
Enabling Implementation and Optimization of Scientific Algorithms via Graphics Processing Units

James C Sweet

Publication Date

17-10-2017

License

This work is made available under a CC BY 4.0 license and should only be used in accordance with that
license.

Citation for this work (American Psychological Association 7th edition)

Sweet, J. C. (2017). Enabling Implementation and Optimization of Scientific Algorithms via Graphics
Processing Units (Version 1). University of Notre Dame. https://doi.org/10.7274/cf95j962v1m

This work was downloaded from CurateND, the University of Notre Dame's institutional repository.

For more information about this work, to report or an issue, or to preserve and share your original work,
please contact the CurateND team for assistance at curate@nd.edu.

mailto:curate@nd.edu

ENABLING IMPLEMENTATION AND OPTIMIZATION OF SCIENTIFIC

ALGORITHMS VIA GRAPHICS PROCESSING UNITS

A Dissertation

Submitted to the Graduate School

of the University of Notre Dame

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

James C. Sweet

Douglas Thain, Co-Director

Jesús Izaguirre, Co-Director

Graduate Program in Computer Science and Engineering

Notre Dame, Indiana

October 2017

c� Copyright by

James Sweet

2017

All Rights Reserved

ENABLING IMPLEMENTATION AND OPTIMIZATION OF SCIENTIFIC

ALGORITHMS VIA GRAPHICS PROCESSING UNITS

Abstract

by

James C. Sweet

GPUs provide a fast but simplified architecture that leads to major challenges in

implementation of algorithms. This document looks at how this can be applied to

scientific problems that require both rigor and performance.

This work looks at solving three di↵erent problems by utilizing the GPU for visu-

alization and computation. Firstly, it looks at exploring better methods of creating

accurate and realistic 3D models from laser scan data and photographic images.

Secondly, it explores the implementation of a coarse-grained molecular dynamics al-

gorithm on the GPU and the how the factors of the simulation a↵ect the performance

and accuracy. Finally, it looks at transitioning part of an MPI particle laden flow

simulation code to utilize the GPU as well as the challenges associated.

This work demonstrates that by implementing algorithms to utilize the power of

the GPU provides an opportunity for providing scholars to be able to research more

e↵ectively and e�ciently. Firstly, by using GPUs, e↵ective on-site feedback can be

provided for architects and archaeologists who are collecting data as well as o↵-site

scholars attempting to explore this data after collection. Secondly, the performance

of molecular dynamics simulations can be improved by ⇡ 6⇥ whilst keeping the

accuracy, allowing for faster drug research and development. Finally, a particle laden

simulation’s MPI particle update calculations can be migrated to the GPU to improve

James C. Sweet

the performance by ⇡ 14⇥, allowing for more accurate exploration of areas such as

pollution dispersion in the atmosphere.

To my remarkable wife Rachael, whose sacrifices a↵orded our adventures together,

and I look forward to many more.

ii

CONTENTS

Figures . vi

Tables . x

Acknowledgments . xi

Chapter 1: Introduction . 1

1.1 Problems . 2

1.2 Graphics on the GPU . 3

1.3 Molecular Dynamics . 4

1.4 Lagrangian Particle Laden Flow . 4

1.5 Overview . 5

Chapter 2: Related Work . 7

2.1 Digital Heritage Preservation and Visualization 7

2.2 Molecular Dynamics . 9

2.3 Lagrangian Particle Laden Flow . 10

Chapter 3: Graphics Processing Unit . 13

3.1 Hardware . 13

3.2 Rendering . 18

3.2.1 Pipeline . 18

3.2.2 Texturing . 19

3.2.3 Lighting . 19

3.2.4 Shaders . 21

3.3 Programming . 23

3.3.1 Kernels . 23

3.3.2 Execution . 24

3.3.3 Libraries . 25

3.3.4 Optimization . 26

Chapter 4: Modeling Digital Heritage . 29

4.1 Introduction . 29

4.2 DHARMA - Roman Forum Project 30

4.3 3D Scanning . 31

iii

4.4 Photographic Data Acquisition . 33

4.5 Combining Leica Scan Data and Panorama Images 34

4.5.1 Multiple Scans . 36

4.5.2 Surface Generation . 37

4.5.3 Point Reduction in O(N) . 38

4.5.4 Mesh Pruning to Remove “Poor” Triangles and Overlap . . . 40

4.5.5 Mapping Algorithm . 42

4.5.5.1 Examples . 45

4.5.6 DHARMA Interceptor . 45

4.6 Method of Data Processing . 46

4.7 Conclusion . 49

Chapter 5: Long Timestep Molecular Dynamics on the Graphics Processing Unit 51

5.1 Introduction . 51

5.2 Contribution to the Literature . 54

5.3 Background . 55

5.3.1 Microcanonical and Canonical Ensembles 58

5.3.2 Microcanonical Ensemble . 58

5.3.3 Canonical Ensemble . 62

5.3.4 Constant Temperature Methods 64

5.3.5 Stochastic Method . 65

5.3.6 Forces . 66

5.3.7 Hessian . 68

5.4 LTMD . 68

5.4.1 Propagator . 69

5.4.2 Partitioning of the Dynamical Space of Biomolecules 70

5.5 Implementation . 74

5.5.1 Propagator . 75

5.5.2 Diagonalization with Flexible Block Method 75

5.5.2.1 Computation of Block Hessian 75

5.5.2.2 Block Diagonalization 76

5.5.2.3 Computation of S . 76

5.6 Results . 77

5.6.1 Benchmarks . 77

5.6.1.1 Parameter Choices for Optimal Performance 78

5.6.1.2 Comparisons of Relative and Absolute Performance . 79

5.6.1.3 Run-time Breakdown 81

5.6.2 Validation . 84

5.6.2.1 Dynamics and Sampling of the Small, Helical Peptide

Ala5 . 84

5.6.2.2 Folding of Villin NLE 85

5.6.3 Parameter Choices and Diagnostics 87

5.6.3.1 Rediagonalization Period 88

5.6.3.2 Number of Modes 89

iv

5.6.3.3 Approximate Eigenvector Overlap 90

5.6.3.4 Magnitude of Epsilon for Numerical Di↵erentiation

Perturbation . 92

5.6.3.5 E↵ect of Partitioning Method 94

5.6.3.6 Magnitude of Fast Noise 95

5.7 Conclusion . 96

Chapter 6: Accelerating a Mixed Eulerian-Lagrangian Particle-Laden Flow

Simulation using a Hybrid CPU-GPU System 98

6.1 Introduction . 98

6.2 Background . 99

6.3 The Scalability Problem . 104

6.4 Technical Challenges . 106

6.4.1 GPU Architecture . 106

6.4.2 Data Transfer . 106

6.4.3 Array Access . 106

6.4.4 Batch System Support . 109

6.4.5 Testing . 109

6.5 Results . 109

6.5.1 Optimization . 111

6.5.1.1 Interpolation . 111

6.5.1.2 Shared Memory . 112

6.5.1.3 Restricted Pointers 113

6.5.1.4 Multiple GPUs . 114

6.5.2 Single Precision Transfer . 115

6.6 Validation . 115

6.7 Extrapolation . 117

6.7.1 Single Precision Calculation 117

6.8 Conclusion . 118

Chapter 7: Conclusion . 120

7.1 Modeling Digital Heritage . 120

7.2 Long Timestep Molecular Dynamics 122

7.3 Lagrangian Particle Laden Flow Simulation 123

7.4 Closing Notes . 124

Appendix A: Source Code . 126

A.1 DHARMA . 126

A.1.1 Point to Surface Mapping . 126

A.1.2 Point Reduction in O(N) . 127

A.1.3 Mesh Pruning to Remove “Poor” Triangles and Overlap . . . 130

Bibliography . 131

v

FIGURES

3.1 An architectural overview of a Streaming Multiprocessor in di↵erent

architectures . 15

3.2 Tensor Core fused multiply add operation with mixed precision [60] . 16

3.3 OpenGL transformation pipeline from vertex data to window coordi-

nates [1] . 18

3.4 An example of a texture atlas on the left with its final mapped result

on the right . 20

3.5 An example of lighting a sphere with di↵erent lighting types. 20

3.6 A depiction of how grids, blocks and threads are related in CUDA [58] 25

3.7 An example of divergence within a warp [60] 27

4.1 (a) Luke Golesh operating the Leica ScanStation at the Roman Forum.

This image is taken from top of the ruins of Vespasian temple. (b) The

Roman Forum as captured by the Leica ScanStation. 33

4.2 Results of the measurements taken at Temple of Saturn, at the Roman

Forum, with the Leica ScanStation (a) and hand measure drawings (b). 34

4.3 Under-arch of Septimus Severus at the Roman Forum. The inset illus-

trates the high resolution available from the GigaPan image. 35

4.4 Mapping 2D image to 3D point-cloud. 38

4.5 Example of compression by removal of points while retaining important

structural features such as edges. 39

4.6 Point reduction behaviors for di↵erent reduction methods. 40

4.7 Example of artifacts generated by near and far objects appearing ad-

jacent to each other in the point cloud. In the right hand image the

triangle areas are calculated and normalized and removed if they are

larger then a given threshold. 41

4.8 Example of the stages of mapping the statue of bond hall. 46

4.9 Partial rendering of the Arch of Septimius Severus at the Roman Forum. 47

4.10 DHARMA Interceptor based on Arduino. 48

5.1 Systems in the microcanonical (left) and canonical (right) ensembles.

The shaded outlines represent heat insulating walls. 59

vi

5.2 Harmonic oscillator for angular frequency ! = 1, q histogram and q, p

phase-space for the microcanonical ensemble. 60

5.3 Harmonic oscillator with ! = 1, q distribution and q, p phase-space for

the canonical ensemble. 63

5.4 A comparison of the performance speed up on four proteins versus

OpenMM Langevin for di↵erent values of the number of residues per

block and the rediagonalization period. 79

5.5 Comparison of absolute performance (ns/day) between GROMACS

with 6 CPU cores, OpenMM Langevin, and OpenMM LTMD. 80

5.6 A breakdown of the time spent in each section of the analysis portion of

the code for the smallest (Villin NLE) and largest (Lambda Repressor)

systems tested. 82

5.7 Populations of the 6 most-populated of the 32 defined states of Ala5

from Ala5 Amber96, GB-OBC implicit-solvent simulations run with

LTMD (blue) and Langevin (red). All simulations started from an

extended structure. 85

5.8 Folding times of Ala5 Amber96, GB-OBC implicit-solvent simulations

run with Langevin and LTMD. The blue lines give the average folding

times for each simulation method. Eighteen simulations of each type

were run, and all simulations started from an extended structure. . . 86

5.9 RMSD against the folded structure was computed for Langevin (black)

and LTMD (blue). 87

5.10 RMSD plots for two Villin NLE Amber99-SB, GB-OBC implicit-solvent

simulations run with LTMD. RMSD was calculated using C

↵

atoms,

excluding the first two and last two residues, against the folded struc-

ture. The minimum RMSDs of each simulation are 3.6

˚

A and 3.5

˚

A,

respectively. Figure 5.10b shows multiple folding and unfolding events,

occurring approximately every 0.5 s. 88

5.11 Rediagonalization period’s e↵ect on the folding time using 12 modes.

Each bar is a single simulation, where all bars within a group all use

the same parameters. The groups are sorted within themselves. The

blue lines drawn over each set of bars are the average folding time for

that set, while the dashed black line gives the “reference” folding time

from Langevin simulations. 89

5.12 Rediagonalization period’s e↵ect on the folding time using 16 modes.

Bars represent single simulations, where all bars within a group all use

the same parameters. The groups are sorted within themselves. The

blue lines drawn over each set of bars are the average folding time for

that set, while the dashed black line gives the “reference” folding time

from Langevin simulations. 90

vii

5.13 The e↵ect on the folding time, caused by changing the number of

modes. Each bar is a single simulation, where all bars within a group

all use the same parameters. The groups are sorted within themselves.

The blue lines drawn over each set of bars are the average folding time

for that set, while the dashed black line gives the “reference” folding

time from Langevin simulations. 91

5.14 Overlap between the approximate eigenvectors for WWFip35 for LTMD

and ProtoMol implementations of FBM (blue) and the approximate

eigenvectors and full eigenvectors (black). 92

5.15 Comparison of the collapse of WW-Fip35 from the extended confirma-

tion with di↵erent magnitudes for the numerical di↵erentiation pertur-

bations. RMSD was computed against the extended confirmation. The

other simulations were run with LTMD using di↵erent values of ✏. The

same choice of ✏ was used for both the blocks and quadratic product. 93

5.16 A sweep of simulations executed with varying S matrix epsilons, with

the Ala5 model. Each bar is a single simulation, where all bars within

a group all use the same parameters. The groups are sorted within

themselves. The blue lines drawn over each set of bars are the av-

erage folding time for that set, while the dashed black line gives the

“reference” folding time from Langevin simulations. 94

5.17 Overlap for Residue (standard) and C

↵

partitioning schemes for Ala5

compared with modes from a “brute force” diagonalization. 95

5.18 Overlap for Residue (standard) and C

↵

partitioning schemes for WW

Fip35 compared with modes from a “brute force” diagonalization. . . 96

5.19 Folding times of LTMD Ala5 simulations run with di↵erent values for

the amount of noise added in the fast space. Each bar is a single

simulation, where all bars within a group all use the same parameters.

The groups are sorted within themselves. The blue lines drawn over

each set of bars are the average folding time for that set, while the

dashed black line gives the “reference” folding time from Langevin

simulations. 97

6.1 Snapshot of the particle-turbulence simulation computed via Equa-

tions 6.1 - 6.8. Black dots are the instantaneous locations of the

particles (shown only in the bottom half of the domain), and colors

represent velocity fluctuations. 102

6.2 (a) Schematic of the MPI domain decomposition for the Eulerian flow

calculations. Example here shown for 6 MPI processes. (b) Schematic

of the MPI domain decomposition for the Lagrangian particles, shown

for the same 6 MPI processes . 103

viii

6.3 Comparison of the time taken for the flow vs particle calculation on

64 MPI processes. The particle calculation begins to dominate after

2⇥ 10

6

particles. 105

6.4 Time taken for di↵erent Grid sizes (32

3

, 64

3

, 128

3

, 256

3

). The time

taken to transfer the grid to the GPU scales cubically with the grid size.107

6.5 Performance scaling with varying MPI tasks on CPU vs four GPUs.

The GPU has a constant transfer time but scales better than the CPU,

providing a 14.4⇥ performance improvement at 2.4⇥ 10

8

particles. . 111

6.6 Comparison of sixth and second order interpolation on a single GPU.

This shows that switching from sixth order to second order interpola-

tion provided a 10⇥ performance improvement for that GPU kernel. . 112

6.7 Performance improvement by using shared memory on a single GPU.

Shows that the implementation does not benefit greatly from using

shared memory. 113

6.8 Performance improvement by using restricted pointers on a single

GPU. Shows that the implementation provides a large benefit for the

sixth order interpolation but not the second order interpolation . . . 114

6.9 Particle update timings for four GPUs showing a 6⇥ improvement

with four GPUs compared to 64 CPU cores. 115

6.10 Performance comparison single precision and double precision flow field

transfer transfer yielding a 30% reduction in overall particle update

time for 240 million particles using four GPUs. 116

6.11 The horizontally averaged streamwise particle velocity (V

+

x

) as a func-

tion of wall-normal distance (z

+

) computed by the GPU, the CPU, and

the CPU using sixth-order interpolation compared against research

groups UUD, TUE, ASU, and HPU in the benchmark case of [52] for

St = 5. 117

6.12 The root-mean-square streamwise particle velocity fluctuation (v

+

x,rms

)

as a function of wall-normal distance (z

+

) computed by the GPU, the

CPU, and the CPU using sixth-order interpolation compared against

research groups UUD, TUE, ASU, and HPU in the benchmark case of

[52] for St = 5. 118

6.13 Single precision extrapolated particle update on consumer and enter-

prise GPUs. This shows that we expect the consumer card to achieve

a 75⇥ speedup over the CPU. It also shows that for a enterprise GPU

we expect to achieve a 30⇥ speedup over the CPU. 119

ix

TABLES

3.1 COMPARISON OF NVIDIA GPU ARCHITECTURAL DESIGN PA-

RAMETERS . 17

5.1 COMPARISON OF RELATIVE PERFORMANCE OF OPENMM

LTMD VS GROMACS AND OPENMM LANGEVIN 81

5.2 MILLISECOND RUNTIME BREAKDOWN PER SIMULATION STEP 83

6.1 COMPARISON OF COST BREAKDOWN FOR DIFFERENT GRID

SIZES . 107

x

ACKNOWLEDGMENTS

I am extremely grateful for many people throughout my time at the University of

Notre Dame, who have welcomed me to the United States and helped me succeed.

Firstly, to Dr. Jesús Izaguirre, for helping me take the knowledge that I had

gained from my undergraduate degree and finding a way to apply it to something

that could change the world. I am thankful to Dr. Douglas Thain, for accepting me

as his student when Dr. Izaguirre took a job in the real world, as well as his guidance

to help me complete my Ph.D.

To my dissertation committee members, Dr. Paul Brenner and Dr. Michael

Niemier, who have supported and guided me. I would like to especially thank Dr.

Krupali Krusche for providing me with a rare opportunity to carry out research in a

field new to me, as well as allowing me to explore and document historical sites in

Rome and India. Thanks to Dr. Charles Vardeman II for his help proof reading, many

discussions on a range of topics and divergent ideas. Thanks to my colleagues, now

good friends in the Laboratory for Computational Life Science group, RJ Nowling,

Badi’ Abdul-Wahid, Kevin Kastner and Haoyun Feng, for providing a great amount

of support, knowledge and enjoyment. I would like to thank Dr. Jaroslaw Nabrzyski,

for initially encouraging me to apply to join the Ph.D. program at Notre Dame. I

would also like to thank the Center for Research Computing, for providing access to

a vast verity of resources, which allowed this research to be possible. Finally, a big

thank you to my parents, Chris and Fiona, for their never ending love and support.

They’ve inspired me from a young age to pursue my passions, and I am proud to be

who I am today.

xi

CHAPTER 1

INTRODUCTION

In the last 20 years, the gaming industry’s quest for ever greater visual immer-

sion has created graphics processing units (GPUs) with immense power, which are

becoming widely available at a low cost. These GPUs are designed to work on large

numbers of pixels on the screen simultaneously as a Single Instruction Multiple Data

(SIMD) architecture. Software developers became aware that the GPU’s computa-

tional power, measured in terms of floating point operations, dwarfed that of a typical

CPU. This spawned many e↵orts to harness this power, with initial attempts using

the graphics pipeline to perform the calculation through OpenGL’s built in texturing

and blending operations. This progressed to the use of programmable shaders as

graphics cards evolved. These shaders allowed developers to change how the GPU

interacted with data at di↵erent places within the pipeline. Eventually, the GPU

manufacturers realized the financial opportunities of general purpose programming

on the GPU. They began to implement programming languages that abstracted away

the use of the graphics pipeline and added additional functionality, such as CUDA

and OpenCL.

However, implementing software to optimally utilize these highly performant ac-

celeration tools is generally di�cult because knowledge of the underlying hardware,

which changes rapidly for each new GPU architecture iteration, is required. The

introduction of GPU programming languages (CUDA and OpenCL) has bought

“C”-like programming techniques to the platform. Although this allows straight-

forward implementation of parallel algorithms, this simplistic approach produces an

1

executable which often fails to achieve the expected performance due to the architec-

tural complexity. For instance, there is a large overhead when transferring data to

and from the GPU, data access is less optimal as there is much less cache available,

and due to the simplicity of the cores, branch prediction is much worse than a CPU.

Despite these limitations, experience shows these architectures can yield spectacular

results, which makes it a worthwhile goal for software developers to pursue this field.

This is helped by the continual improvement of available analytical tools, although

this may be restricted to the latest generation of GPUs.

In this dissertation I explore the techniques available for implementing scientific

algorithms for modeling physical systems in the GPU/CPU environment to harness

the phenomenal computational power available. I begin by exploring GPGPU cal-

culations in the OpenGL pipeline and document a use of the resulting developed

platform. I extended this work to simulating molecular dynamics using the CUDA

language in the context of a single GPU in a single compute node. I further extended

these techniques to the hybrid GPU/CPU solution of particle laden flow simulations

in a multi-node cluster with the addition of a single node equipped with multiple

GPUs, using CUDA and Message Passing Interface (MPI).

1.1 Problems

In the following chapters I will introduce three example problems that I have

decomposed to utilize the GPU in an e�cient manner.

Firstly, I will talk about implementing algorithms and tools to allow researchers

to combine laser point cloud data and digital images to produce highly accurate 3D

models and visualize them. This work looks at the challenges of rendering high fidelity

data using GPUs. This utilizes the generalized graphics capabilities of the GPU such

as texturing and requires generation and loading of view matrices to produce a holistic

model.

2

Second, I will talk about implementing a Molecular Dynamics (MD) integration

algorithm on the GPU to gain an order of magnitude performance improvement over

the reference CPU version. This work looks at the challenges with implementing

C++ algorithms on the GPU using CUDA.

Finally, I will talk about implementing a Fortran Lagrangian particle calculation

algorithm on the GPU. This work takes the knowledge learnt from the previous

problem and introduces the added complexity of interfacing between Fortran and

C++ and using Message Passing Interface (MPI) for multi-node execution. I have

also extended this solution to multiple GPUs in a single node.

1.2 Graphics on the GPU

Although current data acquisition technologies, such as LIDAR and GigaPan,

allow the collection of vast amounts of data on Heritage sites, the end users for the

data are Archaeologists and Architects who require the presentation of the data as a

Holistic model in order to navigate it. The target users for the LIDAR systems are

Civil Engineers who are used to working with the point-clouds, often enhanced by

representing the points a colored spheres. There exists a “gap” in the technology to

build a surface from the point-clouds in order for the GPU to be able to texture the

model. In addition, the images acquired from a robotic tripod/DSLR camera need to

be scaled, rotated and registered with the point-cloud for the texturing to take place.

The panoramic “stitching” software could not be used since it requires the camera

to be set at a fixed focus, impractical for the proposed use here.

Despite the mass of work on the rapidly evolving field of graphics on the GPU,

there was no solution available that could merge multiple data sets through the

concept of data registration, where the spacial mapping is distinct from the images

themselves. Current solutions could only build a textured model with a fixed resolu-

tion in both point-cloud density and image resolution.

3

1.3 Molecular Dynamics

Molecular dynamics (MD), a type of N-body simulation, is a computer simulation

method for studying the physical movements of atoms and molecules. By allowing

atoms to interact with each other over a period of time, a dynamical evolution of the

system can be observed. Most commonly, the trajectories of atoms and molecules

are determined by numerically solving Newton’s equations of motion for a system of

interacting particles. Forces between the particles and their potential energies are

calculated using inter-atomic potentials or molecular mechanics force fields.

Traditional MD simulations are constrained in length by timestep limits. Studies

by our group and others have shown that traditional MD is limited to timesteps

of about 2 fs due to high-frequency resonance [39, 51, 74]. Even the most basic

biologically relevant motions occur on the microsecond to millisecond range, which

is 9 to 12 orders of magnitude greater than the timesteps possible with traditional

MD. Further, each step requires a costly force calculation (O(N) to O(N

2

)). As

such, simulating medium-size proteins often requires months of computer time on

a large distributed system such as Folding@home [8, 80] to simulate milliseconds of

dynamics. Similarly, simulating a large protein (e.g. the �-2 Adrenergic Receptor)

on the more interesting biologically-relevant time scales (milliseconds through hours)

using a standard desktop computer would take years. Thus, it is not feasible to

simulate timescales of real biological interest without substantial advances in MD

methods.

1.4 Lagrangian Particle Laden Flow

Computational fluid dynamics is typically carried out by designing a parallel pro-

gram that is decomposed in the spatial domain, such that each processor operates on

a portion of the fluid flow, and periodically exchanges a halo of states with its neigh-

4

bors. This long-used method is highly e↵ective at Eulerian computational methods,

such that the partitioning is static relative to Cartesian dimensions. An example

of this is the NCAR-LES simulation code [55], which has been ported to multiple

HPC architectures and used to simulate atmospheric turbulence in many di↵erent

applications.

Recently, this code has been augmented by adding spray particles superimposed

over the turbulent flow. This collection of particles represents small droplets that are

carried by the flow, such as might be seen at the crest of an ocean wave. The most

direct way to add particles to the existing flow simulation code is to again perform

a spatial partitioning and then alternate the particle and flow calculation at each

node, exchanging states as needed between each time step. Formally this is referred

to as Operator Splitting. However, due to the nature of the particle step, the time

to compute the particle step quickly exceeds the flow step as the number of particles

is scaled up.

1.5 Overview

In this chapter, three problems were defined as well as their importance. Chapter

2 explores the related work for the three separate problems. Chapter 3 examines the

hardware design of GPUs and explores how features are implemented using CUDA.

Chapter 4 presents work to solve the problem of data collection and fusion to pro-

duce highly accurate 3D representations of historical preservation sites. It allows

the computed result to be used in a multi-resolution setting where the complexity

can be defined depending on the hardware available and the response time required.

Chapter 5 presents work that utilizes a GPU implementation of a coarse grained

algorithm (LTMD). It shows that through this implementation, a ⇡ 6⇥ performance

improvement is achievable and that as the problem size increases, the performance

improvement over traditional methods also increases. Chapter 6 presents work that

5

moves the Lagrangian particle update step from a parallel MPI implementation to

use four GPUs. It shows that this implementation is able to achieve a ⇡ 14⇥ perfor-

mance improvement. It demonstrates that, for this work, it is more e�cient to scale

the number of GPUs available to the system rather than the number of machines/-

cores available to MPI. Finally, Chapter 7 summarizes this work and explores future

possibilities.

6

CHAPTER 2

RELATED WORK

2.1 Digital Heritage Preservation and Visualization

In the recent years, laser scanning or Light Induced Detection and Ranging (LI-

DAR), has become a major technique that has started replacing the use of hand

measuring and surveying for survey and documentation work. A laser scanner is an

automated surveying apparatus that uses a laser beam to collect location coordinates

from the surface of a desired object. These measured coordinates are recorded in the

form of a point cloud that identifies the shape of the object by converting the spatial

geometry established through the x, y, and z position of that point in space. The

largest producer of these LIDAR devices is Leica Geosystems [46].

A number of algorithms have been created to convert a point cloud data set to

a triangular mesh. Their complexity depends on if the input point cloud data is

saved in a structured, or unstructured way. If the data is structured, then a simple

algorithm can be used to connect the points in a known way to produce a mesh.

For unstructured data, algorithms such as the Poisson merging algorithm [43], or the

Visual Computing Lab’s merging filter [14], attempt to estimate the shape of input

data set.

The simplest method to map images to a 3D mesh is to have a person manually

drag the picture onto the model or to select features on the picture and model to

connect the two. Work has been done to reduce the human error or amount of human

intervention required. Janko Z. et al. [42] implemented a genetic algorithm to reduce

7

the pixel error caused by human error. Franken, T. et al [25] attempted to reduce the

human error and level of work required by defining correspondences between pictures

so that once a single picture is mapped to the model, the rest can be inferred. Whilst

these methods can map the images to the 3D point clouds accurately, it is costly in

time.

Automated methods aim to map the images onto the 3D model by using tech-

niques to find correlation between the pictures and the model. Lensch, H. et al.

[48] uses a silhouette-based method, which attempts to calculate the mapping by

rendering a silhouette of the 3D model in di↵erent configurations and generates a

fitting metric for the image. Liu. L. et al. [49] extracts geometric features from a 3D

model and matches horizontal and vertical lines with 2D images to then calculating

the camera parameters by using these 2D lines to find the vanishing point. Corsini.

M. et al [13] follow a similar path to [48], but instead of silhouettes, they render

the model and calculate a correlation between it and a grayscale 2D images. These

methods provide an automated method, at the cost of loss of accuracy and a high

computational workload.

Another method of creating models and mapping images to them is to use a large

collection of pictures of the object and then extracting the 3D data from them pictures

to create the model. Zhengyou Z. [95] calibrates a single camera with a number of

di↵erent planar images and from there are able to extract 3D information from images

captured with the calibrated camera. This method allows for the creation of high

relative accuracy at the cost of computational time and a requirement of a large

number of images of the model taken from many di↵erent angles.

Once data has been collected from these LIDAR scanners, it must be processed

or visualized to be of use. LIDAR manufacturers provide tools, such as Leica’s

Cyclone [47] or Faro’s SCENE [22], that allow for registration of multiple data sets,

visualization and basic editing. A number of open source tools have been developed to

8

provide added functionality. Meshlab [12], designed for working with 3D meshes, is a

common tool allowing people to visualize their output or edit it with a greater number

of options than that of the manufacturer software. It provides users with a visual

way of editing, cleaning, healing, inspecting, rendering, and converting data. For

developers, Point Cloud Library (PCL) [71] has become one of the leading libraries.

PCL provides developers with a wide array of functionality to work with point clouds.

It implements feature detection, filtering, I/O, partitioning, searching, recognition,

segmentation, registration, surface generation and visualization.

2.2 Molecular Dynamics

Due to the high computational cost to simulate molecular dynamics simulations,

a number of approaches have been implemented to attempt to push the performance

further.

Langevin dynamics, which solves a stochastic di↵erential equation under dissipation-

fluctuation constraints and provides an attractive thermostat, can be used to over-

come instabilities due to resonances of constant energy integrators [74] and achieve

larger timesteps [40]. However, even Langevin integrators require relatively small

time steps for stability due to fast frequency motions within the bonded forces. As a

result, algorithms such as Normal Mode Langevin (NML, [41, 88]) which can achieve

timesteps 25 - 50x larger have been developed.

Distributed systems, such as Folding@Home [8, 80] attempt to simulate protein

folding by running a large ensemble of simulations on as many computers as possible

and then using the results to infer statistics.

Specialized hardware is also an area that has been explored. The D. E. Shaw

group has developed Anton, a specialized supercomputer where MD algorithms are

implemented in hardware using application-specific instruction chips (ASICs) [76–

79]. For explicitly solvated systems, it has been shown that Anton can provide speed

9

ups of up to 2 orders of magnitude over simulations run in HPC environments.

It has been shown that the computation of MD simulations can be sped up consid-

erably by taking advantage of GPUs [84]. NAMD [67, 83] adapted GPU support for

running on large clusters. GPUs are used accelerate the computation of electrostatics

and Generalized Born [62] implicit solvent model while the remaining computations

and communications are handled by CPUs. Overlapping GPU non-bonded force

calculation (parallelized in a similar way using blocks) with CPU communication

protocols yielded a five to seven fold improvement in e�ciency on NAMD [66] when

running simulations of solvated models such as Apolipoprotein A1 (ApoA1, 92000

atoms) and Satellite Tobacco Mosaic Virus (STMV, 1.06 million atoms).

Other MD packages have focused on running entire MD simulations on one or

more GPUs on a single workstation [33, 36]. In doing so, GPU-enabled workstations

are capable of running simulations on the same timescales as large clusters at a frac-

tion of the cost, which significantly increases access and availability for the average

researcher. Friedrichs, et al. have shown that OpenMM [19, 26], a library for per-

forming MD on GPUs, is capable of speeding up simulations of implicitly-solvated

systems more than 500 times over an 8-core CPU.

2.3 Lagrangian Particle Laden Flow

Particle laden flows have a wide variety of engineering and scientific applications

such as pollution dispersion in the atmosphere, fluidization in combustion processes,

aerosol deposition in spray medication, along with many others. These problems

often take the following form: a set of partial di↵erential equations governing the

spatial variation of some continuous quantity is discretized, parallelized, and solved

on a fixed Eulerian computational mesh, while at the same time Lagrangian elements,

each carrying its own information, travel throughout the domain independent of the

mesh but are modified based on the computed Eulerian fields.

10

The implementation of the Eulerian flow methods is split into two di↵erent ap-

proaches to solving, depending on the domain size required.

Direct Numerical Simulation (DNS), used by [20], provides a method for very

high accuracy, but the domain size is restricted due to the computational cost.

Large Eddy Simulation (LES), was first implemented by Moeng et al. [55] aiming

to model small scales of fluid motion and directly simulate larger scales. This allows

for a much larger domain size, whilst trading accuracy of very fine details. Sullivan et

al. [86], aimed to make the model more accurate by enhancing the sub grid scale eddy-

viscosity model Finnigan et al. [23] utilized LES to compare the turbulence statistics

of the canopy/roughness sublayer and the inertial sublayer above it. Sullivan et al.

[85], in 2011, implemented a massively parallel LES flow calculation software.

Richter et al. [69] extended the work of Sullivan et al. to simulate particle laden

flow to explore sea spray. This research was motivated by the possible e↵ects of

spray on the drag felt by the ocean surface in high winds and used direct numerical

simulation coupled with Lagrangian particle tracking to investigate how suspended

inertial particles alter momentum flux in an idealized turbulent flow. These simula-

tions showed that when inertial particles are introduced into a turbulent flow, they

carry a portion of the total vertical momentum flux, and that this contribution can

be significant when the particle concentration is su�ciently large.

The software used in [69] was extended in Chapter 6 to implement the particle

update calculation using multiple GPUs in a single computer.

For comparable work in the Literature, GPUs are now becoming popular as ac-

celerators and to increase the fidelity of simulations for SPH and CFD. In [56] the

massive parallelism of GPUs is not only harnessed but enhanced numerics, required

as the number of particles increase, are proposed. The open sourced gpuSPHASE

[94] GPU implementation for SPH discusses the shared memory caching implementa-

tion required for optimal performance with CUDA. GPU acceleration of major CFD

11

codes is ongoing, packages such as PETSc [11] have shown excellent results, although

an awareness of the implementation issues is critical [2].

Recent work in the field of Large Eddy Simulations has focused on targeting accel-

erators. In [73] the issues related to GPU architecture is addressed where the choice

between explicit and implicit time integration is shown to rely on the convergence of

explicit solvers and the e�ciency of preconditioners on the GPU. In [92] Turbulent

Wall-Bounded Flows, using the Lattice Boltzmann method, are solved in a Multiple

GPU environment. Atmospheric boundary layer flows are computed on a GPU in

[91], presenting an implementation of two time-stepping methods on the GPU and

highlighting the di↵erent challenges on the programming approach. In addition the

authors introduce a classification of basic CFD operations, found on the degree of

parallelism they expose, and study the potential of GPU acceleration for every class.

In [50] the authors highlight the comparison of GPU and CPU calculations by pre-

senting verification and validation of HiFiLES, a High-Order LES unstructured solver

on multi-GPU platforms. GPU platform specific analysis can be found in [35] where

particle simulation for Kepler GPU is optimized.

12

CHAPTER 3

GRAPHICS PROCESSING UNIT

3.1 Hardware

In this section, we will look at the hardware design of GPUs and how it a↵ects

computation on the GPU.

A CPU consists of a few cores optimized for sequential serial processing while a

GPU has a massively parallel architecture consisting of thousands of smaller, more ef-

ficient cores designed for handling multiple tasks simultaneously. CPUs have evolved

to support a complex instruction set and have advanced branch prediction. Many

of these advancements are missing from GPU cores. These deficiencies in the GPU

cores, in the context of advanced algorithms, lead to major challenges in transferring

algorithms from CPU to GPU to take advantage of the massively parallel architec-

ture.

The e�ciency of using the GPU to accelerate code will ultimately depend on the

GPU architecture and the algorithm implementation, for example algorithms that

require global memory access will have major bottlenecks compared to algorithms

with local access only. A good example of optimizing algorithms to be e�cient on

GPUs would be to re-formulate them to have local access only.

Some of these limitations are mitigated by enhancements implemented by the

GPU manufactures to make their products more ubiquitous. A choice of a good

GPU would generally focus on the number of cores as a primary measure, see Table

3.1, but this can be o↵set by improvements in the architecture of the Streaming

13

Processors (SP). In general the trend is still to fit as many cores as possible on the chip

(currently 5,000) and to increase the memory capacity and performance on the card

(currently 16GB/ 900GB/sec). A consequence of the increase in cores is, if anything,

to decrease their complexity exacerbating the challenges of GPU programming. One

variation to this trend is the addition of TensorCores (by NVIDIA) to meet the ever

growing demands of the Machine Learning Community. I focus on NVIDIA’s GPUs

as currently, they are the most performant for GPU computation and have been the

target hardware for my work.

In the following discussion I describe Streaming Processors, a key feature of GPU

devices, and the impact of these on the e�ciency that can be obtained.

NVIDIA’s Tesla architecture introduced the idea of Streaming Processors (SP) to

their platform. These SP are the main drivers of work for NVIDIA GPUs. These

SP were a shift in the design of the architecture from vector Processing (used for

graphics) to scalar processing (GPGPU) and only operate on one component at a

time. This reduced the maximum throughput of the SP, but also made them much

less complex. Because of this reduced complexity, they are more e�cient in a large

number of cases as VPs relied on getting an ideal instruction mix and ordering to

reach the peak throughput. To compensate for the reduced throughput, more SP

could fit onto the die due to the improved e�ciency and the clock speed can be set

higher due to the simplicity.

Figure 3.1 shows an overview of NVIDIA’s SP, now called Streaming Multipro-

cessors (SM), design for both Pascal (2016) and Volta architectures (2017). On the

left, Pascal’s SM is divided into “Cores”, which can calculate one FP32 or INT32

operation at a time, and “DP Units”, which can calculate one FP64 operation at

a time. On the right, Volta’s SM is divided into FP32, FP64, INT32 and “Tensor

Cores” We can see that each SM is split into multiple separate processing blocks,

allowing multiple “Warps” of 32 threads at once. Each of these blocks contains its

14

(a) Pascal [59]

(b) Volta [60]

Figure 3.1. An architectural overview of a Streaming Multiprocessor in

di↵erent architectures

own cache, scheduler, dispatcher, register file and processing units. Shared between

all processing blocks is a configurable L1 Cache which allows the developer to choose

between having it act as a data cache or provide a section of it as memory to be

shared between threads in a warp. We can see from this figure that both architec-

tures contain half as many FP64 ALUs compared to FP32 or INT32 ALUs in both

cases. This leads to a performance drop in software that requires FP64 computation

only in comparison to FP32.

Three main di↵erences are obvious between these SMs. First, Volta’s SM has four

processing blocks, compared to Pascal’s two. This allows Volta’s SMs to have twice

as many threads being executed at once, allowing for more throughput. Secondly,

Volta’s SM has separate INT32 and FP32 ALUs. This also allows mixed format

15

Figure 3.2. Tensor Core fused multiply add operation with mixed precision

[60]

computation to occur, further improving the throughput. Finally Volta’s SMs, has

the addition of a number of Tensor Cores. These Tensor Cores are flexible, but still

programmable, cores geared specifically towards deep learning Tensor operations.

These cores are a collection of ALUs designed for performing 4x4 Matrix operations,

specifically a fused multiply add (A*B+C) which multiplies two 4x4 FP16 matrices

together, and adding that result to an FP16 or FP32 4x4 matrix to generate a final 4x4

FP32 matrix as shown in Figure 3.2. This divergence from the previous generation’s

architecture is due to the rapid growth of neural network computations. By providing

this option, developers who capitalize on this functionality should be able to achieve

large performance improvements over previous generation hardware.

Table 3.1, examines a number of di↵erent parameters for single GPU server cards.

From this, we can see that the major factor for change between architectures is the

number of cores available for computation, ranging from 240 for the original Tesla

architecture, up to 5120 for Volta. We can also see that the amount of memory

available and the memory bandwidth are increasing to allow larger problem sets

to be solved on the GPU. We can see that although the clock speed of the cores

fluctuates, it has not changed much. Finally, we can see that with Maxwell, the

GPUs have stabilized at 250 watts for their maximum thermal design power.

16

TABLE 3.1

COMPARISON OF NVIDIA GPU ARCHITECTURAL DESIGN

PARAMETERS

Architect FP32 GFLOPS CUDA Cores Clock (MHz) RAM (MB) Bandwidth (GB/s) TDP (Watts)

Tesla 622 240 1296 4096 102.4 187.8

Fermi 1030 448 1150 6144 144 225

Kepler 4666 745 875 12288 288 235

Maxwell 6335 948 1114 12288 288 250

Pascal 8706 1126 1303 16384 720 250

Volta 14028 5120 Unknown 16384 900 250

1
7

3.2 Rendering

Rendering was originally the primary driver of GPU technology, allowing devel-

opers to produce ever more realistic visualizations. To utilize a GPU for rendering,

two main programming libraries exist for software developers to use, OpenGL and

DirectX. OpenGL is an graphics library which allows rendering on many di↵erent op-

erating systems such as Windows, Linux, OSX, Android, iOS. DirectX is Microsoft’s

graphics library which is restricted to developing for Windows and XBox. In this

section, I will look at a number of aspects of implementing graphics rendering us-

ing OpenGL. Many of the techniques have large similarities between OpenGL and

DirectX, due to the end result rendering on the same hardware.

3.2.1 Pipeline

Originally, OpenGL had a fixed functionality pipeline without access to pro-

grammable shaders. In this version, Objects were defined as a collection of primitives,

made up of triangles. To aid in optimization, primitives such as quadrilaterals, line

stripes and polygons were also definable. These larger primitives provided a way

of defining and drawing an object by sending less data to the GPU. After OpenGL

moved to the programmable pipeline with shaders being available, the ability to use

these optimized primitives was removed leaving only triangular primitives available

to the end user.

To represent a primitive, a set of vertices are defined. These vertices represent

Figure 3.3. OpenGL transformation pipeline from vertex data to window

coordinates [1]

18

a point in space, but can also have other attributes applied to them, such as color,

normal vector and texture mapping coordinates.

In the fixed function pipeline, the order that the vertices in a triangle are sent

to the GPU is important for both lighting and culling. This is because the normal

vector of the triangle is calculated based on the three vertices if it is not provided.

OpenGL uses a counter clockwise winding to represent the front of the object. By

knowing this normal vector, it can be used within the lighting calculation itself as

well as for culling if it is invisible from the camera’s viewpoint.

3.2.2 Texturing

Texturing on the GPU is done by first uploading raw, or compressed image data

if the graphics card supports it, then binding it when drawing an object. Vertices

must have mapping data associated to them for the texture to be rendered onto the

object. Normally, texture coordinates are floating point values in the range of [0, 1]

denoting how far along the texture it should access data from.

Textures stored on the GPU have a maximum possible size, 4096⇥4096 for newer

GPUs.

Due to having to switch to the correct texture and then draw its respective ver-

tices, a common optimization is to combine multiple textures together into a texture

“atlas”. An example of this, taken from [61], is shown in Figure 3.4.

3.2.3 Lighting

In OpenGL 1.x, lighting was implemented as part of the fixed function pipeline.

It provided the ability to add three di↵erent types of lighting to objects in the scene.

These were as follows:

Ambient This light is the average volume of light that is created by emission of

light from all of the light sources surrounding (or located inside of) the lit area.

19

Figure 3.4. An example of a texture atlas on the left with its final mapped

result on the right

(a) Ambient (b) Di↵use (c) Specular

Figure 3.5. An example of lighting a sphere with di↵erent lighting types.

Di↵use This light represents a directional light cast by a light source and can be

described as the light that has a position in space and comes from a single

direction.

Specular This light is a directional type of light which comes from one particular

direction and relies on the angle between the viewer and the light source. It

reflects o↵ the surface in a sharp and uniform way.

An example of di↵erent lighting styles applied to a colored sphere is shown in 3.5,

taken from [81]

20

After OpenGL 1.x, implementation relied on developers writing shaders to handle

lighting. This led to more accurate representation of light by allowing the calculations

to be performed on a per-pixel basis rather than a per-vertex basis.

3.2.4 Shaders

Vertex This shader allows calculation to be done for each vertex in the scene. This

is usually used to calculate per-vertex lighting or to setup values to be used

later on in the rendering pipeline.

Fragment This shader allows for calculations to be executed on every pixel gener-

ated in the scene.

Tessellation This shader allows for the specification of how to tessellate primitives

in the scene.

Geometry This shader takes an input of a single primitive and produces zero to

N output primitives. It’s main uses are to render the primitive to multiple

di↵erent targets and to store calculated primitives to be used for computation.

Examples of GLSL code to implement simple di↵usion lighting from [10] are shown

below:

vary ing vec3 N;

vary ing vec3 v ;

void main (void) {

v = vec3 (gl ModelViewMatrix ⇤ g l Ver t ex) ;

N = normal ize (gl NormalMatrix ⇤ gl Normal) ;

g l P o s i t i o n = gl ModelViewProject ionMatr ix ⇤ g l Ver t ex ;

}

vary ing vec3 N;

vary ing vec3 v ;

21

void main (void) {

vec3 L = normal ize (g l L i gh tSour c e [0] . p o s i t i o n . xyz � v) ;

vec4 I d i f f = gl FrontLightProduct [0] . d i f f u s e ⇤ max(dot (N,L) ,

0 . 0) ;

g l FragCo lor = clamp (I d i f f , 0 . 0 , 1 . 0) ;

}

In these source listings, I define the following:

ModelViewProjectionMatrix This is the product of the Model, View and Pro-

jection matrices which convert a vertex from object space to device space as

shown in 3.3

ModelViewMatrix This is the product of the Model and View matrices which

convert a vertex from object space to the camera’s eye space as shown in 3.3

NormalMatrix This is a user specified matrix allowing for the global transforma-

tion of the provided normal vectors.

FrontLightProduct This is a derived product of the light’s parameters combined

with the vertex’s material parameters to give the final di↵use color.

Normal This is the input vertex’s normal vector.

Vertex This is the input object space vertex position.

Position This is the final device space position of the vertex.

FragColor This is the color of the current pixel.

All matrices within the OpenGL pipeline are 4 ⇥ 4, although this is counter-

intuitive for 3D graphics, operations such as translation of a point would not be

possible with 3⇥3 matrices. We can see this from the simple case of translating

the point (0, 0, 0)

T

, multiplication of the zero vector by any matrix will yield the

zero vector so it cannot be translated. In practice we extend a vector (a, b, c)

T

to (a, b, c, 1)

T

for use in the pipeline. It is interesting to note that the value of

22

the 4

th

element will not always be 1 after multiplication and this variation is used

in perspective calculations allowing for an accurate representation of how a three-

dimensional object appears to the eye.

3.3 Programming

At the time of writing, there are two competing programming APIs to implement

direct GPU calculation. NVIDIA provides the CUDA programming framework and

the Khronos Group manage OpenCL, both are extensions of the C programming

language. These two APIs provide the same basic functionality, and for features

supported by both, it is simple to translate between the two. However, they have a

number of distinct di↵erences.

NVIDIA’s CUDA provides good tool support to debug and profile applications

and is usually more performant. It’s main limitation is that it only executes on

NVIDIA graphics cards.

OpenCL is designed to execute on multiple di↵erent hardware architectures in-

cluding GPUs, CPUs or Accelerator Cards such as Intel’s Xeon Phi. It’s main benefit

is that it is not locked into a specific vendor. However vendors, such as NVIDIA,

may not provide drivers to support the latest standards.

Due to NVIDIA’s dominance in the General Purpose Programming on GPU

(GPGPU) domain, this was the target for my software implementations. This section

will talk about how implementation of code on the GPU is achieved, as well as some

common optimizations, using CUDA.

3.3.1 Kernels

Code that is run on the GPU is called a kernel and a simple example is show in

Listing 3.3.1 which sums two arrays together and stores it in a third.

g l o b a l void add (int n , f loat ⇤x , f loat ⇤y) {

23

int index = threadIdx . x ;

int s t r i d e = blockDim . x ;

for (int i = index ; i < n ; i += s t r i d e)

y [i] = x [i] + y [i] ;

}

There are two major di↵erences compared to standard C code. Firstly, a prefix

is added to the function, in this case global , which defines what code is able to

execute this kernel. Three main prefixes are:

global This allows any code to execute this kernel.

device This only allows other kernels executing on the GPU to execute this kernel

and can be combined with the host prefix to compile for both host and

device.

host This only allows the CPU to execute this kernel.

The second addition is the two undefined variables threadIdx and blockDim,

which are available in device kernels to provide information on the current thread

and how large the block of execution is.

3.3.2 Execution

To execute a kernel, another extension to the C standard had been added.

Listing 3.3.2, shows execution of a kernel using the <<< >>> syntax.

int b l o ckS i z e = 256 ;

int numBlocks = (N + b lockS i z e � 1) / b l o ckS i z e ;

add<<<numBlocks , b lockS ize>>>(N, x , y) ;

This syntax requires specifying two parameters, a number of blocks and then how

many threads per block. Threads per block defines how many threads are executed

at once, usually in the range of 64 to 512. Number of blocks defines the number of

24

Figure 3.6. A depiction of how grids, blocks and threads are related in

CUDA [58]

blocks of work to schedule, usually defined by the total number of items to work on

divided by the number of threads per block.

Figure 3.6, shows how the grid size (total number of items), is divided into blocks

and threads.

Blocks are important because they define a collection of threads that are able to

access a small chunk of memory (usually 64KB) that can be shared between them.

3.3.3 Libraries

Along with the other tools provided by NVIDIA, a number of GPU optimized

libraries have also been developed. These libraries aid developers with implementing

optimal solutions without the need to develop and tune in-house versions.

cuDNN NVIDIA cuDNN is a GPU-accelerated library of primitives for deep neural

networks, it is designed to be integrated into higher-level machine learning

frameworks.

cuFFT NVIDIA CUDA Fast Fourier Transform Library (cuFFT) provides a simple

interface for computing FFTs up to 10x faster, without having to develop your

own custom GPU FFT implementation.

25

TensorRT NVIDIA TensorRT is a high performance neural network inference li-

brary for deep learning applications.

cuSolver A collection of dense and sparse direct solvers which deliver significant

acceleration for Computer Vision, CFD, Computational Chemistry, and Linear

Optimization applications.

cuSparse NVIDIA CUDA Sparse (cuSPARSE) Matrix library provides a collection

of basic linear algebra subroutines used for sparse matrices that delivers over

8x performance boost.

cuBLAS NVIDIA CUDA BLAS Library (cuBLAS) is a GPU-accelerated version of

the complete standard BLAS library that delivers 6x to 17x faster performance

than the latest MKL BLAS.

cuRAND The CUDA Random Number Generation library performs high quality

GPU-accelerated random number generation (RNG) over 8x faster than typical

CPU only code.

3.3.4 Optimization

To optimize algorithms implemented on the GPU NVIDIA provides a number of

profiling tools to ease the development of GPU applications. Firstly, it provides a

command line tool “nvprof” which allows for the collection of performance statistics

and simple exploration of the results. They also provide the “Visual Profiler” which

allows for a much deeper exploration of important features by collecting statistics

with “nvprof” and then providing an Eclipse based tool for exploration.

One of the largest performance issues developers are faced with is caused due

to the GPU being poor at branching code. This is an issue because most software

branches often. Because a GPU executes in a Single Instruction Multiple Thread

pattern, whenever a branch occurs it must execute all sides, one at a time, until the

calculation is finished. This is demonstrated in Figure 3.7.

26

Figure 3.7. An example of divergence within a warp [60]

Pointer aliasing is another area where optimization is possible. Aliasing is where

two pointers have the same value and is mainly an issue in C derivatives due to

the ability for pointers to point to memory locations. This stops the compiler from

being able to reorder instructions optimally. To combat this, there is a compiler

hint, restrict , which allows developers to specify that two pointer arguments to a

function do not alias each other. For example, we can modify Listing 3.3.1, to restrict

the pointer parameters, as shown in Listing 3.3.4.

g l o b a l void add (int n , f loat ⇤ r e s t r i c t x , f loat ⇤ r e s t r i c t

y) {

int index = threadIdx . x ;

int s t r i d e = blockDim . x ;

for (int i = index ; i < n ; i += s t r i d e)

y [i] = x [i] + y [i] ;

}

To optimize the memory access of threads executing on the GPU, the device

coalesces global memory loads and stores issued by threads of a warp into as few

transactions as possible to minimize DRAM bandwidth. Accessing memory o↵set by

a stride for each element, such as indexing into a multidimensional array, forces the

GPU to be unable to coalesce these memory accesses because they are so far apart,

degrading the memory access performance massively. To overcome this problem,

27

shared memory can be utilized. Shared memory is an on-chip cache, usually around

64KB, which is shared between all of the threads in a warp. The shared memory’s

latency is roughly 100x lower than uncached global memory latency. A common

paradigm is to have the first thread load the data from global memory into the

shared memory, synchronize all of the threads in the block and then have all the

threads execute together.

28

CHAPTER 4

MODELING DIGITAL HERITAGE

4.1 Introduction

New technologies have made it possible to convert the archaeological and archi-

tectural records of the past into digital formats and then record that information in

databases, Computer Aided Design (CAD) maps and digital images. Data created

using state-of-the-art 3D laser scanners and high-resolution panoramic digital images

o↵er scholars the unprecedented opportunity to recreate accurate, searchable digital

copies of the sites they are researching. Digital records of historic sites and structures

with an accuracy of ±4mm potentially give researchers, educators, students and the

general public an opportunity to virtually explore all the details of a site.

Researchers working at archaeological and architectural sites typically produce a

diverse array of 3D data allowing them to make more accurate claims about historical

sites. Here we present the results of our research combining 3D scanner and high

resolution digital camera images to create unique data virtualizations, allowing users

to frame new research questions and generate innovative interactive explorations of

historic properties and world heritage sites. Using data already collected at the

Roman Forum, we developed software capable of fusing extremely high-resolution

(giga-pixel) panoramic images produced by the GigaPan system, with dense point

clouds generated by Leica 3D scanner to create accurate, interactive 3D images of

archaeological sites. Because the technique a↵ords unique ways to manipulate and

interpret 3D virtualizations of historic sites, its potential contribution to the field of

humanistic scholarship and education is vast.

29

In addition to o↵ering unique ways to study historic sites, this Chapter presents

methods to spur new scholarship, enabling new methods of analysis, site manipula-

tion and reverse blueprinting (a way of retroactively generating plans should the site

ever be destroyed). Learning materials generated will allow better study of the con-

servation arts, what it means to think in 3D, and connections across pencil, paint and

pixel modeling. Our approach should add an invaluable resource for educators/schol-

ars seeking to enrich their curricula or research agenda with the study of historic

sites.

3D visualizations of historic, world heritage and cultural sites will not only expand

and enhance our collective understanding of the historical record; it will bring the past

to life for a population who is increasingly visually oriented. This precise type of 3D

modeling allows humanities students and researchers to pose questions surrounding

what it means to practice conservation and preservation of crucial sites in the age of

digital virtualization.

In Section 4.2 we introduce the DHARMA group and the history behind their

work at the Roman Forum. In Section 4.3 we describe the details of scanning the

Roman Forum and the workflow employed. In Section 4.4 we discuss the GigaPan

photographic work done at the Roman Forum and in Section 4.5 we discuss the

methods we have developed to combine these data sets. Finally in Section 4.6 we

describe the workflow for data combination, followed by conclusions in Section 4.7.

4.2 DHARMA - Roman Forum Project

Digital Historical Architectural Research and Material Analysis (DHARMA) is

a research team founded in 2007, based at the University of Notre Dame School of

Architecture. The team, under the direction of Prof. Krupali Krusche, works on

documenting historic monuments and World Heritage Sites around the world with

the use of Leica 3D laser scanners. These high-speed, long-range scanners are ideal

30

for projects that are di�cult to document by traditional methods. The scanner

provides researchers with the most field-e�cient means of data collection. Recently

the team has also used 3D scanning to assess aging e↵ects on historic buildings and

reconstruction processes of buildings with historical value.

In the summer of 2010, the DHARMA team, led by Prof. Krusche in cooperation

with Archaeologist James Packer, and with special permissions from Soprintendenza

Speciale per i Beni Archeologici di Roma, Ministry of Heritage and Culture and the

Archaeological Service, digitally and traditionally documented the Roman Forum

site, Rome, Italy in a number of di↵erent formats.

4.3 3D Scanning

In recent years, laser scanning or Light Induced Detection and Ranging (LIDAR),

has become a major technique that has started replacing the use of hand measuring,

surveying, and the use of Total Station in the field. A laser scanner is an automated

surveying apparatus that uses a laser beam to collect location coordinates from the

surface of a desired object. These measured coordinates are recorded in the form of a

point cloud that identifies the shape of the object by converting the spatial geometry

established through the x, y, and z position of that point in space. Depending

on the way the data is collected, the scanners have di↵erent capacities and are of

various types. This chapter concentrates on the “time of flight” type of scanner,

which is specifically used in the historic and archaeological documentation of large

sites. The data produced from the scanner can be used to create measured-drawing

documentation of historic monuments and existing buildings, to save costs on as-built

drawings used in restoration and reconstruction.

The Roman Forum data was collected using hand measuring, photogrammetry,

3D Scanner and GigaPan technologies. A team of two graduate research assistants

scanned the Roman Forum site, using the Leica Scan station model, with a resolution

31

of 1cm x 1cm throughout the site (Figure 1 (a)). The team worked on the central

Forum i.e., the open space (the “Area Fori” including the east and west rostra, the

small monuments around the latter, and the Diocletianic columns) and the following

buildings: the Temple of Caesar, the Temple of Antoninus and Faustina, the Basilica

Aemilia, the Curia, the Arch of Severus, the Temple of Concord, the Temple of

Vespasian, the facade of the Tabularium, the Temple of Saturn, and the Basilica

Julia.

All spaces were assessed, analyzed, documented and scanned from outside, as well

as inside the ruins. It took the team seven, twelve-hour workdays to complete the

project with one scanner and two battery units being charged interchangeably. The

site is approximately 150m x 250m in dimension with very large variations in contour,

and about fourteen monuments and change of grade existing throughout the area.

It took the team 27 scans, with more than 100 million data points of cloud data,

and five strategic target locations to completely document the site. A team of four

DHARMA undergraduate members documented the whole site with hand measuring

techniques. They completed measuring the overall site in the same stipulated time

with sketch drawings containing dimensions of individual buildings and their location

from a set zero point.

While the information collected by hand measuring was adequate to give an overall

understanding of individual monument dimensions, a lot of time was spent maneuver-

ing through the complex site, and the detail of information was not exact or refined

because of the ruinous state of the site. It is important to note however, that there

were very important observations recorded during the hand surveying of the site that

would have been missed while scanning the site from remote locations (Figure 2 (a)

and (b)). The scanner did exceptionally well in capturing data from points that were

not visible due to their remote location or issues of accessibility. Even in places where

the scanner couldn’t be positioned because of time, target and location constraints,

32

Figure 4.1. (a) Luke Golesh operating the Leica ScanStation at the Roman

Forum. This image is taken from top of the ruins of Vespasian temple.

(b) The Roman Forum as captured by the Leica ScanStation.

we were still able to document around 95% of the Forum site by being strategic about

scanner positions throughout the field work.

O↵ site, the registered and unified data from the 27 scans revealed information

that the scanner had collected filling “holes” in the scan results for inaccessible po-

sitions. The plan and sectional views of the combined 3D scan data revealed infor-

mation regarding the spatial correlation of the individual ruins as never seen before.

It also revealed the comparative level change of the archaeological site in relation to

the present city of Rome (Figure 1 (b)).

4.4 Photographic Data Acquisition

The DHARMA team also photographed the site using GigaPan technology, origi-

nally developed by robotics scientists from Carnegie Mellon University in cooperation

with NASA Ames Research Center for use by the Mars Rover program.

The GigaPan system uses a programmable robotic mount to precisely control a

Digital Single Lens Reflex (DSLR) camera to take hundreds or thousands of pictures

of a scene automatically. The practical resolution limit of the panorama imagery

created using GigaPan technology is directly related to the zoom level of the lens and

33

Figure 4.2. Results of the measurements taken at Temple of Saturn, at the

Roman Forum, with the Leica ScanStation (a) and hand measure drawings

(b).

quality of the camera’s image sensor.

Although there exists software to produce a combined panoramic image for each

acquisition point, such as GigaPan’s Stitch or Kolor’s Autopano Pro software, this

was made redundant when mapping the images to the Laser Scanner pointcloud as

described in Section 4.5. To illustrate to capabilities of Robotic Tripods, Figure 4.3

shows an example where 150 separate high resolution images, taken using a DSLR

mounted onto the GigaPan robotic tripod, were stitched, using Kolor’s Autopano

software, into a single panorama image. The inset image represents a single image

within the set. Zooming into small sections of the arch in the GigaPan image reveals

fine details not apparent to the naked eye when viewing from ground level.

4.5 Combining Leica Scan Data and Panorama Images

We explored methods for combining the two primary technologies into a single

interactive system for cataloging, analyzing and displaying both point and raster data

34

Figure 4.3. Under-arch of Septimus Severus at the Roman Forum. The

inset illustrates the high resolution available from the GigaPan image.

at both standard and extremely high resolution. Previous methods have manually

adjusted the registration between the data sets visually, which does not guarantee

the fidelity of registration over the full extents of the data sets and, in general, cannot

correctly align the data sets. In addition, for many images an automatic process is

desirable. Computer programs also exist to approximately align the data to produce

single point visualizations, in general this visualization cannot be rotated through all

viewpoints and it is not possible to measure surface features based on the underlying

3D data.

In this work, 3D data is combined with 2D surface data such that:

1) The registration between the data sets, and hence the validity of observations

and measurements based on them, is determined geometrically and maintained

over the surface of interest.

2) Where multiple sets of 2D data are available, the optimal set can be determined

for each rendered pixel set. In addition, visual artifacts generally present with

35

multiple images can be reduced.

3) The surface images do not have to be produced from fixed viewpoints in relation

to the 3D representation (or map directly to individual 3D features of the

object), allowing the acquisition of data from the architectural to nano scales,

such as sub-surface information. This is particularly important for complex

surfaces.

To accomplish this, we have a main source of point data (a Leica scanner), and

two potential sources of image data (a Leica scanner or a DSLR attached to a robotic

panorama head). To work with the Leica scanner’s picture data, we had to under-

stand the camera’s motion during scanning. We also had to export data from Cyclone

(Leica’s scanner software) which describes some extra information about the camera’s

specifications. Finally, we determined that the camera data is arranged in a gimbal

format i.e. z,y,x rotation order.

To extend this to using panorama picture mapping, it becomes more complicated.

This is because, unlike the Leica scanner, the robotic panorama head will not be able

to take images from the exact same location as the scanner. Also, due to the nature

of robotic panorama head, end users attach a DSLR to the device and each of these

will a↵ect the field of view and stepping, which are important parameters to mapping

the pictures onto the data.

The following content appears in a provisional patent application [87] by the

authors.

4.5.1 Multiple Scans

To fully document a single monument requires several 3D scans and GigaPan’s.

Since the model requires all of the scans in the same reference frame, a transformation

matrix must be determined for each scan. To determine this matrix requires at least

36

3 points, although more are desirable to reduce the e↵ect of a ‘rogue’ point, these

points generally take the form of targets that can be acquired by the scanner. A

good workflow that determines target placement is required to get the highest fidelity

data. Once this data is available it can be inserted into the model XML file and the

DHARMA Clone analysis program can use this to determine each matrix relative to

a scan that is arbitrarily picked as the main reference scan.

Given three or more common targets in two scans, denoted here u

i

and v

i

where

v

i

are the targets in the main reference scan, DHARMA Clone determines the trans-

formation by first calculating the centroids for both u

i

and v

i

, denoted c

u

and c

v

. The

centroids are subtracted from u

i

and v

i

to give ū

i

and v̄

i

respectively and the sum of

the outer-products taken to yield matrix M =

P
i

ūv̄

T

. The next step is to perform a

Single Value Decomposition [93] on the matrix M to get [U, S, V] = SV D(M). The

rotation matrix is then found as R = V U

T

(S is a scaling matrix which is not required

for this analysis as scaling is unity). The translation is then T = �R ⇥ c

u

+ c

v

, and

this can be combined with R to produce a single 4⇥4 transformation matrix.

4.5.2 Surface Generation

To map the point cloud data and image data together we need to first create a

surface from the point cloud data. Analysis of the point cloud data from Cyclone, in

the PTX file format (text file containing point cloud coordinates), showed that the

data is arranged as points in a vertical line with any cut out points being replaced

with zero vectors. From this, we created an algorithm that looks at four points

adjacent to each other and tests if there are any missing points. We then create

triangles from all the points that are available. This algorithm is described in Listing

A.1.1.

37

Figure 4.4. Mapping 2D image to 3D point-cloud.

4.5.3 Point Reduction in O(N)

To improve the speed of rendering our mapped models, we came up with an

algorithm that removes redundant points from the data set whilst keeping important

features, such as edges. This can be seen in Figure 4.5 and the algorithm has a time

complexity of O(N).

Due to the structure of our data set (a grid of points where holes are symbolized

by a predefined “empty” point) we can test four squares of increasing sizes to see if

all of the points within the four squares face the same direction. If the points do face

the same way within a user defined threshold angle, we can reduce the four squares

into a single square.

Two comparison metrics are available for the squares reduction. The first com-

parison metric compares the angle between the center point and all eight surrounding

points. If any of the surrounding points are greater than the threshold angle, then we

know that the current set can not be reduced and we move on. This method provides

38

(a) Pointcloud rendering without reduction
(b) Pointcloud rendering with 2-norm reduc-
tion

Figure 4.5. Example of compression by removal of points while retaining

important structural features such as edges.

the most accurate final representation as it does not remove any sets of points that

do not all pass the test. This method for a test system provides reduction in triangles

as shown in Figure 4.6(a).

The second comparison metric compares the square root of the sum of the squares

of all of the angles between the center point and all eight surrounding points. If this

value is less than the threshold then we know that we can reduce this set. This

provides a less accurate representation due to the way that the two norm calculation

works, however it allows for a much greater reduction of points as shown in Figure

4.6(b).

The algorithm, shown in Listing A.1.2, has a time-complexity of O(n) because

39

(a) Center comparison method (b) Two norm comparison method

Figure 4.6. Point reduction behaviors for di↵erent reduction methods.

every iteration works on a progressively smaller fraction of points,

n

2

,

n

4

, . . . ,

n

n

, which

is a geometric series that always increases but never actually reaches n.

4.5.4 Mesh Pruning to Remove “Poor” Triangles and Overlap

When multiple scan locations are combined together and meshed, there are re-

gions of the final model that have overlap from multiple scans. If we mapped these,

we would see that the resolution of the scan (and hence the size of the triangles

calculated) is poor where the scanner is not directly aligned with the monument or

object. We would also notice artifacts in the form of very large (stretched) triangles

where the angle that the scanner scanned from was not direct towards the model or

where adjacent scan points have a large di↵erence in distance from the scanner. We

classify these triangles as poor because to attain the highest resolution model, we

want as many small triangles as possible.

To overcome this issue, we calculate the average compensated size of a triangle and

then prune all triangles that are greater than a threshold. This threshold is based o↵

of the average compensated size and can be tuned to an individual model if required

40

to achieve the greatest quality end result. The compensated area is calculated as

the area divided by the distance from the scanner. In some situations it may be

desirable to use the reduction algorithm without using compensation. Given points

A,B,C representing the vertices of the triangle we find the area by forming vectors

AB and AC, then the magnitude of the cross product AB ⇥AC is twice the area of

the triangle. To compensate for distance we divide by the magnitude of A. This is

illustrated in Figure 4.7.

(a) No pruning (b) Pruning by area

Figure 4.7. Example of artifacts generated by near and far objects

appearing adjacent to each other in the point cloud. In the right hand

image the triangle areas are calculated and normalized and removed if they

are larger then a given threshold.

Two algorithms were created to solve this problem. The first, shown in Listing

A.1.3, calculates the average triangle size and the second, shown in Listing A.1.3,

prunes triangles greater than a specified threshold.

41

4.5.5 Mapping Algorithm

Once we have the surface calculated, we can then progress to map the image data

onto the surface, based on Figure 4.4.

We now discuss mapping 2D images onto the surface.

1) Determine two coincident points A and B in the image and 3D data, we

will assume point A is close to the center of the image. In Figure 4.4 the ‘noses’

of the two statues are used.

2) Find the viewpoint. Find the vector from the camera origin O to point A,

denoted vector C. Without loss of generality (w.l.o.g.) we assume here that

point O is at the system origin

O = (0, 0, 0). (4.1)

3) Find the viewing plane. Construct a plane P with normal vector C, w.l.o.g.

we construct the plane at a distance of 1 from the camera origin O. Hence,

using Eqn. (4.1), a point on the plane is

ˆ

A = A/||A|| and the vector from the

origin O to point

ˆ

A,

ˆ

A�O, is a unit normal vector to the plane. Then for point

p on plane P , using Eqn. (4.1),

p.(

ˆ

A�O)� ˆ

A.(

ˆ

A�O) = p.

ˆ

A� 1 = 0. (4.2)

4) Find the points in the viewing plane. For each point P

i

on the 3D surface,

draw a line L

i

from the camera origin O to the point P

i

and find the point of

intersection with plane P , PP

i

[53]. For point l on line L

i

and parameter t we

have

l = O + t(P

i

�O), (4.3)

42

which intersects the plane when

t =

�1�O.(

ˆ

A�O)

(P

i

�O).(

ˆ

A�O)

. (4.4)

Using Eqns. (4.1 - 4.4) this reduces to

PP

i

=

P

i

P

i

.

ˆ

A

. (4.5)

5) Find Y axis in the viewing plane. Define a ‘vertical’ plane V P containing

vector C, find the line Y where this plane intersects plane P . This will be the

2D ‘y’ axis. This can be accomplished by adding a vertical o↵set V OFFS to

point A to give point V = A + V OFFS, a new point on the plane

¯

V can be

calculated using the technique in Item 4) Eqn. (4.5)

¯

V =

V

V.

ˆ

A

. (4.6)

We require a unit vector

ˆ

Y in the ‘y’ direction from the plane origin

ˆ

A hence

ˆ

Y =

¯

V � ˆ

A

|| ¯V � ˆ

A||
. (4.7)

6) Find X axis in the viewing plane. Rotate the line Y through 90 degrees

clockwise in plane P around the point where vector C intersects plane P . This

will be the ‘x’ axis which we denote line X. Given

O = (a, b, c),

¯

V = (x, y, z), (4.8)

then we find point H rotated around

ˆ

A in plane P [31] (for this method u =

43

a, v = b, w = c)

dotp = u ⇤ x+ v ⇤ y + w ⇤ z,

H = (a ⇤ (v ⇤ v + w ⇤ w) + u ⇤ (�b ⇤ v � c ⇤ w + dotp)

+(�c ⇤ v + b ⇤ w � w ⇤ y + v ⇤ z),

b ⇤ (u ⇤ u+ w ⇤ w) + v ⇤ (�a ⇤ u� c ⇤ w + dotp)

+(c ⇤ u� a ⇤ w + w ⇤ x� u ⇤ z),

c ⇤ (u ⇤ u+ v ⇤ v) + w ⇤ (�a ⇤ u� b ⇤ v + dotp)

+(�b ⇤ u+ a ⇤ v � v ⇤ x+ u ⇤ y)).

We require a unit vector

ˆ

X in the ‘x’ direction from the origin

ˆ

A hence

ˆ

X =

H � ˆ

A

||H � ˆ

A||
. (4.9)

7) Project planar points onto ‘x-y’ axes. Project each of the points PP

i

onto

the x and y axes to determine their ‘x-y’ coordinates PPX

i

and PPY

i

PPX

i

= (PP

i

� ˆ

A).

ˆ

X, PPY

i

= (PP

i

� ˆ

A).

ˆ

Y . (4.10)

8) Find scale factors and o↵sets. Calculate a scale factor S and ‘x-y’ o↵sets

XOFF and Y OFF for the 2D picture. Given that points A and B on the 3D

point-cloud correspond to points

ˆ

A and

ˆ

B = B/||B|| in plane P , and assum-

ing these points on the 2D image have ‘x-y’ coordinates (a

x

, a

y

) and (b

x

, b

y

)

44

respectively, we have

S = ||B � A||/
q

(b

x

� a

x

)(b

x

� a

x

) + (b

y

� a

y

)(b

y

� a

y

), (4.11)

XOFF = �a

x

; (4.12)

Y OFF = �a

y

. (4.13)

9) Calculate actual ‘x-y’ coordinates (ppx i,ppy i) for all points

ppx i = PPX

i

⇤ S �XOFF, ppy i = PPY

i

⇤ S � Y OFF. (4.14)

Once we have these actual ‘x-y’ coordinates, we then have all of the information

that we require to render a textured surface to the screen.

4.5.5.1 Examples

A Leica [46] scan of a statue at Bond Hall at the University of Notre Dame has

been textured with a photograph of the same statue, taken from the same point as the

scanner. The surface generated from the point-cloud data and the resulting textured

surface can be found in Figure 4.8.

A Leica [46] scan of the Arch of Septimius Severus at the Roman Forum has been

textured with multiple scanner photographs from a number of scanner locations. The

partially textured surface can be seen in Figure 4.9.

4.5.6 DHARMA Interceptor

Initial use of the GigaPan robotic tripod at the Roman Forum showed some

interesting problems. Where edges of the monuments were photographed the camera

often failed to auto-focus if the center of focus was in the area of clear sky. Apart

from the missing image, this exacerbated other issues. For instance the spherical

45

Figure 4.8. Example of the stages of mapping the statue of bond hall.

coordinates of each photograph could not be determined.

To overcome this problem I built an Arduino interface module that negotiates

between the GigaPan and DSLR camera and adds additional data EXIF to the image,

denoted the DHARMA Interceptor (DI) (see Figure 4.10). This relays the GigaPan

command to take a picture to the camera and pauses the GigaPan until information

on the success or failure to take the picture is received. If the picture fails then a new

point of focus is chosen and the process is repeated until a picture is successfully taken

or all focus points are tried. This dramatically reduced the number of missing images.

The DI unit also has a three axis accelerometer and magnetometer to determine the

orientation and tilt of the camera, this data is inserted into the image as EXIF data

which can be used by the DHARMA Clone analysis program to automatically sort

the images.

4.6 Method of Data Processing

In this section, we will describe the workflow required to transform a Leica scan

of an object along with corresponding pictures, all the way through to the creation

of the final viewable model. We assume that the reader has already registered their

46

Figure 4.9. Partial rendering of the Arch of Septimius Severus at the

Roman Forum.

data within Leica’s Cyclone software [47].

The first stage is to extract the required data from Cyclone so that we can use

it in our software. To do this, the registered point cloud data needs to be exported

in the PTX format. This is due to the fact that other formats do not keep a rigid

structure that allows the point data to be converted into a surface for applying the

texturing. The next stage is to export every picture and the corresponding picture

data from each “Scan World”, where each “Scan World’s” files are stored in separate

folders.

Once we have extracted the data from Cyclone, we must first guarantee that the

47

Figure 4.10. DHARMA Interceptor based on Arduino.

data that has been exported is correct. We run a utility on the PTX file to make

sure that each model has the number of points specified at the start of the model

description (the number of horizontal and vertical points that it should contain). This

has become necessary since we have discovered that some large registrations have a

small number of models that do not have the correct number of points compared to

what we expect.

Once we have verified the data is correct, we then move on to creating a structure

that our software can understand. This allows for the automated mapping of the

pictures and surface generation. The first step is to convert the PTX file to a binary

format. This reduces the data size of the file and allows for faster processing within

the application. We then need to execute a utility in each of the “Scan World’s”

picture directories to extract the required information from the photo information

taken from Cyclone. This creates a corresponding info file for each image. Finally,

we need to create a map file for each “Scan World” which contains the starting

and end number for the pictures, which “Scan World” it is and which image is the

“master” image.

Next, we can use our software to do the final processing. Firstly, the binary file

is loaded into the software, which allows for the creation of the surface of the object.

48

Next, we load each of the individual map files, which calculate which parts of the

surface relate to which picture. Finally, the software writes out a valid DHZ file that

can be loaded with the viewing application for visualization.

4.7 Conclusion

In this work, we explored methods of creating realistic accurate 3D models of his-

torical monuments from data collected using LIDAR scanners and traditional pho-

tography. This has many areas of interest, such as scientific research, interactive

education for high school students, who may not necessarily be able to visit sites

such as the Roman Forum, and for students of architecture, history and archaeology

that study such sites in greater detail.

Although it has been possible to acquire the data, consisting of multiple 3D point-

clouds and arrays of images from di↵erent viewpoints, using the data in a Heritage

Preservation and Architectural Education setting has been challenging. Software

was provided with the LIDAR scanner to stitch together point-clouds from di↵erent

vantage points but it was not possible to remove overlapping data that is inherent

in the process. In addition there was no way to merge the images and point-clouds

to form a complete navigable model at the resolutions of interest. Further issues

presented themselves with distortions in the resulting panoramic vista produced by

the GigaPan software, partly caused by the GigaPan requirement of a fixed focal

distance which is problematic in real Heritage site viewpoints. We find that the

current options, such as manual draping or stereo through motion, do not solve this

problem e↵ectively and propose a set of algorithms, tools and workflow for collecting

data and automatically processing it to produce these 3D models.

Working with Dr. Krusche’s team of architects and archaeologists, we develop

an on-site workflow and a software platform to ingest and present data. We wrote

software to merge multiple point-clouds into the same viewpoint and to cull the re-

49

dundant overlapping data. We implemented algorithms to generate a surface for

the model, including compression techniques to remove redundant surface features.

Finally, we implemented algorithms to scale, rotate and position images on the gen-

erated surface as well as choosing the optimal image pixels where images overlap.

The resulting work has also been published as a Patent application [87] and was

displayed in the Curia Julia at the Roman Forum. Using seed funding from the

University of Notre Dame, we were able to acquire both a LIDAR scanner and a Gi-

gaPan robotic tripod, and document sites such as the Roman Forum and Taj Mahal

in unprecedented detail.

50

CHAPTER 5

LONG TIMESTEP MOLECULAR DYNAMICS ON THE GRAPHICS

PROCESSING UNIT

5.1 Introduction

Molecular dynamics (MD) involves solving Newton’s equations of motion for a

system of atoms and propagating the system over a small time step. MD finds uses

in studies of protein folding, virtual drug screening, design of polymers, and sampling

of molecular configurations.

Traditional MD simulations are limited in length by timestep limits. Studies by

our group and others have shown that traditional MD is limited to timesteps of about

2 fs due to high-frequency resonance [39, 51, 74]. Even the most basic biologically

relevant motions occur on the microsecond to millisecond range, which is 9 to 12 or-

ders of magnitude greater than the timesteps possible with traditional MD. Further,

each step requires a costly force calculation (O(N) to O(N

2

)). As such, simulating

medium-size proteins often requires months of computer time on a large distributed

system such as Folding@home [8, 80] to simulate milliseconds of dynamics. Similarly,

simulating a large protein (e.g. the �-2 Adrenergic Receptor) on the more interest-

ing biologically-relevant time scales (milliseconds through hours) using a standard

desktop computer would take years. Thus, it is not feasible to simulate timescales of

biological interest without substantial advances in MD methods.

Approaches for reducing the computational cost of MD have generally followed

two tracks: improved algorithms and hardware acceleration. Langevin dynamics,

51

which solves a stochastic di↵erential equation under dissipation-fluctuation constraints

and provides an attractive thermostat, can be used to overcome instabilities due to

resonances of constant energy integrators [74] and achieve larger timesteps [40]. How-

ever, even Langevin dynamics integrators require relatively small time steps for sta-

bility due to fast frequency motions within the bonded forces. As a result, algorithms

such as Normal Mode Langevin (NML, [41, 88]) which can achieve timesteps 25⇥ -

50⇥ larger have been developed. NML, referred to here as Long Timestep Molecular

Dynamics (LTMD), runs Langevin dynamics but splits the motions into fast and

slow frequency, then over-damps the fast frequency motions by applying Brownian

dynamics [17]. Thus acceleration is only assumed to occur among the slow frequency

motions which allows for the increase in time step. This method has been shown to

achieve adequate sampling over long timescales of microseconds to milliseconds and

to scale well with system size. For instance, it yields 11-fold speedups over conven-

tional Langevin dynamics for 882-atom Bovine Pancreatic Trypsin Inhibitor (BPTI)

and WW domain folding simulations.

Hardware acceleration allows each timestep to be computed more quickly. D.

E. Shaw’s group has developed Anton, a specialized supercomputer where MD al-

gorithms are implemented in hardware using application-specific instruction chips

(ASICs) [76–79]. For explicitly solvated systems, it has been shown that Anton can

provide speed ups of up to 2 orders of magnitude over simulations run in HPC envi-

ronments. However, whilst Anton’s design is flexible, it requires expert programmers

to implement new algorithms or functionality.

It has been shown that the computation of MD simulations can be sped up consid-

erably by taking advantage of GPUs [84]. NAMD [67, 83] adapted GPU support for

running on large clusters. GPUs are used accelerate the computation of electrostatics

and Generalized Born [62] implicit solvent model while the remaining computations

and communications are handled by CPUs. Overlapping GPU non-bonded force

52

calculation (parallelized in a similar way using blocks) with CPU communication

protocols yielded a five to seven fold improvement in e�ciency on NAMD [66] when

running simulations of the Apolipoprotein A1 (ApoA1, 92000 atoms) and Satellite

Tobacco Mosaic Virus (STMV, 1.06 million atoms). This allowed long-range electro-

static algorithms such as Particle-Mesh Ewald (PME, [16]) to proceed on the CPU

while bonded and short range non-bonded forces took advantage of the GPU power.

We note that D. E. Shaw’s group’s replacement for Anton will be GPU based.

Other MD packages have focused on running entire MD simulations on one or

more GPUs on a single workstation [33, 36]. In doing so, GPU-enabled workstations

are capable of running simulations on the same timescales as large clusters at a frac-

tion of the cost, which significantly increases access and availability for the average

researcher. Friedrichs, et al. have shown that OpenMM [19, 26], a library for per-

forming MD on GPUs, is capable of speeding up simulations of implicitly-solvated

systems more than 500 times over an 8-core CPU. Any MD software package that links

against OpenMM can take advantage of the speed ups o↵ered by GPUs. OpenMM

implements all MD algorithms needed to run constant energy and constant temper-

ature simulations, implicit and explicit solvent, and di↵erent AMBER force fields.

OpenMM has been benchmarked at 127 ns/day for implicit solvent simulations of

DHFR with roughly 2,500 atoms on an NVIDIA GTX 580. OpenMM has a strong

emphasis on hardware acceleration, providing not only ease of development but very

high performance as well.

We present a graphical processing unit (GPU) implementation of LTMD in OpenMM,

thus combining the capabilities of LTMD to integrate timesteps 25⇥ - 50⇥ larger than

conventional MD with the hardware acceleration of OpenMM. We use the force cal-

culators in OpenMM to construct numerical Hessians, and have implemented CUDA

kernels that provide minimization, projection, and propagation routines for LTMD.

We demonstrate correctness of the implementation and speedups of up to 50-fold

53

over GROMACS with 6 CPU cores and 6-fold over conventional Langevin Leapfrog

in OpenMM. This results in nearly 5 s per day for implicit solvent simulations of

the Villin NLE headpiece.

In the remainder of the Chapter we discuss my contribution to the literature in

this field in Section 5.2, the LTMD method (Section 5.4), our GPU Implementation

(Section 5.5), numerical results that show superior performance (Section 5.6) and

correctness (Section 5.6.2), and conclusions and future work (Section 5.7).

5.2 Contribution to the Literature

In the following Sections of this Chapter I will present my work in implementing

the Long Time Molecular Dynamics method [88] within the OpenMM framework [64].

Previous work within the LCLS group had developed the mathematical representation

of LTMD, the basic numerical methods and derived the analytical Hessians for the

CHARMM force field. This implementation had the following limitations which I

resolved through my work presented here:

• The LTMD implementation is ProtoMol [54](developed specifically for proto-

typing MD algorithms) with a limited user base.

• No GPU implementation. Most MD packages now support GPU which was not

available for LTMD implemented in ProtoMol. This is a significant disadvan-

tage for an accelerated method.

• The analytical Hessians need to be derived for each force within a force field.

Given the number of force fields (AMBER, CHARMM, OPLS)[74] and the

variations for such elements as Generalized Bourn[74] for implicit solvent, this

is challenging task.

My approach was to implement LTMD within the OpenMM platform, developed

by the Pande group at Stanford University and with a large user community (includ-

54

ing Folding@Home [8]). The platform includes both a reference CPU implementation

and a high performance GPU interface, both of which were leveraged during my work.

To remove the requirement for mathematically derived Hessian equations I imple-

mented a Numerical Di↵erentiation scheme. Given that we have highly e�cient force

calculations (negative of the derivative of the potential energy w.r.t. positions) we can

generate the Hessian by numerically di↵erentiating these, again w.r.t. the positions.

In practice since we do not need the actual Hessian, which would be O(N

2

logN), we

use a scheme (flexible block method) to di↵erentiate w.r.t. a set of vectors spanning

the space of the first few eigenvectors of the Hessian.

5.3 Background

Molecular dynamics (MD) simulations form one of the main methods used in the

theoretical study of chemical and biological molecules, wherein the time dependent

behavior of a molecular system is computed. These MD simulations can provide

detailed information on molecular fluctuations and conformational changes and are

used routinely to investigate the thermodynamics, dynamics and structure of chem-

ical and biological molecules. MD methods date back to the 1950’s, when Alder

and Wainwright [3–5] studied the interactions of hard and elastic spheres leading

to important insights into the behavior of simple liquids, and have been refined to

the point where realistic simulations of solvated proteins, and the folding of small

proteins, is possible.

MD simulations solve the equations of motion of the particles within the system

and hence the information generated is at the microscopic level, such as atomic

positions and velocities, which can be converted to macroscopic quantities, such as

pressure, energy and heat capacity, by the use of statistical mechanics as shown

in Section 5.3.1. Statistical mechanics provides the mathematical expressions that

relate these macroscopic quantities to the distribution and motion of the atoms and

55

molecules of an N-body system. One of the main advantages of MD simulations over

other schemes, such as the Monte-Carlo method, is that it is possible to study both

thermodynamic and time dependent properties.

When considering macroscopic quantities, an ensemble is a collection of all possi-

ble systems which have di↵erent microscopic states but have an identical macroscopic

or thermodynamic state. Examples of a number of ensembles with di↵erent charac-

teristics are,

Microcanonical Ensemble (NVE) The thermodynamic state characterized by a

fixed number of atoms, N, a fixed volume, V, and a fixed energy, E. This

corresponds to an isolated system.

Canonical Ensemble (NVT) This is a collection of all systems whose thermody-

namic state is characterized by a fixed number of atoms, N, a fixed volume, V,

and a fixed temperature, T.

The ensemble average of some quantity A(q, p) is then defined as,

hA(q, p)i
Ensemble

=

Z
A(q, p)⇢(q, p)dqdp, (5.1)

where ⇢(q, p) is the probability density of the ensemble. This integral is generally

di�cult to evaluate as it is necessary to calculate all possible states of the system, and

a molecular dynamics simulation calculates the points in the ensemble sequentially

in time. For MD simulations we instead determine a time average of A(q, p) which is

expressed as, for time T ,

hA(q, p)i
T ime

= lim

T !1

1

T

Z T

0

A(q(t), p(t)) dt ⇡ 1

M

MX

i=1

A(q

i

, p

i

), (5.2)

where M is the number of steps of time �t and A(q

i

, p

i

) is the value of A(q, p) at

the discreet points q

i

= q(i�t), p

i

= p(i�t). From this it is possible to calculate

56

time averages by molecular dynamics simulations, but these experimental averages

are then assumed to be ensemble averages. This apparent problem is resolved by

the ergodic hypothesis, one of the most fundamental axioms of statistical mechanics,

which states that the ensemble average equals the time average i.e.,

hA(q, p)i
Ensemble

= hA(q, p)i
T ime

. (5.3)

The basic concept here is that if the system is allowed to evolve in time indefinitely it

will eventually pass through all possible states. Because of this it is important in MD

simulations to generate enough representative conformations such that this equality is

satisfied and, since the simulations are of fixed duration, a su�cient amount of phase

space must be sampled. The proof of sampling from the correct ensemble, for systems

thermostatted by Nosé’s method, is dependent on the system being ergodic, which

is not always true particularly for small or sti↵ systems. The definition of ergodic as

time average being equal to ensemble average is used throughout this Chapter.

The MD simulation method is generally based on Newton’s second law or the

equation of motion F = ma, where F is the force exerted on the particle, m its mass

and a its acceleration. From a knowledge of the forces acting within the system it

is possible to determine the acceleration of each atom or particle. The equations of

motion are then integrated to give a trajectory that describes the positions, velocities

and accelerations of the particles as they vary with time, allowing the average values

of properties to be determined. The method is deterministic, once the positions and

velocities of each atom are known the state of the system can be predicted at any

time in the future or the past. Due to the complicated nature of the potential energy

functions found in all but the simplest of systems there will be no analytical solution

to the equations of motion and they must be solved numerically. Many numerical

methods have been developed for integrating these equations but the most e↵ective

57

for use in MD simulations should conserve energy and momentum and permit a

large integration time step. A class of integrators which meet these requirements are

Geometric integrators which preserve geometric properties of the original system. The

most common of these are time-reversible, a property found in Newtonian mechanics,

and symplectic which are applicable for Hamiltonian systems, discussed in Section

5.3.2.

Molecular dynamics simulations are generally computationally expensive, miti-

gated to some extent by the availability of increasingly faster and cheaper comput-

ers. Despite this, simulations of solvated proteins are routinely calculated up to the

nanosecond time scale, with simulations into the millisecond time scale reported.

Since a significant part of the simulation can be taken up by equilibration, which

must be completed before averages can be taken, methods which converge quickly to

the correct ensemble are desirable.

5.3.1 Microcanonical and Canonical Ensembles

Although constant energy simulations are straightforward it is not as convenient

to derive statistical mechanical formulae from the microcanonical ensemble as it is

from the canonical ensemble, as considered by Lebowitz, Percus and Verlet [45]. As

a motivation for developing methods which sample from the canonical ensemble both

ensembles are studied, and are shown schematically in Figure 5.1.

5.3.2 Microcanonical Ensemble

The microcanonical ensemble in statistical mechanics is equivalent to constant

energy conditions, the external control parameters being number of particles N , total

energy, E, and the volume V . For a single harmonic oscillator, with angular frequency

! = 1, sampling from the microcanonical ensemble, the q histogram and q, p phase

58

Figure 5.1. Systems in the microcanonical (left) and canonical (right)

ensembles. The shaded outlines represent heat insulating walls.

space are shown in Figure 5.2. For a Hamiltonian,

H(q, p) =

NX

i=1

p

2

i

2m

i

+ V (q), (5.4)

where V (q) is the potential energy, the equations of motion,

q̇

i

=

p

i

m

i

, ṗ

i

= �r
qiV (q), (5.5)

conserve the total energy H(q, p), the only phase-space points (q, p) allowed are those

on the constant energy hypersurface satisfying H(q, p) = E. It is assumed that

that every allowed point in phase-space has equal weight in microcanonical ensemble

averages, the principle of of equal a priori probability in statistical mechanics. This

is closely related to the assumption of ergodicity, where the trajectory of a phase-

space vector (q, p) will pass through almost all points within the allowed portion of

phase-space, which is integral to the proof of the correct sampling for Nosé schemes.

The probability that a phase-space point (q, p) appears in an average is defined by

59

−2 0 2
−2

−1

0

1

2

q

p

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

q

N
u
m

b
e
r

o
f

va
ri
a
te

s
(n

o
rm

a
liz

e
d
)

q−p phase−space q histogram

Figure 5.2. Harmonic oscillator for angular frequency ! = 1, q histogram

and q, p phase-space for the microcanonical ensemble.

the equilibrium density function f(q, p) and, for the microcanonical ensemble,

f

mc

(q, p) / �[H(q, p)� E]. (5.6)

The Dirac Delta function � form reflecting the constraint H(q, p) = E with �(x�a) =

0, x 6= a and

R
a+✏

a�✏

�(x� a)dx = 1, 8✏ > 0. The ensemble average for some quantity

A(q, p) is then defined as,

hA(q, p)i =
R
A(q, p)f(q, p)dqdpR

f(q, p)dqdp

. (5.7)

By using thermodynamic relations the macroscopic properties of the system can

be derived. The Boltzmann relation for entropy is,

S = k lnW, (5.8)

where W is the number of microscopic states which, for the microcanonical ensemble,

60

is given by,

W =

1

N !h

Nf

Z
E

dE

0
Z

f

mc

(q, p)dqdp

=

C

1

N !h

Nf

Z
✓(E �H(q, p))dqdp, (5.9)

for constant C

1

and Planck’s constant h. Here ✓(x) is the Heaviside function with

✓(x) = 1, x > 0, ✓(x) = 0, x < 0 and �(x) = d✓(x)/dx.

The statistical mechanical expressions can then be derived using the methods of

Pearson, Halicioglu and Tiller [65]. For systems where the kinetic energy is given by

a quadratic form of the momenta, where it is possible to perform the integration in

3N dimensional momentum space, (5.9) simplifies to,

W = C

2

Z
2

3N

(E � V (q))

(3/2)N

dq, (5.10)

for constant C

2

. Substituting (5.10) into (5.8),

S = k ln

✓
C

2

Z
2

3N

(E � V (q))

(3/2)N

dq

◆
. (5.11)

From (5.7) the average of a quantity A(q), where h i
mc

is the average in the micro-

canonical ensemble is,

hA(q)i
mc

=

R
A(q)(E � V (q))

(3/2)N�1

dqR
(E � V (q))

(3/2)N�1

dq

. (5.12)

Temperature is defined by the thermodynamical relationship,

1

T

=

✓
@S

@E

◆

V

= k

R
3N

2

(E � V (q))

(3/2)N�1

dqR
(E � V (q))

(3/2)N

dq

=

3Nk

2hKi , (5.13)

for kinetic energy K = E � V (q). Then the temperature is related to the average

61

kinetic energy by the equipartition theorem,

T =

2

3Nk

hKi
mc

. (5.14)

The heat capacity is,

C

V

=

✓
@E

@T

◆

V

=

✓
@T

@E

◆�1

V

= k

✓
1�

✓
1� 2

3N

◆
hKi

mc

⌧
1

K

�

mc

◆�1

. (5.15)

The average of the inverse of the kinetic energy in the thermodynamical limit is

approximated by, ⌧
1

K

�

mc

=

1

hKi

✓
1 +

h(�K)

2i
hKi2

◆
, (5.16)

where K = hKi + �K and h(�K)

2i = hK2i � hKi2. Substituting (5.16) into (5.15)

we get,

C

V

⇡ k

✓
2

3N

� h(�K)

2i
hKi2

◆�1

, (5.17)

an equation obtained by Lebowitz, Percus and Verlet [45]. The fluctuation of the

kinetic energy in the microcanonical ensemble is then,

h(�K)

2i
mc

=

2

3N

hKi2
✓
1� 3Nk

2C

V

◆
. (5.18)

5.3.3 Canonical Ensemble

The canonical ensemble relates to simulations where temperature T is fixed in-

stead of total energy E. This ensemble is shown schematically in Figure 5.1 where the

original system is surrounded by large external system and energy, but not particles,

can be exchanged between them. The external system, or heat bath, must be large

in relation to the original system so that temperature changes caused by any energy

transfer will be negligible. If we define the temperature of the original system by the

average total kinetic energy (5.14), the temperature will be maintained at a constant

62

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

q

P
ro

b
a
b
ili

ty
 d

e
n
si

ty
 P

(q
)

−4 −2 0 2 4
−4

−2

0

2

4

q

p

q−p phase−space q distribution

Figure 5.3. Harmonic oscillator with ! = 1, q distribution and q, p

phase-space for the canonical ensemble.

value by thermal contact with the heat bath. Since temperature is now constant

the total energy of the system fluctuates and the distribution is now the canonical

distribution,

f

c

(q, p) =

1p
2⇡kT

exp

✓
�H(q, p)

kT

◆
. (5.19)

For a single harmonic oscillator, with ! = 1, sampling from the canonical ensem-

ble the q distribution and q, p phase space are shown in Figure 5.3. The relationship

between the distribution functions (5.6) and (5.19) is given by the Laplace transfor-

mation, with energy E,

f

c

(q, p;T) =

Z
dE exp

✓
� E

kT

◆
f

mc

(q, p;E). (5.20)

The thermodynamical potential in the canonical ensemble is the Helmholtz energy

63

F (T, V,N) given by,

F (T, V,N) = �kT ln

✓Z
f

c

(q, p)dqdp

◆

= �kT ln

✓
1p

2⇡kT

Z
exp

✓
�H(q, p)

kT

◆
dqdp

◆
. (5.21)

The heat capacity is then expressed as a fluctuation of the total energy,

C

V

=

hH2i
c

� hHi2
c

kT

2

. (5.22)

The average and fluctuation of kinetic energy are then,

hKi
c

=

3N

2

kT, (5.23)

and,

h(�K)

2i
c

=

2

3N

hKi2 = 3N

2

(kT)

2

. (5.24)

It is noted that quantities which are first order derivative of the thermodynamical

potential, such as total energy E and pressure P , are independent of the ensemble

but second or higher order derivatives, as we see with heat capacity, are not.

The fluctuation of kinetic energy in the canonical ensemble (5.24) is greater than

that in the microcanonical ensemble 5.18c, and this inequality can be used to confirm

that the sampling is correct for constant temperature simulations.

5.3.4 Constant Temperature Methods

The most common constant temperature methods, required for sampling from

the canonical ensemble, are: the constraint method, the stochastic method and the

extended system method. Brief descriptions of these methods follow.

64

5.3.5 Stochastic Method

The thermal motion of a particle, in a macroscopic scale, appears to be driven by

a random force and hence stochastic methods, such as Monte Carlo and Brownian

dynamics, are applicable. Equations similar to Langevin’s equation for Brownian

dynamics were proposed by Schneider and Stoll [75],

m

i

d

2

q

i

dt

2

= �r
qiV (q)� �q̇

i

+R

i

(t), (5.25)

where a friction force, with coe�cient �, and a random force R

i

(t) are added. The

random force, temperature T and friction coe�cient � are related by the second

fluctuation dissipation theorem,

hR
i

(t

1

)R

j

(t

2

)i = �

ij

2kT��(t

1

� t

2

). (5.26)

Thermal agitation due to the random force and slowing due to the friction force

balance to keep the temperature constant.

Andersen [6] has proposed a more direct method where occasional collisions be-

tween a particle and hypothetical particles cause the particle to lose its memory,

the velocity is reset to a value randomly selected from a Maxwell distribution at

temperature T .

Both of these approaches provide sampling from the canonical ensemble for posi-

tion q, however care needs to be exercised in their use. For example if the frequency

of the random collisions in Andersen’s method is too high the particle loss of memory

occurs in too short a time, leading to the velocity autocorrelation function damping

quickly [90].

65

5.3.6 Forces

The calculation of the force contributions is one of the most costly parts of molec-

ular dynamics simulations. This is because most force calculations are calculated

between all pairs of atoms, leading to a O(N

2

) algorithmic complexity. This itself is

not a problem for small systems (100s of atoms), but as the problem starts scaling

up to use larger and larger proteins (100,000s of atoms) it quickly dominates.

In molecular dynamics a number of di↵erent forces are used to approximate the

physical interactions occurring in reality. These include:

Bonds The force created between two bonded atoms. It is represented as a spring

in most molecular dynamics simulations, for potential energy:

E

bonds

=

P
bonds

k

b

(b� b

0

)

2

,

for coe�cient k

b

, rest length b

0

and length b.

Angles The force between three atoms where two are connected only to the third,

for potential energy:

E

angles

=

P
angles

k

✓

(✓ � ✓

0

)

2

,

for coe�cient k

✓

, rest angle ✓

0

and angle ✓.

Dihedrals The force between four atoms connected in a chain that are able to be

rotated as two planes around a single axis for potential energy:

E

dihedrals

=

P
dihedrals

k

�

[1 + cos(n�+ �)],

for coe�cient k

�

, o↵set � and angle � and integer n.

Torsion/Impropers This force is generated by the angle between the two planes

defined by four atoms for potential energy:

E

impropers

=

P
impropers

k

!

(! � !

0

),

for coe�cient k

!

, rest angle !

0

and angle !.

Lennard-Jones This force provides repulsion of atoms when they get very close to

each other and a long range attraction force at distances for potential energy:

66

E

LJ

=

P
all pairs

✏

⇣
Rminij

rij

⌘
12

�
⇣

Rminij

rij

⌘
6

�
,

for coe�cient ✏, atomic distance between atoms i and j of r

ij

and parameters

R

minij .

Coulomb This represents the electrostatic potential between two charged atoms for

potential energy:

E

coulomb

=

P
all pairs

qiqj

✏rij
,

for coe�cient ✏, charge for atom i of q

i

, charge for atom j of q

j

and atomic

distance between atoms i and j of r

ij

.

Generalized Born A force that simulates the protein being in a solvent by calcu-

lating the born radius to determine surface accessible area.

To calculate the force from the Potential Energy we assume a Conservative Force

[57], this can be formulated from a Hamiltonian or Lagrangian assumption. So force

F is given by,

F = �rE, (5.27)

i.e. the negative of the gradient of E, the potential energy.

For example, for the Bond force between two atoms, where the atomic distance

for atoms i and j is b

ij

= ||r
j

� r
i

|| for atomic positions r
i

, r
j

,

F
bondsij = �rE

bondsij ,

= �r
⇥
k

bij(||rj � r
i

||� b

0

)

2

⇤
,

= �2k

bij(||rj � r
i

||� b

0

)[�ˆr
ij

,

ˆr
ij

]

T

, (5.28)

where

ˆr
ij

=

rij
||rij || .

67

5.3.7 Hessian

The LTMD method relies on the Hessian of the Potential Energy to partition

the system into the Dynamical and statistical sub-spaces. The Hessian is the second

derivative of the potential energy w.r.t. positions. For the Bond force this is given

by,

H
bondsij = 2k

bij

||r
j

� r
i

||� b

0

||r
j

� r
i

||

2

64
I �I

�I I

3

75+

2k

bijb0

||r
j

� r
i

||

2

64
ˆr
ij

ˆrT
ij

�ˆr
ij

ˆrT
ij

�ˆr
ij

ˆrT
ij

ˆr
ij

ˆrT
ij

3

75 .(5.29)

5.4 LTMD

The central concept of LTMD is to increase the timescale of an MD simulation by

computing coarse-grained normal modes (CNMA) and dividing the system’s degrees

of freedom (DOF) into fast and slow frequency motions. Then the fast frequency

motions, which limit the step size, are approximated using Brownian Dynamics (or

minimization). True dynamics are only used for the slow frequency motions, which

represent a smoother energy landscape and where the timestep su�cient for stability

is much larger. This introduces two additional costs to the LTMD method: calcu-

lating the mass weighted Hessian matrix H = M

� 1
2HM

� 1
2
, where H is the system

Hessian, and diagonalizing it. This process must be done repeatedly throughout a

simulation such that an accurate frequency division is always available. The time

between diagonalizations is in the range of 10 ps to 100 ps for typical biomolecules.

Since naive diagonalization is prohibitively expensive, O(N

3

), we have devised an

approximate diagonalization method that has complexity O(N

9/5

). We will show

that this is su�cient to produce real speedups over conventional MD.

We consider first the propagation of the biomolecule in the fast and slow domains,

and then the method of partitioning the dynamical space into fast and slow domains.

68

5.4.1 Propagator

The LTMD propagator uses the same basic technique as the Langevin method.

The canonical Langevin equation is given as

dX = vdt,

Mdv = fdt� �Mvdt+ (2k

B

T)

1
2
�

1
2
M

1
2
dW (t), (5.30)

where f = �rU(X), t is time, W (t) is a collection of Wiener processes, k

B

is

the Boltzmann constant, T is the system temperature, v are the velocities and �

is the diagonalizable damping matrix. The system di↵usion tensor D gives rise to

� = k

B

TD

�1

M

�1

. D is chosen to model the dynamics of an implicit solvent.

In LTMD, the forces and random perturbations (heat bath) are partitioned, us-

ing a projection matrix P

f

(and its complement P

?
f

), so that the normal Langevin

equation is approximated in the slow space but is over-damped in the fast space.

Here,

P

f

= M

1
2
QQ

T

M

� 1
2
, P

?
f

= M

1
2

�
I �QQ

T

�
M

� 1
2
, (5.31)

where Q is the set of low frequency eigenvectors as columns and M is the diagonal

system mass matrix.

Thus, in LTMD, the projected Langevin equation that models the coarse-grained

dynamics of implicitly-solvated proteins is given as:

dX = vdt,

Mdv = P

f

fdt� �Mvdt+ P

f

(2k

B

T)

1
2
�

1
2
M

1
2
dW (t). (5.32)

For the high frequency dynamics Brownian motion (over-damped) is often solved

with the Euler-Maruyama method. This is similar in form to a “steepest descent”

69

minimizer, which we use for e�cient damping. Then,

X

n+1

= X

n

+ ⌘P

?
f

f, (5.33)

where ⌘ is determined by a “line search” algorithm, X

n

is the current position and

X

n+1

is the new position. This algorithm is iterated until the di↵erence in system

energy for successive steps is less than some threshold value.

After minimization is performed, the rest of the Euler-Maryuma approximation

is computed by adding noise (random terms) to the fast space according to

X

n+1

= X

n

+

p
2�t

¯

�

�1

k

B

TM

�1

P

?
f

M

1/2

z (5.34)

where z is a random variable vector sampled from a Gaussian distribution,

¯

� is the

damping matrix for the fast space, and �t is the timestep.

5.4.2 Partitioning of the Dynamical Space of Biomolecules

To partition the dynamical space of the biomolecule we need to calculate the

system’s mass weighted Hessian and then diagonalize it to find a quadratic approxi-

mation to the system. This then identifies collective motions, or normal modes, and

their associated frequency. A choice of cuto↵ frequency defines a set of normal modes,

ordered according to their eigenvalues, that span the “slow” modes of interest.

The sparsity of the Hessian matrix is dependent on how we calculate the long range

forces in the force field. For methods such as Ewald Summation [21] the Hessian

is full. Studies[88] of biomolecules have shown that the important low frequency

motions are dominated by motions of the backbone alpha carbon atoms rather than

long range forces. In this case switches are generally used to reduce the forces to

zero beyond a given distance so that the Hessian is sparse and the calculation cost

is O(N) (for system size N) for analytical Hessian calculation. In MD codes such as

70

OpenMM, where analytical Hessians are not available, the Hessian must be calculated

numerically at a cost of O(N

2

) assuming force calculation cost of O(N).

Diagonalization of a matrix (“brute force”) is generally O(N

3

) which would be-

come prohibitive for large systems, although there are other methods that may of-

fer reduced cost. The Rotation Translation Block (RTB) method groups sequential

residues into blocks, which are then treated as rigid bodies, and the movement of the

entire protein is expressed as the rotations and translations of these blocks. Thus

the dimensionality of the diagonalization problem is reduced and a diagonalization

cost proportional to O(N

9/5

) is achieved [18, 89]. Variants of this method exist that

perform di↵erent approximations [27–30].

LTMD uses a coarse grained diagonalization method called Flexible Block Method

(FBM) [41] that reduces the expected cubic run-time to O(N

9/5

). FBM is similar

to RTB, including the sequential partitioning method, but also includes the internal

flexibility of the blocks, greatly increasing accuracy of the resulting eigenvectors with

the same complexity. FBM avoids the calculation of the full Hessian and diagonalizes

smaller matrices based on a knowledge of the structure of the biomolecule. Coarse-

graining involves computing instead a block mass weighted Hessian:

2

66666664

H

11

H

22

...

H

mm

3

77777775

where each H

ii

is a mass weighted Hessian matrix of the potential energy accounting

for interactions only within some group of one or more residues i, and each block is

assumed to be independent of other blocks.

Computing the Hessian of the potential energy U requires calculating the second-

order derivatives of U(X) where X is the vector of atomic positions. We obtain the

force F (X) = �rU(X), the gradient of U w.r.t. X, and thus can approximate the

71

Hessian using the first-order derivatives of F (X). This can be accomplished for the

j

th

column of H using the central di↵erence method where we perturb the atomic

positions by �x

j

, a small value added to the j

th

degree of freedom, and compute both

F (X + �x

j

) and F (X � �x

j

), then calculate the column vector as,

H

j

=

F (X � �x

j

)� F (X + �x

j

)

�x

j

. (5.35)

We can then diagonalize each individual block to obtain a set of eigenvalues and

eigenvectors. If the blocks are not at a minimum, then the Hessian will not contain the

true rotational degrees of freedom[32, 44]. Therefore, the translation and rotational

degrees of freedom are computed explicitly for each block using Eq. (5.36) - (5.38),

(5.40). A new set of eigenvectors is formed by combining the sets of eigenvectors and

translation and rotational degrees of freedom and using a modified Gram-Schmidt

process to orthogonalize the set. Should any vector’s norm become less than 1/20

th

of

its original norm after orthogonalization, it is assumed that the vector is a duplicate

of the explicitly-calculated translation or rotation vectors and removed from the set.

T

1

=

⇢p
m

1

M

, 0, 0,

p
m

2

M

, 0, 0, · · · ,
p
m

N

M

, 0, 0

�
, (5.36)

T

2

=

⇢
0,

p
m

1

M

, 0, 0,

p
m

2

M

, 0, · · · , 0,
p
m

N

M

, 0

�
, (5.37)

T

3

=

⇢
0, 0,

p
m

1

M

, 0, 0,

p
m

2

M

, · · · , 0, 0,
p
m

N

M

�
. (5.38)

where

M =

p
m

1

+m

2

+ · · ·+m

N

. (5.39)

72

R

i

=

ˆ

R

i

|| ˆR
i

||
,

ˆ

R

i

= {r
i,1

, r

i,2

, · · · , r
i,N

}, (5.40)

where

r

1,j

=

p
m

j

{0, d
j,z

,�d

j,y

}, r
2,j

=

p
m

j

{�d

j,z

, 0, d

j,x

}, r
2,j

=

p
m

j

{�d

j,y

,�d

j,x

, 0},(5.41)

for vector d, with xyz coordinates, representing the di↵erence between the atom

position and the center.

A 3N ⇥k matrix E is assembled from the block eigenvectors corresponding to the

k lowest eigenvalues. An appropriate value of k which still spans the low frequency

space will vary based on the particular composition of the protein’s residues, but we

have determined a typical value of k is around 12 per residue[41].

The reduced set of eigenvectors is used to compute the quadratic product S =

E

T

HE. The matrix S will be of smaller dimension (k⇥k) than H (3N⇥3N) but will

still account for the appropriate degrees of freedom. S is then diagonalized to obtain

a set of eigenvectors Q which by definition satisfy the equation Q

T

SQ = D where D

is a diagonal matrix. Combining our two equations, we get: (EQ)

T

HEQ = D, and

so can finally represent V = EQ as an orthogonal set of vectors that span the low

frequency space and with the property that V

T

HV = D. If we sort the eigenvectors

of Q by corresponding eigenvalue, V will be ordered as well. We can then select the

m slowest frequency modes by simply choosing the first m vectors of V .

We note that rather than forming the quadratic product S = E

T

HE in the

usual way, which would require the calculation of the Hessian H, we can calculate an

approximation to the matrix HE directly using a first order numerical di↵erentiation

scheme. This is accomplished by perturbing the positions by ✏M

� 1
2
E

i

for some small

scalar value ✏ and the i

th

column of E (denoted E

i

), we then find the force di↵erence

73

scaled by 1/✏ and multiply by M

� 1
2
. Pre multiplication by E

T

will then yield S. For

example, using Taylor series expansion for each E

i

perturbation,

rU

⇣
X + ✏M

� 1
2
E

i

⌘
= rU(X) + ✏HM

� 1
2
E

i

+ . . . , (5.42)

for potential energy U(X) and positionsX. We note that the system force at positions

X is given by f(X) = �rU(X). Then, multiplying Eq. (5.42) by M

� 1
2
and re-

arranging, we have,

HE

i

= M

� 1
2HM

� 1
2
E

i

= M

� 1
2

2

4
f(X)� f

⇣
X + ✏M

� 1
2
E

i

⌘

✏

3

5
+O(✏),(5.43)

which represents the i

th

column vector of HE. By repeating this n times, for each i,

we can assemble the complete matrix HE.

A second order centered di↵erence method is also possible at twice the cost:

HE

i

= M

� 1
2

2

4
f

⇣
X � ✏M

� 1
2
E

i

⌘
� f

⇣
X + ✏M

� 1
2
E

i

⌘

2✏

3

5
+O

�
✏

2

�
. (5.44)

5.5 Implementation

OpenMM provides an API that performs GPU molecular dynamics calculations

while masking the underlying details of GPU programming. The software employs the

Plugin [24] design pattern which allows package extensions to be externally compiled

into libraries which are loadable at run-time by (for example) setting a flag. We

designed our implementation of LTMD as an OpenMM plugin that runs in parallel

on either or both the GPU and CPU. MD force calculations are the slowest portions

of our algorithm when running on the CPU, and we thus reserve those for the GPU

while running some sparse matrix calculations using parallel libraries such as Intel’s

Math Kernel Library (MKL, [38]). We further divide our implementation into two

74

libraries, one for our API which is responsible for user interaction and the second is

the plugin itself which is invoked dynamically when a GPU calculation takes place.

5.5.1 Propagator

The implementation of the LTMD propagator GPU kernel follows the same for-

mat as the OpenMM implementation of Langevin. In addition to the propagator

kernel mapping sets of atoms to CUDA threads we also need to project the forces

using a local product with reduction across all nodes. In addition we also imple-

ment the minimizer in the kernel to relax the fast sub-space of the biomolecule after

propagation in the slow sub-space.

5.5.2 Diagonalization with Flexible Block Method

A major aspect of the GPU implementation of LTMD is the frequency partition,

which involves three main areas of the algorithm:

5.5.2.1 Computation of Block Hessian

To compute the block Hessian, we create a separate OpenMM context in which

all interactions between atoms in di↵erent blocks are removed. New force objects are

instantiated for the block context where bonds, angles, dihedrals, and RB dihedrals

that span atoms in multiple blocks are removed. Custom forces which allow the

removal of interactions between atoms in multiple blocks are used for the non-bonded

forces. Implicit solvent (Generalized Born) is not used in the calculation of the blocks.

As the blocks have no interactions, perturbations to a DOF in one block i have

no e↵ect on the forces of the atoms in the other blocks. This is equivalent to saying

that H

i,j

= 0 where j 6= i for blocks i and j. We exploit this behavior to reduce the

number of required force calculations. With each step of the numerical di↵erentia-

tion, we perturb the k

th

DOF in each block and then compute the forces once for

75

the context. The components from the resulting column vector v are then copied

into their respective block Hessians such that element H

i,li+k

= v
li+k

, where i is a

block and l

i

is the first DOF in block i. With this approach, we only need one or

two force calculations (depending on whether first-order or second-order numerical

di↵erentiation is used) for each DOF in the largest block instead of for every DOF

in the system.

Since OpenMM does not allow two CUDA contexts to be instantiated at the same

time, the forces for the blocks are computed using an OpenCL [63] context.

5.5.2.2 Block Diagonalization

Since individual blocks H

ii

of the block Hessian are independent of one another,

we can diagonalize them in parallel using OpenMP [15]. The procedure for finding the

eigenvectors for each block Hessian is as follows: The block Hessian is diagonalized

using the dysevr routine in LAPACK or Intel MKL. The eigenvectors are sorted

by the magnitude of their eigenvalues. The block’s rotation and translation vectors

are computed geometrically. A new set of eigenvectors is formed from the rotation

and translation vectors and original eigenvectors with care taken to ensure that the

vectors are inserted so as to preserve their relative ordering. Lastly, the new set

of eigenvectors is orthogonalized vector-by-vector using a modified Gram-Schmidt

process. If a vector’s norm is less than 1/20

th

after orthogonalization, the vector is

removed from the set. Otherwise, the vector is normalized. The process is repeated

for each block Hessian, using OpenMP to parallelize the process such that each block

is handled into its own a separate thread.

5.5.2.3 Computation of S

As described in Section 5.4.2, we can calculate the matrix S = E

T

HE by first

calculating the columns of the matrix E

T

H and then post multiplying by E. The

76

columns of the matrix E

T

H can be found using Eq. (5.44). The original OpenMM

context, which is also used for propagation, is used to compute the forces for the

numerical di↵erentiation.

5.6 Results

In the following sections we present results for benchmarking, validation and

choice of parameters. In Section 5.6.1 we compare relative performance of OpenMM

LTMD, OpenMM Langevin and GROMACS when simulating a range of proteins

consisting of 512 to 1251 atoms. In Section 5.6.2 we validate the LTMD method

using Ala5, a small helical peptide, and Villin NLE a fast folding protein. Finally,

in Section 5.6.3 we consider the e↵ects of the parameters required for LTMD on

accuracy.

5.6.1 Benchmarks

OpenMM LTMD was benchmarked against OpenMM with Langevin dynamics

and GROMACS for four di↵erent protein systems (see below). We evaluated di↵er-

ences in absolute performance given as ns/day as well as relative speed ups. OpenMM

Langevin was run with the CUDA platform, while OpenMM LTMD used the CUDA

platform for propagation and the OpenCL platform for computing the block forces

for the Flexible Block Method (FBM). GROMACS was configured to run with 6

threads. A single machine with an Intel Xeon E5645 2.6GHz processor, 24GB of

RAM and two NVIDIA GeForce 580GTX graphics cards, running a 64-bit version

of Red Hat Linux 6, was used for all of the tests. The protein system models were

prepared with Amber96-SB and the Generalized Born OBC implicit-solvent model.

All models were run at 370

�
K.

1. Villin NLE (512 atoms, 35 residues)

77

2. BBL (707 atoms, 47 residues)

3. N-Terminal Domain of L9 (881 atoms, 55 residues)

4. Lambda Repressor (1251 atoms, 80 residues)

5.6.1.1 Parameter Choices for Optimal Performance

The performance of LTMD is dependent on a number of parameters. The main

determinant is how often new eigenvectors are calculated (re-diagonalization of the

Hessian). The cost of the eigenvector calculation is, in turn, influenced by the size

of the block Hessians (number of residues per block). It was shown that the cost of

calculating the eigenvectors was O(N

9
5
) using the Flexible Block Method[41] (FBM)

with sparse and analytical Hessians. OpenMM LTMD uses numerical di↵erentiation

for calculating the block Hessians and quadratic-product matrix S. To quantify the

e↵ect of both the period of eigenvector calculation and the number of residues per

block, we calculated the speed up (ns per day for LTMD divided by ns per day for

OpenMM Langevin) for eigenvector calculation periods in the range of 10 ps to 100

ps and residues per block in the range of 1-6.

OpenMM LTMD’s performance for the four test systems is presented as a function

of the number of residues and rediagonalization period in Figure 5.4. The parameter

space has a relatively convex shape which makes the method’s performance easy to

optimize and relatively robust to di↵erent choices of parameters. Although OpenMM

LTMD performance was optimal with 3 residues per block and a rediagonalization

period of 100 ps, similar choices of parameters (e.g., 2 or 4 residues per block and

rediagonalization periods of 60 ps to 100 ps) provide similar performance.

When compared with OpenMM Langevin, speed ups for the smallest model, Villin

NLE, were limited to just over two times, while speed ups in excess of 5 times were

seen for the larger models (Table 5.1). LTMD’s absolute performance reached 4.6 s/

day for Villin NLE.

78

1" 2" 3" 4" 5" 6"

0"

1"

2"

3"

4"

5"

6"

100"
80"

60"

40"

20"

Residues'Per'Block'

Pe
rf
or
m
an

ce
''

(S
pe

ed
up

'v
s'L

an
ge
vi
n)
'

Rediagonaliza;
on'Period'

(Picoseconds)'

5*6"

4*5"

3*4"

2*3"

1*2"

0*1"

(a) Villin NLE

1" 2" 3" 4" 5" 6"

0"

1"

2"

3"

4"

5"

6"

100"
80"

60"

40"

20"

Residues'Per'Block'

Pe
rf
or
m
an

ce
''

(S
pe

ed
up

'v
s'L

an
ge
vi
n)
'

Rediagonaliza;
on'Period'

(Picoseconds)'

5*6"

4*5"

3*4"

2*3"

1*2"

0*1"

(b) BBL

1" 2" 3" 4" 5" 6"

0"

1"

2"

3"

4"

5"

6"

100"
80"

60"

40"

20"

Residues'Per'Block'

Pe
rf
or
m
an

ce
''

(S
pe

ed
up

'v
s'L

an
ge
vi
n)
'

Rediagonaliza;
on'Period'

(Picoseconds)'

5*6"

4*5"

3*4"

2*3"

1*2"

0*1"

(c) N-Terminal Domain of L9

1" 2" 3" 4" 5" 6"

0"

1"

2"

3"

4"

5"

6"

100"
80"

60"

40"

20"

Residues'Per'Block'

Pe
rf
or
m
an

ce
''

(S
pe

ed
up

'v
s'L

an
ge
vi
n)
'

Rediagonaliza;
on'Period'

(Picoseconds)'

5*6"

4*5"

3*4"

2*3"

1*2"

0*1"

(d) Lambda Repressor

Figure 5.4. A comparison of the performance speed up on four proteins

versus OpenMM Langevin for di↵erent values of the number of residues per

block and the rediagonalization period.

5.6.1.2 Comparisons of Relative and Absolute Performance

Using the optimal choices for parameters from Section 5.6.1.1, OpenMM LTMD’s

performance was compared to that of OpenMM Langevin and GROMACS with 6

cores. Benchmark simulations were run for each of the four protein systems (Villin

NLE, BBL, NTL9, and Lambda Repressor). Absolute performance numbers (given

in ns / day) are shown in Figure 5.5, while relative speed ups were computed and

presented in Table 5.1.

OpenMM LTMD showed significant increases on absolute performance in compar-

ison with GROMACS and OpenMM Langevin. OpenMM LTMD’s absolute perfor-

79

0"

500"

1000"

1500"

2000"

2500"

3000"

3500"

4000"

4500"

5000"

Villin"NLE"(582)" BBL"(707)" NTL9"(881)" Lambda"Repressor"(1251)"

ns
/d
ay
'

Systems'(atoms)'

Comparison'of'Absolute'Performance'
GROMACS"CPU" OpenMM"Langevin"GPU" OpenMM"LTMD"GPU"

Figure 5.5. Comparison of absolute performance (ns/day) between

GROMACS with 6 CPU cores, OpenMM Langevin, and OpenMM LTMD.

mance peaked at 4.6 s/day for Villin NLE compared to 0.1 s/day for GROMACS

and 1.6 s/day for OpenMM Langevin. On larger systems, OpenMM LTMD achieved

2.8 s/day for BBL, 2.1 s/day for NTL9, and 1.4 s/day for Lambda Repressor com-

pared with 0.08 (BBL), 0.06 (NTL9), and 0.03 (Lambda Repressor) s/day with

GROMACS and 0.6 (BBL), 0.4 (NTL9), and 0.2 (Lambda Repressor) s/day with

OpenMM Langevin.

Comparing relative performance (speed up) of OpenMM LTMD over GROMACS

and OpenMM Langevin shows that OpenMM LTMD scales better for larger systems

versus the other methods. Table 5.1 details the speed up of OpenMM LTMD over

OpenMM Langevin and GROMACS. OpenMM LTMD provides speed ups of up to

5.8⇥ over OpenMM Langevin and 49.7⇥ over GROMACS. Of particular interest is

that the speed up provided by OpenMM LTMD increases for larger protein systems,

80

implying, along with absolute performance displayed in Figure 5.5, that OpenMM

LTMD scales better than either OpenMM Langevin or GROMACS with system size.

TABLE 5.1

COMPARISON OF RELATIVE PERFORMANCE OF OPENMM LTMD

VS GROMACS AND OPENMM LANGEVIN

Proteins Speed Up of OpenMM LTMD vs

Name Number of Atoms OpenMM Langevin GROMACS

Villin NLE 582 2.9⇥ 38.5⇥

BBL 707 4.8⇥ 33.6⇥

NTL9 881 5.2⇥ 37.9⇥

Lambda Repressor 1251 5.8⇥ 49.7⇥

5.6.1.3 Run-time Breakdown

To provide insight as to where time is being spent, we detailed the steps of the

method and profiled the run-time of each step individually. Simulations were run

using the optimal parameters choices detailed in Section 5.6.1.1. The steps are as

follows:

1. Computation of the block Hessians using numerical di↵erentiation of the forces

2. Diagonalization of the block Hessians

3. Creation of E by sorting the calculated eigenvalues from the hessian and culling

those below a threshold

81

27%$

49%$

1%$

18%$

1%$3%$1%$ $Compute$Block$
Hessian$

$Diagonalize$Block$
Hessian$

$Calculate$E$

$Calculate$HE$

$Calculate$S$

$Diagonalize$S$

(a) Villin NLE

11%#

20%#

4%#

39%#

2%#

22%#

2%# #Compute#Block#
Hessian#

#Diagonalize#Block#
Hessian#

#Calculate#E#

#Calculate#HE#

#Calculate#S#

#Diagonalize#S#

(b) Lambda Repressor

Figure 5.6. A breakdown of the time spent in each section of the analysis

portion of the code for the smallest (Villin NLE) and largest (Lambda

Repressor) systems tested.

4. Computation of HE using numerical di↵erentiation of the forces

5. Multiplication HE and E

T

to find S.

6. Diagonalization of S to find Q

7. Finding the approximate normal modes U by multiplying E and Q.

8. The propagation of the system.

Table 5.2 gives the absolute time for each step in milliseconds for each of the four

protein systems, while Figure 5.6 gives the percent time spent on each step for Villin

NLE (our smallest system) and Lambda Repressor (our biggest system). For smaller

systems, such as Villin NLE, the run time is dominated by the numerical di↵erentia-

tion of the block Hessians and their diagonalization. Whereas, for larger systems such

as Lambda Repressor, run time is dominated by the numerical calculation of S and

its diagonalization. The large amount of time spent on diagonalization versus prop-

agation explains why longer rediagonalization periods provide better performance as

found in Section 5.6.1.1.

82

TABLE 5.2

MILLISECOND RUNTIME BREAKDOWN PER SIMULATION STEP

System Atoms Comp. Blocks Diag. Blocks Calc. E Calc. HE Calc. S Diag. S Calc. U Propagate

Villin NLE 582 103.4 189.5 4.0 67.8 3.9 12.9 3.4 37.1

BBL 707 135.1 325.5 6.1 121.2 6.7 22.0 7.5 62.5

NTL9 881 122.8 224.4 11.6 200.4 10.5 51.6 13.3 85.9

Lambda Repressor 1251 125.0 226.7 40.6 458.3 25.7 258.6 27.3 119.7

8
3

5.6.2 Validation

OpenMM LTMD was validated against OpenMM Langevin through simulations

of Ala5[9], a small peptide of five alanines, and Villin NLE, a variant of the Villin

headpiece that folds in 0.5 s.

5.6.2.1 Dynamics and Sampling of the Small, Helical Peptide Ala5

Ala5 was simulated with OpenMM LTMD and Langevin to validate that LTMD

properly reproduces dynamics and sampling. The Ala5 model was prepared with

the Amber96 forcefield and the Generalized Born OBC implicit-solvent model. Eigh-

teen simulations for both Langevin and LTMD, with total aggregate times of 5.4 s

and 4.8 s each, were run from an extended confirmation at 300

�
K. The LTMD

simulations used the following choice of parameters: 16 modes, 5 fs timestep, 625 fs

rediagonalization period, 1 residue per block, 18 vectors per block, a block epsilon

of 1⇥ 10

�5

˚

A, and an s epsilon of 1⇥ 10

�4

˚

A. The folded “helical” state for each

alanine residue was defined by having � and angles such that �180

�  �  0

�
and

�120

�   15

�
.[9]

To compare sampling accuracy we measured the state distributions, where the

states of the individual residues are deemed folded or unfolded by the criterion defined

above. Ala5 has 32 states defined by the permutation of folded and unfolded states for

each of its five residues. A comparison of the state distributions from the LTMD and

Langevin simulations shows that LTMD samples the states with similar probability

as Langevin, indicated by a correlation of 0.99 (Figure 5.7). Both methods show Ala5

spending most of its time in state 32 (all of the residues are folded), with the majority

of the remaining time in state 16 (one of the end residues is unfolded). LTMD has a

lower probability of being in state 16 and a higher probability of being in state 32.

To compare the dynamics we define the folded state of the peptide by all three

inner alanine residues being folded, as defined above. We observed the time for each

84

32 16 31 24 28 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

States

P
r
o
b
a
b
il
it
y

LTMD
Langevin

Figure 5.7. Populations of the 6 most-populated of the 32 defined states of

Ala5 from Ala5 Amber96, GB-OBC implicit-solvent simulations run with

LTMD (blue) and Langevin (red). All simulations started from an

extended structure.

of the simulations to reach this folded state, from its initial extended state. The

mean folding time for the Langevin simulations was 4.1 ns with a standard deviation

of 4.6 ns. The LTMD Ala5 simulations produced mean folding times of 9.5 ns with a

standard deviation of 6.9 ns, which is comparable to the Langevin simulations.

To measure the dynamics qualitatively we consider the RMSD, relative to the

folded helical structure, during the folding process RMSD was computed for one

representative Langevin simulation (black) and one representative LTMD simulation

(blue) (Figure 5.9). Both simulations folded in 5.0 ns. The RMSD plots for both sim-

ulations show similar collapses at 5.0 ns as well as subsequent folding and unfolding.

5.6.2.2 Folding of Villin NLE

Villin NLE simulations were run with LTMD and OpenMM Langevin to validate

the correctness of the LTMD implementation over longer timescales. The Villin NLE

model was prepared with the Amber99-SB forcefield and the Generalized Born OBC

implicit-solvent model. The dynamics of the simulations were analyzed with respect

85

Langevin LTMD
0

5

10

15

20

25

30

Simulat ion Type

F
o
ld
in
g
T
im

e
(n

s)

Figure 5.8. Folding times of Ala5 Amber96, GB-OBC implicit-solvent

simulations run with Langevin and LTMD. The blue lines give the average

folding times for each simulation method. Eighteen simulations of each

type were run, and all simulations started from an extended structure.

to their ability to fold Villin NLE. It should be noted that our emphasis is purely on

validating the correctness of the LTMD implementation, not on a large-scale analysis

of Villin NLE dynamics.

Figure 5.10 gives the RMSD plots for two representative LTMD simulations run at

370

�
K with a 50 fs timestep, 10 modes, and a rediagonalization period of 25 ps. The

RMSDs were calculated against the native structure using the C

↵

atoms, excluding

the first and last two residues. The first simulation (Figure 5.10a) folds Villin NLE

to within 3.6

˚

A of the native structure, where it remains for around 1 s. In the sec-

ond simulation (Figure 5.10b), the protein undergoes multiple folding and unfolding

events, occurring approximately every 0.5 s, and is able to fold to within 3.5

˚

A of the

native structure. While Langevin simulations fold Villin NLE to within 3

˚

A of the

native structure, it should be noted that the higher RMSD of the LTMD simulations

is an expected result given the coarse-graining used by the method to obtain better

performance. As evidenced by these two simulations, LTMD is able to capture the

dynamics of the proteins, while enabling a significant speed up over traditional MD.

86

0 2 4 6 8 10 12 14 16 18 20
0

 0.5

1.0

 1.5

2.0

 2.5

3.0

 3.5

4.0

 4.5

5.0

Time (ns)
R
M
S
D

(Å
)

Figure 5.9. RMSD against the folded structure was computed for Langevin

(black) and LTMD (blue).

5.6.3 Parameter Choices and Diagnostics

OpenMM LTMD uses multiple user supplied parameters in order to propagate

and diagonalize the system of interest. In Section 5.6.3.1 the e↵ect of varying the

rate of rediagonalization on the dynamics is measured and in Section 5.6.3.2 the ef-

fects of the number of modes used on the dynamics is measured. We look at the

e↵ect of parameters on the accuracy of FBM in Sections 5.6.3.3 - 5.6.3.5. Section

5.6.3.3 compares the FBM implementation in OpenMM against the reference imple-

mentation in ProtoMol and the approximate eigenvectors with the full eigenvectors.

In Section 5.6.3.4 the e↵ect of the epsilons, ✏, used as the perturbation for the nu-

merical di↵erentiation operations required within FBM. In Section 5.6.3.5 the e↵ects

of di↵erent partitioning schemes within FBM are compared. In Section 5.6.3.6 we

consider the e↵ects of the “noise” term in the Euler-Maruyama approximation in the

fast space.

87

(a) (b)

Figure 5.10. RMSD plots for two Villin NLE Amber99-SB, GB-OBC

implicit-solvent simulations run with LTMD. RMSD was calculated using

C

↵

atoms, excluding the first two and last two residues, against the folded

structure. The minimum RMSDs of each simulation are 3.6

˚

A and 3.5

˚

A,

respectively. Figure 5.10b shows multiple folding and unfolding events,

occurring approximately every 0.5 s.

5.6.3.1 Rediagonalization Period

The theory behind LTMD assumes that the modes are always valid which, in

theory, would require diagonalization at every step. In practice it has been observed

that, since we only use a few low frequency modes, this requirement can be relaxed.

The e↵ect of the rediagonalization period on the folding rate was measured by

running Ala5 simulations with di↵erent rediagonalization periods (0.625 ps, 1.25 ps,

and 2.5 ps) for 300 ns with parameters: 300

�
K, 5 fs timestep, 12 modes, 1 residue

per block, 14 vectors per block, and epsilons of 1⇥ 10

�4

˚

A for the S matrix and

1⇥ 10

�5

˚

A for the blocks. Rediagonalization period proved to a↵ect the folding rate

significantly. Simulations run with a rediagonalization period of 2.5 ps folded in an

average of 62.5 ns, much larger than the average folding time of 3.7 ns found from

Langevin simulations. Decreasing the rediagonalization period to 0.625 ps reduced

88

0.625 1.250 2.500
0

50

100

150

200

Rediagonalizat ion Period (ps)

F
o
ld
in
g
T
im

e
(n

s)

Figure 5.11. Rediagonalization period’s e↵ect on the folding time using 12

modes. Each bar is a single simulation, where all bars within a group all

use the same parameters. The groups are sorted within themselves. The

blue lines drawn over each set of bars are the average folding time for that

set, while the dashed black line gives the “reference” folding time from

Langevin simulations.

the average folding time to 14.3 ns.

This test was repeated, using 16 modes instead of 12 (which was found to be

more accurate in Section 5.6.3.2). Here, we see that simulations run with a redi-

agonalization period of 2.5 ps had an average folding time of 20.94 ns. When the

period is dropped to 1.25 ps or 0.625 ps, the average folding time drops to around

10 ns. This seems to indicate that picking the best number of modes to run, could

allow a larger rediagonalization period before losing accuracy, allowing a trade-o↵ to

optimize performance.

5.6.3.2 Number of Modes

A sweep of the number of modes was performed. Eight Ala5 LTMD simulations

were run for each mode setting (8, 10, 12, 14, and 16 modes) for 300 ns at 300

�
K, 5 fs

timestep, 1 residue per block, and epsilons of 1⇥ 10

�5

˚

A for the blocks and 1⇥ 10

�4

˚

A

for the S matrix. The number of vectors per block was set to be number of modes

89

0.625 1.250 2.500
0

5

10

15

20

25

30

Rediagonalizat ion Period (ps)

F
o
ld
in
g
T
im

e
(n

s)

Figure 5.12. Rediagonalization period’s e↵ect on the folding time using 16

modes. Bars represent single simulations, where all bars within a group all

use the same parameters. The groups are sorted within themselves. The

blue lines drawn over each set of bars are the average folding time for that

set, while the dashed black line gives the “reference” folding time from

Langevin simulations.

plus two (10, 12, 14, 16, and 18 vectors per block, respectively). With 16 modes,

the LTMD Ala5 simulations were able to consistently achieve folding times of 5.5 ns

on average with a standard deviation of 2.6 ns, which compares favorably to the

values obtained from Langevin simulations (average of 3.7 ns and standard deviation

of 3.9 ns).

5.6.3.3 Approximate Eigenvector Overlap

The implementation of the Flexible Block Method (FBM) in LTMD was validated

against the implementation in ProtoMol using a metric called “overlap.” Overlap (as

described in Tama, et al. [89]) measures how well a vector is represented by a space

spanned by a set of vectors. The overlap P

j

for a reference eigenvector u

j

with the

set of approximate eigenvectors (v

1

, v

2

, . . . v

m

) is given by Eq. (5.45). An overlap

value of 1 indicates that the reference eigenvector is represented completely by the

approximate eigenvectors, while a value of 0 means that the reference eigenvectors is

90

8 10 12 14 16
0

20

40

60

80

100

120

140

160

180

200

Number of Modes

F
o
ld
in
g
T
im

e
(n

s)

Figure 5.13. The e↵ect on the folding time, caused by changing the number

of modes. Each bar is a single simulation, where all bars within a group all

use the same parameters. The groups are sorted within themselves. The

blue lines drawn over each set of bars are the average folding time for that

set, while the dashed black line gives the “reference” folding time from

Langevin simulations.

not represented at all.

P

j

=

mX

i=1

(vi · uj)
2

. (5.45)

We used overlap to compare the approximate eigenvectors generated from both

the reference CPU Flexible Block Method (FBM) implementation in ProtoMol[54]

and our implementation in LTMD. Figure 5.14 shows the overlap for the approximate

eigenvectors from LTMD with those produced by the FBM implemented in ProtoMol

in WW Fip35. The two implementations show very good agreement for the first 20

modes. We also computed the overlap between the approximate eigenvectors from

LTMD with the full eigenvectors. The approximate eigenvectors agree with the full

eigenvectors for the first 15 modes but are less accurate for modes 16, 18, and 19.

Since only ten or twelve modes are used in simulations, FBM is able to approximate

the eigenvectors reasonably well for our purposes.

91

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Mode

O
v
e
r
la
p

Numeric

Full

Figure 5.14. Overlap between the approximate eigenvectors for WW Fip35

for LTMD and ProtoMol implementations of FBM (blue) and the

approximate eigenvectors and full eigenvectors (black).

5.6.3.4 Magnitude of Epsilon for Numerical Di↵erentiation Perturbation

As detailed in the Section 5.4.2, LTMD uses the Flexible Block Method (FBM) to

perform a fast normal mode analysis which utilizes numerical di↵erentiation (ND).

The choice of perturbation ✏ is usually made to be as small as possible so that

accuracy is maintained, while being large enough to avoid round-o↵ errors due to

the finite precision of floating-point arithmetic. For single precision arithmetic, an

optimal value for ✏ can generally be found as ✏ =

p
2

�23

= 3.4⇥ 10

�4

.[68] Note that

OpenMM LTMD uses units of nm internally; for our configuration files this equates

to ✏ = 3.4⇥ 10

�5

˚

A. For FBM there are additional considerations when finding the

✏ for the formation of the S matrix since it is important that our perturbation lies

in the low frequency space of interest. Since, when projected from mode space our

perturbation vector, �m, is given by �m = ✏M

� 1
2
E

i

for the i

th

mode, all of the values

in �m must not have significant round-o↵. Below, we document the tests carried out

to determine the optimal values for the ✏ used in the block and S matrix ND and

compare to theory.

92

0 1 2 3 4 5 6
1

2

3

4

5

6

7

8

9

Time (Nanoseconds)

R
M

S
D

 (
A

n
g

st
ro

m
s)

1E−2

1E−3

1E−4

1E−5

Figure 5.15. Comparison of the collapse of WW-Fip35 from the extended

confirmation with di↵erent magnitudes for the numerical di↵erentiation

perturbations. RMSD was computed against the extended confirmation.

The other simulations were run with LTMD using di↵erent values of ✏. The

same choice of ✏ was used for both the blocks and quadratic product.

From Langevin simulations, it is known that the extended confirmation of WW-

Fip35 rapidly collapses. We have found that LTMD simulations of the collapse are

particularly sensitive to the choice of ✏s and thus are an excellent test for validation.

To measure the e↵ect of the choice of ✏ on the dynamics, WW-Fip35 was simu-

lated from an extended confirmation with a range of values for ✏. The WW-Fip35

model was prepared from the extended confirmation using the Amber96 forcefield

and Generalized Born OBC implicit-solvent model.

LTMD simulations were run with a 50 fs timestep, 10 modes, a 100 ps rediago-

nalization period, and a range of values for ✏. RMSD to the extended structure was

calculated between the C

↵

atoms and plotted as a function of time in Figure 5.15.

Simulations run with values between 1⇥ 10

�2

˚

A and 1⇥ 10

�4

˚

A show similar rates

of collapse, while the simulation with ✏ = 1⇥ 10

�5

˚

A shows that the dynamics are

damped and the protein is prevented from collapsing.

To further explore the e↵ects of the S matrix epsilon on the simulation folding

time, a sweep of simulations were run with varying S matrix epsilons using Ala5.

93

1e−0 1e−1 1e−2 1e−3 1e−4 1e−5
0

20

40

60

80

100

120

S Matrix Epsilon (Å)

F
o
ld
in
g
T
im

e
(n

s)

Figure 5.16. A sweep of simulations executed with varying S matrix

epsilons, with the Ala5 model. Each bar is a single simulation, where all

bars within a group all use the same parameters. The groups are sorted

within themselves. The blue lines drawn over each set of bars are the

average folding time for that set, while the dashed black line gives the

“reference” folding time from Langevin simulations.

In Figure 5.16, we can see that this epsilon value should not be a critical factor in

simulation accuracy (at least for the Ala5 model), beyond being within the right

range.

5.6.3.5 E↵ect of Partitioning Method

The Flexible Block Method (FBM) requires choosing a method for partitioning

the atoms into blocks[27–30, 89]. The simulations in this Chapter, group entire

residues into blocks using a uniform number of residues per block (the last block may

contain fewer if the number of residues is not an integer multiple of the number of

residues per block). To look at the e↵ect of the partitioning, an alternative scheme

was devised where the partitioning occurs after the C

↵

atoms along the backbone.

The atoms in the blocks for both partitioning methods represent a sequential set.

The two schemes were compared with respect to the overlaps of the first 20 ap-

proximate eigenvectors against the first 20 real eigenvectors (Figure 5.17) and folding

94

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mode

O
v
e
r
la
p

Standard

C
α

Figure 5.17. Overlap for Residue (standard) and C

↵

partitioning schemes

for Ala5 compared with modes from a “brute force” diagonalization.

time of Ala5 LTMD simulations. The eigenvectors were calculated using 1 residue per

block, 18 vectors per block, and epsilons of 1⇥ 10

�5

˚

A for the blocks and 1⇥ 10

�4

˚

A

for the S matrix. The standard partitioning scheme reproduces the first 11 modes

very well but is not able to reproduce modes 14, 17, or 19. The C

↵

partitioning

scheme has similar accuracy for all modes except for modes 10-12, which it is not

able to reproduce well. Reflecting the di↵erence in the accuracy of the modes with

the two partitioning schemes, a LTMD simulation with the standard partitioning

scheme folded Ala5 in 24.8 ns, more quickly than a simulation with the C

↵

partition-

ing scheme at 33.7 ns.

The two schemes were also tested on WW Fip35 (Figure 5.18). The accuracy of

the two schemes is similar, suggesting that the two schemes do not make a significant

di↵erence in the accuracy of the modes.

5.6.3.6 Magnitude of Fast Noise

As an approximation to Euler-Murayama method, after performing minimiza-

tion in the fast space LTMD adds random noise Eq. (5.34). Ala5, with di↵erent

95

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Mode

O
v
e
r
la
p

Standard

C
α

Figure 5.18. Overlap for Residue (standard) and C

↵

partitioning schemes

for WW Fip35 compared with modes from a “brute force” diagonalization.

amounts of fast noise, was simulated to measure the e↵ect of the noise on dynamics

(Figure 5.19). The simulations were run for 300 ns with the following parameters:

300

�
K, 5 fs timestep, 16 modes, a rediagonalization period of 0.625 ps, 1 residue per

block, 18 vectors per block, and epsilons of 1⇥ 10

�5

˚

A for the blocks and 1⇥ 10

�4

˚

A

for the S matrix. The figure shows that the noise factor, for this model, did not have

a great e↵ect. However, from these results, a noise scaling value of 1.0 allows for the

closest average folding time compared to the Langevin tests.

5.7 Conclusion

We presented a hybrid CPU/GPU implementation of the LTMD propagator with

speed ups of over 5.8⇥ compared with traditional MD integrators on GPUs. This

result illustrates great potential for testing larger protein systems over a longer bio-

logical period of time. Analysis of the cost of individual sections of the method have

yielded insight into how we may improve performance in the future.

Validation with Ala5 and Villin NLE has shown excellent agreement between

Langevin and LTMD. With Ala5, we showed that LTMD is able to sample the confor-

96

0.0 0.5 1.0
0

2

4

6

8

10

12

14

16

Fast Noise Scale Factor

F
o
ld
in
g
T
im

e
(n

s)

Figure 5.19. Folding times of LTMD Ala5 simulations run with di↵erent

values for the amount of noise added in the fast space. Each bar is a single

simulation, where all bars within a group all use the same parameters. The

groups are sorted within themselves. The blue lines drawn over each set of

bars are the average folding time for that set, while the dashed black line

gives the “reference” folding time from Langevin simulations.

mational states with a similar distribution as Langevin, produces comparable folding

times, and captures similar dynamics. Similar folding times and dynamics between

Langevin and LTMD were also reported for Villin NLE.

Analyses of the e↵ects of the various parameters such as rediagonalization period,

the number of modes, epsilons used with the numerical di↵erentiation, partitioning

methods, and fast noise were presented. We found that with the proper parameters,

especially the rediagonalization period and number of modes, LTMD agrees well with

Langevin. Further, by choosing a larger number of modes, rediagonalization can be

performed less frequently, leading to increased performance. The choice of block

epsilons for FBM were shown to agree with the known values from the theory, while

the choice of S epsilons were shown to be robust over a range of values.

This implementation of LTMD, and future improvements to the performance and

numerics promise an order of magnitude improvement over conventional GPU imple-

mentations of MD.

97

CHAPTER 6

ACCELERATING A MIXED EULERIAN-LAGRANGIAN PARTICLE-LADEN

FLOW SIMULATION USING A HYBRID CPU-GPU SYSTEM

6.1 Introduction

Computational fluid dynamics is typically carried out by designing a parallel pro-

gram that is decomposed in the spatial domain, such that each processor operates on

a portion of the fluid flow, and periodically exchanges a halo of states with its neigh-

bors. This long-used method is highly e↵ective at Eulerian computational methods,

such that the partitioning is static relative to Cartesian dimensions. An example

of this is the NCAR-LES simulation code [55], which has been ported to multiple

HPC architectures and used to simulate atmospheric turbulence in many di↵erent

applications.

Recently, this code has been augmented by adding spray particles superimposed

over the turbulent flow. This collection of particles represents small droplets that are

carried by the flow, such as might be seen at the crest of an ocean wave. The most

direct way to add particles to the existing flow simulation code is to again perform a

spatial partitioning and then alternate the particle and flow calculation at each node,

exchanging states as needed between each time step. However, due to the nature of

the particle step, the time to compute the particle step quickly exceeds the flow step

as the number of particles is scaled up.

To address this problem, we reconfigured the application to perform the (Eulerian)

flow calculation on distributed CPUs in the usual way, but moved the particle spray

98

to a GPU, which is better suited to support the (Lagrangian) interactions on a per-

particle basis. We demonstrate that this technique achieves a speedup of 14.4⇥

compared to 64 CPUs with MPI. A single GPU is able to outperform the distributed

CPUs on systems of up to 240 million particles in the available device. Looking

forward, we consider how this hybrid simulation technique can be scaled up to even

larger systems making use of larger GPU memories, multiple centralized GPUs, and

multiple GPUs distributed among the CPUs.

6.2 Background

In a wide variety of engineering and scientific applications, great need exists for

simultaneously computing Eulerian and Lagrangian quantities, since each brings a

di↵erent set of numerical advantages. Such a problem often takes the following form:

a set of partial di↵erential equations governing the spatial variation of some continu-

ous quantity is discretized, parallelized, and solved on a fixed Eulerian computational

mesh, while at the same time Lagrangian elements, each carrying its own information,

travel throughout the domain independent of the mesh but are modified based on

the computed Eulerian fields. From an algorithmic perspective, the underlying code

is therefore split between two main jobs at each time step: solving for the Eulerian

field and advancing the Lagrangian elements. Parallelization is typically done by

decomposing the computational domain across tasks, transferring halo data before

each time step for the Eulerian portion and transferring particle data across task

boundaries for the Lagrangian portion.

A specific example motivating the present work is that of particle-turbulence in-

teraction, a common system encountered in science and engineering where a turbulent

flow field transports some dispersed phase (dust grains, spray droplets, etc.) through-

out a domain of interest [7, 70]. In the physical sciences, these particles may be for

example cloud droplets [34] or sea spray droplets [69] which are carried through-

99

out atmospheric turbulence, giving rise to a systematic and controlled way to study

processes such as rain formation, air-sea energy exchange, atmospheric visibility, etc.

For the particular application of interest in this work, the incompressible Navier-

Stokes equations are solved for the velocity, temperature, humidity, and pressure

fields on a fixed computational Eulerian mesh:

r · ~u = 0, (6.1)

@~u

@t

+ ~u ·r~u = �1

⇢

rp+ ⌫r2

~u, (6.2)

@T

@t

+ ~u ·rT = ↵r2

T (6.3)

@q

@t

+ ~u ·rq = �r2

q (6.4)

where ~u is the fluid velocity, p is the pressure, T is the fluid temperature, q is the

specific humidity of the fluid, ⇢ is the density, ⌫ is the kinematic viscosity, ↵ is the

thermal di↵usivity, and � is the di↵usivity of water vapor.

At the same time, individual Lagrangian particles are inserted into the flow, which

are each transported according to momentum, energy, and mass conservation as they

change velocity, temperature, and radius:

d~x

p

dt

= ~v

p

, (6.5)

d~v

p

dt

=

1

⌧

p

(~u

f

� ~v

p

) . (6.6)

100

dT

p

dt

=

˙

Q

conv

+

˙

Q

evap

(6.7)

dr

p

dt

= ṁ (6.8)

Here, ~v

p

refers to the velocity of a single particle, ⌧

p

is a material time constant repre-

senting the inertia of the particle, and ~u

f

is the surrounding flow velocity, interpolated

to the location of the particle. It is this interpolation procedure that links the Eule-

rian solution of the velocity field ~u to the Lagrangian particle dynamics. T

p

refers to

the particle temperature, which can change based on convective heat transfer

˙

Q

conv

or evaporative (i.e. latent) heat transfer

˙

Q

evap

. r

p

is the particle radius which can

change based on the evaporation rate ṁ. The radius and temperature are likewise

linked to the Eulerian field via interpolation of the surrounding fluid temperature

and humidity (contained in

˙

Q and ṁ).

Thus overall, the particle position ~x

p

changes according to ~v

p

, which itself re-

sponds to the local flow velocity ~u

f

according to Equation 6.6. At the same time the

particle temperature and radius can change based on local thermodynamic properties

interpolated to the particle location.

Numerically, Equations 6.1 — 6.4 are solved using a pseudospectral discretization

in the periodic x and y directions (i.e., derivatives are based on fast Fourier trans-

formations), and second-order finite di↵erences are used in the z direction. Time

integration is performed using a third-order Runge-Kutta scheme [82] for all flow

and particle variables. A sample snapshot of the particle/flow solution is provided in

Figure 6.1.

The underlying code is written in Fortran and based on MPI for parallelization,

and has been used in the past to study a wide variety of turbulent flows in the at-

mosphere and ocean [23, 55, 69, 86]. It has been scaled up to 16,384 processors on

101

Figure 6.1. Snapshot of the particle-turbulence simulation computed via

Equations 6.1 - 6.8. Black dots are the instantaneous locations of the

particles (shown only in the bottom half of the domain), and colors

represent velocity fluctuations.

multiple architectures including Cray, SGI, and IBM (see e.g. reference [85]), and

routinely runs on computer clusters housed at various locations, including the Na-

tional Center for Atmospheric Research (NCAR), the U.S. Army Engineer Research

and Development Center (ERDC), and the National Energy Research Scientific Com-

puting Center (NERSC).

In its original configuration, the flow and particle solutions are computed using

MPI over multiple CPUs. The flow computation decomposes the Cartesian domain

over a two-dimensional array of processors as shown in Figure 6.2(a). Each processor

contains the entire solution array in the x direction at each (y, z) point for ease in

performing fast Fourier transforms (FFTs), while MPI communication is required to

perform FFTs in the y direction. Each processor constructs a halo in the z direction

for computing the approximations to vertical derivatives.

For this particular application, the dynamics of the particles is such that they

tend to drift and accumulate near the top and bottom walls of the domain [72],

and therefore for purposes of load balancing, the particles must reside on a slightly

di↵erent processor decomposition. This is shown schematically in Figure 6.2(b).

Since Equation 6.6 depends on the local interpolated fluid velocity ~u

f

, the processor

102

x

y
z

1

0

2
3

4
5

(a)

x

y
z

10 2

3 4 5(b)

Figure 6.2. (a) Schematic of the MPI domain decomposition for the

Eulerian flow calculations. Example here shown for 6 MPI processes. (b)

Schematic of the MPI domain decomposition for the Lagrangian particles,

shown for the same 6 MPI processes

domains shown in Figure 6.2(b) must acquire Eulerian flow information from the

processor domains of Figure 6.2(a). For instance in the setup described in Figure

6.2, processor 0 must communicate with processors 2 and 4 in order to construct a

“transposed” velocity (and temperature and humidity) field from which to interpolate

the to the locations of the particles which live on processor 0. This nearly all-to-all

communication step is one of the most expensive of the Lagrangian particle solver.

Furthermore, as the particles are transported throughout the domain, they cross

processor boundaries and must be communicated via MPI. Since the particles housed

on each processor are stored as a linked list, all particles crossing to each neighboring

processor are collected and transferred using an MPI derived data type.

For many applications in the context of particle-turbulence interaction, the high-

est possible number of particles is desired for statistical convergence purposes; how-

103

ever, in the original MPI implementation, a typical simulation with an Eulerian grid

size of [N

x

, N

y

, N

z

] = [128, 128, 128] run on a cluster of 64 processors becomes dom-

inated by particle computations after roughly 10

6

particles are introduced. This

limitation prevents the simulation of problems where particle numbers exceed 10

6

.

Since the particles are independent of each other, and since they are not confined to

a computational mesh, this problem is ripe for GPU-based acceleration since it will

remove the need for transferring flow information according to Figure 6.2 as well as

exchanging particle information between processors. This capability is intended to

allow for simulating significantly higher numbers of particles on the same Eulerian

grid, but without prohibitive increases in computational cost.

6.3 The Scalability Problem

The challenge, then, is to simulate tens to hundreds of millions of particles, to

model the phenomenon accurately, and to improve the statistical accuracy, while

running on easily available resources. In this instance, the available Infiniband linked

cluster consists of 16 compute nodes each with 16 Intel Xeon E5-2650 cores. This gives

a total compute resource of 2.8 TFLOPS, with each processor providing 0.179Tf [37].

However, this resource is shared between a number of researchers causing most jobs

to be limited out of practicality to 64 cores or 0.72 TFLOPS. This typically leads to

a limitation in simulation parameters to 10

6

particles, with a practical upper bound

of 10

7

particles for the wall clock time deemed appropriate. For reference, figure

6.3 demonstrates that the particle calculation dominates as the number of particles

increases. In this example for 64 MPI processes, the flow/particle computation time

crosses over at 2⇥ 10

6

particles.

Even a modest upgrade to double the available resource compute power would be

prohibitively expensive and require additional rack space. An attractive alternative is

to add GPU resources to the current cluster; a Titan X Pascal provides 11 TFLOPS

104

0.01

0.1

1

10

10

2

10

3

10

4

10

5

10

6

10

7

10

8

T
i
m
e
(
s
)

Particles

Particle
Flow

Figure 6.3. Comparison of the time taken for the flow vs particle

calculation on 64 MPI processes. The particle calculation begins to

dominate after 2⇥ 10

6

particles.

of compute resource, four times that available from the entire current cluster. Costs

for adding a single Titan X card are of the order of $2000, well within available

budgets.

Extracting optimal performance from GPUs is a challenging exercise, however,

especially where the algorithm is a hybrid CPU/GPU code and data transfer must

take place at every step. However the potential rewards make the exercise worthwhile

even if only part of the potential can be harnessed.

As discussed previously, the underlying flow solver is a well-established code base

that would be impractical to convert within the scope of this project. In contrast,

the particle code is naively parallel, so ideal for GPU architecture exploitation. This

choice also has advantages since the particle calculation is essentially a black box

where the flow field is passed in and statistics are returned back out. From this per-

spective, porting the particle solver to the GPU is deemed worthwhile if it outweighs

the cost of sending the data to the device.

105

6.4 Technical Challenges

Any such radical change in software architecture will bring interesting challenges,

and these are briefly outlined in this section. Throughout, testability was built into

the code from the beginning to facilitate regression testing as the code was moved

from Fortran, to C/C++, and then to CUDA.

6.4.1 GPU Architecture

Two possible GPU/cluster architectures were considered; one or more GPUs per

node, or a single master GPU node.

The traditional architecture for GPU clusters would have one or more GPUs

per node. For our specific example, although still economic compared to extending

the cluster, this was not practical as the current nodes could not accommodate the

GPU cards or their power requirements. For our specific requirements, an additional

node was purchased that could accommodate one or more Titan X Pascal GPUs and

attached to the cluster via an Infiniband connection.

6.4.2 Data Transfer

By choosing a single GPU master process, we introduce a fixed cost to the sim-

ulation which is only a↵ected by the flow grid size. Figure 6.4 shows that this fixed

cost scales cubically with the grid size as expected. The cost is dominated by the

MPI transfer as seen in Table 6.1.

6.4.3 Array Access

One of the biggest challenges was that the software is Fortran based, and the

requirement for the GPU code to be in C++ with CUDA. This was chosen for

the availability of tools as currently CUDA Fortran is only available via the PGI

106

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 50 100 150 200 250 300

T
i
m
e
(
s
)

Grid Dimension Size

Figure 6.4. Time taken for di↵erent Grid sizes (32

3

, 64

3

, 128

3

, 256

3

). The

time taken to transfer the grid to the GPU scales cubically with the grid

size.

TABLE 6.1

COMPARISON OF COST BREAKDOWN FOR DIFFERENT GRID

SIZES

Grid size Flow Transfer (s) Halo Generation (s) GPU Upload (s)

32 0.00160 0.00018 0.00039

64 0.00710 0.00100 0.00160

128 0.03570 0.00810 0.01180

256 0.36900 0.04590 0.08750

compiler. CUDA itself was chosen over OpenCL due to the experience of the team,

although transitioning it to provide an OpenCL implementation is made easier due

to the work done for this project. To reduce data duplication between Fortran and

C++, we pass the three dimensional velocity arrays as a linear array to the GPU.

This produced its own problem due to the fact that Fortran and C use a di↵erent

107

memory layout for arrays, Column-Major for Fortran and Row-Major for C. This

meant that the standard equation to calculate a three dimensional index into a linear

array Equation 6.9 is incorrect i.e.

array[x][y][z] 6= linear[a], (6.9)

where a = (x⇥ size(z)⇥ size(y) +

y ⇥ size(z) + z)

To correct this, we must rearrange the order of the operations to give us the correct

equation as shown in Equation 6.10.

array[x][y][z] = linear[b], (6.10)

where b = (x+ y ⇥ size(x) +

z ⇥ size(x)⇥ size(y)).

While this gives the correct access, Fortran also provides the ability to have o↵set

indices for its arrays. To handle this, the minimum bound for the array dimensions

in Fortran need to be added to each of the indexes as shown in Equation 6.11.

array[x][y][z] = linear[c], (6.11)

where c = ((x+ lbound(x)) +

(y + lbound(y))⇥ size(x) +

(z + lbound(z))⇥ size(x)⇥ size(y)).

108

6.4.4 Batch System Support

Owners of large computational clusters utilize scheduling systems to allow as

e�cient usage of the owned resources as possible. However, these systems are still

limited when working with GPU machines.

Most scheduling systems lack the ability to request a set of machines with varying

requirements (in our case the request includes a single machine that has a GPU and

any set of machines which have 16 cores.) Solving this required specifying a list of

hard coded machine names that the software should run on, crippling the scheduler’s

ability to distribute the usage of resources. This limitation is the target of future

system-level optimization and configuration.

6.4.5 Testing

While testing and debugging C++ or Fortran code is generally straightforward

thanks to a large number of available tools, NVIDIA’s CUDA only provides a small

number of such features. The pre-processing system available in Fortran or C/C++

compilers allows the CUDA code to be wrapped with definitions so that it can be

compiled as C/C++ code to be executed on the host instead of the GPU. This setup

allows the implementation of a regression and unit test framework which also allows

utilization of the tools NVIDIA provided as e�ciently as possible.

6.5 Results

The presented results compare the CPU particle computation versus the GPU

particle computation, since this calculation dominates the computation time after 2

million particles on the original full CPU configuration (see Figure 6.3). Since the

architecture of the two solutions is di↵erent there are a number of important factors

governing the relative CPU/GPU e�ciency.

109

The original CPU implementation of the particle calculation is described in Sec-

tion 6.2, and is distributed across the MPI nodes. During each time step (whose

size is calculated based on the flow computation), each particle update follows the

flow update, and after each particle update, particles are exchanged between MPI

nodes based on their new locations. This results in two distinct timing events: CPU

particle calculation and MPI particle position transfer.

The GPU algorithm updates the particles after each flow calculation step, and

since the chosen architecture is a multi GPU-enhanced CPU node, the complete flow

field now needs to be transferred to the GPU node. Again, we have two sources of

computational cost; GPU particle calculation, and MPI flow transfer.

We note that the MPI flow calculations are e↵ectively gated by a single step of

the particle calculation in both the CPU/GPU implementations.

In the following results we measure the combined cost of both the calculation, and

data transfer time. Figure 6.5 shows that until 1.0⇥10

6

particles, the CPU performs

better than the GPU, primarily due to the transfer cost of sending the data to the

GPU.

Due to the fact that it scales better than the CPU, the GPU performance overtakes

16 cores at ⇡ 1.0 ⇥ 10

6

, 32 cores at ⇡ 5.0 ⇥ 10

6

and 64 cores at ⇡ 2.5 ⇥ 10

7

. At its

most optimal, four GPUs are 14.4⇥ faster than 64 cores, 29.2⇥ faster than 32 cores

and 35.4⇥ faster than 16 cores. We note that we are comparing a fixed resource

with GPUs compared to scaling in number of CPU cores, so clearly at some point

the greater number of CPUs will overtake the GPU performance. However we show

a good performance increase at our target sub-cluster of 64 cores. In addition, we

discuss scalability as we add additional GPUs in the Section 6.5.1.4.

110

0.01

0.1

1

10

10

2

10

3

10

4

10

5

10

6

10

7

10

8

10

9

T
i
m
e
(
s
)

Particles

CPU - 16
CPU - 32
CPU - 64

GPU - Total
GPU - Transfer

Figure 6.5. Performance scaling with varying MPI tasks on CPU vs four

GPUs. The GPU has a constant transfer time but scales better than the

CPU, providing a 14.4⇥ performance improvement at 2.4⇥ 10

8

particles.

6.5.1 Optimization

With an initial reference GPU implementation, common optimization methods

were explored to further improve the performance. Reducing the algorithmic com-

plexity of the interpolation provided a large performance improvement whilst still

keeping the statistical accuracy of the simulations. Shared memory, which is a com-

mon GPU optimization, provided no performance benefits for this software. Finally,

restricting pointers to avoid aliasing, allowing the compiler to produce more opti-

mized code, provided a large performance improvement for the original interpolation

method, but no benefit for the reduced complexity version.

6.5.1.1 Interpolation

In the original CPU version of the code, two interpolation schemes are available

for calculating flow properties at the location of each particle: sixth-order Lagrange

interpolation and a second-order trilinear interpolation. The former requires a 6⇥6⇥6

grid stencil surrounding each particle, which proved to be a large portion of the

computation on the GPU due to the large amount of branching and random memory

111

0.001

0.01

0.1

1

10

10

2

10

3

10

4

10

5

10

6

10

7

T
i
m
e
(
s
)

Particles

GPU - Sixth Order
GPU - Second Order

Figure 6.6. Comparison of sixth and second order interpolation on a single

GPU. This shows that switching from sixth order to second order

interpolation provided a 10⇥ performance improvement for that GPU

kernel.

access, both of which GPUs handle poorly.

By implementing the second order interpolation, which required less branching

and random memory access, the performance was improved greatly. Figure 6.6 shows

that switching from sixth order to second order interpolation provided a 10⇥ perfor-

mance improvement in that GPU kernel.

The reduced complexity second order method is proved to be statistically accurate

enough to match the sixth order method (shown in Section 6.6).

6.5.1.2 Shared Memory

Shared memory is a common optimization within GPU code to improve the mem-

ory bandwidth. This is recommended because local variables within the kernel are

either stored in registers (fastest access) or a private section of the GPUs global

memory (slowest access).

Figure 6.7 shows that we receive no benefit for sixth order interpolation and only

10% improvement for second order interpolation. This is likely due to the fact that

these kernels use double precision exclusively, and the performance benefits of the

112

0

0.5

1

1.5

2

2.5

3

10

2

10

3

10

4

10

5

10

6

10

7

Sixth Order Interpolation

0

0.05

0.1

0.15

0.2

10

2

10

3

10

4

10

5

10

6

10

7

Second Order Interpolation

T
i
m
e
(
s
) Enabled

Disabled

T
i
m
e
(
s
)

Particles

Enabled
Disabled

Figure 6.7. Performance improvement by using shared memory on a single

GPU. Shows that the implementation does not benefit greatly from using

shared memory.

shared memory are shadowed by the cost of loading them into the shared memory

instead of relying on the L2 cache.

6.5.1.3 Restricted Pointers

In C/C++ it is possible for a function to take multiple pointers that point to

the same memory location (aliasing). This aliasing requires extra safeguards to make

sure that the program performs correctly. If two writes happen after each other,

they must be preserved in the final machine code, whereas two reads can occur in

either order without causing any problems. These things impose restrictions on the

compiler’s ability to produce the most optimal code.

Most compilers will allow the usage of the “restrict” keyword, which guarantees

that the pointers do not alias each other allowing the compiler to arrange instructions

in the most optimal way.

In CUDA, if parameters are defined as constant and restricted then the compiler

allows the usage of a read only cached memory. Due to the fact that most of the

work in our software relies on accessing the flow fields which are constant within each

step, we are able to utilize this to our benefit.

113

0

2

4

6

8

10

10

2

10

3

10

4

10

5

10

6

10

7

Sixth Order Interpolation

0

0.05

0.1

0.15

0.2

10

2

10

3

10

4

10

5

10

6

10

7

Second Order Interpolation

T
i
m
e
(
s
) Enabled

Disabled

T
i
m
e
(
s
)

Particles

Enabled
Disabled

Figure 6.8. Performance improvement by using restricted pointers on a

single GPU. Shows that the implementation provides a large benefit for the

sixth order interpolation but not the second order interpolation

Figure 6.8 shows that a 5⇥ performance improvement was achieved for the sixth

order interpolation only. This is likely due to the fact that the sixth order interpo-

lation access much more data and it accesses it in a more random pattern than the

second order interpolation and so benefits more from the read only cache that this

improvement a↵ords.

6.5.1.4 Multiple GPUs

On a NVIDIA GTX Titan X card which has 12GB RAM, 60 million particles

and the flow fields can be fit into the GPU’s memory. We expanded the single GPU

code to work with multiple GPUs on the same machine.

By scaling up our system to contain four GTX Titan X GPUs, it allowed for the

simulation of up to 240 million particles at the cost of transferring the field to each

GPU. Figure 6.9 shows how the performance scales for four GPUs with a varying

number of particles. It shows that for 240 million particles, dividing the work over

four GPUs provides a 6⇥ performance improvement over 64 CPU cores.

114

0.01

0.1

1

10

10

5

10

6

10

7

10

8

T
i
m
e
(
s
)

Particles

CPU - 64
1 GPU - Total
4 GPU - Total
GPU - Transfer

Figure 6.9. Particle update timings for four GPUs showing a 6⇥
improvement with four GPUs compared to 64 CPU cores.

6.5.2 Single Precision Transfer

A major cost with the initial implementation was transferring the double precision

fields from the nodes to the GPU master, by reducing the field to single precision

before sending we reduce the time taken for this transfer by 60%.

Figure 6.10 shows the performance improvement using a single precision flow field.

Reducing the transfer time by half moves the point where the GPU becomes faster

than the CPU from ⇡ 5 million particles to ⇡ 1.25 million.

6.6 Validation

To validate the GPU implementation, we turn to the benchmark case of reference

[52], who gathered results from several international research groups in order to pro-

vide a test bed of multiple flow/particle codes, all simulating the same particle-laden

turbulent flow. Turbulent channel flow, solved via direct numerical simulation (i.e.

the Eulerian computation), laden with one-way coupled particles (i.e. the Lagrangian

computation) is computed, and statistics of the flow and particle velocities are pro-

vided from each of the groups. For purposes of the present work, we use this test case

as a benchmark to ensure that the GPU calculations produce results which match

115

0.01

0.1

1

10

10

2

10

3

10

4

10

5

10

6

10

7

10

8

10

9

T
i
m
e
(
s
)

Particles

CPU - 64
Single - Total

Single - Transfer
Double - Total

Double - Transfer

Figure 6.10. Performance comparison single precision and double precision

flow field transfer transfer yielding a 30% reduction in overall particle

update time for 240 million particles using four GPUs.

both the CPU calculation as well as published benchmark data.

As as a representative example, we plot in Figures 6.11 and 6.12 the mean stream-

wise particle velocity and the root-mean-square streamwise particle velocity fluctua-

tion for one of the specified particle sizes (case St = 5 in [52]). In the figures, UUD,

TUE, ASU, and HPU refer to four groups solving the same flow with slightly varying

numerical discretizations. From our simulations, we present three curves: one based

on the GPU using 10

7

particles with linear interpolation for the flow velocity at the

particle location, one using the CPU and linear interpolation (10

5

particles), and

one using the CPU and sixth-order interpolation (also 10

5

particles). These figures

demonstrate that the GPU recovers the exact same result as the CPU for the same

interpolation type, and that the speedup gained by using linear interpolation on the

GPU does not significantly a↵ect these statistics, making it a viable cost for the

enhanced speedup.

116

0

2

4

6

8

10

12

14

16

18

0 50 100 150 200

V

+

x

z

+

UUD
TUE
ASU
HPU

CPU - Sixth Order
CPU - Second Order
GPU - Second Order

Figure 6.11. The horizontally averaged streamwise particle velocity (V

+

x

) as

a function of wall-normal distance (z

+

) computed by the GPU, the CPU,

and the CPU using sixth-order interpolation compared against research

groups UUD, TUE, ASU, and HPU in the benchmark case of [52] for

St = 5.

6.7 Extrapolation

With the current work optimized and validated, we look to the future at areas

that we feel would provide the largest benefit.

The current code utilizes double precision exclusively to guarantee the results are

as accurate as possible. However, this provides a major hit to performance on GPUs

(which are designed to work e�ciently on single precision floating point numbers),

ranging from a 2⇥ slowdown with NVIDIA’s Tesla cards to a 32⇥ slowdown for the

GPUs we used in this project. Again, we provide an approximation of the maxi-

mum possible performance benefits gained by moving the code completely to single

precision.

6.7.1 Single Precision Calculation

As this implementation was focused on moving the current code to use the GPU,

all of the calculation on the GPU were kept in double precision to provide a consistent

system. For GPUs, double precision computation is much more costly than single

117

0

0.5

1

1.5

2

2.5

3

0 50 100 150 200

v

+

x
,
r
m
s

z

+

UUD
TUE
ASU
HPU

CPU - Sixth Order
CPU - Second Order
GPU - Second Order

Figure 6.12. The root-mean-square streamwise particle velocity fluctuation

(v

+

x,rms

) as a function of wall-normal distance (z

+

) computed by the GPU,

the CPU, and the CPU using sixth-order interpolation compared against

research groups UUD, TUE, ASU, and HPU in the benchmark case of [52]

for St = 5.

precision (from 2⇥ slower for Server cards, to 32⇥ slower for the Titan X cards that

were used.)

Figure 6.13 shows an extrapolation of the potential performance with single pre-

cision. For a Tesla GPU, the performance compared to the CPU improves to provide

a 30⇥ speedup. For the GTX Titan X, a 75⇥ performance improvement compared

to the CPU could be possible.

Finally, by transitioning the particle data and flow field from double to single

precision, the number of particles that are able to fit into the GPU’s memory should

double to 125 million.

6.8 Conclusion

This work shows that by migrating the particle calculation from MPI to a four

GPU system, we are able to calculate the trajectories for 240 million particles with

a 14.4⇥ speed up compared to the particle calculation on our target cluster of 64

cores. This allows for simulations to greatly enhance the statistical accuracy of the

118

0.01

0.1

1

10

10

2

10

3

10

4

10

5

10

6

10

7

10

8

10

9

T
i
m
e
(
s
)

Particles

CPU - 64
GPU - Total

GPU - Server - Total
GPU - Consumer - Total
GPU - Single - Transfer

Figure 6.13. Single precision extrapolated particle update on consumer and

enterprise GPUs. This shows that we expect the consumer card to achieve

a 75⇥ speedup over the CPU. It also shows that for a enterprise GPU we

expect to achieve a 30⇥ speedup over the CPU.

particles within a flow field.

Overall, with GPU acceleration of the flow/particle solver, system sizes (i.e. par-

ticle numbers) and flow regimes can now be reached on traditional compute clusters

that were previously unobtainable. Furthermore, this demonstration highlights the

unique ability of GPU devices to provide cost-e�cient speedup over mere extension

of CPU clusters, even when favorable scaling exists.

119

CHAPTER 7

CONCLUSION

For my initial experimentation at the most basic levels of the GPU arithmetic

operations, shaders, I worked within the context of the OpenGL pipeline. Although

this was quickly superseded by the transition to CUDA, an interesting spin-o↵ of the

technology was the “VisArray” platform that I developed. This platform found ex-

tensive use in mapping layered data onto basic point-clouds for Heritage Preservation,

see Section 7.1.

The transition to CUDA allowed a more ambitious implement of algorithms such

as the Normal Mode Langevin (NML) Course Grained Molecular Dynamics method

in a hybrid CPU/GPU version of the OpenMM platform, see Section 7.2.

The work on LTMD was generally restricted to a single GPU in a single computer

node. Extension of GPU techniques to the sort of environment that is generally

available to researchers was a new challenge. This led to the extension of these

techniques to the solution of particle laden flows in a typical HPC environment using

Message Passing Interface (MPI), see Section 7.3.

7.1 Modeling Digital Heritage

In this work, we explored methods of creating realistic accurate 3D models of his-

torical monuments from data collected using LIDAR scanners and traditional pho-

tography. This has many areas of interest, such as scientific research, interactive

education for high school students, who may not necessarily be able to visit sites

120

such as the Roman Forum, and for students of architecture, history and archaeology

that study such sites in greater detail.

Although it has been possible to acquire the data, consisting of multiple 3D point-

clouds and arrays of images from di↵erent viewpoints, using the data in a Heritage

Preservation and Architectural Education setting has been challenging. Software

was provided with the LIDAR scanner to stitch together point-clouds from di↵erent

vantage points but it was not possible to remove overlapping data that is inherent

in the process. In addition there was no way to merge the images and point-clouds

to form a complete navigable model at the resolutions of interest. Further issues

presented themselves with distortions in the resulting panoramic vista produced by

the GigaPan software, partly caused by the GigaPan requirement of a fixed focal

distance which is problematic in real Heritage site viewpoints. We find that the

current options, such as manual draping or stereo through motion, do not solve this

problem e↵ectively and propose a set of algorithms, tools and workflow for collecting

data and automatically processing it to produce these 3D models.

Working with Dr. Krusche’s team of architects and archaeologists, we develop

an on-site workflow and a software platform to ingest and present data. We wrote

software to merge multiple point-clouds into the same viewpoint and to cull the re-

dundant overlapping data. We implemented algorithms to generate a surface for

the model, including compression techniques to remove redundant surface features.

Finally, we implemented algorithms to scale, rotate and position images on the gen-

erated surface as well as choosing the optimal image pixels where images overlap.

The resulting work has also been published as a Patent application [87] and was

displayed in the Curia Julia at the Roman Forum. Using seed funding from the

University of Notre Dame, we were able to acquire both a LIDAR scanner and a Gi-

gaPan robotic tripod, and document sites such as the Roman Forum and Taj Mahal

in unprecedented detail.

121

To push this work forward, a number of improvements are possible.

Firstly, the current model generation is not “air tight” because it simply maps

the separate scans to the same coordinate space. This is restrictive as it makes the

models unusable for further work, such as creating replicas through 3D printing, or

structural analysis to determine stresses or weaknesses within the object.

Secondly, the current implementation is somewhat performant but it’s perfor-

mance is still a burden whilst working in the field. By using the GPU for calculation,

as well as the rendering, we should be able to improve the performance. This would

allow for easier work on-site to create models from the collected data to assure the

surveyors that they have not missed crucial data.

7.2 Long Timestep Molecular Dynamics

We presented a hybrid CPU/GPU implementation of the LTMD propagator with

speed ups of over 5.8⇥ compared with traditional MD integrators on GPUs. This

result illustrates great potential for testing larger protein systems over a longer bio-

logical period of time. Analysis of the cost of individual sections of the method have

yielded insight into how we may improve performance in the future.

Validation with Ala5 and Villin NLE has shown excellent agreement between

Langevin and LTMD. With Ala5, we showed that LTMD is able to sample the confor-

mational states with a similar distribution as Langevin, produces comparable folding

times, and captures similar dynamics. Similar folding times and dynamics between

Langevin and LTMD were also reported for Villin NLE.

Analyses of the e↵ects of the various parameters such as rediagonalization period,

the number of modes, epsilons used with the numerical di↵erentiation, partitioning

methods, and fast noise were presented. We found that with the proper parameters,

especially the rediagonalization period and number of modes, LTMD agrees well with

Langevin. Further, by choosing a larger number of modes, rediagonalization can be

122

performed less frequently, leading to increased performance. The choice of block

epsilons for FBM were shown to agree with the known values from the theory, while

the choice of S epsilons were shown to be robust over a range of values.

This implementation of LTMD, and future improvements to the performance and

numerics promise an order of magnitude improvement over conventional GPU imple-

mentations of MD.

To make this work perform better and become more generally usable for simulat-

ing MD, two areas will be explored in the future.

Firstly, the current implementation of the software does not fully utilize the GPU’s

potential as only part of the algorithm is implemented to use it. The CPU still han-

dles a portion of the algorithm, including block diagonalization, diagonalization of

S and numerical di↵erentiation. We anticipate that porting this code to the GPU

should help reduce data transfers between the two processors and take advantage of

the GPU’s ability to parallelize operation, which will improve performance. Given

that the diagonalization dominates the run-time of the method, performance improve-

ments can lead to even greater gains in raw simulation performance (e.g., ns/day).

Secondly, the LTMD method is only implemented with an implicit solvent model,

which approximates the water molecules rather than simulating them, which provides

a large performance improvement. However, we would like to implement it with an

explicit solvent model, which simulates the protein within a box of water molecules

to more accurately capture the dynamics of the system.

7.3 Lagrangian Particle Laden Flow Simulation

This work shows that by migrating the particle calculation from MPI to a four

GPU system, we are able to calculate the trajectories for 240 million particles with

a 14.4⇥ speed up compared to the particle calculation on our target cluster of 64

cores. This allows for simulations to greatly enhance the statistical accuracy of the

123

particles within a flow field.

Overall, with GPU acceleration of the flow/particle solver, system sizes (i.e. par-

ticle numbers) and flow regimes can now be reached on traditional compute clusters

that were previously unobtainable. Furthermore, this demonstration highlights the

unique ability of GPU devices to provide cost-e�cient speedup over mere extension

of CPU clusters, even when favorable scaling exists. To enhance these results further

and push particle-laden turbulence research into unexplored areas, there are three

optimization’s we would like to target.

Firstly, we would like to convert the computation to a mixed precision format

rather than the solely double precision computation that the current implementa-

tion supports. This would allow for more particles to fit into the GPU pushing the

statistical accuracy of simulations further, as well as benefit from GPUs higher per-

formance with single precision calculations. These performance improvements could

range anywhere from 2⇥ for a enterprise GPU, to 32⇥ for consumer GPUs.

Secondly, the implementation currently does not provide the same functionality

that the CPU version does. We would like to find an optimal way of implement-

ing particle-particle interaction to allow for more realistic simulations of real world

phenomena.

Finally, we would like to extend the method to implement creation and destruction

of particles. This would allow us to provide a more realistic method of achieving a

steady state for the flow and particles, compared to the current version which reflects

particles o↵ of the boundaries.

7.4 Closing Notes

GPU development is complex due to the specialized knowledge required to achieve

optimal e�ciency with implementations. I feel that whilst the tooling and libraries

available will improve, reducing the barriers to entry for applications that do not re-

124

quire the maximal benefit, it will not provide the maximum available benefit. Devel-

opers who wish to reach this optimal performance goal will still require the knowledge

of the architecture to e↵ectively implement their solutions.

As described in Chapter 3, we can expect GPUs to become more powerful, whilst

keeping a realistic power budget. I feel that the trend of many simple cores will most

likely continue, allowing the current programming model to remain e↵ective.

As I expect the architectural challenges to remain the same, I would like to explore

expanding the Lagrangian particle code to utilize multiple GPUs per node to allow

for extreme numbers of particles to be simulated concurrently.

One of the exciting architectural changes is the introduction of the Tensor Cores.

Current deep learning packages that can utilize the GPU, such as TensorFlow, have

provided extensive linear algebra packages, which could be leveraged in a non deep-

learning environment. These Tensor Cores, could become the “new GPU” for in-

novative algorithmic development. This is highly applicable to LTMD as it would

allow a full GPU algorithm implementation, compared to the current hybrid imple-

mentation. For the digital heritage modeling project, a large number of algorithms

could be replaced with deep learning approaches, as well as allowing implementation

of structural recognition.

125

APPENDIX A

SOURCE CODE

A.1 DHARMA

A.1.1 Point to Surface Mapping

def Ca l cu l a t eSur f a c e (Hor izonta l , Ve r t i ca l , Points) :

Ve r t i c e s = []

for i in range (Hor i zonta l � 1) :

for j in range (Ve r t i c a l � 1) :

l ineA = i ⇤ Ver t i c a l + j ; l ineB = (i +1) ⇤ Ver t i c a l + j

a = Points . get (l ineA) ; b = Points . get (l ineB)

c = Points . get (l ineB + 1) ; d = Points . get (l ineA + 1)

count = 4

i f (a . i sZ e r o) count �= 1

i f (b . i sZ e r o) count �= 1

i f (c . i sZ e r o) count �= 1

i f (d . i sZ e r o) count �= 1

i f (count < 3) continue

i f (a . i sZ e r o) :

Ve r t i c e s . append (b , c , d)

continue

i f (b . i sZ e r o) :

Ve r t i c e s . append (a , c , d)

continue

i f (c . i sZ e r o) :

126

Ver t i c e s . append (a , b , d)

continue

i f (d . i sZ e r o) :

Ve r t i c e s . append (a , b , c)

continue

Ver t i c e s . append (a , b , c)

Ve r t i c e s . append (c , d , a)

return Ver t i c e s

A.1.2 Point Reduction in O(N)

def PrunePoints (Threshold , Vertex , Polygons , Normal , Ver t i ca l ,

Hor izonta l ,

PointUses , C r i t e r i a) :

r e s u l t = Polygons [:]

po intUses = PointUses [:]

s t ep = 2

while s t ep < max(Hor izonta l , Ve r t i c a l) :

hStep = step / 2

pUses = [0] ⇤ len (Vertex)

for i in range (hStep , Hor izonta l , s t ep) :

i f i + hStep > Hor i zonta l :

continue

for j in range (hStep , Ver t i ca l , s t ep) :

i f j + hStep > Ver t i c a l :

continue

l ineA = ((i � hStep) ⇤ Ver t i c a l) + j

l ineB = (i ⇤ Ver t i c a l) + j

l ineC = ((i + hStep) ⇤ Ver t i c a l) + j

127

i f pointUses [l ineB] == 4 :

normals = [

Normal [l ineA+hStep] , Normal [l ineB+hStep] , Normal [l ineC+

hStep] ,

Normal [l ineA] , Normal [l ineB] , normal [l ineC] ,

Normal [l ineA�hStep] , Normal [l ineB�hStep] , Normal [l ineC�

hStep]

]

removable = true

i f Cr i t e r i a == Center :

for k in range (10) :

top = dot (normals [4] , normals [k])

bottom = normals [4] . Magnitude () ⇤normals [k] . Magnitude ()

ang le = acos (top / bottom) ⇤ (180 . 0/3 . 14159)

i f ang le >= Threshold :

removable = f a l s e

break

else :

ang le = 0 .0

for k in range (10) :

i f k != 4 :

top = dot (normals [4] , normals [k])

bottom = normals [4] . Magnitude () ⇤normals [k] . Magnitude ()

ang le += pow(acos (top / bottom) ⇤ (180 . 0/3 . 14159) , 2)

ang le = sq r t (ang le) / 8

i f ang le >= Threshold :

128

removable = f a l s e

break

i f removable :

// Remove Bottom Le f t

r e s u l t �= Polygon (l ineA�hStep , l ineB�hStep , l ineB)

r e s u l t �= Polygon (l ineB , l ineA , l ineA�hStep)

// Remove Top Le f t

r e s u l t �= Polygon (l ineA , l ineB , l ineB+hStep)

r e s u l t �= Polygon (l ineB+hStep , l ineA+hStep , l ineA)

// Remove Bottom Right

r e s u l t �= Polygon (l ineB�hStep , l ineC�hStep , l ineC)

r e s u l t �= Polygon (l ineC , l ineB , l ineB�hStep)

// Remove Top Right

r e s u l t �= Polygon (l ineB , l ineC , l ineC+hStep)

r e s u l t �= Polygon (l ineC+hStep , l ineB+hStep , l ineB)

// Create Replacement Points

r e s u l t �= Polygon (l ineA�hStep , l ineC�hStep , l ineC+hStep)

r e s u l t += Polygon (l ineC+hStep , l ineA+hStep , l ineA�hStep)

// Update Usages for Next Step

pUses [l ineA�hStep]++

pUses [l ineA+hStep]++

pUses [l ineC�hStep]++

pUses [l ineC+hStep]++

pointUses = pUses [:]

s t ep += step

return r e s u l t

129

A.1.3 Mesh Pruning to Remove “Poor” Triangles and Overlap

def FindAverage (Ve r t i c i e s , Polygons) :

average = 0

for poly in Polygons :

bDi f f = Ve r t i c i e s [poly . b] � Ve r t i c i e s [poly . a]

cD i f f = Ve r t i c i e s [poly . c] � Ve r t i c i e s [poly . a]

s i z e = CrossProduct (bDi f f , cD i f f) . Magnitude () ⇤ 0 .5

average += retVal / V e r t i c i e s [poly . a] . Magnitude

return Absolute (average / len (Polygons))

def Prune (Threshold , Ve r t i c i e s , Polygons) :

remaining = []

for poly in Polygons :

bDi f f = Ve r t i c i e s [poly . b] � Ve r t i c i e s [poly . a]

cD i f f = Ve r t i c i e s [poly . c] � Ve r t i c i e s [poly . a]

s i z e = CrossProduct (bDi f f , cD i f f) . Magnitude () ⇤ 0 .5

area = s i z e / V e r t i c i e s [poly . a] . Magnitude

i f area < Threshold :

remaining . append (poly)

return remaining

130

BIBLIOGRAPHY

1. S. H. Ahn. OpenGL transformation. http://www.songho.ca/opengl/gl_

transform.html, September 2017.

2. M. Aissa, T. Verstraete, and C. Vuik. Toward a gpu-aware comparison of explicit

and implicit cfd simulations on structured meshes. Computers and Mathematics
with Applications, 74(1):201–217, 2017. doi: 10.1016/j.camwa.2017.03.003.

3. B. Alder and T. Wainwright. Phase transition for a hard sphere system. J. Chem.
Phys., 27:1208, 1957.

4. B. Alder and T. Wainwright. Studies in molecular dynamics. i. general method.

J. Chem. Phys., 31:459, 1959.

5. B. Alder and T. Wainwright. Studies in molecular dynamics. ii. behavior of a

small number of elastic spheres. J. Chem. Phys., 33:1439, 1960.

6. H. Andersen. Molecular dynamics simulations at constant pressure and/or tem-

perature. J. Chem. Phys., 72:2384, 1980.

7. S. Balachandar and J. K. Eaton. Turbulent dispersed multiphase flow. Annual
Review of Fluid Mechanics, 42:111–133, 2010. doi: 10.1146/annurev.fluid.010908.
165243.

8. A. L. Beberg, D. L. Ensign, G. Jayachandran, S. Khaliq, and V. S. Pande. Fold-

ing@home: Lessons from eight years of volunteer distributed computing. 2009
IEEE International Symposium on Parallel & Distributed Processing, pages 1–8,
May 2009. doi: 10.1109/IPDPS.2009.5160922. URL http://ieeexplore.ieee.

org/lpdocs/epic03/wrapper.htm?arnumber=5160922.

9. N.-V. Buchete and G. Hummer. Coarse master equations for peptide folding

dynamics. The Journal of Physical Chemistry B, 112(19):6057–69, May 2008.

ISSN 1520-6106. doi: 10.1021/jp0761665. URL http://www.ncbi.nlm.nih.

gov/pubmed/18232681.

10. M. Christen. OpenGL: Per fragment lighting. https://www.opengl.org/sdk/

docs/tutorials/ClockworkCoders/lighting.php, September 2017.

11. P.-Y. Chuang and L. A. Barba. Accelerating petsc-based cfd codes with multi-

gpu computing. The International Conference for High Performance Computing,
Networking, Storage and Analysis organized by ACM, November 2016, 2016.

131

http://www.songho.ca/opengl/gl_transform.html
http://www.songho.ca/opengl/gl_transform.html
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5160922
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5160922
http://www.ncbi.nlm.nih.gov/pubmed/18232681
http://www.ncbi.nlm.nih.gov/pubmed/18232681
https://www.opengl.org/sdk/docs/tutorials/ClockworkCoders/lighting.php
https://www.opengl.org/sdk/docs/tutorials/ClockworkCoders/lighting.php

12. P. Cignoni, P. Cignoni, M. Callieri, M. Callieri, M. Corsini, M. Corsini,

M. Dellepiane, M. Dellepiane, F. Ganovelli, F. Ganovelli, G. Ranzuglia, and

G. Ranzuglia. MeshLab: an Open-Source Mesh Processing Tool. Sixth Eu-
rographics Italian Chapter Conference, pages 129–136, 2008. doi: 10.2312/

LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136.

13. M. Corsini, M. Dellepiane, F. Ponchio, and R. Scopigno. Image-to-geometry

registration: A Mutual Information method exploiting illumination-related ge-

ometric properties. Computer Graphics Forum, 28(7):1755–1764, 2009. ISSN

01677055. doi: 10.1111/j.1467-8659.2009.01552.x.

14. B. Curless and M. Levoy. A volumetric method for building complex models from

range images. Proceedings of the 23rd annual conference on . . . , pages 303–312,
1996. ISSN 00978930. doi: 10.1145/237170.237269. URL http://portal.acm.

org/citation.cfm?doid=237170.237269.

15. L. Dagum and R. Menon. OpenMP: An Industry-Standard API for Shared-

Memory Programming. IEEE Computational Science & Eng., 5(1):46–55, 1998.

16. T. Darden, D. York, and L. Pederson. Particle Mesh Ewald: An N log N method

for Ewald sums in large systems. J. Chem. Phys., 98(12):10089–10092, 1993.

17. J. M. Deutch and I. Oppenheim. Molecular theory of Brownian motion for several

particles. J. Chem. Phys., 54:3547, 1971.

18. P. Durand, G. Trinquier, and Y. Sanejouand. A new approach for deter-

mining low-frequency normal modes in macromolecules. Biopolymers, 34(6):

759–771, June 1994. ISSN 0006-3525. doi: 10.1002/bip.360340608. URL

http://onlinelibrary.wiley.com/doi/10.1002/bip.360340608/abstract.

19. P. Eastman and V. S. Pande. A hardware-independent framework for molecular

simulations. Comput. Sci. Eng., 12:34–39, 2010.

20. S. Elghobashi. On predicting particle-laden turbulent flows. Applied scientific
research, 52(4):309–329, 1994.

21. P. P. Ewald. Die Berechnung optischer und elektrostatischer Gitterpotentiale.

Ann. Phys., 369:253–287, 1921.

22. FARO. Faro laser scanner software - scene - overview, September 2017. URL

http://www.faro.com/en-us/products/faro-software/scene/overview.

23. J. J. Finnigan, R. H. Shaw, and E. G. Patton. Turbulence structure above a

vegetation canopy. Journal of Fluid Mechanics, 637:387–424, 2009. doi: 10.

1017/S0022112009990589.

24. M. Folwer. Patterns of Enterprise Application Architecture. Addison-Wesley,

Boston, 2002.

132

http://portal.acm.org/citation.cfm?doid=237170.237269
http://portal.acm.org/citation.cfm?doid=237170.237269
http://onlinelibrary.wiley.com/doi/10.1002/bip.360340608/abstract
http://www.faro.com/en-us/products/faro-software/scene/overview

25. T. Franken, M. Dellepiane, F. Ganovelli, P. Cignoni, C. Montani, and

R. Scopigno. Minimizing user intervention in registering 2D images to 3D

models. Visual Computer, 21(8-10):619–628, 2005. ISSN 01782789. doi:

10.1007/s00371-005-0309-z.

26. M. Friedrichs, P. Eastman, V. Vaidyanathan, M. Houston, S. Legrand, A. Be-

berg, D. Ensign, C. Bruns, and V. Pande. Accelerating molecular dynamic simu-

lation on graphics processing units. J. Comp. Chem., 30(6):864–872, 2009. ISSN
1096-987X. doi: 10.1002/jcc. URL http://onlinelibrary.wiley.com/doi/

10.1002/jcc.21209/full.

27. A. Ghysels, D. Van Neck, V. Van Speybroeck, T. Verstraelen, and M. Waroquier.

Vibrational modes in partially optimized molecular systems. J. Chem. Phys.,
126(22), June 2007. ISSN 0021-9606. doi: 10.1063/1.2737444. URL http:

//www.ncbi.nlm.nih.gov/pubmed/17581039.

28. A. Ghysels, D. Van Neck, and M. Waroquier. Cartesian formulation of the

mobile block Hessian approach to vibrational analysis in partially optimized

systems. J. Chem. Phys., 127(16), Oct. 2007. ISSN 0021-9606. doi: 10.

1063/1.2789429. URL http://www.ncbi.nlm.nih.gov/pubmed/17979320http:

//link.aip.org/link/?JCPSA6/127/164108/1.

29. A. Ghysels, D. Van Neck, B. R. Brooks, V. Van Speybroeck, and M. Waroquier.

Normal modes for large molecules with arbitrary link constraints in the mobile

block Hessian approach. J. Chem. Phys., 130(8), Mar. 2009. ISSN 1089-7690. doi:

10.1063/1.3071261. URL http://www.ncbi.nlm.nih.gov/pubmed/19256597.

30. A. Ghysels, V. Van Speybroeck, E. Pauwels, D. Van Neck, B. R. Brooks, and

M. Waroquier. Mobile Block Hessian approach with adjoined blocks: an e�cient

approach for the calculation of frequencies in macromolecules. J. Chem. Theory
Comput., 5(5):1203–1215, May 2009. ISSN 1549-9618. doi: 10.1021/ct800489r.

URL http://pubs.acs.org/doi/abs/10.1021/ct800489r.

31. C. S. o. M. Glenn Murray. Rotation about an arbitrary axis in 3

dimensions, September 2017. URL http://inside.mines.edu/~gmurray/

ArbitraryAxisRotation/ArbitraryAxisRotation.html.

32. J. Goldstone, A. Salam, and S. Weinberg. Broken Symmetries. Phys. Rev., 127
(3):965–970, 1962.

33. A. W. Gotz, M. J. Williamson, D. Xu, D. Poole, S. LeGrand, and R. C. Walker.

Routine microsecond molecular dynamics simulations with AMBER on GPUs.

J. Chem. Theory Comput., 8(5):1542–1555, 2012.

34. W. W. Grabowski and L.-P. Wang. Growth of cloud droplets in a turbulent

environment. Annual Review of Fluid Mechanics, 45:293–324, 2012. doi: 10.

1146/annurev-fluid-011212-140750.

133

http://onlinelibrary.wiley.com/doi/10.1002/jcc.21209/full
http://onlinelibrary.wiley.com/doi/10.1002/jcc.21209/full
http://www.ncbi.nlm.nih.gov/pubmed/17581039
http://www.ncbi.nlm.nih.gov/pubmed/17581039
http://www.ncbi.nlm.nih.gov/pubmed/19256597
http://pubs.acs.org/doi/abs/10.1021/ct800489r
http://inside.mines.edu/~gmurray/ArbitraryAxisRotation/ArbitraryAxisRotation.html
http://inside.mines.edu/~gmurray/ArbitraryAxisRotation/ArbitraryAxisRotation.html

35. Y. Hanada, S. Kitaoka, and Y. Xinhua. Optimizing particle simulation for kepler

gpu. Procedia Engineering, 61:376 – 380, 2013. ISSN 1877-7058. doi: http:

//dx.doi.org/10.1016/j.proeng.2013.08.030. URL http://www.sciencedirect.

com/science/article/pii/S1877705813012125. 25th International Conference

on Parallel Computational Fluid Dynamics.

36. M. J. Harvey, G. Giupponi, and G. D. Fabritiis. ACEMD: Accelerating Biomolec-

ular Dynamics in the Microsecond Time Scale. J. Chem. Theory Comput., 5:
1632–1639, 2009.

37. Intel. Intel xeon e5-2600 metrics, September 2017. URL http://download.

intel.com/support/processors/xeon/sb/xeon_E5-2600.pdf.

38. Intel. The math kernel library. http://software.intel.com/en-us/articles/

intel-mkl/, September 2017.

39. J. A. Izaguirre and R. D. Skeel. The Five Femtosecond Time Step Barrier, pages
303–318. Springer-Verlag, Berlin, 1998.

40. J. A. Izaguirre, D. P. Catarello, J. M. Wozniak, and R. D. Skeel. Langevin sta-

bilization of molecular dynamics. J. Chem. Phys., 114(5), 2001. ISSN 00219606.

doi: 10.1063/1.1332996. URL http://link.aip.org/link/JCPSA6/v114/i5/

p2090/s1&Agg=doi.

41. J. A. Izaguirre, C. R. Sweet, and V. S. Pande. Multiscale dynamics of macro-

molecules using normal mode langevin. In R. B. Altman, A. K. Dunker,

L. Hunter, T. Murray, and T. E. Klein, editors, Pacific Symposium on Bio-
computing, pages 240–251. World Scientific Publishing, 2010. ISBN 978-981-

4295-29-1. URL http://dblp.uni-trier.de/db/conf/psb/psb2010.html#

IzaguirreSP10.

42. Z. Janko and D. Chetverikov. Photo-consistency based registration of an uncali-

brated image pair to a 3d surface model using genetic algorithm. In Proceedings
of the 3D Data Processing, Visualization, and Transmission, 2Nd International
Symposium, 3DPVT ’04, pages 616–622, Washington, DC, USA, 2004. IEEE

Computer Society. ISBN 0-7695-2223-8. doi: 10.1109/3DPVT.2004.94. URL

http://dx.doi.org/10.1109/3DPVT.2004.94.

43. M. Kazhdan and H. Hoppe. Screened poisson surface reconstruction. ACM Trans-
actions on Graphics, 32(3):1–13, 2013. ISSN 07300301. doi: 10.1145/2487228.

2487237. URL http://dl.acm.org/citation.cfm?doid=2487228.2487237.

44. I. Kolossváry and C. McMartin. On the degeneracy of the Hessian matrix. J.
Math. Chem., 9(January 1993):359–367, 1992. URL http://www.springerlink.

com/index/N801140471420746.pdf.

45. J. Lebowitz, J. Percus, and L. Verlet. Ensemble dependence of fluctuations with

application to machine computations. Phys. Rev., 153:250, 1967.

134

http://www.sciencedirect.com/science/article/pii/S1877705813012125
http://www.sciencedirect.com/science/article/pii/S1877705813012125
http://download.intel.com/support/processors/xeon/sb/xeon_E5-2600.pdf
http://download.intel.com/support/processors/xeon/sb/xeon_E5-2600.pdf
http://software.intel.com/en-us/articles/intel-mkl/
http://software.intel.com/en-us/articles/intel-mkl/
http://link.aip.org/link/JCPSA6/v114/i5/p2090/s1&Agg=doi
http://link.aip.org/link/JCPSA6/v114/i5/p2090/s1&Agg=doi
http://dblp.uni-trier.de/db/conf/psb/psb2010.html#IzaguirreSP10
http://dblp.uni-trier.de/db/conf/psb/psb2010.html#IzaguirreSP10
http://dx.doi.org/10.1109/3DPVT.2004.94
http://dl.acm.org/citation.cfm?doid=2487228.2487237
http://www.springerlink.com/index/N801140471420746.pdf
http://www.springerlink.com/index/N801140471420746.pdf

46. Leica. Leica scanners, September 2017. URL http://hds.leica-geosystems.

com/en/index.htm.

47. Leica-Geosystems. Leica geosystems hds cyclone, September 2017. URL http:

//www.leica-geosystems.com/en/HDS-Software_3490.htm.

48. H. P. A. Lensch, W. Heidrich, and H. P. Seidel. Automated texture registra-

tion and stitching for real world models. Proceedings - Pacific Conference on
Computer Graphics and Applications, 2000-January, 2000. ISSN 15504085. doi:

10.1109/PCCGA.2000.883955.

49. L. Liu and I. Stamos. Automatic 3D to 2D registration for the photorealistic

rendering of urban scenes. Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2:137–143, 2005. ISSN 10636919.

doi: 10.1007/3-211-32318-X 30.

50. M. R. Lopez, A. Sheshadri, J. R. Bull, T. D. Economon, J. Romero, J. E. Watkins,

D. M. Williams, F. Palacios, A. Jameson, and D. E. Manosalvas. Verification and

validation of hifiles: a high-order les unstructured solver on multi-gpu platforms.

32nd AIAA Applied Aerodynamics Conference, 2014, 2014. doi: https://doi.org/
10.2514/6.2014-3168.

51. Q. Ma, J. A. Izaguirre, and R. D. Skeel. Verlet-I/r-RESPA/Impulse is limited

by nonlinear instabilities. SIAM J. Sci. Comput., 24(6):1951–1973, 2003. ISSN

10648275. doi: 10.1137/S1064827501399833. URL http://citeseerx.ist.psu.

edu/viewdoc/download?doi=10.1.1.76.2183&rep=rep1&type=pdf.

52. C. Marchioli, A. Soldati, J. G. M. Kuerten, B. Arcen, A. Taniere, G. Goldensoph,

K. D. Squires, M. F. Cargnelutti, and L. M. Portela. Statistics of particle disper-

sion in direct numerical simulations of wall-bounded turbulence: Results of an

international collaborative benchmark test. International Journal of Multiphase
Flow, 34:879–893, 2008. doi: 10.1016/j.ijmultiphaseflow.2008.01.009.

53. W. Mathworld. Line-plane intersection, September 2017. URL http://

mathworld.wolfram.com/Line-PlaneIntersection.htm.

54. T. Matthey, T. Cickovski, S. Hampton, A. Ko, Q. Ma, M. Nyerges, T. Raeder,

T. Slabach, and J. A. Izaguirre. ProtoMol , An Object-Oriented Framework for

Prototyping Novel Algorithms for Molecular Dynamics. ACM Trans. Math. Soft.,
30(3):237–265, 2004.

55. C.-H. Moeng. A large-eddy-simulation model for the study of planetary

boundary-layer turbulence. Journal of the Atmospheric Sciences, 41(13):2052–
2062, 1984. doi: 10.1175/1520-0469(1984)041h2052:ALESMFi2.0.CO;2.

56. A. Mokos, B. D. Rogers, and P. K. Stansby. A multi-phase particle shifting algo-

rithm for sph simulations of violent hydrodynamics with a large number of parti-

cles. Journal of Hydraulic Research, 55(2):143–162, 2017. doi: 10.1080/00221686.
2016.1212944. URL http://dx.doi.org/10.1080/00221686.2016.1212944.

135

http://hds.leica-geosystems.com/en/index.htm
http://hds.leica-geosystems.com/en/index.htm
http://www.leica-geosystems.com/en/HDS-Software_3490.htm
http://www.leica-geosystems.com/en/HDS-Software_3490.htm
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.76.2183&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.76.2183&rep=rep1&type=pdf
http://mathworld.wolfram.com/Line-PlaneIntersection.htm
http://mathworld.wolfram.com/Line-PlaneIntersection.htm
http://dx.doi.org/10.1080/00221686.2016.1212944

57. C. R. Nave. Potential energy. http://hyperphysics.phy-astr.gsu.edu/

hbase/pegrav.html#cfor, September 2017.

58. NVIDIA. An even easier introduction to cuda. https://devblogs.nvidia.com/

parallelforall/even-easier-introduction-cuda/, September 2017.

59. NVIDIA. Inside pascal: Nvidias newest computing platform. https://

devblogs.nvidia.com/parallelforall/inside-pascal/, September 2017.

60. NVIDIA. Inside volta: The worlds most advanced data center GPU. https:

//devblogs.nvidia.com/parallelforall/inside-volta/, September 2017.

61. C. of the Dutchman. Creating a character. http://www.crossofthedutchman.

com/2012/03/creating-character/, September 2017.

62. A. Onufriey, D. Bashford, and D. A. Case. E↵ective Born radii in the generalized

Born approximation. J. Comp. Chem., 23(14):1297–1304, 2002.

63. OpenCL. The open standard for parallel programming of heterogeneous systems.

http://www.kronos.org/opencl/, September 2017.

64. V. Pande and P. Eastman. Openmm: A hardware-independent framework for

molecular simulations. Computing in Science and Engineering, 12:34–39, 2010.
ISSN 1521-9615. doi: doi.ieeecomputersociety.org/10.1109/MCSE.2010.27.

65. E. Pearson, T. Halicioglu, and W. Tiller. Laplace-transform technique for deriv-

ing thermodynamic equations from the classical microcanonical ensemble. Phys.
Rev. A, 32:3030, 1985.

66. C. Phillips, J. E. Stone, and K. Schulten. Adapting a message driven paral-

lel application to GPU-accelerated clusters. In Proceedings of SC08: The 2008
ACM/IEEE Conference on Supercomputing, pages 1–9, Austin, TX, 2008.

67. J. C. Phillips, J. E. Stone, and K. Schulten. Adapting a Message-Driven Parallel

Application to GPU-Accelerated Clusters. In International Conference for High
Performance Computing, Networking, Storage and Analysis, 2008. SC 2008.,
number November, pages 1–9, 2008. ISBN 9781424428359.

68. W. H. Press, S. A. Teukolsky, W. T. Vetteringly, and B. P. Flannery. Numerical
Recipes in C++. Cambridge, New York, 2002.

69. D. H. Richter and P. P. Sullivan. Sea surface drag and the role of spray. Geo-
physical Research Letters, 40:656–660, 2013. doi: 10.1002/grl.50163.

70. D. H. Richter and P. P. Sullivan. Momentum transfer in a turbulent, particle-

laden Couette flow. Physics of Fluids, 25:053304, 2013. doi: 10.1063/1.4804391.

136

http://hyperphysics.phy-astr.gsu.edu/hbase/pegrav.html#cfor
http://hyperphysics.phy-astr.gsu.edu/hbase/pegrav.html#cfor
https://devblogs.nvidia.com/parallelforall/even-easier-introduction-cuda/
https://devblogs.nvidia.com/parallelforall/even-easier-introduction-cuda/
https://devblogs.nvidia.com/parallelforall/inside-pascal/
https://devblogs.nvidia.com/parallelforall/inside-pascal/
https://devblogs.nvidia.com/parallelforall/inside-volta/
https://devblogs.nvidia.com/parallelforall/inside-volta/
http://www.crossofthedutchman.com/2012/03/creating-character/
http://www.crossofthedutchman.com/2012/03/creating-character/
http://www.kronos.org/opencl/

71. R. B. Rusu and S. Cousins. 3D is here: Point Cloud Library (PCL). Proceedings
- IEEE International Conference on Robotics and Automation, pages 1 – 4, 2011.

ISSN 10504729. doi: 10.1109/ICRA.2011.5980567. URL http://pointclouds.

org/.

72. G. Sardina, P. Schlatter, L. Brandt, F. Picano, and C. M. Casciola. Wall accu-

mulation and spatial localization in particle-laden wall flows. Journal of Fluid
Mechanics, 699:50–78, apr 2012. doi: 10.1017/jfm.2012.65.

73. J. Schalkwijk, H. J. J. Jonker, A. P. Siebesma, and E. V. Meijgaard. Weather

forecasting using gpu-based large-eddy simulations. Bulletin of the American
Meteorological Society, 96(5):715–723, 2015. doi: 10.1175/BAMS-D-14-00114.1.

URL https://doi.org/10.1175/BAMS-D-14-00114.1.

74. T. Schlick. Molecular Modeling and Simulation: An Interdisciplinary Guide,
volume 21. 2010. ISBN 978-1-4419-6350-5. doi: 10.1007/978-1-4419-6351-2.

75. T. Schneider and E. Stoll. Molecular-dynamics study of a three-dimensional one-

component model for distortive phase transitions. Phys. Rev. B, 17:1302, 1978.

76. D. Shaw, M. Denero↵, R. Dror, J. Kuskin, R. Larson, J. Salmon, C. Young,

B. Batson, K. Bowers, J. Chao, and Others. Anton, a special-purpose machine

for molecular dynamics simulation. Communications of the ACM, 35(2):91–97,

2008. doi: 10.1145/1364782. URL http://portal.acm.org/citation.cfm?id=

1250664.

77. D. Shaw, R. Dror, J. Salmon, J. Grossman, K. Mackenzie, J. Bank, C. Young,

M. Denero↵, B. Batson, K. Bowers, and Others. Millisecond-scale molecular dy-

namics simulations on Anton. In Proceedings of the Conference on High Perfor-
mance Computing Networking, Storage and Analysis (SC09), number c, page 65.

ACM, 2009. URL http://portal.acm.org/citation.cfm?id=1654126.

78. D. E. Shaw, J. C. Chao, M. P. Eastwood, J. Gagliardo, J. P. Grossman, C. R. Ho,

D. J. Ierardi, I. Kolossváry, J. L. Klepeis, T. Layman, C. McLeavey, M. M. Den-

ero↵, M. a. Moraes, R. Mueller, E. C. Priest, Y. Shan, J. Spengler, M. Theobald,

B. Towles, S. C. Wang, R. O. Dror, J. S. Kuskin, R. H. Larson, J. K. Salmon,

C. Young, B. Batson, and K. J. Bowers. Anton, a special-purpose machine

for molecular dynamics simulation. ACM SIGARCH Computer Architecture
News, 35(2):1, June 2007. ISSN 01635964. doi: 10.1145/1273440.1250664. URL

http://portal.acm.org/citation.cfm?doid=1273440.1250664.

79. D. E. Shaw, P. Maragakis, K. Lindor↵-Larsen, S. Piana, R. O. Dror, M. P.

Eastwood, J. a. Bank, J. M. Jumper, J. K. Salmon, Y. Shan, and W. Wriggers.

Atomic-Level Characterization of the Structural Dynamics of Proteins. Science,
330(6002):341–346, Oct. 2010. ISSN 0036-8075. doi: 10.1126/science.1187409.

URL http://www.sciencemag.org/cgi/doi/10.1126/science.1187409.

137

http://pointclouds.org/
http://pointclouds.org/
https://doi.org/10.1175/BAMS-D-14-00114.1
http://portal.acm.org/citation.cfm?id=1250664
http://portal.acm.org/citation.cfm?id=1250664
http://portal.acm.org/citation.cfm?id=1654126
http://portal.acm.org/citation.cfm?doid=1273440.1250664
http://www.sciencemag.org/cgi/doi/10.1126/science.1187409

80. M. Shirts and V. S. Pande. Screen savers of the world unite! Science, 290

(5498):1903–1904, 2000. doi: 10.1126/science.290.5498.1903. URL http://www.

sciencemag.org/content/290/5498/1903.short.

81. F. Software. OpenGL: Light and creating light sources. http://www.

falloutsoftware.com/tutorials/gl/gl8.htm, September 2017.

82. P. R. Spalart, R. D. Moser, and M. M. Rogers. Spectral methods for the Navier-

Stokes equations with one infinite and two periodic directions. Journal of Com-
putational Physics, 96:297–324, 1991. doi: 10.1016/0021-9991(91)90238-G.

83. J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G. Trabuco,

and K. Schulten. Accelerating molecular modeling applications with graph-

ics processors. J. Comp. Chem., 18:2618–40, 2007. doi: 10.1002/jcc. URL

http://onlinelibrary.wiley.com/doi/10.1002/jcc.20829/full.

84. J. E. Stone, D. J. Hardy, I. S. Ufimtsev, and K. Schulten. GPU-Accelerated

Molecular Modeling Coming of Age. J. Mol. Graphics, 29(2):116–125, 2010. doi:
10.1016/j.jmgm.2010.06.010.GPU-Accelerated.

85. P. P. Sullivan and E. G. Patton. The e↵ect of mesh resolution on convec-

tive boundary layer statistics and structures generated by large-eddy simula-

tion. Journal of the Atmospheric Sciences, 68:2395–2415, 2011. doi: 10.1175/

JAS-D-10-05010.1.

86. P. P. Sullivan, J. C. McWilliams, and C.-H. Moeng. A subgrid-scale model

for large-eddy simulation of planetary boundary-layer flows. Boundary-Layer
Meteorology, 71:247–276, 1994. doi: 10.1007/BF00713741.

87. C. Sweet and J. Sweet. Method for mapping a 2d image to a 3d surface, 03 2012.

88. C. R. Sweet, P. Petrone, V. S. Pande, and J. A. Izaguirre. Normal mode par-

titioning of Langevin dynamics for biomolecules. Journal of Chemical Physics,
128(14):145101, 2008. ISSN 00219606. doi: 10.1063/1.2883966.

89. F. Tama, F. X. Gadea, O. Marques, and Y. H. Sanejouand. Building-block

approach for determining low-frequency normal modes of macromolecules. PRO-
TEINS: Struc., Func., and Genetics, 41(1):1–7, Oct. 2000. ISSN 0887-3585. URL

http://www.ncbi.nlm.nih.gov/pubmed/10944387.

90. H. Tanaka, K. Nakanishi, and N. Watanabe. Constant temperature molecular

dynamics calculation on lennard-jones fluid and its application to water. J. Chem.
Phys., 78:2626, 1983.

91. C. C. van Heerwaarden, B. J. H. van Stratum, T. Heus, J. A. Gibbs, E. Fe-

dorovich, and J.-P. Mellado. Microhh 1.0: a computational fluid dynamics code

for direct numerical simulation and large-eddy simulation of atmospheric bound-

ary layer flows. Geoscientific Model Development Discussions, 2017:1–33, 2017.

138

http://www.sciencemag.org/content/290/5498/1903.short
http://www.sciencemag.org/content/290/5498/1903.short
http://www.falloutsoftware.com/tutorials/gl/gl8.htm
http://www.falloutsoftware.com/tutorials/gl/gl8.htm
http://onlinelibrary.wiley.com/doi/10.1002/jcc.20829/full
http://www.ncbi.nlm.nih.gov/pubmed/10944387

doi: 10.5194/gmd-2017-41. URL https://www.geosci-model-dev-discuss.

net/gmd-2017-41/.

92. X. Wang, Y. Shangguan, N. Onodera, H. Kobayashi, and T. Aoki. Direct nu-

merical simulation and large eddy simulation on a turbulent wall-bounded flow

using lattice boltzmann method and multiple gpus. Mathematical Problems in
Engineering, 2014, 2014. doi: 10.1155/2014/742432.

93. Wikipedia. Single value decomposition, September 2017. URL http://en.

wikipedia.org/wiki/Singular_value_decomposition.

94. D. Winkler, M. Meister, M. Rezavand, and W. Rauch. gpusphase—a shared

memory caching implementation for 2d {SPH} using {CUDA}. Computer
Physics Communications, 213:165 – 180, 2017. ISSN 0010-4655. doi: https:

//doi.org/10.1016/j.cpc.2016.11.011. URL http://www.sciencedirect.com/

science/article/pii/S0010465516303666.

95. Zhengyou Zhang. Flexible camera calibration by viewing a plane from unknown

orientations. Proceedings of the Seventh IEEE International Conference on Com-
puter Vision, 00(c):666–673 vol.1, 1999. ISSN 01628828. doi: 10.1109/ICCV.

1999.791289. URL http://ieeexplore.ieee.org/document/791289/.

139

https://www.geosci-model-dev-discuss.net/gmd-2017-41/
https://www.geosci-model-dev-discuss.net/gmd-2017-41/
http://en.wikipedia.org/wiki/Singular_value_decomposition
http://en.wikipedia.org/wiki/Singular_value_decomposition
http://www.sciencedirect.com/science/article/pii/S0010465516303666
http://www.sciencedirect.com/science/article/pii/S0010465516303666
http://ieeexplore.ieee.org/document/791289/

	Abstract
	Contents
	Figures
	Tables
	Acknowledgments
	Chapter 1: Introduction
	1.1 Problems
	1.2 Graphics on the GPU
	1.3 Molecular Dynamics
	1.4 Lagrangian Particle Laden Flow
	1.5 Overview

	Chapter 2: Related Work
	2.1 Digital Heritage Preservation and Visualization
	2.2 Molecular Dynamics
	2.3 Lagrangian Particle Laden Flow

	Chapter 3: Graphics Processing Unit
	3.1 Hardware
	3.2 Rendering
	3.2.1 Pipeline
	3.2.2 Texturing
	3.2.3 Lighting
	3.2.4 Shaders

	3.3 Programming
	3.3.1 Kernels
	3.3.2 Execution
	3.3.3 Libraries
	3.3.4 Optimization

	Chapter 4: Modeling Digital Heritage
	4.1 Introduction
	4.2 DHARMA - Roman Forum Project
	4.3 3D Scanning
	4.4 Photographic Data Acquisition
	4.5 Combining Leica Scan Data and Panorama Images
	4.5.1 Multiple Scans
	4.5.2 Surface Generation
	4.5.3 Point Reduction in O(N)
	4.5.4 Mesh Pruning to Remove ``Poor'' Triangles and Overlap
	4.5.5 Mapping Algorithm
	4.5.5.1 Examples

	4.5.6 DHARMA Interceptor

	4.6 Method of Data Processing
	4.7 Conclusion

	Chapter 5: Long Timestep Molecular Dynamics on the Graphics Processing Unit
	5.1 Introduction
	5.2 Contribution to the Literature
	5.3 Background
	5.3.1 Microcanonical and Canonical Ensembles
	5.3.2 Microcanonical Ensemble
	5.3.3 Canonical Ensemble
	5.3.4 Constant Temperature Methods
	5.3.5 Stochastic Method
	5.3.6 Forces
	5.3.7 Hessian

	5.4 LTMD
	5.4.1 Propagator
	5.4.2 Partitioning of the Dynamical Space of Biomolecules

	5.5 Implementation
	5.5.1 Propagator
	5.5.2 Diagonalization with Flexible Block Method
	5.5.2.1 Computation of Block Hessian
	5.5.2.2 Block Diagonalization
	5.5.2.3 Computation of S

	5.6 Results
	5.6.1 Benchmarks
	5.6.1.1 Parameter Choices for Optimal Performance
	5.6.1.2 Comparisons of Relative and Absolute Performance
	5.6.1.3 Run-time Breakdown

	5.6.2 Validation
	5.6.2.1 Dynamics and Sampling of the Small, Helical Peptide Ala5
	5.6.2.2 Folding of Villin NLE

	5.6.3 Parameter Choices and Diagnostics
	5.6.3.1 Rediagonalization Period
	5.6.3.2 Number of Modes
	5.6.3.3 Approximate Eigenvector Overlap
	5.6.3.4 Magnitude of Epsilon for Numerical Differentiation Perturbation
	5.6.3.5 Effect of Partitioning Method
	5.6.3.6 Magnitude of Fast Noise

	5.7 Conclusion

	Chapter 6: Accelerating a Mixed Eulerian-Lagrangian Particle-Laden Flow Simulation using a Hybrid CPU-GPU System
	6.1 Introduction
	6.2 Background
	6.3 The Scalability Problem
	6.4 Technical Challenges
	6.4.1 GPU Architecture
	6.4.2 Data Transfer
	6.4.3 Array Access
	6.4.4 Batch System Support
	6.4.5 Testing

	6.5 Results
	6.5.1 Optimization
	6.5.1.1 Interpolation
	6.5.1.2 Shared Memory
	6.5.1.3 Restricted Pointers
	6.5.1.4 Multiple GPUs

	6.5.2 Single Precision Transfer

	6.6 Validation
	6.7 Extrapolation
	6.7.1 Single Precision Calculation

	6.8 Conclusion

	Chapter 7: Conclusion
	7.1 Modeling Digital Heritage
	7.2 Long Timestep Molecular Dynamics
	7.3 Lagrangian Particle Laden Flow Simulation
	7.4 Closing Notes

	Appendix A: Source Code
	A.1 DHARMA
	A.1.1 Point to Surface Mapping
	A.1.2 Point Reduction in O(N)
	A.1.3 Mesh Pruning to Remove ``Poor'' Triangles and Overlap

	Bibliography

