Chirp: A Practical Global Filesystem
for Cluster and Grid Computing

Douglas Thain, Christopher Moretti, and Jeffrey Hemmes

Department of Computer Science and Engineering, University of Notre Dame

Abstract. Traditional distributed filesystem technologies designed for local and
campus area networks do not adapt well to wide area grid computing environments.
To address this problem, we have designed the Chirp distributed filesystem, which is
designed from the ground up to meet the needs of grid computing. Chirp is easily de-
ployed without special privileges, provides strong and flexible security mechanisms,
tunable consistency semantics, and clustering to increase capacity and through-
put. We demonstrate that many of these features also provide order-of-magnitude
performance increases over wide area networks. We describe three applications in
bioinformatics, biometrics, and gamma ray physics that each employ Chirp to attack
large scale data intensive problems.

Keywords: filesystem, grid computing, cluster computing

1. Introduction

Large scale computing grids give ordinary users access to enormous
computing power at the touch of a button. Production systems such as
the TeraGrid[6], the Open Science Grid[7], and EGEE[1] all regularly
provide tens of thousands of CPUs to cycle-hungry researchers in a
wide variety of domains. These and similar systems are most effective
at running CPU-intensive jobs with small amounts of input and output
data.

Data-intensive jobs are not as easy to run in a computational grid.
In most systems, the user must specify in advance the precise set of
files to be used by a grid job. For many applications composed of multi-
process scripts, interpreted languages, and dynamically linked libraries,
determining this list may be very difficult for the end user to compose.
In some cases it may simply be impossible: in a complex application,
the set of files to be accessed may be determined by the program at
runtime, rather than given as command line arguments. In other cases,
the user may wish to delay the assignment of data items to batch jobs

This is a preprint manuscript of: Douglas Thain, Christopher
Moretti, and Jeffrey Hemmes, “Chirp: A Practical Global File System
for Cluster and Grid Computing”, Journal of Grid Computing, Springer,
accepted for publication in 2008. DOI: 10.1007/s10723-008-9100-5

2 Douglas Thain, Christopher Moretti, and Jeffrey Hemmes

until the moment of execution, so as to better schedule the processing
of data units.

For these kinds of data-intensive applications, a distributed filesys-
tem could provide the familiar form of run-time access using the same
namespace and semantics found on a local machine. However, despite
many decades of research in distributed filesystems, none are well suited
for deployment on a computational grid. Even those filesystems such
as AFS [29] designed to be “global” are not appropriate for use in
grid computing systems, because they cannot be deployed without
intervention by the administrator at both client and server, and do
not provide consistency semantics or security models needed by grid
applications.

To address this problem, we have designed the Chirp distributed
filesystem for cluster and grid computing. Chirp allows an ordinary
user to easily deploy, configure, and harness distributed storage without
requiring any kernel changes, special privileges, or attention from the
system administrator at either client or server. This important property
allows an end user to rapidly deploy Chirp into an existing grid (or
several grids simultaneously) and use it to access data transparently
and securely from multiple sources.

In this paper, we provide a broad overview of all aspects of the Chirp
distributed filesystem, building on several previous publications [44, 27,
43, 32, 47] that introduced different technical elements independently.
Section 2 discusses the unique properties needed for a grid filesystem.
Section 3 reviews the related work. Section 4 gives an overview of the
components of Chirp. Section 5 describes the three available names-
paces for file access. Section 6 describes the flexible security model,
including four authentication types, access control lists, and distributed
authorization. Section 7 introduces several new system calls that im-
prove usability and wide area performance. Section 8 describes three
models for consistency semantics: strict, snapshot, and session seman-
tics. Section 9 describes how Chirp servers can be clustered into larger
structures. Section 10 shows how Chirp relates to existing grid middle-
ware. Finally, section 11 describes three applications of the filesystem
to bioinformatics, biometrics, and gamma ray physics.

2. Desired Properties

Why not make use of an existing file or storage system for the purpose
of grid computing? To answer this question, we first note that users
of grid computing systems have the following unusual needs which are
not met by existing designs.

Chirp: A Practical Global Filesystem for Cluster and Grid Computing 3

Rapid Unprivileged Deployment. A user that submits jobs to
a wide area grid computing system will find them running on a a com-
pletely unpredictable set of machines, perhaps under a temporary user
account, without any opportunity to prepare the machine or account
for use by the job. To live in this environment, the capability to ac-
cess remote storage must be brought along with the job itself, without
relying on any help from the local operating system or administrator.
A filesystem that relies on the client modifying or updating the local
kernel in any way cannot be used in such an environment.

Likewise, many users wish to export access to data from locations in
which they have no special privileges. A researcher at a university may
have access to data on a storage appliance from a workstation, but no
special privileges on either the appliance or the workstation. That user
should still be able to export his or her data (within certain security
constraints) to jobs running on a computational grid. Or, perhaps a user
wishes to stage data into the head node of a remote cluster in order to
achieve better performance through data locality. If a file server can be
easily deployed on the remote head node, it can be used to both accept
incoming data over the wide area network as well as serve it to jobs on
the local network.

Support for Unmodified Applications. Some users may be able
to modify their applications to use a grid file server, but they must
be both highly motivated and technically sophisticated. Even in this
case, changing an application is only practical if it consists of a small
amount of source code running in a single process. For most users,
changing an application in order to use the grid is highly undesirable.
For commercial applications, it may be impossible.

An ideal grid filesystem would allow the execution of unmodified bi-
nary applications. In particular, it should support non-trivial programs,
particularly scripting languages that invoke multiple processes, load
dynamic libraries, and involve complex relationships between programs.
Such complex applications are often developed in the easy environment
of a local workstation, and then deployed to a computational grid in
their full complexity.

Support for Both Large and Small I/0O. Most grid I/O sys-
tems focus on one of two distinct modes. File transfer systems such
as GridF TP [10] provide high-bandwidth movement of large files from
place to place, while file access systems such as GridNFS [28] provide
small file access to data already in place. The former is suitable for
data staging, while the latter is more suitable for on-demand access in
the local area.

Although it is possible to deploy both types of servers simultaneously
on the same system, such systems are certain to have different semantics

4 Douglas Thain, Christopher Moretti, and Jeffrey Hemmes

and access control models, leading to deployment complexity, confusion
for the user, and unusual semantics. For example, what happens if one
server is caching some data that the other is unaware of? Ideally, a grid
filesystem should provide both large file transfer and small file access
within the same framework of access control and consistency semantics.

Flexible Security Policies Traditional filesystem controls do not
make it easy for users to specify how data is shared outside of the local
machine. Traditional Unix is the worst, allowing each file to be associ-
ated with exactly one user and one group defined by the administrator.
Even in systems that implement access control lists, the members of
the list can only be locally-defined users and groups.

Users of grid computing systems need flexible access control mech-
anisms that allow them to share data both with local users and with
remote users, or perhaps their own remote jobs, identified by crypto-
graphic credentials. In addition, when collaborating with other users in
their virtual organization [23], they need to define and refer to groups
of distributed users from many different sites simultanously. To this
end, a grid filesystem should provide a highly flexible access control
mechanism.

Tunable Performance Tradeoffs Traditionally, filesystems de-
signers have chosen fixed consistency semantics suitable for an as-
sumed client workload. Well known examples include lazy semantics in
NFS [37], precise Unix semantics in Spritely NFS [39], and open-close
snapshot semantics in AFS [29]. In general, by giving up timeliness,
performance and availability can be improved.

However, no single set of consistency semantics is likely to satisfy all
users of a grid filesystem. Deterministic batch jobs may be quite happy
with very lazy updates, allowing for hours or days to pass between
up-to-date checks, because it is known in advance that the input exe-
cutables and data will not be changed. On the other hand, interactive
grid jobs that are steered by an external users may wish to check for
changed inputs at every opportunity. We cannot choose a single set of
consistency semantics, but must allow each user to make a different
tradeoff between timeliness, availability, and performance.

3. Related Work

With the above requirements in mind, we may review grid storage
systems and make the case that a new grid filesystem is needed.

The most widely used tool for large data transfer in grid com-
puting is GridFTP [10], which provides authentication via the Grid
Security Infrastructure (GSI) [22] and high bandwidth data transfer

Chirp: A Practical Global Filesystem for Cluster and Grid Computing 5

through parallel streams. In addition, client libraries such as GASS [18]
and XIO [9] provide simple interfaces that allow slightly-modified ap-
plications to stream data to and from remote servers, with various
transformations such as caching, compression, and retry easily speci-
fied.

Although GridFTP is an excellent data transfer system: it was never
designed to be a file system. Using a local cache, it is technically possible
to connect FTP servers to a filesystem interface. For example, UFO [8],
SlashGrid [5], and Parrot [46] all allow the user to read and write remote
FTP files, but the results are often unexpected because FTP does not
provide the precise semantics required by standard applications. For
example, many FTP servers do not distinguish between a non-existent
directory and a directory with no files: both result in the same error.
Across F'TP servers, there is no consistent way to retrieve file metadata
such as modification time and owner. Many FTP servers consistently
return error code 550 on any kind of failure without indicating further
details. Such vagaries might be overlooked by an interactive user, but
cause havoc in real applications that depend on the subtle distinctions
between errors such as file not found, access denied, and not a directory.

Grid storage systems such as SRM [38], IBP [35, 15], and NeST [16]
have focused on problem of managing limited storage space shared by
multiple users. Freeloader [49] provides a high performance file object
cache on a cluster of commodity machines. These systems all provide
some form of file input and output, but do not have the intention to
provide a Unix-compatible interface.

Other systems have targeted the filesystem interface directly. Le-
gionF'S [26], Ceph [51], L-Store [4], GFarm [42] all provide a filesystem
constructed from multiple custom storage devices. However, because
these each employ custom underlying storage devices, they are not suit-
able for exposing ezisting filesystems to the wide area. GPFS-WAN [12]
provides access to several supercomputer centers from nodes on the
NSF TeraGrid. Using custom protocols and specialized networking and
storage hardware, it can provide very high performance within that
context. However, because of the kernel-level client implementation and
specialized hardware, it cannot be easily accessed or deployed outside
of the TeraGrid. SRB [13] provides access to large datasets indexed
by complex metadata. It is appropriate for the curation of multi-TB
archival datasets, but it is a heavyweight system not designed to be
rapidly deployed by a single user.

A variety of systems have augmented NFS [37] for use on the grid.
PUNCH [20] provides on-demand configuration and access to multiple
NFS servers across a campus. VegaFS [31] adds PKI authentication.
FT-NFS [14] adds intra-cluster capacity sharing. GridNFS [28] adds

6 Douglas Thain, Christopher Moretti, and Jeffrey Hemmes

! ordn!y unix sy! em calls

f|Ie parrot) (fuse)

cache
<

periodic
updates

Figure 1. Overview of the Chirp Filesystem

GSI security and clustering capabilities. WOW [24] employs NFS over
wide area virtual private networks. Although based on familiar tech-
nology, NFS variants are not well suited to grid computing. Primarily,
NFS requires a kernel level implementation for access to inode numbers
at the server, and administrator assistance to mount the filesystem at
the client. In addition, the block-based nature of NFS makes it difficult
to achieve high bandwidth over the wide area.

Other grid I/O systems provide a transparent bridge from the user’s
submitting machine to the site of an executing job. These systems
typically provide less flexibility than a full filesystem, but can be be
deployed with little or no user intervention. Examples of these sys-
tems include the Condor remote system call library [48], Bypass [45],
XUnion [50], and PDIO [41]. Such systems create convenient private
data spaces to be accessed by a single user, but do not provide the full
generality of a multi-user filesystem.

At the time of writing, the Global Grid Forum [3] has two working
groups creating standards for a grid file system and a POSIX-like 1/O
interface using the Open Grid Services Architecture [21].

4. Overview

Figure 1 shows the main components of Chirp. A chirp server is a
user-level process that runs as an unprivileged user and exports an

Chirp: A Practical Global Filesystem for Cluster and Grid Computing 7

existing local Unix filesystem. A system may have multiple servers,
each of which periodically sends a status update listing address, owner,
available space, and similar details to a well-known catalog server via
UDP. The catalog server can be queried via HT'TP to obtain a global
list of available servers. If redundancy is desired, each server can be
configured to report to multiple catalogs on different hosts.

Clients may access Chirp file servers in several ways. A library
libchirp is provided that allows clients to program directly to the Chirp
protocol, although we expect that few (if any) applications will wish to
do so. Instead, applications typically connect to the filesystem through
one of two adapters — Parrot or FUSE — which present the entire space
of Chirp servers as an ordinary filesystem. A few additional custom
tools are provided to manipulate access controls, allocations, and other
features that do not map directly to Unix operations.

The network protocol is based on TCP. On the first remote file
request to a server, libchirp makes a TCP connection to that server,
authenticates, and then issues the file request. A client may hold open
connections to multiple servers, and a server may have connections to
multiple clients. Network failures that cause the TCP connection to
hang or fail are transparently repaired by libchirp. Servers regularly
drop connections that are idle for one minute, in order to limit unused
kernel state, with the side effect of regularly exercising the recovery
code. A single connection is used for both control and data, thus opti-
mizing access to small files, while allowing for large TCP windows to
be opened and maintained on high bandwidth network connections.

Chirp is easy to deploy. A single Chirp server is started as follows:

% chirp_server -r /data/to/export

By default, data exported by this simple command will only be
accessible to the invoking user, until the access controls are modified, as
discussed below. Alternate catalog servers may be deployed in a similar
manner. Because each catalog server maintains state only in memory,
it does not require the installation of a database or other supporting
software.

As noted above, Chirp simply stores files and directories in the or-
dinary way in the underlying filesystem. (With the exception of access
control lists, described below.) The advantage of this approach is that
existing data may be exported without moving or converting it. The
drawback is that the capacity and performance of a Chirp server is
constrained by the properties of the underlying kernel-level filesystem.

There are several common ways of using Chirp:

— Personal File Bridge. Because Chirp simply makes use of the
underlying Unix filesystem interface, it can be used to securely

8 Douglas Thain, Christopher Moretti, and Jeffrey Hemmes

export many existing storage systems to the grid. Suppose that a
potential grid user has important data stored in a campus AF'S cell
and wishes to access it from a foreign grid without AFS installed.
The user can easily start a Chirp server under his or her own
AFS credentials, and set the access controls to allow access to his
or her grid credentials. Then, jobs running in the grid can access
AFS through the Chirp server.

— Shared Grid File Server. Chirp has a much more expressive
access control system than a traditional Unix filesystem. Users
may define their own groups and access control lists that refer to a
mix of hostnames, local users, grid credentials, and Kerberos users,
even if those subjects do not have accounts on the local machine.
In this way, Chirp is a natural way to share data with a virtual
organization of users spread across multiple institutions: each user
can access the server as a first-class citizen, without requiring the
local administrator to create local accounts.

— Cluster File System. A collection of Chirp servers, whether
personal or shared, are easily deployed on a collection of nodes in
a computing cluster, and then joined into a common namespace,
both to provide additional I/O bandwidth as well as the aggregate
capacity of a cluster. Users may reconfigure subsets of this cluster
for various tasks, such as online analysis, remote fileservice, or
distributed backup and recovery. We have experience operating
such a cluster of 250 machines and 40TB of storage since 2005.

So far, we have given a very high level overview of Chirp. In each of
the following sections, we will describe different aspects of the system
in greater detail.

5. Interface

Users have several choices for interfacing to Chirp servers: the Chirp
library, the Parrot agent, and the FUSE toolkit. Each offers a different
tradeoff in performance, functionality, and deployability.

The most direct way to access Chirp is through the libchirp library,
which presents an interface similar to the Unix I/O interface. Following
is an (incomplete) selection of calls in the library:

chirp_open (path, flags, mode, timeout)
chirp_pread (file, buffer, length, offset, timeout)
chirp_pwrite (file, buffer, length, offset, timeout)

Chirp: A Practical Global Filesystem for Cluster and Grid Computing 9

chirp_fstat (file, statbuf, timeout)
chirp_close (file, timeout)

chirp_stat (path, statbuf, timeout)
chirp_unlink (path, timeout)
chirp_mkdir (path, timeout)
chirp_rmdir (path, timeout)
chirp_getdir (path, timeout)

In addition, libchirp also has several calls that invoke higher order
functions not found in Unix. The following calls get, put, and move
entire files and manage identity and access controls.

chirp_getfile (path, localfile, timeout)
chirp_putfile (path, localfile, length, mode, timeout)
chirp_thirdput (path, targethost, targetpath, timeout)

chirp_whoami (path, timeout)
chirp_setacl (path, subject, rights, timeout)
chirp_getacl (path, timeout)

Applications can be modified to access [libchirp, either manually
or by textual substitution. This provides the fastest possible access
to remote data. Several command-line tools are provided that invoke
libchirp directly to transfer files and perform other managmenet tasks.
However, most users access Chirp through a more convenient interface.

Parrot [46] is the tool most commonly used to access Chirp. It is
an interposition agent [30] that invokes ordinary programs, traps all
of their system calls through the debugging interface, and modifies
the actions and the results of those that refer to remote files, while
leaving local files untouched. For example, to processes running on top
of Parrot, the Chirp filesystem is visible under the path /chirp, while
GridFTP servers are available under the path /gridftp. Parrot is an
ordinary program that may be carried along with a batch job. It can
be used in a normal shell environment as follows:

% parrot tcsh
% cd /chirp

% 1s
alpha.nd.edu
beta.nd.edu
gamma.nd.edu

10 Douglas Thain, Christopher Moretti, and Jeffrey Hemmes

5 T T T T T T
N Parrot/Chirp

" FUSE/Chirp xzosa
o 4r NFS E 23
pd
=
o 37 :
=
K
Q - 4
g 2
£

0

Unpack List Config Make

Figure 2. Performance Comparison of Chirp Interfaces against NFS

An alternative to using Parrot is FUSE [2], which is commonly
used to implement user-level filesystems. FUSE has two components:
a generic kernel-level module, and a filesystem-specific user-level mod-
ule. Once the administrator has installed the kernel module, then any
unprivileged user can mount Chirp into any directory in which he or
she already has write access. Multiple users on the same machine may
mount Chirp in different parts of the filesystem simultaneously. The
FUSE kernel module will become a standard part of future Linux
kernels, so this may be a more practical way of employing Chirp in
the future. FUSE can be used in a normal shell environment as follows:

% mkdir /home/betty/chirp

% chirp_fuse /home/betty/chirp
% cd /home/betty/chirp

% 1s

alpha.nd.edu

beta.nd.edu

gamma.nd.edu

Which interface should the user employ? The choice does not have
a significant effect on performance. To demonstrate this, we ran an
Andrew-like benchmark comparing Parrot/Chirp, FUSE/Chirp, and
NFS all against the same file server across a 100Mbit campus-area
network. In the benchmark, a copy of the Chirp software package is
stored on a file server, and manipulated by a remote client. The client

Chirp: A Practical Global Filesystem for Cluster and Grid Computing 11

copies the package, unpacks it, lists every directory, builds the software,
reads all the created files, and then deletes the directory. (Consistency
semantics will be discussed in detail below, but in this case, we choose
file snapshot semantics for Chirp.)

Figure 2 shows the runtime of each stage, relative to the performance
of NFS. Both Parrot and FUSE are significantly slower than NFS for
listing files, because listing involves a large number of system calls, each
of which pays a similar penalty through both Parrot and FUSE. On
the delete stage, both are faster than NFS, because the Chirp protocol
allows a recursive delete to be implemented with a single RPC. In the
remaining stages, both Parrot and FUSE are within twenty percent of
NFS performance, but neither with a clear benefit.

So, the choice of interface should be made on more subjective grounds.
FUSE is more portable than Parrot: it is implemented on many vari-
ants of Linux, on Apple OSX, and ports are in progress to other Unix
variants. Parrot currently only runs on IA32 and AMD64 Linux. On
the other hand, Parrot does not require root privileges to install, and
allows for more flexibility in the namespace, as we describe below.
FUSE restricts the user to attaching a new filesystem to an empty
directory such as /home/betty/chirp. Parrot also allows the user to
take advantage of custom system calls that improve the performance
and usability of Chirp.

In order to describe the full functionality of Chirp, we will assume
that the user is employing Parrot for the remainder of this paper.

6. Namespace

Chirp filesystems can be accessed through three distinct namespaces,
each shown in Figure 3: the absolute namespace, the private namespace,
and shared namespaces. The user can select what namespace to use at
runtime with command line arguments.

The absolute namespace is found in the path /chirp and repre-
sents all of the known Chirp servers as a directory with the hostname
and port. Under each directory, the user may manipulate the contents
of each server independently. This namespace allows the user or ad-
ministrator to manage data when the physical location is important
for performance or semantic reasons. For example, a user may copy
data from one server to another with the following command:

cp /chirp/c05.nd.edu/data /chirp/desktop.nd.edu/incoming/

While an administrator can inventory the free disk status of all
known servers like this:

12 Douglas Thain, Christopher Moretti, and Jeffrey Hemmes

Absolute Namespace

Ve ~

l/catalog | 1St SEAVErS [chirp
' server ,
alpha.nd.edu betand.edu omegand.edu

AN AN N

Private Namespace

Mountlist open /tmp/x

{/ usr/local /chirp/archive.nd.edu/myappl

/home /chirp/desktop23.nd.edu/home
tmp /chirp/c00.nd.edu/scratch

Shared Namespace

open /chirp/alpha/shared/z

- whereis/shared/z?
apha | - parrot)
[chirp/omega/data/456 libchirp

open /datal456
bin data shared

/l\ omega

X y z

Figure 3. Three Namespaces of the Chirp Filesystem

Chirp: A Practical Global Filesystem for Cluster and Grid Computing 13
df /chirp/*

The absolute namespace is implemented with the assistance of the
catalog server. Each running server periodically sends a UDP update
to the catalog server, listing its vital statistics. Clients that access the
absolute namespace (for example, by listing /chirp) send an HTTP
request to the catalog server to retrieve the list of servers and their
properties. To avoid introducing serious loads on the central server,
this result is cached for several minutes, assuming that the set of file
servers does not change rapidly. Operations on files and directories
below the top level result in a direct connection to the relevant server.

AFS [29] has a similar top-level namespace that lists cells rather
than individual file servers. A problem with the AFS namespace in
practice is that accidental references to the top-level result — such as
long directory listings or auto-complete — result in sequential queries to
all known cells, which essentially brings a client to a halt. To avoid this
problem, Chirp implements stat calls on individual directory names
by simply consulting the cached catalog query result and filling in the
size and time fields with the available space on the server and the time
the server last updated the catalog. Thus, common operations on the
top level are satisfied locally and quickly.

The private namespace can be constructed on a per-application
basis by passing a mountlist to Parrot that lists how requests for logical
file names should be mapped to physical locations. This allows jobs
running in a grid to retain existing naming conventions, even while
data is relocated as needed for performance or policy reasons. Here is
an example mountlist that might be used by an application that loads
software from a well-known archive, reads configuration info from the
user’s home desktop, and employs temporary space on the cluster head
node:

/usr/local /chirp/archive.nd.edu/myapps
/home /chirp/desktop23.nd.edu/home
/tmp /chirp/c00.cse.nd.edu/scratch

Parrot loads the mountlist into memory, consults it on every refer-
ence to a pathname, and rewrites paths as needed. The cost of these
memory operations is very small compared to even local I/O operations,
so the performance overhead is neglible.

The shared namespaces allow multiple users to construct col-
laborative collections of files that may be physically scattered across
multiple servers. A shared namespace is rooted in a Chirp directory
that is well-known to its participants. The directory contains nested
directories and files, just like an ordinary filesystem, except that the

14 Douglas Thain, Christopher Moretti, and Jeffrey Hemmes

file entries are instead pointers to files stored on other Chirp servers.
The client libraries transparently traverse these pointers to create the
illusion of a very large filesystem spread across multiple devices. Access
controls on the shared namespace can be set so that collaborating users
can read and modify the namespace as needed. The shared namespace
is typically used for clustering servers, described in Section 10.

7. Security

Different users and applications within the same grid can have very
different needs for security. Strong security mechanisms exact a price
of increased user burden and decreased performance, so the mechanism
must be chosen to be proportionate to the user’s needs. For example,
a user processing sensitive data on a grid might require expensive user
authentication for each individual client, while another distributing
software to a campus might be satisfied by simply identifying the
hostname of the client.

Chirp offers mechanisms to satisfy a wide range of security needs
within the same software framework. We separate out the concerns
of authentication, which is the process of identifying users, from the
concerns of authorization, which is the process of granting or denying
access to a known user.

7.1. AUTHENTICATION

Chirp implements several authentication methods. When a client and
server connect, they negotiate a mutually-acceptable authentication
method, and then attempt to authenticate. If the attempt fails, the
client may propose another method and then try again. By default,
libchirp attempts methods for which credentials are locally available,
which satisfies most users, but the method may also be selected man-
ually by the user. The following methods are available:

— Kerberos [40] is a widely-used distributed authentication system
based on private key credentials. If the user has previously logged
into their workstation via Kerberos, then the appropriate host
ticket is obtained and passed to the Chirp server without any
additional action by the user. This method yields a Chirp subject
like kerberos:betty@nd.edu.

— Globus employs the Globus Grid Security Infrastructure [22],
which is based on public key cryptography. The user must first
generate a proxy certificate by invoking grid-proxy-init, and

Chirp: A Practical Global Filesystem for Cluster and Grid Computing 15

then may authenticate to multiple Chirp servers without any fur-
ther steps. This method yields a long Chirp subject name like:
globus:/0=Notre Dame/0U=Computer Science/CN=Betty Smith

— Unix employs a challenge-response in the local filesystem: the
server challenges the client to touch a file like /tmp/challenge.123.
If the client succeeds, the server infers that the client’s identity is
that of the owner of the challenge file. This method only serves
to identify clients running on the same host, and is typically used
to identify the owner of the server for administrative tasks. This
method yields a Chirp subject like unix:betty.

— Hostname employs a reverse-DNS lookup to identify the calling
user based on their hostname. This method is obviously not suit-
able for securely identifying a given user, but may be suitable for
distributing data to an entire organization. This method yields a
Chirp subject like hostname:desktop23.nd.edu.

The subject name generated by the authentication step is then used
to perform authorization for each access to the filesystem. Note that
even if a client holds multiple credentials, it may only employ one sub-
ject name at a time. To switch credentials, the client must disconnect
and re-authenticate.

7.2. AUTHORIZATION

Authorization is controlled by per-directory ACLs, much like AFS [29].
Each directory controlled by a Chirp server contains a hidden file . __acl
that lists the subjects authorized to access that directory. Each ACL
entry is simply a (possibly wildcarded) subject name followed by a
string of characters listing the rights granted to that subject.

The available rights are: R to read files or their metadata, W to
write and create files, L to list the directory, D to delete files or that
directory, X to execute programs and A to modify the ACL on that
directory. For example, the following ACL gives full access to Betty
(when using Kerberos credentials), most access to a friend identified
by Globus credentials, and read-only access to any other host in the
hierarchy nd.edu:

kerberos:betty@nd.edu RWLDA
globus:/0=NotreDame/CN=Friend RWLD
hostname:*.nd.edu RL

An additional access right is needed to handle the common case of
a server that is used as a shared staging point for data. In this case, we

16 Douglas Thain, Christopher Moretti, and Jeffrey Hemmes

do not want to simply give a large class of users read and write access
to the root directory, because they could too easily interfere with each
other’s work. Instead, we wish to allow them to create a new directory,
manipulate files within that directory, and share those files at their
discretion.

To allow this, we introduce the V right, which only allows a user to
create a new directory, to which will be given the set of rights attached
to the V right, with wildcards resolved. We call this process namespace
reservation, indicating that the user is setting aside a portion of the
namespace for their own use. (Note that it is not space reservation,
which is a different mechanism entirely.)

For example, suppose that a server has the following ACL, which
allows a large class of users to invoke mkdir and nothing else:

hostname:*.cse.nd.edu V (RWDL)
globus:/0=NotreDame/* V(RWLDA)

Now, if globus: /0=NotreDame/CN=Bettyissues mkdir /mydata, the
new directory will be created with the following ACL:

globus:/0=NotreDame/CN=Betty RWLDA

Betty can then manipulate files in that directory, and if desired, use
the A right to give additional access to any other user that she wishes
to collaborate with.

7.3. DISTRIBUTED AUTHORIZATION

The notion of virtual organizations [23] is an important driver of grid
computing. Many users of grid computing consist of affiliated people,
each working for a different institution, but working on a common
research project that shares data, equipment, and other resources.

To manage a large group, it is impractical to list every member of
the group individually in every single ACL spread across a distributed
filesystem. Instead, the group administrator should be able to manage
a central membership list, allowing others to refer to the list as needed.
Chirp provides this mechanism in the form of distributed groups.

For example, Figure 4 shows a distributed group used to called CSE
to represent members of the computer science and engineering depart-
ment. The group is defined on the host omega, and contains two explicit
users identified by their Kerberos credentials, as well as any user with
a Globus credential beginning with /0=CSE/ and any hostname ending
in .cse.nd.edu. Now, suppose that some data stored on another host
alpha should be accessible only to the CSE group. The owner of the
data sets the ACL to contain the following entry:

Chirp: A Practical Global Filesystem for Cluster and Grid Computing 17

kerberos:betty@nd.edu ‘

1. open /chirp/alphaldir/data 6. success

libchirp

2. open /dir/data

5. success 3. lookup
kerberos:betty @nd.edu
in /groups/cse -

alpha]< | omega
4. alow

dir groups

data ACL cse admins
" group:omega.nd.edu/groupsicse RL kerberos:ali Ce@nd odu
kerberos:betty @nd.edu

- hostname:* .cse.nd.edu
 globus/O=CSE/CN=*

Figure 4. Example of a Distributed ACL Definition

group:omega.nd.edu/groups/cse

Now, access control checks on this ACL, if not satisfied by the
local entries in the list, will result in a lookup RPC to omega in
order to determine whether the client is a member of the group. By
this mechanism, users can establish new groups that cross adminis-
trative boundaries, or even accomodate users with different kinds of
credentials.

However, distributed groups introduce new problems in performance
and semantics. Clearly, adding an RPC to each request for data will
increase the latency of all operations. To avoid this, recent lookup
requests are cached for a time controlled by the server that contains
the group, typically five minutes. This allows the group owner to choose
the appropriate tradeoff between performance and revocation time.

Caching lookups improves the performance of a single client that
repeatedly requests a group, but what about a server that must provide
the same data to many members of a group? To avoid multiple distinct
lookups, the client may also request the entire contents of the group file
by issuing an ordinary getfile request, which is then cached locally,

18 Douglas Thain, Christopher Moretti, and Jeffrey Hemmes

1. open /tmp/source
3. open /chirp/a phaltarget
5. loop (read source, write target)

parrot virtual file system

3. open ;
2. open 7. write
P Y vy 6 read Y yy

local chirp

4. open 8 .write

Figure 5. An Inefficient Ordinary Copy Command

again for a time controlled by the group owner. Now multiple tests for
membership of different subjects may be performed locally.

In some cases, revealing the entire contents of a group may be inap-
propriate. Either the group list may simply be too big to distribute to
all clients (e.g. the list of students on a campus) or the group list itself
may be sensitive (e.g. the list of staff with root access.) Again, the owner
of the list is in control, and may specify which mechanism is to be used.
If the group list is not to be revealed, then getfile requests simply
fail, and the calling server falls back to individual lookup requests.

8. Custom System Calls

Several aspects of the standard Unix interface are not well suited for
a grid computing environment. To escape these limitations of Unix,
we introduce several new system calls into Parrot that improve both
performance and usability. Each of these system calls is exercised by a
user-level tool that invokes the capability in a familiar way.

A simple example is the representation of user identity. In Unix, the
system call getuid() returns the integer identity of the calling user.
The integer must be passed to a name lookup service in order to yield a
human readable identity. Access control lists in the filesystem associate

Chirp: A Practical Global Filesystem for Cluster and Grid Computing 19

modified modified
cp cp
1. copyfile /tmp/source 1. copyfile /chirp/apha/data
[chirp/apha/data [chirp/betaldata
parrot virtual file system parrot virtual file system
1 2. 0pen 1 3. putfile 2. thirdput 1

4. putfile 3. thirdput /data
/data beta:/data

5MB

5. stream data

4. putfile
/data5MB

Figure 6. Efficient File Copies with Custom System Calls

rights with integer identities and require the use of the lookup service
for implementation.

This model does not map well into any grid identity service. Main-
taining a common and consistent user database is difficult enough
within one administrative domain, and nearly impossible across do-
mains. Even assuming a common database, a given human may have
multiple credentials or authentication methods that change with the
resources in use. A user might be known as kerberos:betty@nd.edu
while using /chirp/alpha.nd.edu, but known as globus:CN=Betty
while using /chirp/data.grid.org Likewise, access control lists may
refer to wildcards or groups that have no integer representation.

To address this, we introduce several new system calls that manip-
ulate user identities directly as strings, rather than integer identities.
For example, the Parrot whoami system call (and corresponding tool)
queries for the caller’s identity with respect to a given path in the
filesystem. In the case of Chirp, this results in a chirp whoami RPC to
obtain a specific server’s interpretation of the user’s identity. Likewise,
the getacl and setacl system calls manipulate access controls using
strings rather than integers.

A more complex example involves copying files. Figure 5 shows how
the ordinary cp command interacts with the operating system kernel
(or Parrot acting as the kernel.) The cp tool opens the local file, then
the remote file, issues a series of small reads and writes to copy the

[\)
o

Douglas Thain, Christopher Moretti, and Jeffrey Hemmes

—~ 10000
v AKB RPC sssssssssms o
® 64KB RPC s
= IMB RPC s
o Copyfile m—
S o
2
® 1000 ¢
>
o
=
e
()
£
T 100 - - - - -
1KB 4KB 16KB 64KB 256KB 1MB 4MB

File Size
Figure 7. Wide Area File Copy Performance

data, and then closes both files. This is a rather inefficient process for
copying small files on high latency networks because a minimum of
three network round trips is required. It can also be inefficient for large
files, because each small write requires a network round trip.

To improve the performance of file copies, we add a new system call
(copyfile) to Parrot. This system call accepts two path names and
copies all data from one file to another before returning. If a file is copied
between local disk and a Chirp server, then Parrot invokes the putfile
or getfile operations to stream the entire file data in one round trip.
If a file is copied between two Chirp servers, then Parrot invokes the
thirdput call to perform a third party transfer between two Chirp
servers. If the given path name is actually a directory, the servers will
arrange to transfer the entire directory structure without any further
instruction from the client. The user is provided with a modified cp
program that invokes copyfile, but falls back to the ordinary behavior
if executed outside of Parrot.

Figure 7 shows the significant effect that copyfile can have on a
high latency wide area network. In this experiment, we emulate a high
bandwidth wide-area network by placing a client and server on the
same gigabit ethernet switch, and adding an artificial latency of 100ms
to the server. We then compare the performance of copying 1000 files
of varying sizes from the client to the server, using the ordinary cp that
results in small RPCs against the modified cp that employs copyfile.
As can be seen, copyfile achieves better performance on large files by
avoiding multiple round trips, but it also performs better on small files
by avoiding open and close.

Chirp: A Practical Global Filesystem for Cluster and Grid Computing 21

1000 - - - . .
o 64 KB RPC i
s 3PT F||es Only [LTTTTETeT “““\\‘\\uu\
% 100 L SPT DlreCtory "“‘“I““\\unnuu v 1
o IIIIIIII"||||||||lllllllllllllllllllll"‘"IIIIIII
o
i
) 10 ¢
>
o
=
e (=
Q
E
|_

01 1 1 1 1 1
1KB 4KB 16KB 64KB 256KB 1MB 4MB

File Size
Figure 8. Third Party Transfer Performance

Figure 8 shows the benefits of third-party transfer, again transpar-
ently invoked by cp. In this experiment, a directory of 100 files of
varying sizes is copied between two servers on the same Ethernet switch,
directed by a third party over a 30ms wide area network. As expected,
RPC is slowest, because all data flows over the wide area network.
Performance improves if the third party directs each individual file
transfer, but is best when the third party simply indicates the directory
name, and allows the entire transfer to be governed by the source.

9. Consistency Semantics

The consistency semantics of a filesystem define when changes made at
one node in the system become visible to other nodes in the system. We
describe a set of consistency semantics as strict if changes are imme-
diately visible to others, while we use relazed to indicate that changes
make take some time to become visible. Generally speaking, relaxed
consistency semantics provide better performance and availability in
the face of failures, but may potentially provide unexpected results for
applications written to expect strict semantics.

Most distributed filesystems define a fixed set of consistency seman-
tics that must be employed by all users of the system. For example,
NFS [37] implementations typically have many options that can adjust
the buffering and caching policies, but they are chosen by the system
administrator when a remote filesystem is mounted. AFS [29] provides

22 Douglas Thain, Christopher Moretti, and Jeffrey Hemmes

file snapshot semantics for all participants, requiring that a connection
be maintained to receive callbacks.

On the grid, different applications running on the same system may
wish to strike the balance between consistency, availability, and per-
formance differently. Each job submitted in a batch of one thousand
independent jobs may fairly assume that its inputs will not change
during the run and that its outputs need not be stable or visible until
the job completes. On the other hand, a workload that is steered by an
interactive user may require instant access to new inputs provided at
the submitting workstation, and will need to deliver results immediately
to the end user. Accordingly, Chirp has three modes for consistency
semantics that may be chosen by the end user using command-line
arguments:

— Strict Semantics. In this mode, no buffering or caching at all is
enabled: every I/O operation on a Chirp file server results in a re-
mote procedure call to the server in question. If a server is unreach-
able, the connection is retried until successful or the failure timeout
is reached. This mode yields the same semantics as processes run-
ning on a local system, and is suitable for running applications
that select small amounts of data from a large collection.

— File Snapshot Semantics. In this mode, each file opened by
the client is loaded from the remote server and then stored in a
disk cache local to the requesting user. While the file is open, no
further requests to the server are necessary. If modified, the entire
file will be written back to the server on close. If a cached file
is re-opened, a remote stat operation is performed on the server
to test whether the file’s size or modification time has changed.
(This up-to-date check may also be cached.) A new copy of the
file is fetched if needed. This mode yields the same semantics as
AFS [29], yielding a snapshot of each file at the time it is opened.

— Job Session Semantics. In this mode, files are cached on local
disk as in the file snapshot mode, but an up-to-date check is only
performed once. Once a file is cached and up-to-date, it is never
checked again within the lifetime of the job. This yields semantics
suitable for a batch workload, which typically does not expect
input files to change as it runs.

In the same spirit, a user may also control the failure timeouts used
by Chirp. In a wide area distributed storage system, network outages
and other failures are very common. An interactive user exploring
Chirp servers will not want to sit idle for five minutes while a server is

Chirp: A Practical Global Filesystem for Cluster and Grid Computing 23

confirmed to be dead. But, a batch job that will run for hours or days
should not fail unnecessarily due to a brief network hiccup. By default, a
Chirp session invoked from an interactive terminal will employ a failure
timeout of one minute, while a session invoked in a batch context has
a timeout of one hour. The user may override this value as needed.

Other systems have made extensive use of callbacks [29, 39, 25] to
manage consistency semantics. In this mode, the server is responsible
for contacting the client when a file or directory of interest has changed
and can no longer be cached. We have chosen not to make use of
callbacks for lack of operating system support. Because Chirp exports
existing filesystems that may be changed directly by other underlying
tools, callbacks would require the operating system to block modifica-
tions to the filesystem while it notifies the Chirp server, which collects
the callbacks, and then releases the operating system. Unfortunately,
each Unix-like operating system implements file change notification in a
different way, and none cause the modifier to block until the notification
is complete. In addition, the asynchronous nature of callbacks dramat-
ically complicates the networking protocol and software engineering of
each component. For these reasons, we have chosen the simpler solution
of consistency checks.

Figure 9 shows the performance effects of choosing different con-
sistency semantics on the same Andrew-like benchmark used above
in Figure 2. In this case, we ran the benchmark using Parrot while
recording all of the remote calls made in each of the three consistency
semantics modes. The results show the number of remote I/O calls of
each type made to the remote server.

As can be seen, this benchmark is a metadata intensive workload
that requires a large number of remote calls to the server. However, as
the consistency semantics change from strict unix to file snapshot to job
session, the total number of remote calls decreases by a factor of four.
From strict to file snapshot, this is done by combining multiple reads
and writes on files into local access on cached copies, but a large number
of stat operations are needed to keep the cached copies consistent.
When the semantics are changed to job session, these up-to-date checks
are eliminated, but some are replaced by additional open calls needed
to satisfy make searching for a large number of non-existent files.

10. Clustering
So far, we have discussed individual Chirp servers as single file servers

for grid computing. However, multiple Chirp servers can also be joined
together to provide increased performance or capacity for applications.

24 Douglas Thain, Christopher Moretti, and Jeffrey Hemmes

remote strict file snapshot job session
calls | semantics semantics semantics
chmod 50 50 50
chown 9 9 9
close 2,190 1,569 1,569
fstat 2,077 0 0
getdir 198 198 198
Istat 1,833 1,833 1,833
mkdir 40 40 40
open 42,334 1,943 26,285
pread 51,113 1,249 1,249
pwrite 46,630 1,198 1,198
rename 9 9 9
rmdir 40 40 40
stat 3,752 46,084 3,750
unlink 589 589 589
utime 414 414 414
total 151,278 55,216 37,764

Figure 9. Total Remote Calls for Varying Consistency Semantics

We have experience running and managing over 250 Chirp servers to-
taling 40TB of storage harnessed from workstations and servers at the
University of Notre Dame since early 2005.

A cluster of Chirp servers can be joined together in one of two
ways. A shared namespace can be used to join multiple servers into a
unified filesystem cluster that has a single name and provides location-
transparent access to multiple disks. Alternatively, multiple indepen-
dent Chirp servers can be managed as a loosely coupled cluster that
allows the end user to select nodes for location and performance as
needed. We consider both kinds of clustering in turn.

10.1. UNIFIED FILESYSTEM CLUSTERS

Figure 10 shows how multiple Chirp servers can be joined into a single
large filesystem. One server is employed as a directory server that
contains only the directory hierarchy of the filesystem. Each file on
the directory server records the location of where the actual file is
stored on another Chirp server acting as a data server. As shown in the

Chirp: A Practical Global Filesystem for Cluster and Grid Computing 25

directory server data server data server
bin data shared files files
x Z 100 101 102 103 104 105

R R

Figure 10. Cluster Filesystem Architecture

400 T - T T T T T T
w 16 diSks mm—
@ 8 disks
=3 | 4disks smmemes
S 300 2 disks s
2 1 digk e .;
% 200 B __‘_‘__m.\.\.\.\.m-\-\l\l\-
£
l_ |||I||l|"""“"““""“"““"“""“""“"
£ 100 _
Q
'.(77 .""""I.I“"“"“||||||||ll||“.""""“""""""llllllllllllllllIIlIIllIIl|||||
>
2 1 1 1 1 1 1 1

0 2 4 6 8 10 12 14 16

Number of Clients
Figure 11. Clustered Filesystem Throughput

shared namespace of Figure 3, distribution is handled transparently via
libchirp, which contacts all the servers as needed. Such a filesystem can
be expanded to arbitrary size, simply by adding additional file servers.

A clustered filesystem can improve the aggregate throughput of
many clients accessing the same filesystem simultaneously, by virtue of
spreading the read and write load across multiple disks and networks.
However, it does not provide any significant performance benefit to
individual clients. It is also important to note that the system does not
have any internal redundancy, so we recommend that the filesystem be
used in conjunction with a conventional tape backup.

Figure 11 shows the throughput available to multiple clients ac-
cesing the system simultanously. This experiment employs a 32-node
computing cluster with 1-16 nodes used as storage servers, and 1-16
nodes (no overlap) used as clients of the system. For a chosen number

26 Douglas Thain, Christopher Moretti, and Jeffrey Hemmes

100 T T — 250
All Disks in Use —
g | eeneere, 2
o | i ll'll" .

\2, 80 f),&&/ 200 3
s OI"I' ;
S 60 1 150 o
= 0
S c
S 40 | Read Bandwidth 1 100 o
oM of Four Clients 5
=] e
© 7 T b
&J 20 “,, Balancer S0 Q2
‘ Ends &)

0 1 1 1 [O

0 200 400 600 800 1000

Time (s)
Figure 12. Reconfiguring a Clustered Filesystem

of disks, we populate the filesystem with a large number of 1MB files,
and then observe the available aggregate read throughput of multiple
clients selecting files at random and reading them sequentially. Adding
disks increases the throughput available to multiple clients.

Unlike other storage systems such as RAID [33], a Chirp cluster can
easily be reconfigured at runtime. Extra storage servers can be added
at run-time by simply adding their names to a configuration file; clients
will start writing new files there immediately. Data can be migrated or
balanced with a user-level migration tool that examines the filesystem,
copies files, and updates the directory server (with appropriate locking)
as the filesystem runs.

Figure 12 shows an example of run-time migration. (This is a differ-
ent cluster than the previous figure, so the absolute performance values
do not correspond.) In this experiment, four clients are reading data
randomly off of a cluster with two data servers. Six fresh data servers
are added to the system and initially have no data. The migration tool is
started at time 200 and progressively rebalances files across the system.
The distribution skew of the system is shown as the root mean squared
deviation from an equal number of files on each server. As can be seen,
the action of the migration tool steadly increases the throughput of the
system to four times the initial value.

10.2. LooSeELY COUPLED STORAGE CLUSTERS

Location transparency is not always desirable in a distributed system.
For many grid applications, it is important to know where data is lo-

Chirp: A Practical Global Filesystem for Cluster and Grid Computing 27

= = L o=

SaiaEers s e

Figure 18. Example Spanning Tree for File Distribution

10000

Sequential

1000

100

Elapsed Time (s)

10

0 50 100 150 200 250
Number of Hosts

Figure 14. File Distribution Performance

cated so as to achieve good performance. A process that requires a large
amount of input data will run fastest when running on a CPU close
to the relevant disk. For such applications, a loosely coupled cluster
is more appropriate. In this setting, we can replicate data at many
individual servers, and then allow jobs to pick the closest copy of the
data to use. In our 250-node storage cluster, it is common for users
to replicate a data set to all servers, and then submit batch jobs that
assume data is available everywhere.

However, copying a large file to 250 nodes sequentially can be very
time consuming, and may even take longer than the intended compu-
tation. Exploiting the third party transfer described above, we have
created a tool chirp distribute that constructs a spanning tree to
distribute the file in O(log(n)) time. chirp distribute operates in a
greedy fashion as follows. We assume that a single copy of the data
exists on a source host. The source server is directed to transfer its
data to a random target. Then, both hosts are used as sources for
two new targets in parallel. This process continues until the data ar-
rives at all hosts. Figure 13 shows an example spanning tree generated
by this method. Note that it is imbalanced due to varying transfer
performances between hosts.

28 Douglas Thain, Christopher Moretti, and Jeffrey Hemmes

{2 Storage Pool Visual - Windows Internet Explorer

File Edt View Favoites Tooks Help

bt fumm. cse.nd. edufeclfvc! D[4+ %] [conet P

i g | 89 sroragepool visual

hitp:ifocI00.c5e nd edu 8087 Sotby [Name]| Links: [showal ~| Detail

Bl Storaue Visual by Douglas Thain F]
(C) 2007 University of Notre Dame

System Totals
41478 Disk Total

CPUTota
265 Nodle Total
ccl01.cse.nd.edu
203468 Disk Size

opsys
opsysversion
owner
port
shortname
& | |

Figure 15. Chirp Cluster Monitor

Figure 14 compares the performance of sequential distribution versus
a spanning tree. A 100 MB file is distributed to 250 servers. Both
sequential and spanning tree are run 10 times, each generating a curve.
As expected, the random spanning tree is an order of magnitude faster.
We suspect that even better performance is possible if the spanning tree
is chosen more carefully, but we leave this as future work.

Managing a large cluster of storage servers requires some infrastruc-
ture. Each active server periodically sends a short message describing
its vital statistics (available space, memory, etc.) and active network
connections to the global catalog server shown in Figure 1. This infor-
mation is published in several formats as a web page which serves as an
information source for several high-level information tools such as the
system monitor shown in Figure 15. Visual network connections and
color-coded resources allows the system manager to quickly unexpected
identify problems or abusive users.

The cluster storage manager does not necessarily have a privileged
login on all machines in the cluster, each of which are owned and
managed by different people and departments. However, the manager
must still have some capability to fix problems remotely. To provide
this, each server is configured to recognize a storage superuser that
has the capability to list files and modify ACLs in any directory. The
storage superuser is typically a GSI subject, so that a reasonable degree
of communication security can be guaranteed.

Chirp: A Practical Global Filesystem for Cluster and Grid Computing 29

A

grid middleware

submit jobs
to middleware

executable = parrot

mysim mysim mysim)
arguments = mysim.exe
—input /chirp/server/data.§N
(parrot) (parrot) (parrot) —output /chirp/server/data.$N
(libchirp) (libchirp) (libchirp) queue 1000
job description file with Chirp
chixp netwark progecol t

i .
| executable = mysim.exe

: arguments = —input data.$N

I —output.data.$N
|

|

I queue 100

job description file without Chirp

Figure 16. Typical Use of Chirp with Existing Grid Middleware

The storage superuser also has the ability to invoke a storage audit
on any individual machine. This audit traverses the local filesystem
and produces a report listing the storage consumption by individual
users. When done in parallel, the data are combined to produce a daily
listing of resource consumption by user and location. Because this is
done in parallel, the state of the entire 250-disk system can be audited
in a matter of minutes.

11. Chirp on the Grid

Figure 10.2 shows how Chirp would typically be used with existing com-
putational grid infrastructures. Suppose that the user is accustomed to
submitting jobs to run the executable mysim.exe on a local cluster. In
order to dispatch them to the grid, the user starts a Chirp server on the
machine that contains the necessary data and executables, adjusts the
batch submit file to run parrot with mysim.exe as the argument, and
adjusts the pathnames to refer to the new Chirp server. Now, the jobs
can be submitted to execute on any node on the grid, and wherever
they happen to run, the jobs will connect back to the Chirp server to
perform I/O as needed.

Note that this scenario only relies on the ability of the grid comput-
ing system to execute Parrot as a job on some approprate CPU. Chirp
is decoupled from the other details of the grid computing system, and

30 Douglas Thain, Christopher Moretti, and Jeffrey Hemmes

thus can function with any kind of middleware used to dispatch jobs
to CPUs. Because Chirp performs I/O on demand, it also functions
independently of grid workflow systems such as Pegasus [19].

12. Applications

We conclude by describing three applications that have employed the
Chirp filesystem for data intensive grid computing. Each application
employs the filesystem in a different way: one as a filesystem bridge,
one as a filesystem cluster, and another as a loosely coupled cluster.

12.1. PERSONAL FILESYSTEM BRIDGE FOR GENOMIC SEARCHES

BLAST [11] is a common data-intensive application used in the life
sciences. It is used to compare a large number of small (10-100 byte)
genomic sequences against large (several GB) standard databases of
genomic data. It is most commonly run on clusters where all nodes
share an NFS-mounted central server on a fast network. Typically,
the administrator installs a selection of databases describing different
organisms, each database consisting of a handful of index and data files.
The user runs the blastall program, which invokes a sub-program and
accesses databases given by command line arguments.

BLAST would seem to be a natural application to run on a com-
putational grid, but it is not easy to do so. In a traditional stage-in,
stage-out model, the user must be careful to identify the precise set of
sub-programs and data files to be sent to each remote site. But, because
the databases are so large, it would be inefficient to the point of useless
to transfer data along with every single job to be run, so the user
must stage the needed databases to the head node of each cluster. This
procedure must be repeated every time the database changes or a new
cluster is harnessed. Few users are inclined to manage this procedure
manually.

Using Chirp, we can build a secure distributed file system that makes
it easy to run BLAST jobs without any site-specific configuration.
Figure 17 shows an example of a system we have constructed that
runs BLAST jobs across two different grid systems at the University of
Notre Dame and Purdue University, all accessing a file server deployed
at Notre Dame.

The batch job is simply a script that loads executables and data
from the /blast directory, which is directed to the file server using a
private name space. Then, Parrot and the script are submitted to each
batch system along with the user’s GSI credentials. The script fetches

Chirp: A Practical Global Filesystem for Cluster and Grid Computing 31

Purdue University University of Notre Dame

bin do data
(MBs) (GBs) (KBSs)
ACL:

(globus:/O:NotreDame/* rwi)

Grid File Server at Notre Dame
Figure 17. Running BLAST on Multiple Grids with Chirp

both executables and data via Chirp, caches them on the local disk,
and runs the search. Further jobs that run on the same node can take
advantage of the cached data.

To consider the performance of this system, we first examine a single
BLAST job that searches for a match to one sequence within the stan-
dard non-redundant human protein database known as nr and writes
the output to remote storage. We measure the total number of remote
I/O calls, the amount of data read and written, and the wall clock
time necessary to complete one search using strict semantics (direct
remote access) and job session semantics, with cold and warm caches.
The results are shown in Figure 18.

As can be seen, the absolute runtime for one job is fastest with strict
semantics: it is faster to stream data stored in memory on a remote
machine than to read it off a local disk. However, the scalability of
these approaches is very different: the strict semantics would quickly

32 Douglas Thain, Christopher Moretti, and Jeffrey Hemmes

strict session: session:

semantics cold cache warm cache

remote calls 23249 23119 45

data read 1.5 GB 1.5 GB none
data written 172 KB 172 KB 172 KB
best runtime 38 sec 84 sec 62 sec

Figure 18. Performance of a Single BLAST

1000

[¢) . .
D 800 r Session Strict 1
E_ Semantics Semantics
8 600 .
8
@) 400 4
Law]
©
E 200 -

O 1 1 1

0 1 2 3 4 5

Time (hours)
Figure 19. Performance of a BLAST Batch

overwhelm a central file server, while the snapshot semantics can cache
large files for as long as they do not change on the server.

To demonstrate this, we submitted a batch of 1000 BLAST jobs,
each searching for 10 sequences within the nr database to the system
described above. In both cases, 70 machines spread across both systems
were available for our use. The results are shown in Figure 19. As
expected, the session semantics resulted in much higher job through-
put, and lower average runtimes. For the strict semantics, one may see
a stair-step behavior indicating intervals in which all processes were
blocked waiting on the central server for I/O.

By employing Chirp as a distributed filesystem across the grid, the
user can take advantage of multiple clusters just as easily as using
one cluster. The user is saved from the inconvience of manual data
staging to cluster heads, and from the untenable performance overhead
of staging data on each job execution.

Chirp: A Practical Global Filesystem for Cluster and Grid Computing 33

12.2. CLUSTERED STORAGE FOR PHYSICS DATA ANALYSIS

The Gamma Ray Astrophysics at Notre Dame (GRAND) [36] project at
Notre Dame studies stellar sources of gamma rays by measuring muon
showers created as gamma rays interact with the Earth’s atmosphere.
The project detector consists of an array of 64 detectors arranged in a
field on the Notre Dame campus, producing about 50MB of data per
hour, 365 days a year.

As a small-scale physics project, GRAND does not have a large ded-
icated computing center to support its activities. The project records
new data on to commodity disks, and then to inexpensive offline tape
as the disks fill up. As a result, only the most recently-recorded data
is easily available for analysis. Any historical study on archived data
requires long hours of sorting through tapes.

However, using Chirp, we can harness existing conventional worksta-
tions and servers to create an inexpensive but high capacity clustered
filesystem that allows for efficient historical study in ways not pos-
sible with a tape archive. To meet these requirements, we created a
clustered filesystem of 32 nodes, totalling about 16 TB of storage. As
data is acquired, it is still migrated to offline tape for backup, but is
also duplicated into the storage cluster. The capacity of the cluster is
sufficient for storage, at the current rate, of more than 13 years’ worth
of GRAND data. The cluster has been actively collecting new data
since early 2006, and loading of historical data is in progress.

The filesystem cluster has worse performance than a single locally
attached disk, but is far better than tape for large amounts of data.
The latency of a write to the local disk through the system buffer cache
is 0.04 ms, while latency to the storage cluster is about 0.3ms over the
campus-area network. However, as shown above, the aggregate data
throughput scales up with the number of servers. The cluster regularly
supports several students working simultaneously on historical data
analysis not possible under the old system.

12.3. DATA REPLICATION FOR BIOMETRIC IMAGE COMPARISONS

Biometric researchers at the University of Notre Dame are designing
and evaluating new algorithms for face recognition. Abstractly speak-
ing, a face recognition algorithm is a function that takes two images as
inputs and produces an output score between zero and one, indicating
the similarity of the two images. To evaluate the quality of such a
function systematically, it must be used to compare all possible pairs
of images from a known gallery, producing a similarity matriz of results
that characterizes the quality of the function.

34 Douglas Thain, Christopher Moretti, and Jeffrey Hemmes

image array image array
O\ | ISP
@,
g O .98
] "
matghin
§ O F funcniong
Q 15
similarity matrix similarity matrix

t f

compare matrices computed by two functions

Figure 20. Image Comparison for Biometrics

Figure 20 shows the structure of this computation. A typical work-
load of this kind consists of 4000 images of about 256 KB each taken
from the Face Recognition Grand Challenge (FRGC) [34] data set,
all compared to each other with the ICP [17] algorithm. Each match
compares 14 regions of the face, each region requiring about 1 second
of computation. This requires about 2500 CPU-days of computation in
total, so the more CPUs that can be applied to the problem, the faster
it can be completed. We wish to apply about 250 CPUs to the problem
so that it can be completed in about 10 days.

Unfortunately, each CPU added to the system increases the 1/O
load. 250 CPUs simultaneously loading 1GB of data will overload both
our networks and any central storage server. To avoid this problem,
we exploit the distributed I/O capacity of our loosely coupled storage
cluster. For each run, we build a spanning tree to distribute the input
data to each CPU. Unfortunately, not all CPUs are willing to donate
enough local space to store all data sets of interest. So, we must make
a smaller number of copies to hosts that have available space, and
then use the filesystem interface of Chirp to access the needed data at
runtime from each computation node. In this way, data is distributed
to all CPUs in two stages.

To get reasonable performance, we must distribute the data appro-
priately. Figure 21 shows the aggregate throughput of five data servers
in several configurations, each serving data to up to eighty clients si-
multaneously. A is a single server distributing the archive as a single
500 MB file, and B is a set of five servers doing the same. It is no

Chirp: A Practical Global Filesystem for Cluster and Grid Computing 35

250 -
G D - Multiple Servers
5’"'"@---.....Emu““‘" 'u.ﬁ,.,,,,,,,'xv/Locallty
lersy) 200 L ; Hmuunnnunmm 1
0 N e
s \8 -
g S oo e C - Multiple Servers
< 150 ¢ & et w/File Packages
) g‘ ‘\‘\T
= St o
&> 1 i
E_ ¢m :;*n 0 L k1., oy }
(=) 100 r S gy, 1 ! .
2 O A ! “b:ﬁlIIlIIlIIIlIIl||||||||||):Q,"'X
S -
|E 50 B - Multiple Servers |
A - Single Server w/Single File
O L L 1 I 1 L

0O 10 20 30 40 50 60 70 80 90 100

Load Factor
Figure 21. Aggregate Throughput Using Five Replicated Servers

surprise that more servers can handle more load. However, when many
clients access the same server at once, responsiveness becomes so poor
that clients make no progress, and eventually timeout and fail. In C the
files are grouped together into packages of 50MB, which are loaded by
clients as needed. In D the same scheme is used, but each job chooses
a server on the same physical cluster.

The inherent limitation of a single data server is evident: any single
data server has limited resources, whether the limiting factor is storage,
memory, or network link bandwidth. For this specific workload, smaller
pieces of the dataset achieved higher aggregate throughput than the
dataset as a whole. Utilizing cluster locality, where available, also gave a
significant boost in performance, both peak throughput and scalability,
over the random choice.

Using this system, the biometrics researchers were able to execute
several workloads in several days instead of several months. They com-
pleted four separate data-intensive evaluations, varying from 85 CPU-
hours to 1300 CPU-hours and 700 GB to 5.3 TB of total I/O. The
highest amortized I/O requirement for any evaluation was 40 Mb/CPU-
second, including transfers wasted due to failures. In another run, the
storage system was able to serve a start-up burst at over 11.2 Gbps
over a one-minute interval using 30 data servers for approximately 250
worker nodes.

36 Douglas Thain, Christopher Moretti, and Jeffrey Hemmes

13. Conclusion

Although distributed file systems have long been a focus of study, we
have argued that the grid is a sufficiently different environment that
it requires a new design for distributed filesystems. We have described
the Chirp filesystem, which provides unique services for deployment,
naming, consistency, security, and clustering that are particular to
grid applications. We demonstrate three applications that employ these
services in different ways to exploit the full power of computing grids.

The Chirp software is available for download at:

http://www.cse.nd.edu/ " ccl/software

Acknowledgements

We thank the anonymous reviewers for their help in improving this
paper. We thank James Fitzgerald and Paul Madrid, who contributed
to the implementation of Chirp. We thank Preston Smith for deploy-
ing Chirp, and assisting us with the Purdue Condor pool. We thank
the many users and testers of Chirp, particularly Justin Wozniak,
Paul Brenner, Aaron Striegel, Jesus Izaguirre, Tim Faltemier, Patrick
Flynn, Chris D’Andrea, John Poirier, Christophe Blanchet, Remi Mol-
lon, Gilbert Deleage, Mark Calleja, and Sander Klous. This work was
supported in part by National Science Foundation grants CCF-06-
21434 and CNS-06-43229.

References

‘Enabling Grids for E-SciencE’. http://www.eu-egee.org.

‘Filesystem in User Space’. http://sourceforge.net/projects/fuse.

‘Global Grid Forum’. http://www.ggf.org.

‘L-Store: Logistical Storage’. http://www.lstore.org.

‘SlashGrid’. http://www.gridsite.org/slashgrid.

‘TeraGrid’. http://www.teragrid.org.

‘The Open Science Grid’. http://www.opensciencegrid.org.

Alexandrov, A., M. Ibel, K. Schauser, and C. Scheiman: 1998, ‘UFO: A personal
global file system based on user-level extensions to the operating system’. ACM
Transactions on Computer Systems pp. 207-233.

9. Allcock, W., J. Bresnahan, R. Kettimuthu, and J. Link: 2005, ‘The Globus
eXtensible Input/Output System (XIO): A Protocol Independent IO System
for the Grid’. In: Workshop on Middleware for Grid Computing. Melbourne,
Australia.

P© N ook

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Chirp: A Practical Global Filesystem for Cluster and Grid Computing 37

Allcock, W., A. Chervenak, I. Foster, C. Kesselman, and S. Tuecke: 2000,
‘Protocols and Services for Distributed Data-Intensive Science’. In: Proceed-
ings of Advanced Computing and Analysis Techniques in Physics Research. pp.
161-163.

Altschul, S.; W. Gish, W. Miller, E. Myers, and D. Lipman: 1990, ‘Basic local
alignment search tool’. Journal of Molecular Biology 3(215), 403—410.
Andrews, P., P. Kovatch, and C. Jordan: 2005, ‘Massive High-Performance
Global File Systems for Grid Computing’. In: Supercomputing. Seattle, WA.
Baru, C., R. Moore, A. Rajasekar, and M. Wan: 1998, ‘The SDSC Storage
Resource Broker’. In: Proceedings of CASCON. Toronto, Canada.

Batsakis, A. and R. Burns: 2004, ‘Cluster Delegation: High-Performance Fault-
Tolerant Data Sharing in NFS’. In: High Performance Distributed Computing.
Beck, M., T. Moore, and J. Plank: 2002, ‘An End-to-End Approach to Globally
Scalable Network Storage’. In: ACM SIGCOMM. Pittsburgh, Pennsylvania.
Bent, J., V. Venkataramani, N. LeRoy, A. Roy, J. Stanley, A. Arpaci-Dusseau,
R. Arpaci-Dusseau, and M. Livny: 2002, ‘Flexibility, Manageability, and Per-
formance in a Grid Storage Appliance’. In: IEEE Symposium on High
Performance Distributed Computing. Edinburgh, Scotland.

Besl, P. and N. McKay: 1992, ‘A method for registration of 3-D shapes’. IEEFE
Transactions on Pattern Analysis and Machine Intelligence 14.

Bester, J., I. Foster, C. Kesselman, J. Tedesco, and S. Tuecke: 1999, ‘GASS: A
Data Movement and Access Service for Wide Area Computing Systems’. In:
6th Workshop on I/0 in Parallel and Distributed Systems.

Deelman, E., G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
K. Vahi, B. Berriman, J. Good, A. Laity, J. Jacob, and D. Katz: 2005, ‘Pega-
sus: A Framework for Mapping Complex Scientific Workflows onto Distributed
Systems’. Scientific Programming Journal 13(3).

Figueiredo, R., N. Kapadia, and J. Fortes: 2001, ‘The PUNCH Virtual File
System: Seamless Access to Decentralized Storage Services in a Computational
Grid’. In: IEEFE High Performance Distributed Computing. San Francisco, CA.
Foster, 1., C. Kesselman, J. Nick, and S. Tuecke: 2002, ‘Grid Services for
Distributed System Integration’. IEEE Computer 35(6).

Foster, I., C. Kesselman, G. Tsudik, and S. Tuecke: 1998, ‘A Security Ar-
chitecture for Computational Grids’. In: ACM Conference on Computer and
Communications Security. San Francisco, CA, pp. 83-92.

Foster, 1., C. Kesselman, and S. Tuecke: 2001, ‘The Anatomy of the Grid:
Enabling Scalable Virtual Organizations’. Lecture Notes in Computer Science
2150.

Ganguly, A., A. Agrawal, P. O. Boykin, and R. J. Figueiredo: 2007, ‘WOW:
Self Organizing Wide Area Overlay Networks of Workstations’. Journal of Grid
Computing 5(2).

Gray, C. and D. Cheriton: 1989, ‘Lease: An efficient fault-tolerant mecha-
nism for distributed file cache consistency’. In: Twelfth ACM Symposium on
Operating Systems Principles. pp. 202-210.

Grimshaw, A., W. Wulf, et al.: 1997, ‘The Legion Vision of a Worldwide Virtual
Computer’. Communications of the ACM 40(1), 39-45.

Hemmes, J. and D. Thain: 2006, ‘Cacheable Decentralized Groups for Grid
Resource Access Control’. In: IEEE Conference on Grid Computing. Barcelona,
Spain.

Honeyman, P., W. A. Adamson, and S. McKee: 2005, ‘GridNFS: Global Storage
for Global Collaboration’. In: Local to Global Data Interoperability.

38

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Douglas Thain, Christopher Moretti, and Jeffrey Hemmes

Howard, J., M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Side-
botham, and M. West: 1988, ‘Scale and Performance in a Distributed File
System’. ACM Trans. on Comp. Sys. 6(1), 51-81.

Jones, M.: 1993, ‘Interposition Agents: Transparently Interposing user Code
at the System Interface’. In: 14th ACM Symposium on Operating Systems
Principles. pp. 80-93.

Li, W., J. Liang, and Z. Xu: 2003, ‘VegaFS: A prototype for file sharing crossing
multiple domains’. In: IEEE Conference on Cluster Computing.

Moretti, C., T. Faltemier, D. Thain, and P. Flynn: 2007, ‘Challenges in Exe-
cuting Data Intensive Biometric Workloads on a Desktop Grid’. In: Workshop
on Large Scale and Volatile Desktop Grids. Long Beach, CA.

Patterson, D. A., G. Gibson, and R. Katz: 1988, ‘A Case for Redundant Arrays
of Inexpensive Disks (RAID)’. In: ACM SIGMOD international conference on
management of data. pp. 109-116.

Phillips, P. and et al.: 2005, ‘Overview of the face recognition grand challenge’.
In: IEEE Computer Vision and Pattern Recognition.

Plank, J., M. Beck, W. Elwasif, T. Moore, M. Swany, and R. Wolski: 1999,
“The Internet Backplane Protocol: Storage in the network’. In: Network Storage
Symposium.

Poirier, J., G. Canough, J. Gress, S. Mikocki, and T. Rettig: 1990. Nuclear
Physics B Proceedings Supplements 14, 143-147.

Sandberg, R., D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon: 1985, ‘Design
and implementation of the Sun network filesystem’. In: USENIX Summer
Technical Conference. pp. 119-130.

Shoshani, A.; A. Sim, and J. Gu: 2002, ‘Storage Resource Managers: Middle-
ware Components for Grid Storage’. In: Nineteenth IEEE Symposium on Mass
Storage Systems.

Srinivasan, V. and J. Mogul: 1989, ‘Spritely NFS: Experiments with Cache
Consistency Protocols’. In: ACM Symposium on Operating Systems Principles.
Steiner, J., C. Neuman, and J. I. Schiller: 1988, ‘Kerberos: An authentication
service for open network systems’. In: Proceedings of the USENIX Winter
Technical Conference. pp. 191-200.

Stone, N. and et al.: 2006, ‘PDIO: High Performance Remote File 1/O for
Portals Enabled Compute Nodes’. In: International Conference on Parallel
and Distributed Processing Techniques and Applications (PDPTA). Las Vegas,
NV.

Tatebe, O., N. Soda, Y. Morita, S. Matsuoka, and S. Sekiguchi: 2004, ‘Gfarm
v2: A grid file system that supports high-performance distributed and parallel
data computing’. In: Computing in High Energy Physics (CHEP).

Thain, D.: 2006, ‘Operating System Support for Space Allocation in Grid
Storage Systems’. In: IEEE Conference on Grid Computing.

Thain, D., S. Klous, J. Wozniak, P. Brenner, A. Striegel, and J. Izaguirre:
2005, ‘Separating Abstractions from Resources in a Tactical Storage System’.
In: IEEE/ACM Supercomputing.

Thain, D. and M. Livny: 2000, ‘Bypass: A tool for building split execution
systems’. In: IEEE High Performance Distributed Computing. Pittsburg, PA.
Thain, D. and M. Livny: 2003, ‘Parrot: Transparent User-Level Middleware for
Data-Intensive Computing’. In: Proceedings of the Workshop on Adaptive Grid
Middleware. New Orleans.

47.

48.

49.

50.

51.

Chirp: A Practical Global Filesystem for Cluster and Grid Computing 39

Thain, D. and C. Moretti: 2007, ‘Efficient Access to Many Small Files in a
Filesystem for Grid Computing’. In: IEEE Conference on Grid Computing.
Austin, TX.

Thain, D., T. Tannenbaum, and M. Livny: 2003, ‘Condor and the Grid’. In:
F. Berman, G. Fox, and T. Hey (eds.): Grid Computing: Making the Global
Infrastructure a Reality. John Wiley.

Vazhkudai, S.; X. Ma, V. Freeh, J. Strickland, N. Tammineedi, and S. Scott:
2005, ‘FreeLoader: Scavenging Desktop Storage Resources for Scientific Data’.
In: Supercomputing. Seattle, Washington.

Walker, E.: 2006, ‘A Distributed File System for a Wide-Area High Per-
formance Computing Infrastructure’. In: USENIX Workshop on Real Large
Distributed Systems. Seattle, WA.

Weil, S. A.; S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn: 2006,
‘Ceph: A Scalable, High-Performance Distributed File System’. In: USENIX
Operating Systems Design and Implementation.

