
Automated Packaging of Bioinformatics Workflows
for Portability and Durability Using Makeflow

Casey Robinson and Douglas Thain
Department of Computer Science and Engineering

University of Notre Dame

ABSTRACT
Dependency management remains a major challenge for all
forms of software. A program implemented in a given envi-
ronment typically has many implicit dependencies on pro-
grams, libraries, and other objects present within that en-
vironment. Moving applications between different runtime
environments is certain to fail due to the existence of those
external dependencies.

Workflows particularly suffer from dependency management
problems, precisely because they tie together multiple inde-
pendent programs into a coherent whole. To address the
problem of workflow decay, we propose applying the old idea
of a “linker” into the new context of workflow systems. We
have implemented a linker for the Makeflow workflow sys-
tem, and extended the concept to apply recursively to ex-
ecutables and scripted languages within the workflow. We
evaluate the system by applying it to a selection of bioin-
formatics workflows including BLAST, BWA, and SHRiMP,
enabling them to be moved across multiple computation en-
vironments. We also show that the portability provided by
packaging allows for improved performance.

1. INTRODUCTION
In almost every domain of computing, one can easily find a
user with a program that ought to run, but cannot proceed
until some mysterious program, library, or file is installed
first. A program written in nearly any language cannot be
moved from one computer to another without carefully un-
derstanding all of the objects upon which it depends. De-
spite years of practice, managing dependencies is still a us-
ability hurdle for all forms of software.

Workflows have many characteristics which provide a partic-
ularly large susceptibility to missing or mismatched depen-
dencies. Workflows bring together large amounts of com-
putation and data. Workflows often combine many different
programming environments and technologies. Workflows are
are intended to run across thousands of distinct machines.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and teh full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WORKS13 November 17, 2013, Denver, CO, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2502-8/13/11.̇.$15.00

http //dx.doi.org/10.1145/2534248.2534258

As a result, a workflow constructed in one environment has
no chance of running correctly in another environment with-
out significant effort by the user to determine all of the nec-
essary dependencies. Zhao et al have identified this problem
and given it the name of workflow decay [6].

To address the problem of workflow decay, we propose adapt-
ing an old idea into a new domain: workflow systems should
have linkers [4]. In the most traditional sense, a linker an-
alyzes a compiled program, determines the minimal compo-
nents from a library needed to satisfy the program, and pro-
duces a self-contained executable that has all of the needed
components to run. Linking workflows targets decay by cap-
turing the namespace and files associated with each element
in the workflow description. Of course, linking has trade-
offs. A self-contained package is inherently larger than an
incomplete package, and may be less amenable to sharing of
resources at runtime, or other forms of analysis.

We have implemented these concepts in a linker for the
Makeflow workflow system [1]. Makeflow takes a list of rules
written in a similar style to GNU Make, produces a directed
acyclic graph of tasks to be run, and schedules them on a
variety of clusters, clouds, and grids. The linker processes
the dependencies found in the original execution environ-
ment and produces a packaged workflow that can be moved
to other execution environments. Going beyond the tradi-
tional notion of linking, a workflow linker can be used to
verify proper local dependencies, troubleshoot problematic
workflows, and estimate resource consumption. While we
have prototyped this idea within a specific workflow system,
the ideas can be easily translated to other systems.

We have evaluated this implementation by applying it to a
selection of bioinformatics workflows that have dependen-
cies in multiple forms: such as interpreters, shared libraries,
configuration files, and data. Using multiple levels of depen-
dency processing, we show that the original workflow spec-
ifications implicitly refer to more than 100 MB of software.
To evaluate the portability, we move the packages across
three different computing environments, and show that pro-
cessing two levels of dependencies is necessary for successful
execution of the workflows. A portable package enables per-
formance improvements since the workflow can be relocated.

Approach Benefit Drawback

Error Recovery No work upfront Separation from Workflow Creation

Execution Trace Scientific Reproducibility Multiple Runs

Static Analysis Analysis before Execution User Discipline

Table 1: Roadmap of Workflow Portability and Preservation Strategies

2. RELATED WORK
There are three general approaches to combating making
a workflow portable - error recovery, execution trace, and
static analysis. Table 1 outlines the costs and benefits of
each approach.

The workflow can be run while monitored for errors. Each
caught error is diagnosed and repaired. Eventually the work-
flow will run successfully. This approach requires no work
upfront while allowing for successful execution. However,
the catch and repair process is time consuming, complex,
and unique to each error. The repair process is also sepa-
rated by time from the workflow creation process. The time
gap further exacerbates the repair complexity. This strategy
is demonstrated by Zhao et al using Taverna as an exam-
ple [6].

Observing a successful run of the target workflow and record-
ing every action produces a log which exactly describes the
workflow. The recorded trace is then saved for future runs
of the workflow. From the trace we can collect each file ac-
cessed and have a workflow with no external dependencies.
This approach is ideal for scientific reproducibility, as there
is a log of every system call made. However, in order to col-
lect the log the workflow must run successfully. Requiring
multiple runs of a workflow provides no assistance in run-
ning across heterogeneous, grid systems. For example, the
library loaded for parsing the input data may be defined by
an environment variable that is different on each machine.
This is the strategy implemented with CDE [2].

Static analysis of the workflow is a third approach to preser-
vation. By looking at each piece of the workflow before
execution and attempting to find its dependencies, a self-
contained, transportable packaged workflow can be created.
Static analysis is less time consuming than the other ap-
proaches. Workflows may have multiple execution paths
with different dependencies. Static analysis requires one run
while the other methods require multiple runs to capture the
dependencies from each path.

There are limits to this approach. It is impossible to find
every dependency without running the program. The user
must interact with the linker and understand the problem
of dependency management before executing the workflow.
This is the approach we discuss in this paper. We chose
static analysis of formal dependencies because it can be used
before execution of the workflow.

3. A MODEL OF LINKING
For the purpose of linking we use the term dependency to
mean data dependency - files that must exist in order to
run an application. A dependency is any piece of software
which is required in order to run an application. Dependen-
cies come in a wide variety of types; shared libraries, other
executables, scripting language interpreters, and input files.
Each program has implicit and explicit dependencies which
typically correspond to objects in a file system. Implicit
dependencies are those dependencies which are revealed at
runtime or are not defined by the user, e.g. the kernel ver-
sion. Explicit dependencies are defined formally by the user
via some sort of import statement or listing. Reliable dis-
tributed computing across heterogeneous resources is impos-
sible unless every dependency is explicitly defined. Conse-
quently, the focus is on explicit, or formal, dependencies for
the task of linking.

Dependencies may have their own dependencies, recursively
creating a dependency tree. Describing the construction and
traversal of a dependency graph is a key contribution of this
paper.

Name resolution is the fundamental problem tackled by link-
ing. Dependencies are defined by a name which is defined
in a localized context. When discussing linking, the name is
a relative path and the context is the file system combined
with the current working directory. The linker must collect
the local name as well as the namespace in which that name
is defined and provide a method for replicating the name
lookup at the execution site. The process of linking makes
the underlying name translation table explicit.

Linking is broken down into three steps: parsing, discover-
ing, and collecting. Parsing reads the workflow description,
generates a tree of dependencies, and prunes the dependen-
cies generated during execution. Discovering is the process
of recursively searching each dependency for further depen-
dencies and storing the results in a tree. Collecting iterates
over the tree and creates a self contained version of the work-
flow called the packaged workflow, which is the outermost
package and invoked identically to the original workflow de-
scription. Figure 1 is an overview of the steps of linking and
an example of the corresponding data structure.

Figure 1: Steps of Linking

3.1 Package Responsibilities
A package has two responsibilities: invocation consistency
and encapsulation of the dependency graph. These two re-
sponsibilities work together to emulate the namespace reso-
lution in the original setting. Invocation consistency means
that the packaged dependency is started with the same com-
mand. This can be accomplished by manipulating path vari-
ables or using magic files. The PATH variable stores a list of
file system locations in which to look for a dependency. PATH
manipulation consists of inserting additional locations which
will contain the collected dependencies. Magic files have a
special name which is known by the execution environment
and contain instructions for execution. For example, the
Python interpreter when given a directory looks for a file
named __main__.py inside that directory. In order to be
transportable the package must store all of the dependen-
cies. The storage layout is arbitrary, and can vary amongst
file types or even individual files, provided each file can be
found.

3.2 Categories of Dependencies
A complex workflow can have many dependencies which fall
into different categories. Figure 2 provides a hierarchy of
the dependency categories.

This case represents files which the linker has been pro-
gramed to handle. Known dependencies correspond to static

Figure 2: Dependency Type Hierarchy

linking; dependencies are found and relocated into the pack-
age upon linking. There are two key requirements for a file
type to be known. The linker knows how to find the for-
mal dependencies expressed in a file (‘import/include state-
ments’, ‘ldd output’, etc.). The linker also knows how the
target file finds its dependencies (search path, table lookup,
etc.), and can therefore redirect the packaged version of the
file to its relocated dependencies.

Atomic files (typically data and configuration) are a subset
of known dependencies and are the simplest case for link-
ing. An atomic file contains no external references and can
therefore be safely copied into the package without further
processing.

Explicit dependencies are software packages which are de-
fined by a name and a version. Explicit dependencies are
best suited to common packages - language interpreters, do-
main specific libraries, reference data sets - which will likely
be available at all of the target execution sites. Handling
explicit dependencies is analogous to dynamic linking. Thus
the same drawbacks and benefits apply.

For example, a python script depends on a certain version
of the Python interpreter. The version number is sufficient
to identify the dependency and ensure compatibility in the
future. Updating the interpreter’s version does not require
re-linking and the package will have a smaller disk footprint.
However, the package is no longer self contained and the
potential pool of systems for which the packaged workflow
will run without additional effort shrinks.

Determining the version number directly follows from the
assumption that the workflow is correctly configured. How-
ever, versions different from the version found on the system
during linking may be suitable. In this case the user can
specify a range of versions which are compatible.

Previously packaged dependencies have specific structure to
satisfy the self-containment and invocation consistency re-
quirements. Linking with previously packaged dependen-
cies requires an understanding of the package structure and
defining a method for composition. While the exact nature
of composition depends on package structure, methods exist
for each structure.

In the recursive scenario packages are self-contained and can
be considered atomic and blindly copied. If, however, we de-
sire to combine all of the dependencies into one directory the
package will need to be reduced into its base components,
each of which is added to the tree as a child of the node rep-
resenting the package. Re-linking the package is potentially
simpler since all of the dependencies are in one location.
Name conflicts are the only potential point of contention.
Linking directly solves conflicts. Thus with either recursive
or single directory packages are composable

Unknown files represent dependencies for which no driver
has been defined. There are two options for files in this
category; copy or ignore. Ignoring the dependency leaves
a hole in the package and increases the potential for failure
when attempting to run on another system. Blindly copying
the dependency increases the chance of success, but only
slightly. With either method unknown files are detrimental
to the success of linking. Consequently, the most important
action for the linker to take upon encountering an unknown
file is to inform the user and allow their feedback to inform
the next action.

3.3 Summary
Atomic, unknown, and explicit dependencies represent the
leaves of the dependency graph while known dependencies
are the inner nodes. There is no clear-cut rule about how
to handle all of the leaves. Some definitely should be copied
(bash scripts), some should definitely not be copied (device
files), and some are unclear (locale). The default is to black-
list known incompatible files and copy the rest.

4. IMPLEMENTATION
We built a linker which traverses the dependency graph of
a workflow and collects every formal dependency along the
way. For each formal dependency we determine the file type
and pass the dependency off to the corresponding driver.
We implemented drivers for common scripting languages,
executables, and shared libraries. Our linker was built for
Makeflow, but the concept, and file drivers, generalize to
other workflow management systems.

Makeflow represents workflows as a directed acyclic graph
consisting of commands connected by files. Makeflow also
requires each rule to list all of the files required to run and
the files which will be produced. When taken as a whole, the
set of files which are inputs to rules consist of two types: files
created as output of another rule and files which are inputs
to the workflow. For the linking problem we are interested
in the latter category, which can be found by computing the
intersection of the set of input files and the set of output
files. Due to the semantics of a Makeflow rule, the previ-
ously computed set of files are the only requirement to link
a workflow. The next step is to link each of the inputs.

Recursively finding dependencies will collect every necessary
file. However, not all of these files should be copied. Con-
sider the libc library, it defines the system calls accessible to
user-space programs. These functions, by definition, are sys-
tem specific. Thus, proper execution of the workflow must
use the libc library installed at the execution site.

4.1 Overview
While it is possible to start linking with any file, we chose to
start with the workflow description. Linking begins with a
correct workflow. A correct workflow is important because
it means that the computer contains all of the information
required for a successful run. This information is stored in a
variety of formats in a variety of locations, but they all exist
and can be accessed. From this starting point the linker can
traverse the dependency tree, relocating dependencies into
the package along the way.

The linking algorithm employs a queue to store pending de-
pendencies and a list of processed dependencies. Dependen-
cies are removed from the front of the queue and processed
until the pending queue is empty or the user specified depth
has been packaged.

From the Makeflow file the linker obtains a list of formal
dependencies and inserts each into the pending queue. The
linker then discovers the file type of each file and passes
it off to the corresponding driver. The driver determines
the formal dependencies of the file and returns a list to the
linker. The linker then inserts each dependency into the
pending queue. This process continues until every node in
the dependency tree has been processed.

As dependencies are inserted into the pending queue they
are annotated with information about their position in the
dependency graph and their file properties. The bookkeep-
ing includes: the distance from the root, the parent, and
the ancestor which is a formal dependency of the workflow.
The file properties include determined file type (to avoid re-
computation and to inform descendant file type selection)

and absolute path on disk. This information allows precise
control over the graph traversal and final package structure.

4.2 Discover File Type
Not to be confused with dependency categories discussed in
section 3.2, a file’s type is an identifier which corresponds
to the driver that will be used for the file. Accurately de-
termining the file type is difficult [3], so the linker looks
for a few key pieces of information and if none exist the
file is deemed “unknown”. The most obvious indicator for
scripts is the shebang line, usually located at the top of
the script. The shebang not only indicates which language
but gives a direct path to the executable the user desires
to use for interpretation. This is the only formal depen-
dency used for determining file type. The shebang is also
used to find the desired interpreter and its version number
to list as an explicit dependency. The file extension is a
strong, but informal, indicator of which programming lan-
guage and execution environment is desired. The last resort
is the UNIX utility file. file probes the first few bits of a
file and matches them against a database, magic. The first
two tests usually match data and source code while file

matches libraries and executables.

4.3 File Types
The main goal of the linker is to wrap each dependency in a
self-contained, executable archive. This requires an under-
standing of how each type of file locates it’s external depen-
dencies. This subsection discusses the methods by which
each file type handles external dependencies and how the
lookup behavior is modified to create an encapsulated pack-
age.

4.3.1 Makeflow
Makeflow represents a workflow as a series of commands con-
nected by common files. Each command lists required input
files and output files produced. From these lists the linker
distinguishes between intermediate files and the inputs to
the workflow. The later category represents the list of tar-
gets which the linker needs to collect. Makeflow provides a
list of these workflow inputs which are then added to the
linking queue.

4.3.2 Standard Executable
Standard executables are handled by Starch [5]. To ensure
correct execution Starch creates a self extracting archive
which includes other executables and libraries required by
the executable. Executables are found by traversing the sys-
tem PATH variable. Shared libraries are found with ldd or
otool, depending on operating system. Once all of the de-
pendencies are found Starch copies each file into the archive
and creates the setup script. A self extracting archive con-
tains all of the necessary dependencies required to run. Ex-
ecution of the archive is managed by a shell script which
prepends the current directory to PATH and LD PATH be-
fore running the original executable.

4.3.3 Python
The primitive of namespace resolution in Python is “mod-
ules” and expressed via the import statement. The linker
searches through a file for these statements and extracts the
module name. Python provides access to the internals of

the import statement with the imp module. The most im-
portant function provided is find_module which looks for
a module name in locations on the file system provided by
the search path (sys.path) and returns the absolute path to
the module if it exists. The linker takes this path and copies
the file into the package. Python conveniently prepends the
current directory to the search path when executing a script.
The linker takes advantage of this behavior by dumping the
dependencies into the directory containing the target script
and consequently does not require any modifications to run
at the execution site.

4.3.4 Perl
As with Python, Perl programs express their dependencies
with a special statement containing either use or require.
The Perl interpreter locates dependencies by searching through
a list of paths stored in the INC variable. Unlike Python, Perl
appends the current directory to the search path. This slight
change in behavior can have dramatic consequences for link-
ing. To avoid conflicts the linker creates a wrapper script
which prepends the current directory to the Perl search path
before loading the target script.

4.3.5 Explicit dependencies
Upon completion the linker produces a list of the explicit
dependencies which are found by combining which with the
shebang line from top level scripts or file extensions. This
list is the executables and libraries which need to be avail-
able at an execution site to ensure successful execution of
the packaged workflow. It is possible to communicate these
requirements with batch systems and only schedule tasks on
compatible machines.

4.3.6 Completeness
Our implementation includes drivers for the file types we
encountered in the example workflows, but many other file
types exist and are categorized as “unknown””. Fortunately,
the modular structure of the Makeflow linker allows for sim-
ple extension.

Three steps are required to add support for a new file type.
A method of discovery must be defined which does not col-
lide with previously defined types. The file extension method
is the most straight forward. The second step is driver cre-
ation. The driver is responsible for locating dependencies
given an input file. The final step is choice of packaging
method which allows the package to be self-contained and
maintain invocation consistency. The choices are recursive
and coalesced which we now discuss.

4.4 Package Construction
At this stage of linking, the complete queue contains enough
information to construct the package. There are two distinct
approaches to construct the package: recursive or coalesced.

The recursive method is based on a bottom-up traversal of
the dependency tree. At each node the linker would create
a new package for the node. At the leaves a recursively
constructed package would simply contain the dependency
itself. For the next level up, the package would contain the
dependency as well as its direct descendants nested inside.
This process would continue until the root of the tree is

reached. The final structure would closely resemble the tree
discovered during linking, see figure 1.

The coalesced method is a top-down approach. In this ap-
proach the goal is to create a single namespace containing
all of the required dependencies. Top-down is not strictly
necessary, but it aligns closely with our goal of maintaining
names similar to those given by the user in the original work-
flow description. The user is acutely aware of the files at the
top of the tree, while the dependencies towards the bottom
may reflect obscure UNIX details orthogonal to the work-
flow’s goal. The challenge here is to avoid naming collisions
while maintaining the multiple lookup methods required by
the potentially diverse set of tools used in a scientific work-
flow. The main weapon for constructing a coalesced package
is the name lookup table. The name lookup table is a list
of key-value pairs where the key is the name used by other
objects in the tree to find the dependency and the value is
the absolute file path. Starting at the top of the tree (or the
front of the complete queue), each file is added to the table.
Dependencies are continually added until the pending queue
is empty.

Naming conflicts become an issue in either method. Resolv-
ing a naming conflict boils down to modifying the name and
ensuring that references from other objects in the tree are
correct. There are two methods for name modification: di-
rect manipulation and encapsulation. Direct manipulation
is straightforward; append a random string until the names
differ and update the references accordingly. Encapsulation
is handled by prepending a namespace to the file (typically
a directory).

The approach we used combines both encapsulation and
manipulation. Direct manipulation is used for Makeflow
and Perl naming conflicts while encapsulation for all oth-
ers. Direct manipulation is static, and therefore preferable.
However, direct manipulation requires an intimate knowl-
edge of name lookup in the target system. Name lookup
becomes evident during runtime which may require modifi-
cation of environment variables or additional parameters to
interpreters. But, direct manipulation of names is supported
by all target file types. And since the structure of other file
types is externally defined, encapsulation is a more durable
approach for most file types.

4.5 Composability
Composability of packages must also be addressed. Both ap-
proaches are composable, albeit with dramatically different
costs. Recursively structured packages are trivially compos-
able; a blind copy will suffice. Coalesced packages require
merging the lookup tables and resolving conflicts. While
there are cases where concatenating the tables will suffice,
in the general case the entire linking process will need to be
rerun.

One final consideration of package construction is invoca-
tion consistency. Invoking a package may differ from the
method for invoking the original file. This can be solved by
updating every reference to the package, or by modifying
the structure of the package. The linker employs augmenta-
tion of the package structure to allow consistent invocation
from an outside observer, Makeflow in this case. This re-

quires modifying paths, changing the current directory, and
setting environment variables. The end result is packages
which may be invoked with an identical command to the
original.

5. THE LINKER USER INTERFACE
The goal of the linker is to fill in the gap between the user’s
knowledge of the workflow description and the implicit con-
figuration hidden in the system’s various interpreters. Since
the linker explicitly shows the dependencies in a workflow,
the linker will also be useful during workflow construction.
This will be especially useful in scenarios where multiple
scientists are collaborating on a single workflow or multiple
integrated workflows.

$ makeflow -b bwa_workflow.mf packaged_bwa

Packaging bwa_workflow.mf into packaged_bwa...

Skipping libc

COMPLETE

Package Size

6.47 GB

Explicit Dependencies

Perl 5.12

libc 2.12

bash 4.1.2

Figure 3: Example User Interface

One important question to ask is “What information should
be visible to the user during the linking process?”. The
answer depends on the file type. For atomic and known files
little or no information is required. Explicit files will be
listed in a separate file, but it would be useful to mention
that explicit dependencies were used and point the user to
the file containing the list. Unknown files represent potential
failures which may require user intervention. Therefore it
is vital to clearly state the status of any and all unknown
files encountered during linking. Finally, a summary of files
copied, renamed, and skipped should be produced. This
information may be presented in graphical form or as a series
of lists, one for each Makeflow dependency. Presenting the
found dependencies provides two benefits: inform the user
of potential naming conflicts, allow the user to understand
which versions of programs will be collected.

The main concern of users during linking is determining
when to stop recursing. The default is to collect everything,
but the user should be able to stop linking earlier. The most
basic way is to explicitly define the version of an interpreter
to use. For example, use Python 2.7.

The linker should also allow the user to define which name
points to which executable. If the user knows that Python
2.7 is available at all execution sites is it necessary to collect
all files included in the standard Python installation? While
using an explicit dependency,“use Python 2.7”, will result in
a smaller package and remain compatible with the current
infrastructure, the workflow will decay and require manual
installation of Python 2.7 in the future. This comes back

to the purpose of linking. Some users intend to create sci-
entifically reproducible applications/experiments while oth-
ers want to use disparate resources not under their control.
Users looking for the first case should investigate CDE [2].

6. EVALUATION

To evaluate the linker, we selected workflows generated by
an active bioinformatics web portal. The selected work-
flows are available for download at http://www3.nd.edu/

~ccl/workflows/. Currently, three types of computations
(BLAST, BWA, and SHRiMP) serve as the test cases for
the Makeflow linker. Each workflow has a similar structure:
split the input file, run computation on each split against a
reference data set, and combine the results.

An important attribute of a packaged workflow is the file
size. Figure 4c shows the dependency tree for an example
SHRiMP workflow. The figure also annotates the tree with
file size per level. The total size of the packaged SHRiMP
workflow is 708.65 MB. Data sets dominate the package size,
accounting for 99.6% of the total file size. This result indi-
cates that the additional file transfer required for linking is
negligible.

By varying the depth to which we traverse the dependency
graph we can change the degree of linking. A shallow traver-
sal will result in a smaller package but has less portability
compared with a deep traversal. The goal of this section
is to determine the minimal amount of linking required to
run a workflow. Table 2 summarizes the depth analysis and
indicates the required depth with a bold typeface.

Depth BLAST BWA SHRiMP

0 3.5 KB 191 KB 932 KB
1 +8.4 GB +6.47 GB +677 MB
2 +47.2 KB +2.88 MB +236 B

3 +3.6 KB - +524 KB
Total Size 8.4 GB 6.47 GB 678 MB

Table 2: Depth Required for Success

To evaluate the necessary level of linking for a successful
run, we ran the workflows on various grid platforms around
the country - CRC1, Future Grid2, Lonestar3, and Stam-
pede4. Level 1, the workflow description and its immedi-
ate dependencies, was the minimal level required for success
with BLAST and BWA. The SHRiMP workflow required
linking to level 2 - the utilities file utils.py.

This result was unexpected, but logical since the clusters
are set up for running scientific applications and most of the
Perl and Python dependencies are included with a standard
installation.

6.1 Data Transfer
The increased portability provided by packaged workflows
creates opportunities for improved performance. For exam-
ple, packaging workflows can reduce total execution time
1http://crc.nd.edu/
2http://futuregrid.org/
3http://www.tacc.utexas.edu/resources/hpc/lonestar
4http://www.tacc.utexas.edu/resources/hpc/stampede

by localizing the data transfer. To demonstrate this effect
we ran the BLAST workflow in two configurations. The
BLAST workflow and all of the corresponding dependencies
are available at The University of Notre Dame (ND), but we
want to run our workers at The Texas Advanced Comput-
ing Center, specifically the Stampede cluster. The network
speed between ND and Stampede is a bottleneck in the ex-
ecution of this workflow.

(d) Without Packaging (e) With Packaging

Figure 4: Executing Blast Workflow with Stampede

In the first configuration, figure 4d, we run the master pro-
cess at Notre Dame and the workers as batch jobs at Stam-
pede. As part of task distribution, the master process sends
each worker all of the necessary files. Among these files is
an 8 GB reference database which is common to all tasks.
The master must send this file to each worker over the WAN
between ND and Stampede.

In the second configuration, figure 4e, we run the master
process and the workers at Stampede. To enable execution
at Stampede we use the linker to package the workflow at
Notre Dame and scp the package to Stampede. In this sce-
nario there is only one transfer between ND and Stampede.

File transfer time from Notre Dame to Stampede without
packaging totals 1,535 seconds. Package creation takes 8.4
seconds, transferring the package requires 81 seconds, and
transfer inside Stampede requires 3 seconds per worker or 57
seconds with 19 workers. After accounting for the additional
cost of package creation, linking provides 1,397 seconds less
total transfer time - an 89.6% savings.

This result would not be possible without linking. The pack-
age creation time would be significantly longer and require
user intervention.

7. LIMITATIONS
The linking approach has inherent limitations. Guarantee-
ing that all required files are found is impossible. For ex-
ample, consider a program which employs eval to run code
based on the type of input file. Statically analyzing such a
program cannot possibly find the correct file for all inputs
since the decision is made at runtime.

The linking approach also requires a method for redirecting
queries to packaged objects instead of local files. Modifying
the search path and rewriting every reference are the two
methods by which redirection may be enabled. Rewriting
every reference is untenable, which implies that an execution
environment must support path modification in order to be
amenable to linking.

(a) BLAST Workflow Dependencies

(b) BWA Workflow Dependencies

Level 0: 932 KB shrimpmakeflow.mf

Level 1: 677 MB input.1 combine.sh splitreads.py rmapper-cs input.csfasta

Level 2: 236 B utils.py

Level 3: 524 KB _io.so _struct.so _weakrefset.py abc.py copy_reg.py gzip.py io.py os.py struct.py time.so types.py zlib.so

(c) SHRiMP Workflow Dependencies

8. FUTURE WORK
In order to further evaluate the effectiveness of linking a
larger and more diverse selection of workflows should be col-
lected. The effectiveness of linking with regard to decay pre-
vention also requires exploration, but cannot be evaluated
until time has passed and systems have changed. Reducing
the number of files which fall into the unknown category
will increase the number of applications where linking is a
viable solution. Combining linking with other forms of de-
cay prevention may lead to increased application coverage
or decreased file size and potentially increase throughput.

9. CONCLUSION
Workflows suffer from dependency management issues due
to their diverse execution environments and agglomeration
of applications. To address this issue we applied the con-
cept of “linking” to workflows. Linking workflows fill the
gap between the user’s view of the system and the details
required for execution without requiring the user to sup-
ply an exhaustive listing dependencies. Collecting the de-
pendencies for bioinformatics workflows enabled successful
execution across multiple grid systems which previously re-
quired haphazard installation of many applications.

10. ACKNOWLEDGEMENTS
This work was supported in part by National Science Foun-
dation grant OCI 1148330 and Department of Energy grant
421K072 via subcontract from the University of Wisconsin.

11. REFERENCES
[1] M. Albrecht, P. Donnelly, P. Bui, and D. Thain.

Makeflow: A Portable Abstraction for Data Intensive
Computing on Clusters, Clouds, and Grids. In
Workshop on Scalable Workflow Enactment Engines
and Technologies (SWEET) at ACM SIGMOD, 2012.

[2] P. J. Guo and D. Engler. Cde: Using system call
interposition to automatically create portable software
packages.

[3] W.-J. Li, K. Wang, S. J. Stolfo, and B. Herzog.
Fileprints: Identifying file types by n-gram analysis. In
Information Assurance Workshop, 2005. IAW’05.
Proceedings from the Sixth Annual IEEE SMC, pages
64–71. IEEE, 2005.

[4] L. Presser and J. R. White. Linkers and loaders. ACM
Computing Surveys (CSUR), 4(3):149–167, 1972.

[5] A. Thrasher, R. Carmichael, P. Bui, L. Yu, D. Thain,
and S. Emrich. Taming Complex Bioinformatics
Workflows with Weaver, Makeflow, and Starch. In
Workshop on Workflows in Support of Large Scale
Science, pages 1–6, 2010.

[6] J. Zhao, J. M. Gomez-Perez, K. Belhajjame, G. Klyne,
E. Garcia-Cuesta, A. Garrido, K. Hettne, M. Roos,
D. De Roure, and C. Goble. Why workflows break:
Understanding and combating decay in taverna
workflows. In E-Science (e-Science), 2012 IEEE 8th
International Conference on, pages 1–9. IEEE, 2012.

