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Abstract—When running a parallel application at scale, a
resource provisioning policy should minimize over-commitment
(idle resources) and under-commitment (resource contention).
However, users seldom know the quantity of resources to ap-
propriately execute their application. Even with such knowledge,
over- and under-commitment of resources may still occur because
the application does not run in isolation. It shares resources such
as network and filesystems.

We formally define the capacity of a parallel application as
the quantity of resources that may effectively be provisioned
for the best execution time in an environment. We present a
model to compute an estimate of the capacity of master-worker
applications as they run based on execution and data-transfer
times. We demonstrate this model with two bioinformatics
workflows, a machine learning application, and one synthetic
application. Our results show the model correctly tracks the
known value of capacity in scaling, dynamic task behavior, and
with improvements in task throughput.

I. INTRODUCTION

Researchers today rely on clusters, clouds, and grids to
analyze and collect data on a large scale. However, it is
difficult to know the resource requirements of an application
at scale. Decisions about just how large the application should
be scaled often have to be made by the researcher. This can
lead to cases of requesting too few resources to get their work
done in a timely manner or asking for too many resources and
blocking other researchers from getting their work done.

At the University of Notre Dame, researchers like high en-
ergy physicists and biologists have shared computing resources
available to run their experiments at scale. When executing
their applications, we often find our users under-provisioning
or over-provisioning their work by orders of magnitude. For
example, users request resources on ten cores for an appli-
cation that should be using thousands. This prevents them
from getting their research done as quickly as it should. Users
have also requested a thousand cores when only tens could be
used effectively. This is a problem for the cluster since other
researchers have to wait in the queue while their colleague is
using about a thousand completely idle cores. In this case, the
productivity of the entire campus can grind to a halt without
intervention from a system administrator.

In principle, users could run their application multiple times
with varying resources in order to discover an appropriate
resource provisioning for their application on the given system.
This is not useful in cases where the data from the application
does not need to be processed more than once. It is especially
detrimental when the user is charged for computation such

as infrastructure-as-a-service platforms. Having to re-run the
application to find an appropriate resource allocation can
quickly rack up cost. It also slows down the rate of their
research. It would be preferable to run the parallel application
only once to discover an appropriate number of resources
and dynamically provision them throughout the application’s
lifetime.

We present a method for dynamically calculating the num-
ber of computational nodes which can be effectively utilized
by a master-worker parallel application. This model is called
the capacity of the application. This method provides the
benefit that the application does not have to be rerun, and
approximations of the true value of capacity are easily ob-
tained as tasks are executed. This model prevents waste on idle
resources from over-provisioning which can in turn save users’
money and allocation time in the case of infrastructure-as-a-
service platforms. It also increases throughput if an application
experiences initial under-provisioning.

We evaluate the capacity model by executing four applica-
tions on an active, campus-scale high performance comput-
ing cluster. One application is synthetic and is designed to
demonstrate the potential differences between anticipated and
realized capacity. We also test two different bioinformatics
workflows based on the BWA [1] and HECIL [2] genomic
data analysis tools, respectively. The final application we use
to evaluate the model is a machine learning model search and
hyperparameter optimization application called SHADHO [3].
We provide results showing the accuracy with which a user can
estimate capacity a priori if they know the expected execution
and I/O times of each tasks which was the case of the synthetic
application. We also demonstrate the capability of an execution
engine to utilize the capacity model to dynamically right-size
the number of resources available to an application throughout
its lifetime using BWA, HECIL, and SHADHO, minimizing
the idle time of the workflow management system, scaling up
and down the number of resources available to the application,
and preventing waste of idle machines.

We also present a web-based troubleshooting tool for re-
searchers to diagnose common resource provisioning issues in
their applications with the goal of providing a transparent and
informative interface to help users understand the behavior
of the application at run time. The capacity model, along
with basic performance metrics, provide the basis for simple
visualizations which make resource issues readily apparent.
The capacity model and performance metrics also inform a
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troubleshooting recommendation system which provides the
user with actionable steps to address potential problems.

In summary, we contribute a model for calculating the
capacity of master-worker applications, an evaluation of this
model in a live master-worker framework with four applica-
tions, and a web-based visualization to provide researchers the
benefits of the model when not using the live implementation.

II. BACKGROUND AND RELATED WORK

In a master-worker framework, a master process serves as
a centralized controller of worker nodes and is responsible
for coordinating workers and feeding them tasks. Workers are
processes scheduled to cluster nodes which persist so long
as they receive work from the master. The master submits
work to be done, called tasks, along with any necessary
input data for that work. After executing their current task,
a worker will provide the master with any specified output.
The scalability of this application framework comes from the
number of workers the master can sustain given resource
availability. With fewer workers, the magnitude of concurrent
work the master can achieve is decreased, but the work will
still get done. The reverse is true of being able to request more
workers; concurrency will increase. However, there is a limit
to how many workers an application can handle.
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Fig. 1. Master-worker architecture. S is the task submitter, M is the master,
and W nodes are workers. Each worker may handle multiple tasks which all
share a common data cache C in each worker.

The degree of parallelism of a master-worker application is
constrained both logically (i.e. tasks depend on each other) and
practically: it is not always feasible or possible to provide the
resources necessary to achieve maximum concurrency. In fact,
it is sometimes detrimental for the execution of the application
to over-provision it in an attempt to increase its throughput.
This is because a distributed system’s architecture creates two
intrinsic bottlenecks. First, the execution time of each task
may be limited by the hardware available. If execution time
is slow, the master will spend much of its time polling the
running tasks, waiting for output. The other bottleneck is I/O
time. If transmitting the input and retrieving the output of a
task takes a long amount of time, the master will be stuck
sending and receiving data instead of sending out new tasks.

There are many common types of applications which can be
implemented in a master-worker framework. They include pa-
rameter sweeps [4], bulk synchronous parallel [5] applications,

bag-of-tasks [6], and scientific workflows [7]. Each of these
share the capability to expand or reduce its current executing
workload in response to changing resource availability. We
present a model called the capacity of a parallel application
which formalizes an upper bound on the application’s ability to
expand to more resources. We present this model through the
lens of a master-worker framework. The capacity model seeks
to dynamically calculate an appropriate number of resources
the master process can handle given any system or application
bottlenecks the researcher may be experiencing.

In order to enforce the capacity model, the number of
resources (i.e. persistent workers) connected to the centralized
master process must be scalable. The Work/Exchange model
and load balancing studied in [8] provides historical context
for the problem of compute node load in parallel applications.
While [8] presents a similar problem, we are concerned with
minimizing the idle time of the master process in a master-
worker framework rather than the idle time of a group of
statically defined compute nodes. Automatically scaling to
an ideal number of resources has been studied in [9], [10],
[11], [12]. However, these works incorporate cost-efficiency
and adherence to Quality of Service Agreements as goals in
their analysis. We are most concerned with the presentation
of a model for measuring capacity at user-level as a means
of scaling a parallel application. Load and quality of service
impacts are external from the user space in which our model
operates. Similarly, [13] presents a resource management
tool for Service-Level Objectives which are concerned with
policy decisions for each user at a system level whereas
the capacity model is concerned only with the current user’s
perspective. Another similar work is [14] which presents a
similar motivation as the capacity model with the addition of
adherence to Service-Level Agreements, however the work in
[14] makes decisions at the system level as with [13]. We
present a model which operates only with the knowledge of
the user and reacts to system availability rather than making
decisions at a higher level to guarantee some level of system
availability for all users. In this regard, [15], [16], [17]
focus on the high cost of establishing resources which will
go either unutilized or under-utilized during a cloud service’s
lifetime. Though the resources in question vary between the
works, each seeks to eliminate acquiring under-used resources.
We follow a similar line of thought but for master-worker
parallel applications rather than the system. We demonstrate
this with master-worker applications which make use of cluster
machines. Using the capacity model presented, we provide an
appropriate number of resources to provide an application at
varying stages of its execution.

Along with mechanisms for correct provisioning, it is useful
to have a way of modeling an application’s behavior. Con-
cerning predictive modeling and near real-time analysis of
behavior, [18], [19] demonstrate the need to properly schedule
workloads based on previous application behavior and the state
of the executing system. A common thread among these works
is to increase system utilization and decrease waste. Similarly,
we work to eliminate idle time in the master process as well



as decrease idle time of connected workers. Although our
work focuses on the application-level instead of a system-level
approach, we note that a positive consequence of correctly
adapting resources to an application’s capacity is its potential
to negate over-provisioning of a distributed system.

Our definition of capacity builds directly upon an idea first
presented in [20] which we have now derived on first prin-
ciples. Unlike the previously described works, we contribute
a model which adapts the concurrency of an application to
the current system performance exclusively at the user-level.
The presented capacity model finds its roots in Gustafson-
Barsis’ Law (specifically the scaled speedup model) [21] and
initial work on parallel computation speedup [22]. In contrast
to [21], we demonstrate the limit to the scalability of a master-
worker application due to the bottleneck of the master process.
Chiefly, we consider throughput as the bottleneck of a parallel
application’s capacity, so we consider the factors which drive
throughput: execution time and I/O time. The model we
present is a formal and more complete consideration of the
problem of resource provisioning. In particular, we first note
we must weight the most recently completed task heavier than
the rest. This better informs us of the application’s capacity
at the current state of execution as opposed to an average
value computed across the whole of the application’s lifetime.
Without this contribution, we would be missing potential
to seize more resources or scale down if the application’s
current state indicates that is needed. We then implement the
ability to scale regardless of cores being requested by the
user whereas the previous model assumes each task requires
only a single core. We must also track the master’s own think
time in the model. This think time is the time needed by the
master process to complete bookkeeping, manage resources,
and execute any other sub-routines. These contributions allow
for a wider range of useful implementation.

III. CAPACITY MODEL

For each parallel application, there exists some ideal mini-
mum number of resources which, when provisioned, give the
application its fastest execution time. If the application is given
fewer than the ideal number of resources, it will not reach its
maximum parallelism and thus run slower. If it is provisioned
more than the ideal resources, the application may run slower
due to overhead incurred for managing those resources. At
best, providing more resources will neither speed up nor slow
down the application. This will, however, be wasting those
over-provisioned resources.

Figure 2 models the impact upon application runtime from
poor resource provisioning. The application modeled in the
figure consists of 100 independent, homogeneous tasks. Each
task has a 100 second turnaround time. We assume in this
model that there is a 1 second cost for managing each
additional computational resource. The best run time for the
entire application is thus 200 seconds (in the case that all
tasks are run concurrently for 100 seconds with 100 seconds
of cumulative resource management time). This is shown
when the scale of resources reaches 100. Since we assume
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Fig. 2. Effect of resource provisioning on execution time. When executing a
parallel application, there is a scale of resources which will provide the fastest
execution time. Provisioning fewer or greater resources will slow down the
application.

there is some cost associated with managing resources, the
total execution time will increase as additional resources are
added after the first 100. This may not be the case for all
applications, but at best adding more than the appropriate
number of resources will neither increase nor decrease the
execution time of the application.

We can conclude from Figure 2 that there is some appropri-
ate scale for each parallel application. To provision above or
below that scale will lead to a slower execution time. It would
be beneficial for the user if they were able to derive some
appropriate scale of resources they should request for their
parallel application. We say that the application is right-sized
when that appropriate scale is reached.

Now consider a master process that delivers tasks to be
executed by worker processes. We can make the following
observation with regards to the throughput (tasks completed
per second) of the master process:

Assuming the master process can only transfer data (input
and output) for a task at a time, all the workers have identical
processing and networking capabilities, and all the tasks have
identical execution time te and identical transfer time tio, then
the maximum throughput of the master process Tm is bounded
from above as Tm ≤ 1/tio. The observation easily follows
since the system cannot process a single task faster than tio.
Note that this maximum throughput is independent of the time
it takes to execute a task te. The execution time per task te
comes into play with the upper bound on throughput of a single
worker Tw, which is bounded from above as Tw ≤ 1/(tio+te).
If the master has C available workers, their throughput upper
bound, under the conditions of our observation, is CTw.

Let C be the number of workers the master needs such that
it is never idle. From the previous discussion, CTw = Tm,
and C = 1 + te/tio. We call C the capacity of the system1.

1With think time tz per task at the master, the bound on throughput becomes
1/(tio + tz), and the capacity is C = (te + tio)/(tz + tio). Here we have
to be careful. If we limit the number of workers to integral values, we may
find the only way to not have idle workers is to have none of them (e.g.
tio + tz > te, with the floor operator giving 0). We should then execute the
application locally since it cannot handle greater scale.



Since the master process deals with tasks in a sequential
manner, using more workers than C will not increase the
throughput of the system. The capacity C is in fact the number
of workers at which a speedup curve converges [23].

A. Dynamic Capacity Model

The basic model above makes assumptions that are hard to
meet in practice. For example, not all tasks are identical, and
not all computing nodes have similar resources. To deal with
these issues, we extend the previous computation to derive an
estimate of the capacity as follows:

Let Ci = 1+ tei/tioi be the capacity computed if all tasks
were identical to the ith finished task. Using an exponential
moving average, a parameter α ∈ (0, 1) is used to weight
previous completed tasks against the most recently completed
one. We assume that the most recently completed task will be
more indicative of the application’s current behavior. In our
testing, the value α = 0.05 performed well in practice. With
C0 = 0, for i > 0 and 0 < α < 1, we recursively define:

Ci = α(1 + tei/tioi) + (1− α)Ci−1

Using this dynamic model, we gain better insight into the
application’s resource needs. Seldom are tasks identical for
an entire workload, so weighting the ith finished task greater
than the cumulative capacity of the previous workload allows
us to better adjust when workload changes occur. For example,
consider a master-worker application which has two categories
of tasks: tasks of type A and tasks of type B. There are an
equal number of both types. Assume that both task types have
the same I/O time, but type A tasks run half as long as type
B tasks. Let us also assume the workload submits all the
type A tasks first then submits the B tasks. There will be
a point in the workload when capacity will increase because
B tasks run twice as long as A tasks. Capacity will essentially
double. A more naive model [20] which does not weight the
most recently completed task heavier can take awhile to adjust
to the sudden change in capacity. There may be a long lag
between actual capacity and realized worker acquisition. In
our dynamic model, the added weight α allows our application
to realize the capacity change between A and B faster. This
in turn will reduce that lag and scale the number of workers
quicker if the resources are available. In essence, we present a
model which follows Gustafson-Barsis’ Law [21] to find the
best speedup using an exponential moving average.

B. Cached Inputs

Thus far we have assumed that each task has independent
data transfer with duration tio. However, tasks may share
common inputs which only need to be sent once to each
worker where they are cached. We use tc to refer to the time
it takes to transfer these common inputs and tio − tc as the
time to transfer the remaining inputs and outputs. Since the
task description and exit status are transferred between master
and workers, we have tio > tc.

In a steady state where shared files are cached at current
workers, the capacity is therefore C = 1 + te/(tio − tc).

Suppose that we already have m workers available, and n tasks
remain to be dispatched. When does it become advantageous to
add a new worker? Certainly if m >= C (already at capacity)
or m ≥ n (not enough work to fill the extra worker), an
additional worker would be wasteful. We explore here the
remaining case, m < C, and m < n.

If there are n tasks that remain to be dispatched, it will
take at least ntio time to process all these tasks. Conversely,
it will take at least nte/m+ tio time for the workers to finish
the remaining tasks. Since we assumed that the master was
running under capacity, we have that ntio < nte/m + tio.
Thus, r new workers are advantageous when:

ntio + rtc︸ ︷︷ ︸
transfer n tasks and r caches

< nte/(m+ r) + tio︸ ︷︷ ︸
execute and transfer n tasks on m + r workers

Caching increases the overall capacity, but it increases the
cost of initializing a new worker. These two compromises
come into play when a master-worker application has few tasks
left to be processed.

C. Applicability to Generic Workloads and Limitations

Scientific workflows are often broken up into sets of similar
tasks which all run at relatively similar times in the lifetime of
the workflow. This is advantageous for the capacity model as
we can accurately determine when the workflow is advancing
from one set of similar tasks to another. However, it is difficult
to gauge capacity in applications which have no way to
identify similar tasks. In such cases, our model reaches a
capacity which is averaged between the many different tasks.
This can lead to some idle resources if there are very wide
gaps (e.g. orders of magnitude) between the execution to I/O
ratios of different tasks. Our model would have to catch up
with radically changing ratios which will prevent converging
on a stable number until later in the application’s lifetime.

The evaluation of our work consists primarily of scientific
workflows, which are commonly executed using a master-
worker framework, because our users most commonly execute
this type of application. However, we believe this capacity
model is applicable to other styles of master-worker appli-
cations. Bag-of-tasks applications typically do not have a
mechanism to submit waves of similar tasks, so it can be
expected that capacity could vary greatly at the beginning of
the application’s lifetime but smooth to an average value once
a sufficient number of different kinds of tasks have completed.
If all the tasks in the bag are identical (or similar), we can
expect capacity to be a stable number throughout computation.

Bulk synchronous parallel applications have an easier be-
havior to model since they are more uniform. These applica-
tions consist of groups of computation tasks and synchroniza-
tion tasks. These groups are called supersteps. If we exclude
the sync supersteps from affecting capacity, then we would
expect capacity to adjust according to the execution and I/O
time spent during each superstep of computation. However, if
we do consider sync supersteps having an effect on capacity,
then capacity could drop during those supersteps and we could



release unused resources while the remaining nodes finish
synchronizing. During the next computation superstep our
need for more resources would increase, and the application’s
capacity would increase to reflect that.

A parameter sweep application is similar to bag-of-tasks
when it comes to capacity because if structured it can submit
a grouped wave of similar search spaces, but this structure is
not guaranteed (i.e. depth-first search of a parameter space).
If the master process is structured to submit groups of similar
parameter search spaces, we will see capacity change with
the execution and I/O time spent between the tasks of each
group. If, however, the parameter sweep does not have a wave-
of-tasks behavior then capacity could vary greatly until it
eventually smooths to an average value.

Extending the capacity model further, we can envision how
it could apply to other execution frameworks such as Apache
Spark [24], MapReduce [25], and MPI [26]. In Spark, we are
concerned with creating resilient distributed datasets (RDDs)
and performing either transformations or actions on those
RDDs. Spark forms a directed acyclic graph of the RDDs to
establish lineage. This lineage graph informs the application
the order in which to create data and how to re-create it
if necessary. This directed acyclic graph (DAG) structure is
similar to a typical scientific workflow in that we are given
the data to be produced, the dependencies for that produced
data, and the command to create it (a transformation or an
action). One way to model capacity for a Spark application
could be the time to complete the transformation or action
(execution time) and the time spent retrieving dependent RDDs
and storing created RDDs (I/O time). These two time statistics
fit the current form of the capacity model.

Applying capacity to MapReduce is more difficult. We can
consider the map and reduce steps as two separate waves of
similar tasks in an application. This is especially useful if the
application loops on multiple stages of mapping and reducing.
If we apply the capacity model directly, we could expect to
see a capacity for mapping and a capacity for reducing. The
model could be implemented in the back end system to scale
the number of resources (i.e. cores) assigned to a data partition
as the application executes.

Extending the model to MPI is conceptually a bit of a
challenge since MPI applications are not necessarily elastically
scalable. Since MPI is designed to allow for various kinds
of communication interfaces (master-worker, scatter-gather,
point-to-point, broadcast, etc.), it is difficult for one model to
cover all. In the case of a master node being used to facilitate
communication, the capacity model would function similarly
to its current implementation. Some added overhead in the
communications would be needed to send measurements of
execution time to the master node. The master would need to
track its time spent handling messages and I/O from the worker
nodes. Other configurations of MPI would be more difficult
to model. Since many of the configurations are decentralized,
each node would need to track its time spent computing and
its time spent passing messages and data. To compute capacity
with the current assumptions in the model, the nodes would

need to aggregate their execution and I/O time to a dedicated
process which could spawn more processes or kill excess,
idle processes. This may not be ideal for all applications
since it introduces a centralized mechanism in an inherently
decentralized system. The capacity model would need to be
modified to fit decentralized communication configurations.

IV. IMPLEMENTATION

We implemented our capacity model in the Work Queue
master-worker execution engine [27]. The model can be imple-
mented in any framework where task execution time (te) and
task I/O time (tio) are readily available. Our users run Work
Queue applications to scale up their research by breaking up
their analysis pipeline into smaller tasks which can be executed
concurrently. Work Queue is designed to scale from O(10) up
to O(10,000) cores. The largest scale application using Work
Queue has successfully scaled up to approximately 25,000
cores.

The Work Queue master is a process which the user executes
on the their machine or a cluster’s head node. It is responsible
for giving workers tasks to run as well as any input files a
task may require. A worker is a process which runs on a batch
system and claims resources on a machine for a user’s work.
Worker processes persist as long as they are given work to
do, and each worker has a local cache. These workers receive
input files and executables to run the task if they do not have
them in their cache. If the task is completed successfully, the
worker waits for the master to acknowledge its success then
transfers the output of the task.

The master receives a task report from a worker once a task
has finished executing. If the task was completed successfully,
the master uses that task report for determining capacity. This
task report contains the execution time (te) and I/O time (tio)
for that task along with many other performance metrics.
These metrics are measured at the worker process and are
used in the calculation of capacity as shown in the model. The
master also keeps track of its think time during tasks which
is added to the task report. We use these times to calculate
the capacity of the application, weighting the most recently
completed task most heavily as defined in our model. If the
task is not successful, the task report for that failed task is not
included in the capacity calculation.

The master determines the capacity using the stats retrieved
from successful task reports. The most recent task report’s
execution time, I/O time, and master think time are weighted
more heavily than the rest of the application’s history because
we assume that task will be more indicative of the application’s
current behavior. After the capacity is calculated, the master
submits it (and other metrics) to a catalog server which a utility
called Work Queue Factory can access.

In order to request and maintain the appropriate number
of workers for the application, we use a program called
Work Queue Factory to dynamically provision according to
the master’s capacity calculation. Work Queue Factory is
an application which retrieves periodic information about a
master and uses this information to submit new workers for



that master. This is useful in cases where workers have idled
out in an earlier section of the application but are needed at
the moment. It is also helpful in scaling down by not replacing
idled-out workers if the master does not need any more. The
factory decides how many workers to request by calculating
the minimum among the result of the capacity model, the
number of tasks currently submitted by the application, and a
user-defined upper bound. If the result of this calculation is less
than the number of workers currently connected to the Work
Queue master, the factory does not request more workers.

V. EVALUATION

To evaluate the accuracy of our capacity model we used the
BWA and HECIL scientific workflows, the SHADHO Work
Queue application, and a synthetic workflow which continu-
ously submits tasks as benchmarks. We tested each application
on an active campus-scale, heterogeneous system contain-
ing approximately 25,000 cores. We utilized the HTCondor
batch system [28] as the underlying resource manager for all
workflows. HTCondor is a centralized batch scheduler which
placed our workers in a queue. Batch jobs are dispatched from
the queue onto available compute nodes. Each worker had a
uniform number of cores depending on which application it
executed. For the synthetic workflow, BWA, and HECIL, each
worker used a single core. Each worker for SHADHO used
16 cores.

A. Synthetic Application

The synthetic application we designed to easily implement
an expected maximum capacity and test if the workflow
approaches the anticipated value. The application runs uniform
tasks using the same command, the same amount of user-
specified I/O, and the same user-specified task execution time
throughout its execution. Every task shares a common input
file which is used to generate unique output files. Each task
has approximately one second of I/O. The task then sleeps
for a specified amount of time to simulate added execution.
The unique output file is retrieved at the end of the task.
This uniformity leads to a near-constant capacity for the
application’s lifetime, the only non-constant factors being out
of our control in the test (i.e. hardware or operating system
speed).

In Figure 3, we validate that the capacity of our master-
worker application shares a direct relation to the ratio of
execution and I/O times. As the ratio increases (execution
time becomes greater than I/O time), the measured capacity
follows. The model prevents a value below 1 since we must
have at least one worker to make progress in master-worker
applications. This also demonstrates that an application which
has task execution times much smaller than its I/O time will be
better off running locally if feasible, as seen once the expected
capacity (te/tio) becomes less than 1.

We also show the ability of the model to scale up and
down using Work Queue Factory after an initial number
of workers was requested. The factory can take as input
a configuration document which may be modified during
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runtime. If the configuration file is changed, the factory will
notice the changes during its 30 second main loop interval. We
initially configured the factory request either too few or too
many workers rather than using the capacity model. Once the
factory acquired the number of workers it was configured to
instantiate, we then changed its configuration to consider the
capacity of the application. In the case of an under-provisioned
start, more workers were requested. The factory let workers
disconnect in the over-provisioned start. Each test had the same
estimated capacity of approximately 115 and ran as many tasks
as it could complete within fifteen minutes. We requested fifty
workers for the scaling up test and 150 workers for the scaling
down test.

Figure 4 demonstrates the capability of the the factory to
rapidly deploy an appropriate number of workers based on the
capacity model’s calculation. In the upward scaling test, we
see the number of workers rapidly increase from the initial
pool of 50 up to approximately 115. The opposite is true
of the downward scaling test. We see that our initial over-
provisioning does not last the application’s lifetime because
the factory does not replace the workers which idled out. Even
though the number of workers changed, and thus the number
of available resources was altered, the workflow’s capacity did
not change.

We demonstrate the reactive nature of the model in Figure 5.
Capacity is affected by the performance of the system being
used. Because parallel applications do not run in isolation,
there are times when resources become stretched thin across
all users. Figure 5 demonstrates what happens to capacity
when the network is being heavily used. While the synthetic
application has an anticipated capacity of 25, we note that
the measured capacity is much lower. This is because another
application is utilizing the network to transfer a 10GB file
back and forth between the master process and a worker.
This is turn causes the I/O time per task to increase for the
synthetic application. The result is a decrease in capacity since
the execution time remains stable while the I/O time increases
(te/tio).
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Fig. 4. Scaling up and down. We measure the ability of the model to scale
up from an initial under-provisioning on top. At bottom is an example of an
application being given too many workers. All workers used one core, and
the tasks are homogeneous.
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Fig. 5. Contended resource test. We demonstrate how a busy resource affects
capacity. Network is the contended resource. While the synthetic application
ran, another co-located application was executed which continuously trans-
ferred a 10GB file back and forth between its master and a worker elsewhere.
Though the tasks are homogeneous, the capacity of the application varies due
to the I/O time being affected by network usage.

B. BWA and HECIL Workflows

BWA and HECIL were chosen to demonstrate realistic
examples of capacity in scientific workflows. The tasks in both
BWA and HECIL share a common reference file 2GB in size.

BWA is a genomics application which relies on a large
reference data file to make comparisons with query data. The
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Fig. 6. Provisioning workers to BWA and HECIL. Each worker used a single
core. In BWA, a stable capacity is reached by the Work Queue Factory about
a fifth of the way through execution. HECIL has a similar capacity but was
over-provisioned. A stable capacity is similarly reached about a fifth of the
way through its runtime.

BWA workflow used for our capacity tests has a scatter-gather
behavior meaning there is an initial phase where the large
input file is broken into more manageable parts and scattered
to different workers. Each worker runs tasks using their part
of the larger reference file. Once those tasks are complete, the
results from the workers are gathered together by a single task.

We note that the BWA workflow became appropriately
provisioned early in its execution. This was due to the initial
scatter task producing a somewhat uniform size of input data
to be analyzed by subsequent tasks. We can conclude from
our execution of BWA that the capacity model provides the
user of this workflow an accurate, behavior-based allocation
of resources from their initial provisioning of five. As the
application executed, the capacity approached a constant value
within the first ten tasks which the factory matched.

HECIL is another scatter-gather genomics tool similar to
BWA. Also, HECIL has three scatter-gather sections. The first
task scatters a reference file to many workers in order to run
the first wave of querying tasks. The output of those first
tasks is then gathered and scattered by a task in the middle of
the workflow. The next wave of querying tasks produce more
output which is then gathered in a final set of tasks. Within
that final set of tasks, a third scatter-gather section condenses
intermediate files to a single output file.



We initially over-provisioned HECIL using Work Queue
Factory. The factory can take as input a configuration file
which we can alter during the factory’s execution. We took
advantage of this capability to over-commit workers to demon-
strate an initial over-provisioning. We configured the factory
to try to maintain more workers than needed for the first 15
minutes of HECIL’s execution. Some workers timed out due
to lack of work available from the master before we altered
the configuration file to instead maintain capacity after the first
15 minutes of execution. Once the configuration changes, we
notice that none of the workers which timed out are being
replaced. As HECIL’s capacity reaches a stable number, the
factory meets that value. We note the factory does not quite
meet capacity in the middle of the workflow due to the batch
system not allocating the factory’s replacement workers in
a quick manner. Even so, the capacity model was able to
guide an initial over-provisioning back down to an appropriate
number of resources with HECIL.

The factory’s default calculation for requesting workers does
not take capacity into account. It is calculated as the maximum
value between the number of outstanding tasks and how many
tasks a master could theoretically manage (which inspired
the current capacity model) [20]. We can use this worker
need calculation as a control algorithm to further validate the
effectiveness of the capacity model. This is demonstrated with
the same BWA application as shown in Figure 6.
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Fig. 7. Provisioning workers to BWA via control algorithm. Each worker
used a single core. Using the capacity of BWA first found in Figure 6, we
compare Work Queue Factory’s default worker acquisition policy as a control
algorithm to the implementation of the capacity model.

Figure 7 demonstrates the difference in worker acquisition
between the factory’s default algorithm and the capacity
model. We see that significantly more workers are requested
and connect to the master process. It is understandable to
assume this addition of resources should increase the through-
put of the application. This, however, is not an accurate
assumption. The total execution time for BWA with the
capacity model guiding the factory’s worker acquisition was
3,532 seconds while the run with the control model took
3,910 seconds to execute. Both executions of BWA occurred
with similar conditions: the master node had low load and
the overall HTCondor system was highly utilized. Though the
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Fig. 8. Stepped application capacity. This simulated application increases in
capacity by 10 each task until the application has completed half of its tasks.
It then begin decreasing the capacity by ten until all tasks finish. We note the
model lags behind the anticipated capacity at each task because every task is
different from the previous one.

control algorithm’s performance was somewhat slower, it was
not significantly so. We can conclude that the addition of these
extra resources did not increase throughput of the application
as a whole, showing that the capacity model is able to right-
provision BWA and maintain that provisioning compared to a
more naive model which over-provisioned the application.

C. Model Limitations

Our model is designed to provide an appropriate resource
provisioning based on basic runtime information of tasks. This
provides us two significant benefits at the cost of calculating
the optimal number of resources to provision the application
at any given point. First, our model as implemented in Work
Queue and Work Queue Factory has negligible overhead since
it only adds basic calculations into the execution loops of
both programs. We do not have any added database or helper
applications added to Work Queue to make the model work.
More importantly, we gain the benefit of providing an easy-to-
understand model for our users to help understand the behavior
of their applications.

However, the model has some limitations to its effective-
ness. As discussed earlier, applications with no sense of group-
ing tasks make it difficult for the model to provide appropriate
resource provisioning for different steps of an application.
Instead, the model will converge on an average value among
all tasks. Applications which have continuously changing
execution or I/O times such that capacity will continuously
increase or decrease as shown in Figure 8.

In cases like this, the model will lag behind an appropriate
number of resources and has to catch up. At the end of
the application, the capacity will not have reached a steady
value. We demonstrate how this happens in Table I. The table
columns list the number of tasks completed out of the 1000
in the application, the instantaneous capacity (te/tio of the
current task), and the capacity derived from the model.

Figure 9 demonstrates two cases which the capacity model
experiences a significant ramp-up period to converge on a sta-
ble number of workers to provision. These cases are somewhat



Tasks Complete Instantaneous Modeled
(Out of 1000) Capacity Capacity

0 1 1.00
1 11 1.59
10 101 25.19

100 1001 813.12
300 3001 2812.00
500 5001 4812.00
700 3001 3191.99
900 1001 1191.99
990 101 291.99
999 11 201.99

1000 1 201.99

TABLE I
STEPPED APPLICATION CAPACITY
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Fig. 9. Cases of the model lagging behind application behavior. These
simulated applications are comprised of two types of tasks: Type A tasks and
Type B tasks. Type A tasks have an instantaneous capacity (te/tio) of 10
while Type B tasks have an instantaneous capacity of 20. The top application
runs Type A tasks until the application has completed half of its tasks. It
then switches to running exclusively Type B tasks. The bottom application
interleaves both types of tasks such that the pattern is: A, B, A, B, etc. Both
applications ran 100 tasks. We note the capacity model does not immediately
reach the anticipated capacity in either application.

extreme cases of realistic behavior. The top graph shows a
two-step application which executes all tasks of a certain type
(Type A) before executing all tasks of the next type (Type
B). We demonstrate the effect of weighting the most recently

completed task greater than the others. In our experimentation,
we found a weight of 0.05 to work best. However, this weight
barely reaches the anticipated capacity of Type A tasks before
the wave of Type B tasks is submitted. This makes the model
chase the anticipated capacity, reaching it again shortly before
the application finishes. However, adjusting the weight higher
causes the model to converge quicker. This would be beneficial
for largely static workloads. However, an outlier task (either in
execution or I/O time) will have a greater impact on the model.
The opposite is true of decreasing the weight to 0.01. The
model will scale much slower, but its pattern of growth will
be incredibly stable. We can conclude the model is satisfactory
for multi-step parallel applications so long as either the number
of tasks in each step is significant enough to allow the model
its ramp-up or ramp-down time or that the task weight best
matches the anticipated task behavior.

The bottom graph in Figure 9 demonstrates the effect of
interleaving the two task types upon the model. Because
the instantaneous capacity is changing in a seesaw pattern
between each task, the capacity model approaches the average
between the two types of tasks. This leads to either being
over-provisioned by 5 workers when running Type A tasks or
under-provisioned by 5 workers when running Type B tasks.

We also demonstrate a real application for which the capac-
ity model found limited use while operating in a full cluster.
SHADHO is a framework for machine learning model search
and hyperparameter optimization which makes a best-effort
search of an infinite search space using heuristics derived from
the models being optimized to direct task scheduling. To make
the infinite search tractable, SHADHO runs tasks for a user-
determined amount of time before shutting down and returns
the optimal observed model. Note that the execution time of
tasks in SHADHO depends largely on the machine learning
model being evaluated.
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Fig. 10. Provisioning workers to SHADHO. SHADHO workers used 16
cores each. The application ran for one hour then shut down. The capacity of
SHADHO is much higher than the amount of work available for workers at
any given time.

Figure 10 demonstrates a perfect storm of factors which
may limit the model’s usefulness. SHADHO never submits
enough work to reach capacity. Tasks took on the order of tens
of minutes to execute while the I/O time was approximately



0.1 seconds. This led to a very high capacity since the master
spent the vast majority of its time waiting for tasks to finish. In
this test, no more than 150 tasks were submitted concurrently.
While the master could theoretically handle magnitudes more
workers, there would never be enough work dispatched to keep
them busy. The spikes in capacity seen in Figure 10 are due
to different machine learning models taking much longer to
execute than others (an order of magnitude difference). When
those tasks return their output, capacity spikes from the long
execution time of those tasks. It then settles back down when
shorter-running machine learning model tasks report back.

Also limiting the model’s contribution is the fact that
SHADHO executed on a full cluster. This cluster has about
25,000 cores available for use. Most were in use at the time
of execution. Of the cores available, about 75% were in use
and 90% of the slots available to submit work were occupied.
Once the factory attempted to match the number of workers to
the number of tasks in the queue, we realized we had reached
our limit of how many resources the batch system was able to
give. SHADHO never acquired all 150 workers it could have
used. We noticed about 25 workers being preempted as other
users’ work, with better priority, entered the batch queue.

Using the capacity model, we learned SHADHO’s perfor-
mance was bottlenecked by its own task queue management
(150 tasks in our test). Due to our implementation of the
model in the factory, we only scaled up to the number
of tasks in the queue as provisioning more workers would
have been wasteful. Assume that SHADHO’s task queue was
infinite, meaning the bottleneck did not exist. Also assume
the factory implementation was different in that we only
considered the capacity model when requesting more workers.
Without these safeguards, we would have flooded the already
strained batch system. If we had been executing SHADHO on
an infrastructure-as-a-service platform, we would have accrued
a very large bill. While the capacity model proved useful in
understanding the behavior of SHADHO, it did little in guiding
the resource provisioning for it due to a confluence of factors.
The user is left knowing that the application will be able to
handle any realistic limit placed on its task queue.

To summarize, the capacity model provides limited use for
applications in which the execution and transfer times are
dissimilar among all tasks. Since capacity is a moving average,
the more variance in instantaneous capacity (te / tio), the worse
the model will behave as seen in Table I. If an application’s
capacity far exceeds their compute site’s resources, the re-
searcher will find limited use for the model’s results at that
time. However, they do glean the fact that their application
would be better run at a larger site. Finally, applications which
have very little input or output as compared to execution time
will have a capacity so large as to be meaningless to the
researcher’s understanding of the application’s behavior.

The capacity model’s simplicity provides straightforward
transparency for researchers to understand their application’s
behavior and prevents overhead which would be incurred for
a more exact measurement of capacity. Utilizing primarily the
task execution and transfer times addresses the two bottlenecks

of a master-worker application. If the master is waiting for
tasks to complete (te), then it has time to send new tasks and
transfer files (tio). The ideal master is always busy starting
new tasks or getting the results of a finished task.

VI. CAPACITY MODEL AS TROUBLESHOOTING TOOL

Although the capacity model provides usefulness for our
users as implemented in Work Queue Factory and as a simple
paper model to gauge an application’s resource provisioning,
we also implemented the model as the basis for a web-based
troubleshooting tool. This is possible by querying a catalog
server which by default every Work Queue master process
communicates with in regular intervals. The catalog server
is used to match workers to masters, but it also stores basic
performance metrics of the master.

Some of the metrics included in the catalog server are
cores, memory, and disk allocated as well as how the master
process is spending its time (e.g. sending input, receiving
output, running application-specific code). We added capacity
to these metrics. We provide these metrics in a dashboard
of simple visualizations of each Work Queue master to give
users insight into the behavior and current resource needs
of their application. Visiting this dashboard is intended to
be the first step when a user is troubleshooting resource
provisioning issues with their application. The visualizations
are implemented in the D3 JavaScript library.

In our experience, this tool has been a good first step
in troubleshooting common resource provisioning issues. To
make the tool more user-friendly, we have added a recommen-
dation system which will briefly analyze a master’s metrics
and provide actionable steps to help the user troubleshoot.
The recommendations are based on the most common factors
which would contribute to a master’s behavior. For example,
a master which is spending much of its time polling workers
(i.e. the master is idle much of the time) is most likely being
under-provisioned. In this case, the recommendation system
will look at how many workers the master has connected as
well as its capacity and inform the user if they would benefit
from asking for more workers (since they currently have none).

VII. CONCLUSIONS

We presented a model for measuring a master-worker
application’s capacity. We implemented the model in Work
Queue Factory which can be used to both scale up from an
under-provisioned start and scale down in the case of being
over-provisioned with workers. This was shown first using a
synthetic application then reinforced with common bioninfor-
matics workflows BWA and HECIL. We then demonstrated
potential limitations of the model with the SHADHO machine
learning application. This model gives the typical user the ca-
pability of harnessing only as many resources as they need on
the first execution of their application. We also demonstrated
the applicability of the model as a troubleshooting tool with
a simple visualization designed for our users. The capacity
model provides two distinct use cases to help researchers
optimize their applications’ resource provisioning.
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APPENDIX

A. Abstract

This description contains the information needed to run the
experiments of the SC18 paper “A Lightweight Model for
Right-Sizing Master-Worker Applications”. We explain how
to compile and run Work Queue, Work Queue Factory, and
each experiment provided in the paper.

B. Description
1) Check-list (artifact meta information):
• Program: Work Queue, Work Queue Factory, BWA, HECIL,

SHADHO
• Compilation: gcc version 4.8.5 20150623 (Red Hat 4.8.5-16)

(GCC) Flags provided in software Makefiles.
• Data set: Generated .fastq files for BWA and HECIL, MNIST

data set for SHADHO.
• Run-time environment: Redhat 6/7, Centos 6/7.
• Hardware: x86 64 Architecture, 1-16 core machines.
• Output: Runtime statistics to generate graphs, genome output

of BWA and HECIL, hyperparameter output of SHADHO.
• Experiment workflow: git clone projects and install software

dependencies via Makefile. Run experiments from Makefile and
compare with results presented here.

• Experiment customization: Number of workers to provision,
size of generated dataset (data generation tools included), BWA,
HECIL, and SHADHO parameters and inputs.

• Publicly available?: Yes.
2) How software can be obtained (if available): All source

code can be obtained from the following GitHub repository:
github.com/cooperative-computing-lab/cctools



3) Hardware dependencies: We have assumed x86 ar-
chitecture, though all tools are built from source so other
architectures may be feasible.

4) Software dependencies: We rely on GCC to compile our
binaries, Perl 5 to run miscellaneous scripts, Git to download
code repositories, and gnuplot 5.0 for producing our graphs
and visualizing our results. SHADHO relies on Python 2.7,
but it may be reconfigured to run on Python 3.

We also ran all experiments via the HTCondor batch system.
If HTCondor is unavailable, the experiments may be altered
to use a different batch system via their respective Makefiles
and Perl helper scripts.

5) Datasets: The experiments presented in this paper made
use of three datasets:

• BWA Dataset (2GB .fastq reference) -
github.com/cooperative-computing-lab/makeflow-
examples/bwa

• HECIL Dataset (2GB .fastq reference) -
github.com/cooperative-computing-lab/makeflow-
examples/hecil

• SHADHO Dataset (11MB mnist.npz) -
github.com/jeffkinnison/shadho

C. Installation

All software used for this paper is available in GitHub
repositories. To download and install the necessary software,
run:

$ git clone
https://github.com/cooperative-computing-
lab/capacity-paper-data
$ cd ./capacity-paper-data
$ make build

This will download the software used to run Work Queue
Factory as well as the experimentation suite written to produce
this paper’s figures.

D. Running experiments

As there were four applications executed in this paper, we
will break down the experiment workflow into four sections
for clarity. To aid in the simplicity of reproducibility, each
experiment is given its own directory in the Git repository.
Within each of those experiment directories is a Makefile
which outlines each step necessary to reproduce the results
presented in this work. In order to decrease clutter, these
Makefiles have been designed to streamline the execution of
each experiment to a simple call to make.

E. Evaluation and expected results

1) Synthetic results: To produce the capacity measurements
from the synthetic application, first be sure you are in the
capacity-paper-data directory. Then, execute:

$ make ratios
$ make stepped
$ make varied
$ make provisioning

$ make isolation

This will run all the modeling scripts used to generate
synthetic figures presented here as well as all live experiments.
The ratios, stepped, varied, and provisioning directories all
produce modeled data. There are two live application tests
in the provisioning directory as well. Thse are the upward
scaling and downard scaling experiments. The isolation ex-
periment will run two instances of the synthetic application
concurrently. One instance will transfer a 10GB file between
the master process and a worker established by Work Queue
Factory. The other instance will execute as described in the
paper.

The results obtained may be compared to the data and plots
located within the ratios/paper results, stepped/paper results,
varied/paper results, provisioning/paper results, and isola-
tion/paper results directories. Specific steps in generating the
data can be altered in the Makefile for these experiments in
ratios/Makefile, stepped/Makefile, varied/Makefile, provision-
ing/Makefile, and isolation/Makefile respectively.

2) BWA results: To produce the capacity measurements
from BWA, first be sure you are in the capacity-paper-data
directory. Then, execute:

$ make bwa

This will download and compile BWA, generate the input
data set, and execute BWA with Work Queue Factory to gather
capacity metrics. Once execution is finished, the capacity data
is analyzed and plotted using gnuplot. BWA will execute again,
this time without the capacity model turned on, for comparison
to the capacity model as shown in Figure 7. The results
obtained may be compared to the data and plot located within
the bwa/paper results directory. Specific steps in generating
the data can be altered in the Makefile for this experiment in
bwa/Makefile.

3) HECIL results: To produce the capacity measurements
from HECIL, first be sure you are in the capacity-paper-data
directory. Then, execute:

$ make hecil

This will download and compile BWA (a software depen-
dency for HECIL), generate the input data set, execute BWA
locally to prepare the data for HECIL, then execute HECIL
with Work Queue Factory to gather capacity metrics. Once
execution is finished, the capacity data is analyzed and plotted
using gnuplot. The results obtained may be compared to the
data and plot located within the hecil/paper results directory.
Specific steps in generating the data can be altered in the
Makefile for this experiment in hecil/Makefile.

F. SHADHO results

To produce the capacity measurements from SHADHO, first
be sure you are in the capacity-paper-data directory. Then,
execute:

$ make shadho



Ref size Query size Sequences Runtime
20MB 237KB 100 10 sec:1 machine

196MB 20MB 1000 2 min:20 machines
196MB 237MB 1000 6 min:20 machines
2.0GB 237MB 1000 30 min:20 machines

TABLE II
BWA AND HECIL INPUT CONFIGURATION

This will download and compile SHADHO and execute
SHADHO with Work Queue Factory to gather capacity
metrics. Once execution is finished, the capacity data is
analyzed and plotted using gnuplot. The results obtained
may be compared to the data and plot located within the
shadho/paper results directory. Specific steps in generating the
data can be altered in the Makefile for this experiment in
shadho/Makefile.

G. Experiment customization

Each experiment is kept within its own directory with a
corresponding Makefile. Many of the parameters for these
experiments may be tweaked by editing these Makefiles be-
fore running. Example parameters to change include: cores,
memory, and disk per worker, batch system to use, and total
tasks to run (for synthetic tests).

BWA and HECIL rely upon a generated data set. The
size of this data set can be configured in the bwa/Makefile
and hecil/Makefile respectively. The files generated for both
are ref.fastq and query.fastq. Consult Table II for generating
appropriate sizes for both files. Then, use fastq generate.pl
like so (this will produce the 2GB file used in the paper):

$ fastq_generate.pl 1000000 1000
$ fastq_generate.pl 1000000 100 ref.fastq

We also assume that the HTCondor batch system exists.
If this is not the case, the batch system may be changed
when calling Work Queue Factory in the Makefiles and Perl
helper scripts for the experiments. BWA, HECIL, and Scaling
experiments all rely upon a Perl helper script to instantiate
Work Queue Factory properly. The batch system the factory
uses can be reconfigured by changing this helper script. Each
of these helper scripts follow the pattern of [Name of Experi-
ment] test.pl for BWA, HECIL, and Scaling respectively. For
the other experiments, the call to Work Queue Factory can be
found in the Makefile for that experiment and may be modified
there.

H. Notes

Since the majority of the graphs prepared for this paper
rely upon executing an application on a batch system, it may
be difficult to reproduce the exact numbers presented here.
Depending on the quality and quantity of hardware in the
cluster, performance and capacity will be somewhat different.
However, the results produced should be comparable to those
presented here.

The data sets used for BWA and HECIL are generated
locally. Though the capacity behavior should remain very
similar to the behavior presented here, some slight variations
may occur due to how the data is generated.

HECIL generates approximately 450GB of output data dur-
ing execution. BWA produces approximately 50GB of output
data. Ensure your system meets these storage requirements
before running HECIL and BWA.

All tools, programs, and scripts are available from the
following GitHub repositories:

github.com/cooperative-computing-lab/cctools
github.com/cooperative-computing-lab/makeflow-examples
github.com/cooperative-computing-lab/capacity-paper-data


