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Abstract

Shared temporary storage space is often the con-
straining resource for clusters that serve as execu-
tion nodes in wide-area distributed systems. At least
one large national-scale computing grid has reported
a failure rate of as high as thirty percent of submit-
ted jobs, often due to accidentally filled shared storage
spaces. Previous systems have attacked this problem
by adding space allocation to the distributed system in-
terface. However, these allocations are not enforced at
the filesystem level, and thus unexpected or unaccounted
uses of storage may cause the system to fail. By adding
an inexpensive allocation mechanism to the operating
system, we may improve the robustness of such systems
at minimal cost. In this paper, we describe an abstract
model of space allocation in the file system and explore
three implementations of the model: a user-level library,
a recursive loopback filesystem, and a modified kernel
filesystem. We evaluate the performance and complete-
ness of these implementations and demonstrate that ker-
nel support is essential to keeping the overhead low.
Finally, we demonstrate empirically that a cluster un-
der heavy filesystem load can be made more robust by
adding allocations to the filesystem.

1 Introduction

Shared temporary storage space is often the con-
straining resource for clusters that serve as execution
sites in wide-area distributed systems. For many rea-
sons, users find themselves inadvertently sharing limited
storage space. This may be for administrative conve-
nience: all home directories might be stored on a single
file server. Or, it may be due to security constraints: a
firewalled cluster might require users to stage input and
output data on a single node before moving it elsewhere.
Or, it may be due to pure chance: two users may happen
to store a large dataset on the same worker node. With-
out the ability to allocate storage space, users with long
running or large data sets encounter trouble. The careful
user may check for available space and then start a job or

data transfer only to discover that someone else has gob-
bled it up before the task can complete. Such users must
retreat to private, overprovisioned resources in order to
accomplish their work.

An example of this problem has been observed in the
context of Grid3, the predecessor of the Open Science
Grid. In 2003, Grid3 comprised several clusters located
at tens of research institutions in the United States, serv-
ing the needs of hundreds of researchers on thousands
of processors. However, there was observed a remark-
able failure rate: thirty percent of jobs submitted over
a period of several months failed. [11] Ninety percent
of these failures were due to a full shared disk. One
unchecked log file, one crashed job, or one careless user
could easily fill a shared disk, causing cascading failures
on all other users of that disk. Of course, this problem
is not unique to Grid3; this is only one well-documented
example. Users of grid systems know that such prob-
lems are common, aggravating, and difficult to diagnose
and solve.

If it were possible to allocate disk space in the same
manner as one may allocate other computing resources,
many of these problems would be mitigated. Jobs in a
batch system could be allocated space before they begin
so that started jobs would have a much higher proba-
bility of finishing. Jobs denied allocations could be de-
layed, placed elsewhere, or returned with a clear error
message. System services would not be affected by mis-
behaving jobs, or vice versa.

Several existing storage management systems (e.g.
SRM [17], SRB [4], IBP [15], NeST [7]) offer inter-
faces that allow external users to issue space allocations
before consuming local storage. However, these sys-
tems but have no underlying mechanism in the operating
system to enforce allocations against local competitors
short of consuming the space immediately. This is an
acceptable situation if the manager is aware of all users
of storage, and all users can be trusted to operate cor-
rectly. However, these two assumptions do not hold in
a grid computing system. Computational jobs cannot
be trusted: they may be submitted by malicious users,
they may crash and generate large core dumps, or they
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Figure 1. An Allocable Filesystem
A small filesystem with several allocations. The root al-
location shows the total space available (700GB) and in
use (620 GB). Directories j1, task1, task2, alice, betty,
and logfiles each have an allocation taken from the near-
est ancestor. Directories jobs, home, j2, and j3 all con-
sume space on demand from the ancestor’s allocation.

may be given accidental arguments that generate large
outputs. Not all storage uses are known: local services
generate log files, incoming emails consume space, and
local users may perform tasks irrelevant to the wide area
system. Both running jobs and local services may com-
pete for space.

Of course, system administrators do have some tools
for managing disk space: they may partition disks and
establish user and group quotas. However, none of these
mechanisms is well suited for protecting jobs running
in a distributed system. Partitions are limited in num-
ber and are expensive to create and manage. User and
group quotas are inexpensive to apply, but require that
ownership of files and processes align with allocation
needs, but this is rarely the case in distributed systems:
a single user might wish to have many small allocations,
while many users might wish to share a large alloca-
tion. Both mechanisms require the storage manager to
run with special privileges.

Therefore, we propose that space allocation should be
provided in the lowest levels of the filesystem on shared
storage devices. In particular, the allocation mecha-
nism must allow ordinary users to make fine-grained
allocations of space in a manner tightly coupled with
the namespace. Each of these properties is important:
the mechanism must be accessible to ordinary users, so
that robust services can be constructed without requir-
ing superuser privileges. The mechanism must be fine-
grained, allowing for a separate allocation to be made
for many jobs initiated by the same user. It must be
an allocation that offers both a guarantee of available
space, as well as an enforcement from consuming too
much space. It must be tightly coupled with the file

namespace so that the mechanism is easy to use.
In this paper, we describe an abstract model of alloca-

tion in the filesystem, using hierarchical accounting and
the addition of three system calls. We describe how this
basic form of allocation may be used as a building block
for more complex distributed systems. We explore three
implementations of this model: a user-level library, a
loopback filesystem, and a modified kernel filesystem.
Each of these models has various strengths and weak-
nesses. The user-level library may be applied on any
system without modification, but requires the explicit
participation of all parties. The loopback filesystem
can be applied transparently, but requires root privileges,
has limited applicability, and is expensive to create and
delete. The modified filesystem requires kernel changes
to deploy, but is transparently applied and has very low
overhead. Finally, we deploy an allocable filesystem on
a computing cluster and demonstrate that the addition of
allocations improves robustness by maintaining consis-
tent throughput under high offered load.

2 A Model of Allocation

We begin by defining a model of space allocation that
can be implemented on a passive storage device.

The model must have the following properties:
Unprivileged use. In large scale systems, it is very

rare for a user to have administrative privileges on all,
or even a few machines. Operating as an ordinary user
is the norm. In addition, the security-conscious adminis-
trator will wish to run system services with the minimum
privileges needed. Thus, the allocation mechanism must
be accessible to ordinary users, within the constraints of
access controls on the filesystem.

Fine granularity. The value of data is not appar-
ent from its size. Many CPU-days of computation may
be necessary to produce a few KB of valuable data,
whereas it is very easy to fill a disk with many giga-
bytes of garbage. A single user may have many inde-
pendent jobs, each requiring their own, possibly small,
allocation. Thus, the mechanism should have a reason-
ably small overhead in time and space so that it may be
used to protect small amounts of data.

Prevention and Guarantee. An allocation must
serve two distinct purposes. It must prevent a job from
consuming more space than the size of the allocation, so
that it does not cause other jobs to fail. But, it must also
guarantee that a job will have access to the entire space
of its allocation, otherwise the job itself will fail. Both
properties are necessary for a robust system.

Namespace coupling. Many users may access an al-
locable filesystem through conventional Unix interfaces.
They may not necessarily be written to manipulate or
even view the state of allocations. Thus, where possible,
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the nature of allocations must be coupled to the visible
namespace of the filesystem, so that file operations such
as create, rename, and delete have a reasonable and ex-
pected effect upon the allocation state.

2.1 Allocation Primitives

An allocable filesystem is a hierarchy of directories,
like a conventional filesystem. Each directory may be an
ordinary directory, or it may also be an allocation. An
allocation accounts for the storage consumed by all files,
directories, and allocations contained within it. An allo-
cation contains an allocation state which has two fields:
size records the fixed size of the allocation and used re-
flects the amount consumed by data and sub-allocations.
Ordinary files and directories consume space in the near-
est ancestor allocation. That is, if a user writes to a file,
the used field of the nearest ancestor allocation increases
by the size of the data written. used may grow until it
reaches size. If this happens, any further writes fail im-
mediately with an appropriate error code. Conversely,
deletions of data and allocations decrease the used field.

A newly created filesystem has a root allocation such
that size is the total disk size and used is zero. In or-
der to create a new allocation, a user may issue the
mkalloc(path,size) system call. This causes two things
to happen atomically: (1) A new directory is created in
path with allocation state (size,0). (2) The used field of
the nearest ancestor allocation state of path is decreased
by size. Of course, such an operation may only be per-
formed if the following conditions hold: (A) The user
must have permission to call mkdir(path). (B) (size-
used) of the nearest ancestor must be greater than size.

An allocation may be deleted with the ordinary
rmdir(path) on a directory with an allocation state. (The
filesystem may also require the user to remove the con-
tents of the directory before the directory itself.) This
causes two things to happen atomically: (1) The direc-
tory and its contents are deleted. (2) The size field of the
deleted directory is subtracted from the used field of the
most immediate ancestor allocation.

An allocation may be adjusted by a call to mkalloc
with an existing path and a new allocation size. This
causes two things to happen atomically: (1) The size of
the existing allocation is changed to the new size. (2)
The new size is added to the used field of the immediate
ancestor. This will only succeed if the requested size is
larger than used and if there is sufficient space.

An allocation may be examined by a call to lsal-
loc(path) which returns a (apath,size,used) tuple indicat-
ing the path of the containing allocation, the total size,
and the space used.

Note that the creation, deletion, and modification op-
erations are both atomic and idempotent. An operation

will either succeed or fail entirely, and operations may
be repeated many times with the same effect as once.
Thus, a transaction interface is not needed. If an allocat-
ing entity fails to receive a response from an operation,
it may simply issue lsalloc to learn the current state, and
retry the operation if needed.

2.2 Common Applications

An allocation mechanism is useful to many stake-
holders in the system: administrators, interactive users,
batch users, and system services. Figure 1 suggests sev-
eral different uses for allocations.

Allocation is useful to administrators. In Figure 1,
the system administrator has used dalloc to set aside a
fixed amount of space (250GB) for the home directo-
ries of the users alice and betty. Of course, adminis-
trators already may perform simple allocations through
partitions, quotas, and similar mechanisms. However,
the administrator gains several advantages when using
an allocable filesystem. (1) Unlike partitioning, alloca-
tion does not require drastic actions such as remounting,
rebooting, or reformatting. (2) Unlike quotas, alloca-
tion is not coupled to user IDs: allocations may be given
to jobs, tasks, projects, or other entities. (3) Allocation
may be delegated to other staff without root privileges,
merely by giving the appropriate write permissions on
the filesystem.

Allocation is useful to interactive users because it al-
lows them some protection against misbehaved or re-
source hungry applications. For example, suppose that
Alice is dispatching a large number of jobs to a computa-
tional grid. She runs some local scheduling software that
must communicate with remote nodes, dispatch jobs, log
actions, and collect output files. There are a myriad of
ways such a tool can accidentally consume all of her
space. By simply running it within a new allocation (the
logfiles directory), she can prevent it from overrunning
her other activities.

Allocation is useful to batch users because it allows
the user some protection from (and avoidance of) the
vagaries of large distributed systems. Figure 1 suggests
that the filesystem is used to store the files needed by
three batch jobs in directories j1, j2, and j3. If the sub-
mitter of the job is able to state the job’s storage needs in
advance, an allocation can be made for the job, giving it
a greater assurance of executing to success. If the allo-
cation fails, the job would be likely to fail anyhow, so an
intelligent scheduler may attempt to allocate elsewhere.
A job with unknown storage needs may still be executed,
without an allocation, but it receives no guarantees.

Allocation is useful to system services because it al-
lows for the protection of local resources from visiting
users. From the perspective of a service provider, vis-
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Figure 2. External Storage Manager
Complex policies may be implemented with an exter-
nal server and a filesystem that only gives access to the
server. In this example, a client requests space from a
server, which evaluates the request according to exter-
nal criteria, then allocates the space and gives permis-
sion to the client.

iting jobs are dangerous because they may exhaust re-
sources already assigned to local users. Betty would
be justifiably upset if a visiting job consumed space in-
tended for her home directory. By employing alloca-
tions, local systems can be made robust against the at-
tacks of distributed systems.

2.3 No Allocation Policy

This model deliberately has no intrinsic policy gov-
erning how much a user may allocate or how long they
may hold the allocation, beyond the two basic con-
straints: (A) The user must have permission to perform
mkdir. (B) The new allocation must fit in the ancestor.
The reason for this is simple: we cannot imagine a pol-
icy language that would satisfy all users, nor is there any
clear way to store it in the filesystem proper. Moreover,
many desired policies could not be implemented within
one filesystem. For example, a policy that limits a user to
consuming a total of 1 TB of allocations across a cluster
of ten devices cannot be implemented within one device.

If a policy beyond the two simple requirements above
is desired, an external mechanism is required. A filesys-
tem to be allocated to external users is given an ACL
granting write permissions only to to the owner of a
storage manager (e.g. SRM [17], SRB [4], IBP [15],
NeST [7].) A client requiring space contacts the storage
manager, which then consults databases, queries a hu-
man administrator, charges a credit card, or does what-
ever is necessary to authorize the request. If permitted,
the policy manager performs mkalloc on the filesystem.
The directory will initially only allow access to the pol-
icy server, so it must then modify the permissions to give

the calling user appropriate access. Once this directory
is allocated, the calling user is free to employ it in any
way, including subdividing it into further allocations. If
the allocation has a time limit, then the storage manager
may implement the necessary action when the time has
expired. This action might be as simple as sending an
email, or as drastic as deleting the allocation outright.

2.4 Accounting

In an allocable filesystem, we must carefully recon-
sider how to account for space consumed. We cannot
simply count blocks in use by data for each user, as
that would not communicate what blocks were allocated
and thus unavailable to others. On the other hand, every
block in an allocable filesystem is allocated, at least to
the root allocation! How should we interpret this?

Consider the following situation. Alice owns a
100GB disk. Alice permits Betty and Charlie to write
to the disk. Betty and Charlie both allocate 50GB each.
Betty then permits Dahlia and Eunice to each write 25
GB. Charlie permits Betty to write 25 GB. We may ob-
tain accounting data for the filesystem by traversing the
directory structure and performing stat and lsalloc to
obtain usage and allocation data. For the situation de-
scribed above, this would yield the following table:

name size used
alice 100 GB 75 GB
alice.betty 50 GB 50 GB
alice.betty.dahlia 25 GB 25 GB
alice.betty.eunice 25 GB 25 GB
alice.charlie 50 GB 25 GB
alice.charlie.betty 25 GB 25 GB

This table may be interpreted several ways: First, we
may simply ask, ”What users are consuming space on
this disk?” Examining the leaves of the allocation tree
tells us that Betty, Dahlia, and Eunice have 25 GB each.
We might also ask ”Who is responsible for the space on
the disk?” At some level, the answer is simply Alice: she
is the owner of the disk and holds the top-level alloca-
tion. Alice may in turn inquire who has allocated space
at the second level.

Note that allocations can reduce the work neces-
sary to performing accounting actions, depending on
precisely what information is needed. If Alice simply
wishes to know who has made high-level allocations, it
is only necessary to traverse the tree until an allocation
is reached, at which point the search tree can be pruned.
If Alice wishes to know how much space is consumed
by each user, then the entire tree must be traversed.

Note also that allocation is orthogonal to a traditional
Unix quota system. When both are active, a write may
be denied because it either exceeds the user’s quota or
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Figure 3. Comparison of Three Implementations of Allocation

overflows the containing allocation. In addition, the tra-
ditional quota can be used for simple global block ac-
counting by user.

2.5 Common Questions Answered

Thoughtful readers readers have posed several com-
mon questions about allocation in the filesystem.

Q: Do allocations allow a malicious user to halt the
system by allocating everything? A: No. A malicious
user that attempts to allocate all remaining space may
do so, but this will not crash other services. When a
system is properly configured, key system services are
given an appropriate space allocation for their needs. A
malicious user might be able to consume all of the re-
maining space, but existing allocations will not be dis-
rupted. Note that this is an improvement on conventional
systems that allow any user to exhaust all available space
with cat /dev/zero > /tmp/bigfile. In addition, consider
that it may be appropriate for a benevolent user to allo-
cate all available space: If a user has a job that requires
500 GB and a single 500 GB disk is available, then the
allocation should prevent others from using the space so
that the job may complete.

Q: Don’t allocations create a garbage collection
problem? A: No. Ordinary filesystems already have
a garbage collection problem, and allocations neither
aggravate nor eliminate the problem. Any system
that makes use of files must perform some sort of
application-specific garbage collection: batch systems
must delete scratch directories when jobs complete; mail
systems must delete or bounce undeliverable mail; ad-
ministrators must delete home directories when users
depart. The use of allocations for these tasks does
not eliminate the garbage collection problem; it simply
helps to ensure that storage resources are not overcom-
mitted. Note also that many storage managers imple-
ment various forms of garbage collection: for example,
IBP requires every allocation to have a finite lifetime.

Q: How do allocations interact with jobs that have
unknown or variable space needs? A: Allocations nei-
ther help nor hurt jobs with unknown needs. A user that
does not wish to make use of allocations may simply
make use of a filesystem in the ordinary fashion. Just-in-
time and advance allocation of space may be supported
in the same system. However, both on-demand and ad-

vance allocation may be served simultaneously. Con-
sider again the filesystem in Figure 1 above. One job
has requested and received an allocation in j1. j3 has
no allocation, perhaps because it has unknown needs.
j2 has unknown overall needs, but knows that it needs
10GB for each of two subtasks. When allocation used
selectively in this manner, allocation protects the jobs
with known needs, but does not harm jobs with unknown
needs, which are already exposed to some risk.

3 Three Implementations Compared

We have implemented the abstract model of alloca-
tion in three ways: a user level library, recursive loop-
back filesystems, and in a modified kernel driver. Fig-
ure 3 summarizes the major differences.

3.1 User-Level Library

The first implementation is a user level library that
provides an I/O interface similar to that of Unix system
calls. For example, entry points are alloc open(), al-
loc read(), alloc mkdir(), and so forth. User-level pro-
grams may be modified to take advantage of this library,
or the library may be transparently inserted using inter-
positioning techniques. For example, we have use the
library to add space allocation to the Tactical Storage
System [18] and to contain ordinary processes via Par-
rot [19].

The library maintains allocation state by adding an
extra file . alloc to each directory that is an alloca-
tion. Each file records the size and used fields described
above. Read-only I/O operations are executed without
modification. However, write I/O operations must check
and update the state of the allocation file on disk. Be-
cause multiple independent processes may be accessing
the same filesystem at once, advisory locks are used to
ensure that the allocation state is not corrupted.

The primary obstacle to good performance is the
locking mechanism. In the worst case, a single write
to a file results in a lock, open, read, write, close, and
unlock on the allocation file. This would cause an order
of magnitude increase in the latency of write operations.
To address this, the library caches locks on allocation
files, and then only writes and unlocks them when the
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Figure 4. Library Implementation

client has been idle for some time (default is two sec-
onds.) Thus, under sustained operations, the overhead of
write operations is only an fstat necessary to obtain the
current size of the file, plus several memory operations
to update the cached state. The drawback to caching al-
location locks is that other clients waiting to access files
in the same allocation may experience delays. Thus, this
mechanism is best suited to applications where there is
a maximum of one process operating on an allocation.

Deadlock is always a concern with multiple uncoor-
dinated processes. Most operations only require access
to a single state file at one time. To avoid deadlock, a
process that has cached several locks performs a non-
blocking lock when requesting a new lock. If the lock
fails (another process holds it) then all cached locks are
released before attempting another lock. This breaks the
hold-and-wait condition. In the few cases where mul-
tiple simultaneous locks are required (e.g. a rename()
between allocations), locks are obtained in a canonical
order from lowest to highest inode number. This breaks
the circular wait condition.

Because locks are cached in memory, we must ac-
cept the possibility that the allocation state may be out
of sync with stored files after a crash of a process or
the machine. Much as with a traditional filesystem, the
library marks the allocation root dirty on startup and
marks it clean only on an orderly shutdown. If the li-
brary encounters a dirty root allocation, then it must re-
build the inuse fields of the allocation states by recur-
sively traversing the filesystem and measuring file sizes.

The user-level library has several advantages, par-
ticularly in deployment. Because it stores allocation
state in hidden files, it can be applied without any spe-
cial privilege and can even be deployed over an existing
filesystem by simply adding a few . alloc files. How-
ever, respect for user-level allocations is voluntary. An
allocation-enabled program will not overflow its stated
allocation, but it has no guarantee of success when com-
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work
mount

filesystem mount table:
mount point block device backing file
/ /dev/hda1 -
/work /dev/loop0 /work.data
/work/alice /dev/loop2 /work/alice.data
/work/betty /dev/loop4 /work/betty.data

Figure 5. Loopback Implementation

peting against non-enabled programs.

3.2 Recursive Loopbacks

Filesystem allocations can also be implemented by
creating a loopback filesystem for each allocation. A
loopback filesystem is an ordinary filesystem in every
respect, except that it uses an ordinary file – rather than
a block device – as a backing store. Virtual disk images
created for virtual machines are similar in concept.

On Linux, a loopback is created by generating a large
file using dd, connecting a loopback device /dev/loopN
to that file using the losetup tool, formatting the filesys-
tem with mkfs and then mounting the filesystem into di-
rectory hierarchy. Similar mechanisms are present on
other Unix-like operating systems. Loopback filesys-
tems may be generated recursively in order to implement
hiearchical allocations. That is, a backing store may be
created within an existing loopback filesystem, and then
used to store and mount a new loopback.

Loopback filesystems are a heavyweight but robust
method for generating allocations. Typically, a small
number (10s) of loopback devices are configured into
the kernel, and one must be root to configure and mount
them. Once configured, ordinary users may take advan-
tage of loopback filesystems using the ordinary protec-
tion mechanisms. Because of the limited number of de-
vices, a system that requires a large number of alloca-
tions in the filesystem would not be able to use all si-
multaneously. Loopbacks must be created from scratch,
so it is not possible to retrofit allocations to an existing
filesystem. However, loopbacks do provide both limits
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to space consumption and a guarantee of available space
because all blocks are allocated when the filesystem is
created. Creating and deleting loopback filesystems can
be very expensive: because each block must be allocated
or returned to the filesystem, these operations are linear
with respect to the size of the allocation. To recover from
a crash, fsck must be run not only on the host filesystem,
but also recursively on each allocation created.

3.3 Kernel Filesystem Driver

The underlying problem with loopback filesystems is
that the kernel provides the user no method for allocating
disk blocks from the filesystem short of actually writ-
ing to each block directly. In order to have fast, robust
allocations, we must have in kernel support for allocat-
ing and releasing disk blocks without actually touching
them. To demonstrate this, we have modified a standard
Linux ext2 filesystem to support allocations. We call the
resulting filesystem allocfs. This filesystem operates in
a manner similar to the user-level library, except that the
allocation state is stored in inode structures. The ext2
filesystem has several unused fields in the inode, which
we use to store the size and inuse fields described in the
abstract model. In addition, a third field parent is used
to record the inode of the parent allocation. The mkalloc
and lsalloc system calls simply consult and update fields
in the inode as described in the abstract model.

To enforce allocations, the block allocation routines
are adjusted to consult the appropriate inodes for avail-
able space before examining the free block bitmap. The
extra cost for enforcing allocations involves at most
fetching and replacing the cached parent inode, plus sev-

eral memory operations. However, because the parent
inodes of files and directories in use are generally al-
ready cached for other reasons (e.g. due to namei), this
cost is essentially free.

It is important to note that this approach blurs the
conventional distinction between inodes and directory
structure. As a result, some operations must be rejected
because they introduce inconsistencies into the alloca-
tion state. For example, we do not wish to have multiple
directory entries from different allocations linked to the
same inode: which allocation would be charged for the
space? As a result, hard links that cross allocations are
not permitted. In addition, directory trees cannot be re-
named from one allocation to another, as this would re-
quire the kernel to recurse over the subtree to determine
the total space used in order to update the necessary al-
location states. However, individual files and allocations
can be renamed, as the total size is readily available.

Three user-level tools are provided to manipulate al-
locations. mkalloc <path> <size> creates or adjusts
the allocation state of a directory, within filesystem per-
missions. lsalloc <path> returns the containing alloca-
tion path and state of a given file or directory. fixalloc
<path> is used by the superuser to check and recover
the allocation state of the filesystem after a crash. In
order to implement fixalloc, a third system call is neces-
sary: setalloc(fd,size,used,parent) sets the absolute val-
ues of the allocation states of a directory. setalloc can
only be invoked by the superuser and should only be
used to repair a filesystem.

The modified kernel driver provides the best per-
formance and semantics of the three implementations,
but the primary drawback is deployment: the filesystem
must be configured and installed by root. However, the
allocfs filesystem is binary compatible with ext2: it may
be used to mount an existing filesystem and add alloca-
tion state to it. Allocations both prevent overruns and
guarantee available space. Creation and deletion of al-
locations only involves updating inode state. Like the
user-level library, allocation state must be recovered by
a recursive directory traversal.

4 Performance Evaluation

We compare the performance of the three implemen-
tations by examining I/O latency, I/O bandwidth, and al-
location operations on the same disk. All measurements
are taken on a 40GB Seagate ST340015A ATA disk with
2MB cache, Intel 82801EB ATA controller in PIO mode,
2.8GHz Pentium 4 CPU with 1GB of memory running
Linux 2.4.21. For each test, a fresh EXT2 filesystem is
created, and the buffer cache is cleared by reading 1GB
from another disk. Loopback allocations further create
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a large file on the fresh filesystem, and then format it as
an EXT2 filesystem.

Figure 7 compares the latency of basic I/O operations
in each of the allocation types. Each operation is at-
tempted in 100 timed loops of 10,000 system calls, av-
erage and standard deviation are shown. Several things
should be noted about the results. The user-level library
imposes some overhead on write operations, due to the
required extra fstat described above. Read operations are
unaffected. Surprisingly, directory operations in loop-
back are faster than the unmodified filesystem! This is
because synchronous metadata updates in the loopback
are eventually reduced into asynchronous data updates
in the backing file. This is arguably incorrect behavior:
metadata updates are usually required to be synchronous
so as to maintain consistency of the directory structure.

The performance of creating allocations is as follows:
loopback 1 sec per 25 MB of allocation

library 227 µsec regardless of size
kernel 32 µsec regardless of size

Creating a loopback allocation requires writing to ev-
ery single block, and will take several minutes for allo-
cations measured in GB. In the library and kernel, creat-
ing an allocation is comparable to creating a directory.

Figure 8 compares the disk bandwidth available to
applications while writing a 100MB file using various
block sizes. (In this context, the block size is the length
parameter to a write system call at user level.) Each
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measurement is taken ten times, average and standard
deviation are shown. For sufficiently large block sizes,
all methods are able to obtain the same bandwidth from
the file system. The user-level library has a fixed over-
head (fstat again) for each write operation and thus can-
not achieve the full bandwidth for small block sizes.
However, because the library also interposes on the fstat
call, it may overcome this by hinting a larger block size
to the standard I/O library.

Figure 9 shows the time to recover the allocation state
of dirty filesystems of various sizes. Filesystems are
created by copying a clean Linux source tree of 884
directories, 14869 files, and 201 MB of data blocks.
Each unit on the X axis indicates one additional copy
of the source tree. The user-level library and the ker-
nel filesystem recover by traversing the directory struc-
ture, while the loopback filesystem recovers by issuing
a fsck in addition to the fsck required on the host filesys-
tem. Note that the loopback has a higher fixed cost
but lower marginal cost as the data in the filesystem in-
creased. This is because the first phase of fsck must scan
all inodes – whether in use or not – to build a free block
bitmap. However, later phases that traverse the direc-
tory tree are faster than the equivalent operation from
user space. This is due to the movement of data in and
out of the kernel: The directory traversals require sev-
eral user-kernel switches for each directory and file to
be examined, while fsck can request one large block of
data and use it to examine several structures at once.

Finally, we demonstrate that allocation improves the
robustness of a cluster where disk space is the resource
constraint. We establish a cluster emulating an execu-
tion site on a computational grid. Multiple CPUs share
a file system on the head node. To execute a job, in-
put data must be copied to the data must be staged to
the shared disk, the job must be run, and then its output
must be copied elsewhere. This model is used by clus-
ters connected to computational grids such as the Open
Science Grid, the NSF TeraGrid, and the European Data
Grid. For example, one may use GRAM [8] to execute
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Figure 10. Robustness Under Load
This graph shows the throughput of a cluster under vary-
ing filesystem load. Each job must generate output on
a shared disk; the output is copied elsewhere after the
job completes. There is only space to store the outputs
for ten jobs at a time. Space allocation is compared
to continuous retry, exponential backoff with a random
factor, and an available space heuristic. Space alloca-
tion maintains consistent throughput even as load far ex-
ceeds available capacity.

jobs on a remote cluster while relying on GridFTP [2] to
stage input and output data for the job.

To explore a controlled environment, we construct
synthetic jobs that steadily produce 100MB over one
minute. As each completes, the output file is trans-
ferred elsewhere and then deleted. The shared disk has
1000MB of space available, so the maximum safe load
is ten jobs running simultaneously. We assume that, like
most scientific applications, output errors are not care-
fully checked at runtime, so a failure to write will only
be detected after the job completes.

Without an allocation service in the filesystem, the
caller has several possible techniques for dealing with
a lack of storage. The caller may simply blindly start
jobs and immediately retry if they should fail. A more
responsible caller will perform backoff and delay an
exponentially-increasing amount of time (plus a random
factor) between failures. This technique allows tempo-
rary resource overloads to “even out” over time. A more
responsible approach is to use a heuristic: the caller
may check to see if sufficient disk space is available be-
fore dispatching a job. A heuristic is not guarantee: if
the job should still fail, then backoff is used. Finally,
we may compare these techniques to using allocation:
the caller allocates space before running the job and re-
leases the space when done. If the allocation fails, the
caller waits one second and tries again.

Figure 10 shows the throughput of a cluster under
load using the four management techniques. The X axis
shows the offered load in number of active CPUs on the
cluster. The Y axis shows the cluster throughput, nor-

malized to a load of one. When the load is less than ten,
storage space is overprovisioned, and the speedup is lin-
ear. As the load increases over ten, the performance of
the techniques diverges. Simple retry quickly crashes
to zero throughput: no jobs are able to run to comple-
tion once storage is overcommitted. Both backoff and
heuristic are able to maintain some throughput, but get
worse as load increases. As expected, allocation main-
tains full throughput even under heavy load.

Note that backoff and heuristic are able to exceed
the throughput of allocation for critical values slightly
above the maximum safe load of the system. Be-
cause each job consumes storage gradually, it is possi-
ble to slightly overcommit storage while avoiding fail-
ures. Thus, allocation does not provide maximum pos-
sible performance: it provides predictable performance
across a range of loads.

5 Related Work

There exist a variety of mechanisms that provide
allocation-like services in file and distributed systems.
For example, the basic allocation unit is a volume in
AFS [12], and a partition in OSD [14]. Many com-
mercial network storage devices allow for internal re-
partitioning. However, these mechanisms are relatively
expensive, only available to the superuser, and cannot be
subdivided. Virtual machines [21, 10, 9, 5] allow one to
allocate space in the form of a private virtual disk for
contained processes. This is very similar to the loop-
back filesystem and has similar performance properties.
ZFS [1] allows for the creation of new filesystems as
allocations within the directory hierarchy, but these al-
locations are neither hierarchical nor manageable by or-
dinary users. Resource containers [3] are closer in spirit
to our work: they allow related processes to share a set
of resources such as memory and CPU time. However,
they do not address the persistent nature of storage.

Our notion of allocation is inspired partially by the
Internet Backplane Protocol (IBP) [15], which proposes
a malloc-like interface to raw storage. Using IBP, con-
sumers of distributed storage may request storage ex-
tents with renewable time limits and a capability-based
protection model. This abstraction is simple enough that
it can be implemented in relatively simple devices, but
is sufficiently powerful to construct higher level storage
abstractions such as the ExNode [6]. However, large
scale grid computing must engage existing applications
that make heavy use of existing interfaces such as the
Unix filesystem. It is not practical (in the short term) to
design new interfaces entirely from scratch. Thus, this
work aims to migrate the concept of storage allocation in
IBP into the familiar interface of the filesystem, where it
can be used by unmodified applications. It may be pos-
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sible to implement filesystem applications on top of IBP
or vice versa. We leave this as an exercise for the reader.

The role of a storage manager that we have outlined
above may be fulfilled by a variety of grid comput-
ing tools. For example, the Storage Resource Manager
(SRM) [17] defines an interface that allows users to re-
quest storage with certain size and temporal properties.
The SRM is responsible for negotiating with the under-
lying storage and then directing the user to the under-
lying device, which is responsible for enforcing the al-
location. The NeST [7] storage appliance has a form
of allocation known as lots. A similar role is played
by components of Freeloader [20] and the Storage Re-
source Broker [4].

6 Conclusion

Nearly ten years ago, Lepreau et al. argued that the
facilities provided by the local operating system are crit-
ical to creating robust distributed systems[13]. This ar-
gument is still relevant today: large scale distributed sys-
tems are present and yet maddeningly unreliable [16],
partially because the necessary facilities are not found
in the operating system. This work is a focused attempt
to address one limitation of local systems: the ability to
allocate storage within the context of a filesystem. We
have described a model of allocation useful to both end
users and system designers. Although varying imple-
mentations are possible, we have shown that in-kernel
support for allocations provides the best performance
along with semantics not available from the user-level.
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