh the added complexity. The following section evaluates some

of those benefits.

5.4 Evaluation (using U.S. censuses)

In order to evaluate the storage management abilities, computational overhead,

and scalability of Prune, it was used to manage workflows doing some analyses on

U.S. Census records. The U.S. Census [62] for years 1850 to 1940 consume 23 GB

using 7-Zip compression. Due to spelling, transcription, and other errors, it is difficult

to find individuals in the census records. In a “Census Name Comparison” workflow

a list of the most frequent surnames in all censuses is created and compared against

the list of all surnames to obtain lists of possible alternate spellings. These alternate

spellings can be used to do a “fuzzy” search for individuals in the censuses. This

workflow is broken down into the following 8 stages:
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Figure 5.2. Prune Behavior

When changes to a workflow occur in later stages, Prune (a) avoids duplicate execution, (b) avoids extra disk space used to
specify the workflow, (c) caches extra disk space used for generated Files.
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Census Name Comparison workflow stages

1 Decompress
(7-Zip unpacking)

2 Normalize
(Standardize field inclusion, names, and order)

3 Count attributes
(Count appearances of field-attribute pairs)

4 Summarize year
(One file per year summarizing pairs in that year)

5 Summarize all
(A single file for summarizing pairs across all years)

6 Filter by field
(A separate file for each field type)

7 Sort by frequency
(Most frequently occurring attribute on top)

8 Similar attributes
(Score similar alternates for most frequent surnames)

Importing original files into Prune takes a significant amount of time. But since

that is more a side effect of preserving the original files than a part of the workflow,

I consider this Stage 0.

5.4.1 Conservation

A common approach to preservation is to create a separate folder for each snapshot

of all scripts and files each time a paper is published or some other milestone. In

figures 5.2a, b, and c comparisons are made between this situation where two versions

of the workflow are in separate folders (upper line) compared to a situation where

only one version of the workflow exists (lower line).

The middle line shows the resources consumed by storing both workflow versions

concurrently in Prune after making a change to the workflow stage number indicated

on the x-axis.
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TABLE 5.1

WALL CLOCK TIME OVERHEAD
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File
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e
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Import sources 1:21 - - - - 1:21 100% 168 24.37
Decompress ˜0 0:10 1:41:33 5:19:36 0:25 7:01:43 315% 168 609,984

Normalize ˜0 0:12 10:16:11 52:30 1:48 11:10:42 9% 167 86,234
Count attributes ˜0 0:01 5:41:12 0:18 ˜0 5:41:33 ˜0% 167 4,799
Summarize year ˜0 ˜0 22:05 0:03 ˜0 22:08 ˜0% 10 819

Summarize all ˜0 ˜0 4:22 0:01 ˜0 4:24 ˜0% 1 407
Filter by field ˜0 ˜0 0:07 0:01 ˜0 0:09 24% 16 407

Sort by frequency ˜0 ˜0 2:02 0:02 ˜0 2:04 1% 16 407
Similar attributes 0:25 2:52 544:18:38 8:26 3:00 544:37:39 ˜0% 10,000 102,689

Total 1:47 7:16 562:26:11 6:20:57 5:13 569:01:43 1% 10,713 830,114

NOTE: The overhead of checksumming the files is a significant factor in the first stages, but minimal overall.
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In figure 5.2a, the wall time improvements due to memoization are modest in

the first stage since it is not very CPU intensive. The normalization stage is more

significant computationally. The final stage is the next most significant one in terms

of computation. Doing an all-pairs match on surnames using the Jaro-Winkler algo-

rithm [40] is computationally expensive, so even changes to only that final stage still

require a significant amount of work.

The measurements in figures 5.2a, b, and c were taken after doing comparisons

on only 100 of the 11,400,952 unique surnames in the censuses. Executing more

comparisons is covered in the following sections.

In figure 5.2b File content (but not metadata) is ignored. A workflow change in

the first 3 stages results in a larger database because of the large number of files

generated by those stages. The later stages have a more negligible affect on the

database size. This indicates Prune is most effective when evolutionary changes to

a workflow are made at the leaves of the workflow rather than at the roots.

Figure 5.2c shows the intermediate File space. The decompress stage creates large

files with duplicate and extraneous (in this context) fields. This data is included in

the graph even though it is only stored once in the Prune database.

The normalize stage then strips much of that out and produces smaller files. All

other stages have comparatively small intermediate Files. This is great for Prune

because the unpacked data becomes a better candidate for eviction from the cache

since the normalized data will be used more often than the raw unpacked data.

However, all the data depicted in figure 5.2c is a candidate for eviction. In extreme

cases, intermediate files could be deleted as soon as they are consumed by later tasks.

5.4.2 Overhead

To measure the overhead of Prune, the workflow was executed to produce a list

of similar surnames for each of the 10,000 most frequent surnames (Stage 8). This
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workflow was executed using only local workers because the files were large compared

to the compute resources needed to process them for these stages. The execution time,

wall clock time overhead and data storage requirements for each stage is shown in

table 5.1.

Stage 0 (the “import sources” stage) is included here as 100% overhead, since

Prune must make a copy of all the original data, whereas in preserve later system, the

files in user space would be used directly. It is interesting to note that checksumming

the files after the decompression stage is more than 3 times more computationally

expensive than just decompressing the files. Two options are available to address

this issue. Option 1) Skipping a checksum of Files altogether (perhaps when Files

are large) would result is less computational time, but the system might have to

transfer and store duplicate copies of the data. This might not be bad since this data

is intermediate and can be evicted from the cache anyway. Option 2) Checksumming

in the background could both avoid the immediate delay and the duplicate storage.

However, when Tasks are executed remotely (see the Scaling section below), the data

still has to be transferred twice.

However, while this overhead seems significant when looking at that one stage,

the overall overhead is only around 1%. The low overhead in the CPU intensive final

stage (with a relatively small input file) makes the overhead in the decompress stage

much less significant.

Prune chooses to always do duplicate elimination as in some cases this can also

lead to avoiding the re-execution of later stages if the duplicate is caught early on.

Also, this overhead is likely to only occur for the first evolution of the workflow. Only

a change in the environment for stage 1 or a change to the files in stage 0 would result

in having to perform these checksums again.
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Figure 5.3. Prune Scalability

Prune can handle preservation and execution of large scale workflows. 3 million
Tasks were executed within 10 days with a concurrency of O(10k).

5.4.3 Scaling

For the scaling evaluation, the earlier stages of the workflow are mostly disk

intensive, so they were performed using 16 local processes on the server to avoid

network transfer congestion and delays. The final stage is more CPU intensive, so

a Work Queue master in Prune with O(10k) remote workers was used to bring the

total number of surname comparisons to 3 million. Figure 5.3 shows the concurrency

of Tasks running for about 9 days. The total storage space for the entire workflow

after these 3 million+ Tasks was about 28TB.

5.4.4 Storage quota

In any storage-constrained system, it is important to keep the intermediate data

within those constraints. While executing an additional ˜864k Tasks of the workflow,

Prune was given a quota of 30TB. Prune v1 appropriately removed Files from the

repository cache whenever it observed that generated Files caused the repository to

go over quota.
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Figure 5.4. Prune Quota Management

Prune can keep disk consumption within a quota during workflow execution. In this
case the quota was 30TB.

Figure 5.4 shows that Prune stayed within 700MB of the quota after reaching

the quota. This was done in the background to avoid interference with the workers.

5.4.5 Collaboration

Prune can be used to facilitate evolutionary changes by multiple users concur-

rently. In this other workflow, one user might find an interesting match and wants

to share those results with another user. Examples of commands for exporting a

workflow are shown here:

1: export( [id], ‘result.txt’ )

2: export( [id], ‘result.prune’, lineage=INF )

3: export( [id], ‘result.prune’, lineage=INF,

files=[‘root’,‘leaf’] )

4: export( [id], ‘result.prune’, lineage=INF,

files=[‘root’,‘intermediate’,‘leaf’] )

The first command only exports a single file named result.txt which exists in the
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database with the CBID or DBID in the variable ‘id’. The second command exports a

zipped folder called result.prune which includes the minimum files needed to execute

the workflow or in other words the root Files and all Tasks. The third command

export adds the final generated (leaf) Files also to the minimum Files and Tasks.

The fourth command includes all Tasks and all Files used to generate the file with a

CBID or DBID in the variable ‘id’.

Table 5.2 lists properties of the exported file with these 4 approaches. A 5th

export approach is used to demonstrate the full scope of the Matching workflow

without limiting it to just the most relevant portion for a specific result.

In addition to the Census Name Comparison workflow just described, I used a

separate workflow that just does matching on exact census records (with no “fuzzi-

ness”). The exported package with all tasks and root and intermediate files resulted

in a 1.5TB file and took 1 hour and 25 minutes to generate. However, it only took

3 seconds to create a 2.6GB package with only the root Files and the Tasks, and it

took 5 minutes and 30 seconds to read the package and recreate the query anchor

File on a separate machine. Even better, In 4 seconds, another 2.6GB package was

created with the Tasks, root Files, and the interesting File. The interesting match

didn’t need to be generated on a separate machine, but all information was available

to reproduce the File if desired.

Re-importing any of these exports back into the original repository has no effect

because Prune detects duplicates and ignores them. However, consider a situation

where slight changes are made to the workflow by the collaborator. Importing a new

export received from the collaborator would still result in the detection and ignoring

of duplicate objects, and then any new portions of the workflow would be added to

the repository. The imported/exported file might be larger than it needs to be, but

Prune handles the import appropriately.
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TABLE 5.2

PARTIAL EXPORT/IMPORT COSTS

Scenario Expor
t tim

e

#
of

File
s

#
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Tas
ks

File
siz

e (M
B)

Im
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e

Re-
ex

ec
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n

1: Leaf File for 1 match ˜0 1 0 0.000232 ˜0 -

2: Root Files + Tasks for 1 match 0:03 22 56 2,604 0:03 5:30

3: Root, Leaf Files + Tasks for 1 match 0:04 23 56 2,604 0:03 (5:38)

4: All Files + Tasks for 1 match 2:10 78 56 74,899 2:18 (2:55)

5: All Files + Tasks 1:25:51 58,884 16,118 1,551,581 2:22:05 0:02

NOTE: Prune enables collaboration by only exporting/importing desired objects from a workflow.

88



TABLE 5.3

WORKFLOW WALL TIMES

Time spent on

Stage Environment Workflow PRUNE

BWA-GATK: Stage 0 0:00:01 0:35:09 0:00:00

BWA-GATK: Stage 1 0:00:01 0:04:38 0:00:00

BWA-GATK: Stage 2 0:00:00 0:02:03 0:00:00

BWA-GATK: Stage 3 0:00:03 0:05:46 0:00:00

BWA-GATK: Stage 4 0:00:02 0:11:41 0:00:01

BWA-GATK: Stage 5 0:00:00 0:11:32 0:00:02

BWA-GATK: Stage 6 0:00:01 0:06:56 0:00:01

BWA-GATK: Stage 7 0:00:00 0:00:13 0:00:00

BWA-GATK: Stage 8 0:00:08 6:29:19 0:00:05

BWA-GATK: Total 0:00:16 7:47:17 0:00:09

Monte-Carlo: Stage 0 1 day, 17:33:26 14 days, 13:00:20 0:00:23

Monte-Carlo: Stage 1 13:57:01 8 days, 20:55:08 0:00:24

Monte-Carlo: Stage 2 18:04:45 46 days, 9:49:46 0:00:28

Monte-Carlo: Stage 3 13:07:48 1 day, 17:00:26 0:00:25

Monte-Carlo: Total 3 days, 14:43:00 71 days, 12:45:40 0:01:40

NOTE: This shows the distribution of execution time spent on the environ-
ment vs. Prune vs. the actual workflow.
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TABLE 5.4

WORKFLOW DATA FOOTPRINT

Unique Input Aggregate Tasks Environment Generated Output
Stage files data files data tasks data files data

BWA-GATK: Stage 0 17 7,084 MB 80 8,063 MB 10 ˜0 MB 10 636 MB
BWA-GATK: Stage 1 27 7,721 MB 90 8,700 MB 10 ˜0 MB 10 8,951 MB
BWA-GATK: Stage 2 12 8,989 MB 30 9,326 MB 10 ˜0 MB 100 6,883 MB
BWA-GATK: Stage 3 101 6,885 MB 200 7,018 MB 100 ˜0 MB 100 1,846 MB
BWA-GATK: Stage 4 101 1,847 MB 200 1,937 MB 100 ˜0 MB 100 1,380 MB
BWA-GATK: Stage 5 101 1,380 MB 200 1,470 MB 100 ˜0 MB 100 1,385 MB
BWA-GATK: Stage 6 101 1,386 MB 200 1,476 MB 100 ˜0 MB 100 159 MB
BWA-GATK: Stage 7 12 39 MB 40 98 MB 20 ˜0 MB 20 62 MB
BWA-GATK: Stage 8 232 1,691 MB 700 7,182 MB 100 ˜0 MB 100 171 MB
BWA-GATK: Total 704 37,022 MB 1,740 45,270 MB 550 ˜0 MB 640 21,473 MB

Monte-Carlo: Stage 0 2 0 MB 2,000 3 MB 1,000 ˜633,848 MB 2,000 6,719 MB
Monte-Carlo: Stage 1 1,002 6,543 MB 3,000 6,551 MB 1,000 ˜633,848 MB 2,000 20,552 MB
Monte-Carlo: Stage 2 1,003 20,352 MB 4,000 22,011 MB 1,000 ˜633,848 MB 5,000 58,675 MB
Monte-Carlo: Stage 3 3,002 58,662 MB 5,000 58,669 MB 1,000 ˜633,848 MB 2,000 3,352 MB
Monte-Carlo: Total 5,009 85,557 MB 14,000 87,234 MB 4,000 ˜2,535,392 MB 11,000 89,298 MB

NOTE: The data needs and behaviors of the BWA-GATK and MCProduction workflow are summarized.
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5.5 Evaluation (Bioinformatics and HEP)

Prune was designed for computational science, so this section evaluates how

effectively it can be applied to a bioinformatics workflow called “BWA-GATK” and

a High Energy Physics workflow I call “MC Production” (short for Monte Carlo

production). The execution and data footprint for these workflows can be found in

tables 5.3 and 5.4.

5.5.0.1 BWA-GATK

BWA-GATK is a bioinformatics workflow conceptually divided up into two parts;

BWA is executed first, followed by GATK. BWA is a light-weight alignment tool for

performing queries on genomes. It supports paired-end mapping, gapped alignment,

various file formats, and employs the Burrows Wheeler Transform algorithm to align

the genome queries. GATK takes the SAM (Sequence Alignment Map) output from

BWA and applies a sophisticated Bayesian algorithm to compare aligned sequences

with the reference. The final output expresses how closely alignments match with

additional information about the analysis as a whole.

This workflow was chosen because there are many stages, each of which could be

an opportunity for changes in an evolving workflow.

5.5.0.2 MCProduction

The MCProduction (Monte Carlo Production) workflow consists of 4 steps that

make up a chain of tasks used to simulate possible collision events. This is done using

models based on the real events observed through detectors in the Large Hadron

Collider. This workflow was chosen because it has a highly complex environment and

is non-deterministic [104] by design, sometimes unavoidably. Each of the 4 steps is

described below, and the output generated from earlier steps is used as the input for

later steps.
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Physics Simulation (step #1 - LHE): This is a simulation of the first part of

the physics involved in the collision. There is no attempt to account for the detector

at this stage. The acronym LHE stands for Les Houches Event [5].

Detector Simulation (step #2 - GEN-SIM): For very technical reasons,

there is a second part of simulating the physics of the collision that happens in this

step. After this, the effects of the detector are simulated, but the data format read

out is not the same as what the detector readout produces.

Reconstruction (step #3 - DIGI-RECO): The next step, is actually broken

into two separate sub-steps that are run sequentially: The DIGI step takes the sim-

ulation file output and changes it into a format that is identical to what the detector

produces. After this step, no distinction needs to be made in the software between

running on simulated and real data. The RECO step is the same reconstruction that’s

applied to real data which takes detector signals and figures out which particles would

have made those signals in the detector.

Data Reduction (step #4 - MiniAOD): This last step takes the output of

the RECO step (which is in a format called AOD for Analysis Object Data), and

simplifies it into a reduced data format that contains the information that almost

all scientists use to do their research. Some small fraction of analyses actually need

the level of detail in AOD and can’t use MiniAOD, but most researchers use the

MiniAOD data.

5.5.1 Caching

When all computations for a workflow can be performed on a single machine and

the relevant data is on a disk on that machine, the computer automatically manages

when to move data from the disk into the hierarchy of caches closer to the CPU for

processing. Carefully designed algorithms determine when to replace data in these

caches in the hope of avoiding data transfer when the same data might be used more
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than once. When many computers are working together, connected by a network,

data needs to be moved to each computer that is doing some computations. As with

the data in the CPU caches, there is a chance that a given datum could be useful

more than once on a multi-processor computer. Ideally any given file would only get

transferred to a specific physical computer on a network a maximum of one time.

In Work Queue, the user must specify whether or not each input/output file should

be cached. With the delays involved in network transfer being so much more expen-

sive and less predictable than transfers from disk into a CPU cache, the added user

burden of making such choices is merited. In fact, as disks are generally much more

capacious than RAM, making good choices in this area could allow the computers in

a network to avoid transferring any file more than once.

In addition, Work Queue keeps track of the cache contents for workers so that

new Tasks can be assigned to workers that already have needed files if such workers

are available.

In general, the workflows had few (and/or small) dependencies shared between

Tasks in a given stage. In table 5.4 on BWA-GATK: Stage 8, there is only 1.7GB

of unique input data, but for full concurrency without a per machine cache and

multiple Tasks per machine, 7.2GB of data would need to be transferred to satisfy

those dependencies.

Based on the input data Prune is aware of, this appears to be the only stage

that would benefit significantly from caching files on each machine, and only if there

are multiple Tasks running on that machine. However, in the environment column

of that table are approximations of how much data is depended on by the Umbrella

Environment. Environment dependencies were treated somewhat differently than the

data dependencies, and more on this is in the next section.
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5.5.2 Environment dependencies

When the compute resource Umbrella is running on does not even closely match

what is needed in the Environment specification, large virtual machine images are

needed to create an instance. In a worst case scenario, where each compute resource

requires a virtual machine, the data transfer requirements are significant, as show in

table 5.4 under Monte-Carlo and Environment. The data requirements for providing

environments can far supersede what is needed for the workflow itself.

Initially Prune configured Umbrella to use the same pathname for the cache.

Rather than copy files from the cache into each sandbox for executing Tasks, Umbrella

links to the cached files. This seemed more efficient and still acceptable because

Umbrella is in charge of that folder and expects the Tasks to ’behave’ and stay

within their own namespace.

However, there appeared to be cache integrity issues with multiple concurrent

instances of Umbrella working from a single folder on a given computer. In a very

näıve attempt to eliminate stale cached information, Prune was modified to delete

the Umbrella cache folder each time it attempted to execute a Task using Umbrella.

Unfortunately, this clearing of the cache usually occurred while an existing in-

stance of the Environment was still running and linked into that folder. Tasks quickly

started failing as their Environments were deleted, and the ’worst case scenario’ of

transferring large virtual machine images to every Task became orders of magnitude

worse as the progress of every computer with multiple such Tasks ground to a halt.

Tasks restarted over and over again as they failed, overloading the system providing

the virtual machine images, which prevented even machines with only one Task per

computer from progressing. After too many failures each machine was added to a

blacklist, and many of the machines with only one Task received more Tasks and

joined the cycle of failures then blacklisting.

In the end, the ’worst case scenario’ was better than this new situation and
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caching was effectively turned off by using a unique cache folder for every Task. A

more appropriate long term solutions are proposed in the next section.

5.5.3 Solutions

The bottleneck encountered was with Tasks at the same hierarchical level in the

workflow concurrently depending on the same files. This is in contrast to sequential

dependencies in the workflow from one Task to the next. Sequential dependencies are

the obvious job of a workflow manager, and often come in the form of recently finished

workers having generated the data needed as an input for the next Task. In an ideal

environment, static concurrent dependencies can be easily satisfied by keeping a copy

of that data on all computers used in the workflow. However, in a heterogeneous (and

perhaps opportunistic) system such assumptions cannot be made, placing a higher

realtime burden on the workflow management system. However, in addition to being

a bottleneck, in the case of multiple Tasks running on a single machine, satisfying

these concurrent dependencies can cause conflicts and failures.

5.5.3.1 Locking/concurrency in the Environment cache

One obvious solution is to design the system that creates instances of the envi-

ronment to prevent conflicts, and in so doing prevent this type of failures. However,

sometimes the necessary Environment provider is not designed to handle such a case,

and it is not always feasible to request or implement this as a new feature.

5.5.3.2 Hoisting dependencies

Another solution is to make the Environment dependency a part of the workflow

dependencies. This allows the workflow system to manage getting the file to the right

places, which will work to avoid conflicts, as long as the workflow system is designed

to handle concurrent Tasks on a single machine.
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However, it might be not known in advance what dependencies need to be satisfied

to instantiate the Environment. In the case of Umbrella, there are a few different

methods that are acceptable for creating the environment. If Umbrella finds that the

virtual machine image is not required on a particular machine, then bandwidth was

wasted transferring the image to the machine.

5.5.3.3 Only prepared workers

Another option is to only use computers for executing the workflow which have

been prepared for the necessary environment. This doesn’t mean that all machines

must match the requirements, but certain resources must be available on each ma-

chine before it is considered a part of the compute resources available for the workflow.

This could just mean that a virtual machine image is placed in a known location on

the machine in advance. Or it could mean that the virtual machine is instantiated

before making itself available to the workflow.

Notre Dame physicists are using Singularity2 with the later method [117]. Sin-

gularity is used to instantiate a given virtual machine image, and then the instance

announces itself to the workflow manager as available for execution.

5.5.4 More linking problems

Another problem with symbolic file linking occurred with the BWA-GATK work-

flow. One of the stages was consistently failing when using Work Queue, but it would

work fine running locally with the same Tasks. I put a check into Prune to verify that

the contents of the files existed just before executing a Task in Work Queue and the

files existed, but it would still fail. I eventually figured out that the Task was unable

to handle linked files. The problem was resolved by modifying the Task to make a

2Singularity is a container technology designed to enable the user to have full control of their
environment. It can be used to package entire scientific workflows, software and libraries, and even
data.
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copy of the file before executing the command. This was not a problem because the

file was small (unlike the Umbrella Environment files above).

However this situation is a great example of the unexpected challenges that often

appear when reproducibility is attempted. The code had an implicit requirement

that the file be real and not a symbolic link. Even seemingly trivial changes to the

data or environment can break a workflow despite attempts to make it reproducible.

This chapter included implementation details used to implement the Prune ideals

and applied this implementation to 3 complex and/or large workflows. A few chal-

lenges were uncovered which were not anticipated, but in all, the tool was successful

at managing storage space automatically without incurring excessive overhead. It was

also still scalable to tens of thousands of CPU cores. The export of a workflow com-

ponents after the execution of the workflow was touched on in this chapter, but more

exploration is needed into the options for collaboration. The next chapter describes

5 collaboration modes that can be used make working on partial workflow sharing

easier. The estimated temporal and financial cost of each mode is then applied to

the MCProduction, and BWA-GATK workflows.
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CHAPTER 6

COLLABORATION EFFICIENCY

The previous chapter on the implementation and evaluation of Prune focuses

on all the requirements and features for a single user using Prune to automatically

track evolutions to their workflow so that they can be shared with other scientists.

However, the quantitative benefits of being able to selectively include or exclude

generated files when exporting a partial workflow were only lightly addressed. This

chapter defines 5 collaboration modes that can be considered and chosen at any

time (not just in advance). Most workflow management systems only include 2 of

these modes, or require all workflow execution to be performed on dedicated cloud

resources managed by the workflow management system maintainers. The advantages

and disadvantages of each mode are explained and quantified for the MCProduction

and BWA-GATK workflows. Then the temporal and financial costs of each mode

are estimated for each workflow. While the results do not indicate that one mode is

always better than another, it is clear that certain modes can have dramatic reduction

in the more quantitative aspects of collaboration.

6.1 Typical collaboration

A common approach to preserving scientific workflows is to make a copy of the

working directory containing the final results and all files and code used in it’s gen-

eration. Any refinements can then be made to the original workflow as new ideas are

explored, without a concern that the workflow connected to the publication will no

longer be available. The copied folder might be archived for up to a year after a paper
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is published just in case something is needed. For example Notre Dame has a shared

drive called /scratch365 where such data can be stored, but files are automatically

deleted when they reach 365 days old. This resource is specific to the University of

Notre Dame, but similar services are common at most HPC centers.

This archived folder could be sent to collaborators if desired, but if changes are

made to both copies of the workflow, it is typically very difficult to reconcile the

changes and share them between collaborators again. In addition to the inconvenience

of manually identifying changes in the workflow and choosing which version to use in

the case of a conflict, there is also a cost to transferring and/or re-executing portions

of the workflow that have already be executed.

Prune is designed to simplify the user effort involved in reconciling changes to

multiple related evolving workflows, but quantifying user effort is difficult. In addition

to the user benefits, there are some quantifiable benefits to knowing what portions of

a workflow already exist on a collaborator’s system. A balance between re-execution

and transfer of execution results can be achieved, saving network bandwidth and

computational effort.

However, in order to ensure that the system is meeting the needs of the col-

laborating users while this optimization is being performed, I propose three basic

requirements that should exist in any workflow management system designed for

collaboration:

1. Collaborators must get all code, environments and input files needed to create
the final results.

2. Collaborators must re-generate or at least transfer those final results onto their
own system.

3. Collaborators must not lose any changes they have made to the workflow in
order to obtain someone else’s results.
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TABLE 6.1

TRANSFER MODE PROPERTIES

Changed Pr1 Pr2 Pr3 Pr4 Pr5

Transfer new
workflow or

changed input

Transfer files A A A,Z * *

Transfer tasks * * * * *

Execute tasks * * - - -

Transfer
changes

on stage D

Transfer files - - Z D+ *

Transfer tasks * D+ D+ D+ *

Execute tasks * D+ - - -

Most CPU Least CPU

Key

Prune (various modes) Pr#

Input files for the workflow A

Final results for the workflow Z

Items at change and beyond D+

All items *

No items -

NOTE: These 5 different options for dealing with collaboration needs
have an impact on the network transfer and CPU execution connected to
the collaboration.

6.2 Collaboration modes

With those requirements in mind there are a few modes of workflow operation

that are available within these constraints. Figure 6.1 summarizes these modes, and

they are described in more detail as follows.
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6.2.1 Pr1 mode

In this mode all generated results are ignored so that only the minimum amount

of data needs to be transferred to a collaborator. For a brand new workflow being

sent from one computer to another, only the input files (‘A’ in figure 6.1 next to

Transfer files) and the code used to execute the entire workflow (‘*’ in figure 6.1 next

to Transfer tasks) need to be transferred. These numbers could be reduced if some

of the workflow (perhaps input data) happens to already exists on the collaborators

system, but the assumption is made that an entirely new workflow is what is being

transferred. However, the cost for this minimization of network traffic is that in order

to satisfy requirement #2, all the code must be re-executed on the destination system

(‘*’ in figure 6.1 next to Execute tasks).

It is not unusual for a workflow system to have the option to delete all generated

files so they can be regenerated after changes to the workflow have been made. In one

system called Makeflow [3] 1 all generated files are deleted when ‘makeflow –clean’

is executed. Immediately after this operation the workflow could be transferred

minimally to a collaborator. However, in addition to re-executing on the destination

system, it would likely need to be re-executed on the source system or a full copy of

the workflow would need to be made prior to executing ‘makeflow –clean’.

The data in Prune’s immutable tree makes this ‘Pr1’ mode possible as shown

in figure 6.1. The initial export of the workflow would be performed with a Prune

command like this:

export( <list of CBID/DBIDs for final result Files>, ‘result.prune’,

lineage=float(‘inf’), files=[‘root’] )

In ‘Pr1’ mode, after changes have been made on both sides of the collaboration,

1Makeflow is a workflow system for executing large complex workflows on clusters, clouds, and
grids. It is designed to have syntax similar to the familiar Makefile approach and is used for large
scale workflow execution on a large number of different systems.
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any sharing in a typical workflow management system would require a fully separate

copy of the shared workflow in order to satisfy requirement #3 and not lose the most

recent evolution on either side. However, it could be possible to share the input files

in this mode (see the ‘-’ in figure 6.1 next to Transfer files). This could be performed

in Prune like this:

export( <list of CBID/DBIDs for final result Files>, ‘result.prune’,

lineage=float(‘inf’), files=[] )

While ‘Pr1’ mode requires the most execution, it also provides an opportunity to

test the reproducibility by executing the workflow on the collaborator’s system.

6.2.2 Pr5 mode

On the opposite end of the spectrum, execution is conserved by copying all data

including intermediate files and the final results. This conservation of execution

comes at the cost of additional network transfer bandwidth and the associated delays.

Nothing out of the ordinary needs to be done with Makeflow to operate in the mode.

Collaboration is done by copying the entire workflow as is. Prune could also operate

in this manner with the following command.

export( <list of CBID/DBIDs for final result Files>, ‘result.prune’,

lineage=float(‘inf’), files=‘all’ )

In order to satisfy requirement #3, the exact command above would be used both

when a new workflow is shared and when an existing workflow is modified.

While ‘Pr5’ mode is likely to take the longest to transfer, it would be provide

the most opportunity to identify and resolve reproducibility problems introduced by

switching to the collaborator’s system.
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6.2.3 Pr2 mode

In this mode, new workflow transfers are performed identically as in Pr1, by

copying the input files and all executable code for the workflow. However, using

the data available in the Prune database, namely the content-based identifiers and

derivation-based identifiers, tasks which already exist in the databases can easily be

identified. So any data before a change in the workflow need not be transferred.

Continuing with the goal of minimizing network traffic, no intermediate files or final

results are transferred, so in order to satisfy requirement #2 all tasks from the change

in the workflow and beyond must be re-executed on the destination system.

This mode is not possible with Makeflow or with typical workflow management

systems. For a new workflow the Prune command is the same as with Pr1 mode, but

with a modified workflow, only the changes need to be exported with the following

command 2 :

export( <list of CBID/DBIDs for final result Files>, ‘result.prune’,

lineage=<number of stages from change to results>, files=[] )

6.2.4 Pr4 mode

In Pr4 mode, new workflows are transferred as in Pr5 mode, all files and tasks,

so no re-execution is necessary. After a change in the workflow, all tasks and their

generated files are transferred from the point of change to the end of the workflow.

In the end, the Prune database holds the original workflow, the new local workflow,

and the new remote workflow, all at the same time. No re-execution is necessary.

For a new workflow the Prune command is the same as with Pr5 mode, but with

a modified workflow, only the changes and changed files need to be exported with

2However, the number of stages from the stage where the origin and target systems diverge and
the final results must be tracked and derived through manual discussions between the collaborators.
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the following command 3 :

export( <list of CBID/DBIDs for final result Files>, ‘result.prune’,

lineage=<number of stages from change to results>, files=‘all’ )

6.2.5 Pr3 mode

This mode starts with the input files and all workflow tasks, as with Pr1 and Pr2.

But by adding the final results without any intermediate files, requirement #2 can

be satisfied without the need for any re-execution. When the workflow is changed,

all changed tasks must be transferred, and transferring the new final results again

keeps the network traffic low without the need for re-execution. All 3 requirements

are satisfied. This is likely to be the best option available, but depending on the costs

of execution and network traffic, one of the other modes might be less costly.

Here is the command for a new workflow using Prune:

export( <list of CBID/DBIDs for final result Files>,

lineage=<number of stages from change to results>,

‘result.prune’, files=[‘root’,‘leaf’] )

Here is the command for a modified workflow:

export( <list of CBID/DBIDs for final result Files>,

lineage=<number of stages from change to results>,

‘result.prune’, files=[‘leaf’] )

However, assuming the number of stages parameter is chosen properly, the 2

commands above should behave identically.

While this appears to be the most appealing choice, there is some value in choosing

the least appealing approach of doing both ‘Pr1’ and ‘Pr5’. This least appealing

3Again, the number of stages from the stage where the origin and target systems diverge and the
final results must be tracked and derived through manual discussions between the collaborators.
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case provides the best chances both to test reproducibility and identify and resolve

reproducibility issues.

6.3 Case studies

In Makeflow, switching from Pr5 to Pr1 mode is permanent because all generated

files are deleted, and the original workflow must be re-executed to make the final

results available again. This is not desirable for large workflows and magnifies the

CPU execution cost proportional to the frequency of workflow evolutions amongst

all the collaborators.

Currently Prune is able to operate in all 5 of these modes using the methods

described in 5.4.5 and all modes are available concurrently depending on which one

is best in a given situation. However, negotiation of the best choice based on what

might already be available to the destination system has not been implemented. The

users would currently have to have a detailed conversation about what is already

available and what needs to be transferred in order to fully operate in these modes.

The best mode to use in a given situation depends both on the inherent properties

of the workflow, the nature of the evolution between collaborators in the workflow

the history of collaboration on those evolutions. Each workflow evolution could be

individually optimized to meet the collaborator’s preferences. However, Prune could

be extended such that the two systems could automatically negotiate the best transfer

solution based on a user’s priority in avoiding network traffic or re-execution. Also,

the work required to create a package to perform these operations ignored below, but

was measured and reported on in 5.4.5.

Given the same two use cases used in the implementation chapter, the behavior

of evolutions under each collaboration mode and at each stage is shown in table 6.2

and table 6.3. For all workflows, modes Pr3-Pr5 require no re-execution on the

collaborator’s system.
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TABLE 6.2

MCPRODUCTION WORKFLOW MB+DAYS

Changed Pr1 Pr2 Pr3 Pr4 Pr5

All

Files (MB) 1 1 20,554 89,299 89,299

Tasks (MB) 2 2 2 2 2

Exec (days) 75.15 75.15 0.00 0.00 0.00

Stage 0

Files (MB) <1 <1 20,552 85,559 89,299

Tasks (MB) 2 2 2 2 2

Exec (days) 75.15 75.15 0.00 0.00 0.00

Stage 1

Files (MB) <1 <1 20,552 85,559 89,299

Tasks (MB) 2 2 2 2 2

Exec (days) 75.15 58.87 0.00 0.00 0.00

Stage 2

Files (MB) <1 <1 20,552 79,015 89,299

Tasks (MB) 2 1 1 1 2

Exec (days) 75.15 49.42 0.00 0.00 0.00

Stage 3

Files (MB) <1 <1 20,552 58,662 89,299

Tasks (MB) 2 <1 <1 <1 2

Exec (days) 75.15 2.26 0.00 0.00 0.00

Most CPU Least CPU

NOTE: Estimated costs of doing collaboration on an MCProduction
workflow when the workflow evolves at different stages and different Prune
modes are used.
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6.3.1 MCProduction

In table 6.2, since modes Pr3-Pr5 all avoid any re-execution, the only metrics to

consider are the network transfers. Because MCProduction is a simulation, there is

very little input data. In Pr3 mode all stages only need to transfer the final results

(plus negligible task transfers), which are 23% of the full data required in Pr5 mode.

Pr4 mode reduces the data transfer down to about 66% of Pr5 in the best case,

with no reduction at all in the worst case where the input files change. The network

transfer for Pr4 is reduced to 89% of Pr5 on average.

Modes Pr1 and Pr2 have negligible differences in network transfers, but Pr2 can

reduce the re-execution to as little as 3% of Pr1 in the best scenario. The average

re-execution reduction is 69% of the maximum.

Based only on the 3 collaboration requirements, the best choices for the collabo-

rator are likely to be 1) elimination of re-execution and reduction of network transfer

to 23% with Pr3 or 2) minimization of network transfer and reduction of re-execution

to an average of 69% with Pr2.

6.3.2 BWA-GATK

In table 6.3, modes Pr3-Pr5 again avoid all re-execution. However, in the BWA-

GATK workflow, the original input files are much larger than the final results. In Pr3

mode all stages only need to transfer the final results (plus negligible task transfers),

which are only 6% of the full data required in Pr5 mode. Pr4 mode reduces the data

transfer down to less than 8% of Pr5 in the best case, with again no reduction at

all in the worst case where the input files change. The network transfer for Pr4 is

reduced to about 73% of Pr5 on average.

Modes Pr1 and Pr2 have negligible differences in network transfers, and Pr2 can

reduce the re-execution only to 84% of Pr1 even in the best scenario. The average

re-execution reduction is negligible.
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TABLE 6.3

BWA-GATK WORKFLOW MB+DAYS

Changed Pr1 Pr2 Pr3 Pr4 Pr5

All
Files (MB) 7,173 7,173 8,553 21,478 21,478
Tasks (MB) <1 <1 <1 <1 <1
Exec (days) 0.32 0.32 0.00 0.00 0.00

Stage 0
Files (MB) <1 <1 1,380 37,026 21,478
Tasks (MB) <1 <1 <1 <1 <1
Exec (days) 0.32 0.32 0.00 0.00 0.00

Stage 1
Files (MB) <1 <1 1,380 29,942 21,478
Tasks (MB) <1 <1 <1 <1 <1
Exec (days) 0.32 0.30 0.00 0.00 0.00

Stage 2
Files (MB) <1 <1 1,380 22,221 21,478
Tasks (MB) <1 <1 <1 <1 <1
Exec (days) 0.32 0.30 0.00 0.00 0.00

Stage 3
Files (MB) <1 <1 1,380 13,232 21,478
Tasks (MB) <1 <1 <1 <1 <1
Exec (days) 0.32 0.30 0.00 0.00 0.00

Stage 4
Files (MB) <1 <1 1,380 6,346 21,478
Tasks (MB) <1 <1 <1 <1 <1
Exec (days) 0.32 0.29 0.00 0.00 0.00

Stage 5
Files (MB) <1 <1 1,380 4,499 21,478
Tasks (MB) <1 <1 <1 <1 <1
Exec (days) 0.32 0.28 0.00 0.00 0.00

Stage 6
Files (MB) <1 <1 1,380 3,118 21,478
Tasks (MB) <1 <1 <1 <1 <1
Exec (days) 0.32 0.28 0.00 0.00 0.00

Stage 7
Files (MB) <1 <1 1,380 1,731 21,478
Tasks (MB) <1 <1 <1 <1 <1
Exec (days) 0.32 0.27 0.00 0.00 0.00

Stage 8
Files (MB) <1 <1 1,380 1,691 21,478
Tasks (MB) <1 <1 <1 <1 <1
Exec (days) 0.32 0.27 0.00 0.00 0.00

Most CPU Least CPU
NOTE: Estimated costs of doing collaboration on an BWA-GATK work-

flow when the workflow evolves at different stages and different Prune modes
are used.
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Based only on the 3 collaboration requirements, the best choices for the collab-

orator are 1) elimination of re-execution and reduction of network transfer to 6%

with Pr3 or 2) minimization of network transfer and reduction of re-execution to an

average of 84% with Pr2.

6.3.3 Partial workflow (Pr3) disadvantage

Transferring the final results and all tasks, but no intermediate files in Pr3 mode

satisfies all 3 collaboration requirements. However, there is another desirable collab-

oration property that the Pr3 mode does not provide. If there is a chance that the

collaborator will make a change to the evolved workflow at any stage, the collabo-

rator’s workflow reverts to Pr2 mode since the generated input file at that stage are

not present. The generated files before that stage could be transferred, but otherwise

the full workflow must be re-executed to obtain those files. Both Pr2 and Pr4 modes

have this 4th collaboration property and can be chosen when it is needed.

6.4 Estimated cost comparison

Collaboration would not require EC2, however, their pricing model can be an

effective way to estimate costs for the purposes of this dissertation. The current

financial cost per GB for typical network transfer out of Amazon EC2 is $0.09 per

GB. Transferring data into EC2 is free, but since the estimate is more important

than the particulars of EC2, I will use $0.09 per GB as the basis for estimating all

network traffic. Proclaimed throughput varies from to 62-1,750 Mbps depending on

the EC2 instances used. For the temporal cost (the amount of time required) for

network traffic, a full 100 MBps will be assumed for estimating bandwidth. This

is approximately what could be sustained on a 1 Gigabit internet connection after

considering overhead.

Estimating the computing costs is a little more challenging. Amazon uses an
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ECU metric to measure the compute capabilities of their EC2 resources. An ECU

can be assumed to be approximately equivalent to a computing core available at

Notre Dame’s Center for Research Computing (CRC). So the cost of an ECU will

be the basis for estimating computing costs, regardless of RAM, disk or any other

features that might be available. Amazon charges $0.0096 per ECU hour based on

an m5.large instance which is currently the cheapest instance that lists a fixed (not

variable) ECU. However, startup/shutdown costs for server instances will be ignored

for the sake of simplicity in these estimates. With these assumptions in mind, the

temporal computing cost depends on the level of concurrency possible in the workflow

and the concurrency available with compute resources. Maximum concurrency can be

calculated from the Prune database. The temporal cost will be estimated without

placing a limit on the number of compute resources concurrently available.

Table 6.4 estimes the temporal costs of network traffic in this theoretical situation

with no limit on concurrent compute resources and no startup/shutdown cost needed

in order to execute tasks in the workflow. The slowest task in the tables is simply one

that took the longest to complete, in that stage, when the workflow was originally

executed. The hours on the right are the time to complete that stage based on

completion of the slowest task. It is assumed that all other tasks can complete more

quickly than the slowest one since it is likely that a re-execution of the workflow will

have the same performance properties. The times on the right side of table 6.4 are

cumulative. In other words, if a change to the workflow occurred in Stage 0, all stages

must be re-executed. The time listed in the table on the top-right side is how long it

would take to perform a full re-execution of the BWA-GATK workflow in this ideal

or best case scenario.

Table 6.5 shows the temporal cost (wait time) due to network traffic that might

be experienced in each of the collaboration modes. Again, a 1 Gbps connection is

assumed with actual available bandwidth of 100 MBps. The tables show that to some
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TABLE 6.4

TEMPORAL COST OF EXECUTION

Stage changed Slowest task (minutes) Hours to final results

BWA-GATK 0 6 (10 cores) 0.28
BWA-GATK 1 <1 (10 cores) 0.18
BWA-GATK 2 <1 (10 cores) 0.17
BWA-GATK 3 <1 (100 cores) 0.16
BWA-GATK 4 <1 (100 cores) 0.16
BWA-GATK 5 <1 (100 cores) 0.15
BWA-GATK 6 <1 (100 cores) 0.14
BWA-GATK 7 <1 (20 cores) 0.14
BWA-GATK 8 8 (100 cores) 0.14

MCProduction 0 56 (1000 cores) 3.29
MCProduction 1 32 (1000 cores) 2.34
MCProduction 2 99 (1000 cores) 1.80
MCProduction 3 8 (1000 cores) 0.14

Census 0 25 (227 cores) 3.45
Census 1 5 (227 cores) 3.02
Census 2 6 (10 cores) 2.93
Census 3 <1 (10 cores) 2.82
Census 4 1 (1 cores) 2.82
Census 5 5 (1 cores) 2.79
Census 6 139 (681342 cores) 2.70
Census 7 22 (682 cores) 0.38

NOTE: Temporal cost of re-executing the workflow after evolutions in
each stage in Pr1 mode (assuming the shown number of cores can be used
concurrently, and that one stage must complete before the next one starts).
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TABLE 6.5

TEMPORAL COST OF NETWORK

Transfer time (hours:minutes:seconds)
Changed Pr1 Pr2 Pr3 Pr4 Pr5

BWA-GATK 0 00:01:11 00:01:11 00:01:18 00:04:46 00:04:46
BWA-GATK 1 00:01:11 <0:00:01 00:00:07 00:03:33 00:04:46
BWA-GATK 2 00:01:11 <0:00:01 00:00:07 00:03:33 00:04:46
BWA-GATK 3 00:01:11 <0:00:01 00:00:07 00:03:31 00:04:46
BWA-GATK 4 00:01:11 <0:00:01 00:00:07 00:03:17 00:04:46
BWA-GATK 5 00:01:11 <0:00:01 00:00:07 00:03:04 00:04:46
BWA-GATK 6 00:01:11 <0:00:01 00:00:07 00:02:45 00:04:46
BWA-GATK 7 00:01:11 <0:00:01 00:00:07 00:01:36 00:04:46
BWA-GATK 8 00:01:11 <0:00:01 00:00:06 00:00:06 00:04:46

MCProduction 0 <0:00:01 <0:00:01 00:01:07 00:14:53 00:14:53
MCProduction 1 <0:00:01 <0:00:01 00:01:07 00:14:19 00:14:53
MCProduction 2 <0:00:01 <0:00:01 00:01:07 00:04:32 00:14:53
MCProduction 3 <0:00:01 <0:00:01 00:01:07 00:01:07 00:14:53

Census 0 00:05:59 00:05:59 00:07:08 02:00:07 02:00:07
Census 1 00:05:59 00:00:13 00:01:21 01:53:50 02:00:07
Census 2 00:05:59 00:00:13 00:01:21 00:02:25 02:00:07
Census 3 00:05:59 00:00:13 00:01:21 00:02:23 02:00:07
Census 4 00:05:59 00:00:13 00:01:21 00:02:22 02:00:07
Census 5 00:05:59 00:00:13 00:01:21 00:02:16 02:00:07
Census 6 00:05:59 00:00:13 00:01:21 00:02:08 02:00:07
Census 7 00:05:59 00:00:06 00:01:14 00:01:14 02:00:07

NOTE: Temporal cost of network traffic after evolutions in each stage and in
each of the collaboration modes.
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degree the collaboration modes each have some advantages and disadvantages. To get

a better picture the financial cost of each collaboration mode should be considered.

Figure 6.1 plots detailed behavior of the 3 workflows each with the 5 collaboration

modes. The Census and BWA-GATK workflows are similar because they both have

a lot of input data in Stage 0. The green triangles on the left images show how

significant the input data is compared to all the data in the entire workflow. Both

Pr2 and Pr3 come with a significant decrease in network traffic for almost all stages.

Pr1 mode (again the green triangles) has a decent reduction in network traffic, but at

the high execution cost for all workflows. The axes in the middle show the financial

cost of using the resources indicated on the outer axes. The costs are very low in

BWA-GATK with the execution cost never getting above a dollar. That scale may

not merit even asking the question of which collaboration mode to use. However,

looking at BWA-GATK and MCProduction can provide some insight about which

mode might be the best choice if those workflows were to scale up proportionally.

A larger scale workflow can also give a better picture, and there just so happens

to be one in the Census example. In that figure the execution cost estimates get

over $5,000. In addition, it appears that most of that cost is in the latter stages,

because Pr2 mode doesn’t really see much benefit until the final stage. Pr3-Pr5 are

the clear winners in terms of financial cost for the Census workflow, but it is not

so clear for the other workflows. The temporal cost to transfer the Census data is

over 2 hours for Pr5 (and the worst case for Pr4) in table 6.5). The temporal cost to

re-execute the Census workflow is about 3.45 hours in table 6.4. Unless the makeup

of the census workflow changes drastically, it should clearly use Pr1-Pr3, as Pr4,Pr5

are significantly more expensive both temporally and financially.
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Figure 6.1. Financial Cost of Network/Execution

Plots of network and execution requirements of workflows in each of the
collaboration modes. Financial costs are incorporated in the middle.
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Once familiar with these plots, even just looking at them can help inform the

right decision. Again in the census plot, it is clear that Pr2 is only better than Pr1

if changes happen at the last stage of the workflow. On the left side Pr4 provides

significant reductions all the way down to Stage 2, when it ceases to be one of the best

options. The cutoff is not so clear in the other workflows, as Pr2 and Pr4 demonstrate

much more gradual usefulness in figure 6.1.
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CHAPTER 7

CONCLUSION

7.1 Summary

In summary, a shift in intent and a greater focus on reproducibility needs to be

adopted by researching scientists. Many existing efforts [94] to provide frameworks,

middleware, and environments to support computational science are available. How-

ever, in general, reproducible research needs to be perceived by all involved as a

more valuable contribution to science than non-reproducible research, rather than

an inconvenient and somewhat unachievable ideal. There are differing opinions on

the definition of reproducibility and many related terms. But the main goal is to

encapsulate a scientific experiment executed by computers into a form that allows

other collaborating scientists to re-execute part or all of that experiment.

However, just preserving and sharing the bits needed to execute the workflow is

insufficient. Binary code and data can communicate low level operations between

computers, but a higher level representation of the operations needs to be available

which is designed for humans to understand. This higher level representation can be

more useful to scientists especially when it can be modified to explore the parameters,

operations can be replaced as desired, and other operations can be incorporated into

a collaborator’s work.

If the scientist can choose the granularity of these operations, they will be more

effective as a collaborative communication tool than if the operations are based on

generic system provided actions such as system calls.
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Science can advance more quickly by building on the work of others than by

competing for the greatest accomplishments and then allowing them to be obscured

for others. However, just making something reproducible in all of these ways does

not absolve scientists from an obligation to make sure the conclusions they draw from

an experiment are appropriate and correct.

This encapsulation is difficult because there must necessarily be assumptions on

what capabilities are required to interpret the encapsulation by scientists and by a

computer. There may be an implicit assumption that a certain version of a library

will be available, or a certain operating system. Or there may even an assumption

that certain hardware will be available to other scientists, such as GPUs, x86, or

ARM architectures. This work, in part, asserts that separating these assumptions

(the environment) from the operations in a workflow is useful because the scientist

can become accustomed to the assumptions and focus on their domain. If all as-

sumptions are made explicit, system administrators can then be separately tasked

with appropriately satisfying them.

Computers often use obscure names to guarantee uniqueness when referring to

objects. Scientists want names to convey the purpose or place for those objects, and

often redirect the name to something new when their workflow evolves. Attaching a

version or timestamp to the scientist defined names helps to identify when something

has changed, similar to the incrementing version numbers associated with evolution

of software libraries. However, this can become even more difficult in a collaborative

setting where multiple people use the same name for different objects concurrently.

Usually the solution is to either force users to adopt a common namespace or give

each their own namespace and affix the username to the name for an object. In

this dissertation an approach is proposed where each user has their own namespace,

but content and derivation based identifiers are also affixed to objects to provide the

ability to recognize identical objects between workflow.
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The derivation based identifiers are especially important in light of a Preserve

First mentality which is needed in computational science. Even before tasks are ex-

ecuted derivation based identifiers are available for their generated results. These

identifiers can immediately be shared with collaborators and both users could po-

tentially execute a workflow concurrently while retaining the ability to identify those

objects as the same from a global system perspective.

The additional use of content based identifiers can enable the collaborators to

confirm that results are identical in the case of a deterministic workflow, but with a

non-deterministic workflow, collaborators must rely on the derivation based workflows

and an assumption that both systems are behaving equivalently. Unfortunately it is

not always possible to ensure non-deterministic behavior in a workflow.

Also, the Preserve First ideal also helps avoid implicit assumptions when the

tasks are executed in a sandbox. Finally, with the Preserve First approach enables

intermediate files to be treated like a cache which can be flushed if storage resources

become overloaded, because the system can re-execute the task to retrieve it’s results

if they are needed later on.

These additional features come at a cost, but in the experiments used the cost

was negligible compared to the workflow tasks themselves. And the workflows were

still able to scale in spite of the additional actions.

But perhaps the most significant benefit of applying these capabilities to a work-

flow system is the ability to minimize collaboration overhead. Significant reductions

to re-execution and network transfer are possible while still achieving the most valu-

able requirements for a collaborative system. In addition the choice of collaboration

modes does not need to be made in advance. The optimal solution in specific cir-

cumstances can be calculated based on the relative cost of execution compared to

network traffic.

118



7.2 Successes

The overhead of obtaining content based identifiers for all Files was around 1%

of a large workflow, but made it so that identical files across collaborating systems

could be easily identified and transferring those files could be avoided.

Forcing the user to specify desired tasks and letting them be executed by the

system rather than executing them directly enabled the ability to successfully put a

quota on the disk usage of the workflow without losing any information about the

historical evolution of the workflow.

Prune enables new collaboration modes which allow the user to choose between

two optimized options. 1) Eliminate re-execution for the collaborator and reduce

network traffic to 6%-23% of the full workflow amount on average, or 2) Minimize

network transfer to negligible amounts, and reduce re-execution down to 69%-84% of

the full workflow execution time on average.

7.3 Limitations

As shown in figure 5.1 the specification of a workflow is much more verbose in

Prune than in a simple script. It is likely that the syntax could be simplified, but is

still likely to be more complicated than a workflow specified without Prune. This

intellectual overhead is a significant drawback, and can only be offset by separate

benefits such as a disk quota and easier collaboration which can help to reduce the

intellectual overhead.

There could be more external motivation to ensure scientific computing publica-

tions are reproducible, that go beyond what technologies are likely to do. Perhaps

a metric needs to be created to measure reproducibility so that a sizable prize [19]

could be offered to the most reproducible scientific computing publication. In the

absence of a funding source, maybe publishers could simply start offering a Most Re-
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producible Paper Award similar to the Best Paper Awards commonly given. A little

notoriety could go a long way in encouraging scientists to strive for reproducibility.

Scientists could also benefit from more exposure to any good software development

practices [193], that are not included in their education or training. There is no guar-

antee that even the most reproducible techniques available today will be reproducible

at any given date in the future. Therefore, a community of experts is needed who are

willing to maintain a collection of relevant research. This community would secure

funds, decide what research is no longer relevant, what research needs to be updated

to accommodate technological advances, and develop additional tools to encourage

new commitments to the reproducibility of computational scientific research.

Even research that was fully reproducible at the time of publication may cease

to be usable in the ensuing year as a result of unexpected hardware or software

evolution. The Madagascar project [69] and observations of it’s use after a couple of

years [66] make a strong arguments for making research preservation a community

effort, rather than placing the burden entirely on the original researcher.

This is not an easy task and generic open source software techniques [65] are

not always applicable. Strides have been made and lessons learned in very specific

situations [183], but more needs to be done for scientific workflows as a whole.

7.4 Future work

Scientists rightly feel some ownership over their discoveries. They deserve credit

or acclaim for their work, and they should have some control over the distribution

of their efforts. They should be able to manage the integration of other published

research into their own work, without having to re-implement everything themselves.

However, currently, these abilities often come in the form of decreased convenience

and/or performance, and are too often sacrificed in fear of publication delays. In

such cases, scientists may prefer to work completely on their own, planning for re-
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producibility later on.

7.4.1 Distribution

Access requests for objects that are restricted for any reason could be automated

and alternatives could be provided when access is not possible. Also, a scientist might

want to grant access to any portion of their workflow on a case-by-case basis. For

other portions of the workflow, it might be acceptable to grant access automatically

under certain conditions. Appropriate conditions could be membership in some sort of

group or organization, or agreement to attribute credit for borrowed portions in future

publications. Content-based IDs for shared objects may help identify provenance in

cases where attribution is not retained for whatever reason.

7.4.2 Integration

Ideally computational science could be a very collaborative effort with improve-

ments frequently being published at all levels of a workflow. Even with highly sen-

sitive information, if a ‘scrubbed’ but statistically equivalent version of that infor-

mation is available, individuals without special access could potentially contribute to

improvements in the workflow. Scientists could configure when notifications about

new versions of a shared object are available and how to deal with incorporating

those changes into their own research.

7.4.3 Convenience

A balance between user convenience and computer requirements can be difficult

to achieve. A mapping between the two is often used, such as when source code (for

users) is translated into machine code (for computers). Object naming in a collabo-

rative workflow is even more difficult because the preferences of multiple users should

be accommodated. Another problem is managing storage space not just in a single
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repository (as in my previous research), but also across a collaborative workflow.

These seem to be the most significant pain points, but other situations might be big-

ger problems in other sciences. Users might tolerate extra effort for reproducibility

if even more effort is eliminated in other challenging areas. More research is needed

to discover the worst pain points for users in scientific computing in general.

With that in mind and with a focus on usability, additional tools are needed to

reduce the intellectual load on scientists so that they and their collaborators can

focus on their scientific domain instead of on the computer science. In general, the

less work the scientist has to do to execute their research workflows and evolutions

of their workflows, the more likely it is that their collaborators will be able to accept

and benefit from that research. In this vein, efforts in various other areas can be con-

tinued, including; validation, infrastructure independent and performant execution,

recording, sharing and synchronizing of workflows.

7.4.4 Performance

Scientists are concerned with how quickly results can be achieved without ex-

cessive financial costs or delays. If reproducibility increases either of those barriers,

scientists will be less likely to collaborate. Cloud resources, such as Amazon EC2

or GCE can greatly reduce delays, and shared resources between collaborators could

reduce the costs. Either one of these could outweigh the barrier to reproducibility

compared to existing solutions without such resources. Better tools for estimating the

(financial or temporal) cost of computing need to be created in order derive mutual

benefits from shared resources.

7.5 Reproducibility of this paper

As I mentioned previously, issues were encountered with satisfying data depen-

dencies with each workflow both from technical and legal perspectives. Obtaining
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permission to publicly share these workflows in their entirety turned out to be less

successful than addressing the technical challenges. I share all files and data that I

was permitted to.

The shareable result of using Prune comes in the form of an exported file that

includes the Files, Tasks, and Environments used to execute the workflow. These

final files are available on gitlab and include all the data we are permitted to share:

https://gitlab.com/pivie/ccpe-prune/

doi:10.7274/R0TD9VDQ

http://bit.ly/2hNNqD5

These files can be loaded into a Prune repository by executing the included Python

scripts. For more information the Prune User’s Manual can be found at:

http://ccl.cse.nd.edu/software/prune/
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