Reduction of Workflow Resource Consumption
Using a Density-based Clustering Model
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Abstract—An end user running a scientific workflow will often
ask for orders of magnitude too few or too many resources to run
their workflow. If the resource requisition is too small, the job
may fail due to resource exhaustion; if it is too large, resources
will be wasted though job may succeed. It would be ideal to
achieve a near-optimal number of resources the workflow runs to
ensure all jobs succeed and minimize resource waste. We present
a strategy for addressing this resource allocation problem: (1)
resources consumed by each job are recorded by a resource
monitor tool; (2) a density-based clustering model is proposed
for discovering clusters in all jobs; (3) a maximal resource
requisition is calculated as the ideal number of each cluster.
We ran experiments with a synthetic workflow of homogeneous
tasks as well as the bioinformatics tools Lifemapper, SHRIMP,
BWA and BWA-GATK to capture the inherent nature of resource
consumption of a workflow, the clustering allowed by the model,
and its usefulness in real workflows. In Lifemapper, the least
time, cores, memory, and disk savings are 13.82%, 16.62%,
49.15%, and 93.89%, respectively. In SHRIMP, BWA, and BWA-
GATK, the least cores, memory, and disk savings are 50%,
90.14%, and 51.82%, respectively. Compared with fixed resource
allocation strategy, our approach provide a noticeable reduction
of workflow resource consumption.

Index Terms—high throughput computing (HTC), density-
based clustering, automatic resource allocation, resource con-
sumption optimization.

I. INTRODUCTION

High throughput computing (HTC) is an essential com-
ponent of the scientific enterprise in fields as diverse as
computer science, physics, biology, economics, and aerospace.
In HTC, researchers will often run a very large number of
independent jobs across a large number of independent nodes
(machines) [1]. Workflow management systems are a widely-
used technology for organizing large HTC runs, organizing
a body of work into a directed graph of jobs and the files
consumed and produced by each job.

In these workflows, a failed job caused by resource exhaus-
tion will waste time and resources as it is returned and re-
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submitted. Thus, the user tends to submit jobs with a large
resource requisition to ensure all jobs succeed [2]. However,
the goal of HTC is to run a workflow with a maximal number
of jobs completed over a long period of time and minimal
resource consumption of jobs. Therefore, researchers will
often ask for how many resources (such as cores, memory,
and disk) should be requested for each job. In practice, a
researcher running a scientific workflow will have very little
detailed information about the resources required by each job;
also, jobs may vary widely in the required resources, due
to differences in their functions and input data. We are then
confronted with the resource allocation problem: how should
the user make resource allocation strategies without detailed
information of per job so as to minimize the waste of their
resource consumption?

Data mining-based algorithms have been widely applied
to scientific workflows to facilitate resource allocation and
management. In [3], Menache et al. presented an online
learning resource allocation to balance the computation cost
and performance. It is based on the learning from the exe-
cuting performance of prior job while collaborating history
of spot prices and workload characteristics. In [4], Chen
et al. presented a statistical model checker UPPAAL-SMC
for optimizing and evaluating for cloud workflow resource
allocation strategies. In [5], Xiong et al. proposed a cost-aware
resource management system SmartLLA using machine learn-
ing techniques for achieving the optimum profits. However,
whether the prediction algorithm is nonlinear regression, a
statistical model, or neutral network, a prediction model is
never 100% accurate. Therefore, at least a small number of
jobs will fail due to the resource requisition is too small, which
means their methods are generally not able to ensure all tasks
succeed according to their resource allocation strategies.

Considering that sometimes users need to run the same
workflow multiple times or run a small workflow for testing



before running the whole workflow we present a comprehen-
sive solution to the resource allocation problem for minimizing
the waste of resource consumption while running all jobs suc-
cessfully. We extract features from data collected by a resource
monitor tool, then we use a density-based clustering model for
discovering clusters in a large number of jobs, calculating op-
timal resource requisition for each cluster to optimize resource
management. Section 2 gives some background, including
Makeflow [6], the resource monitor tool [8], scientific work-
flows, HTCondor [7] and an overview of our method. Section
3 formalizes our ideas, presenting the algorithm and structure
of our density-based clustering model, and our parameters’
value evaluation strategies. Section 4 evaluates our approach
using resource consumption data collected from production
workflows in domains of bioinformatics. We demonstrate that
our resource allocation strategy leads to an overall decrease
in resource consumption compared to fixed allocations under
the richness of resource variations. We run our evaluation on
workflows drawn from the Makeflow Examples [16] archive,
with the following result highlights: In Lifemapper, the least
time, cores, memory, and disk savings are 13.82%, 16.62%,
49.15%, and 93.89%, respectively. In SHRIMP, BWA, and
BWA-GATK, the least cores, memory, and disk savings are
50%, 90.14%, and 51.82%, respectively. Thus, our approach
is able to provide an efficient way for workflow users. Also
the clustering model presented in this paper is able to discover
inherent relationship between hundreds of or thousands of
jobs.

II. IMPLEMENTATION

A. Background

Scientific workflows allow users to easily express multi-step
computational tasks, for example the Lifemapper workflow
consists of three steps: pre-processing, maxent, and projection.
A scientific workflow often contains hundreds of thousands of
tasks, and tasks in a scientific workflow can be everything
from short serial tasks to very large parallel tasks. The
structure of workflows can vary from simple to complex. In
our experiments, Lifemapper, BWA, and SHRIMP are simple
workflow with three steps. BWA-GATK has a more complex
structure.

We use Makeflow [6] to test our approach, which is a
workflow system designed to allow users to express scientific
workflows using the classic "Make” syntax. Makeflow can run
jobs locally on a large multiple core machine, or interface
with batch systems such as HTCondor, Torque, and SLURM;
cluster manages such as Mesos and Kubernetes; and cloud
services such as Amazon EC2 and Lambda. To schedule each
job in the target systems, Makeflow allow users to set various
resource requests, cores, memory (in MB), and disk (in MB)
ahead of each job. We run scientific workflows both locally
and the HTCondor to evaluate the behavior of our approach.

HTCondor [7] is a distributed batch computing system that
creates HTC environment and allows many users to share their
computing resources around the world. Researchers working

with scientific workflows often submit lots of jobs to HTCon-
dor and take advantage of all the idle cycles from under-used
machines. We also use the HTCondor to run SHRIMP, BWA,
and BWA-GATK to effectively utilizes the computing power
of workstations.

The resource monitor tool [8] generates report files: a
summary file with the maximum values of resource and time
each job used, and monitors the maximum resources limit
specified in the workflow file. If one of the resources goes
over the limit, then the monitor terminates the task, including
a report of the resource that was above the limit.

We assume the user provides a workflow description which
indicates a set of jobs to be run, and the dependencies between
them. A resource monitor tool to monitor the computational
resources of a process. Then the density-based clustering
model do data clustering with all report files and the ideal
resource allocation strategy is calculated, in terms of a quantity
of cores, memory, and disk.

B. Our approach

The structure of our solution is shown in Fig. 1. When we
run a scientific workflow, we use a resource monitor tool to
observe, record, and enforce resource limits on jobs. These
observations are used as data source for the next step.
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Fig. 1. System Components. The system consists of three main steps: (1)
generate resource consumption reports, (2) data clustering with data collected
by the resource monitor tool, (3) calculate ideal resource allocation strategy,
then we re-run the workflow to measure the efficiency of our approach.

A density-based clustering model is presented to do data
clustering. We extract cores, disk, memory and wall-time data
from report files as four-dimensional features of each job and
specify weights for each dimension to represent the importance
of each feature. Then we cluster data according to the density
aggregation of each point (job). After clustering, we label
each task with its specified cluster number and the maximum
resources of each cluster is calculated in order to ensure no
task would fail. In this way, we obtain the ideal number of



cores, memory and disk of each cluster with their specified
cluster label.

We evaluate these techniques on a synthetic workflow
of homogeneous tasks as well as the bioinformatiocs tools
Lifemapper [14], SHRIMP [13], BWA [15] and BWA-GATK
[11]. The experiments were designed to capture the inherent
nature of resources consumption of a scientific workflow, the
clustering allowed by the model, and its usefulness in real
workflows.

ITIT. DENSITY-BASED CLUSTERING MODEL

We assume that there are some latent clusters in a workflow,
and if we could set optimal resource request to each cluster
rather than to global jobs, we may be able to use less
resources to run. A scientific workflow may have hundreds of
or thousands of jobs, it is unrealistic for users to have detailed
information about each job, which means, users do not have
prior knowledge about job clusters. So if they want to label
jobs or discover latent clusters, they need to do classification
without prior knowledge.

Clustering is the proper method we use when we want to
label or categorize objects without prior knowledge, it finds
common characteristics and latent internal relations between
jobs, and then it provides predicted clusters. So clustering is
adopted in our work.

We present a density-based clustering model for discovering
the inherent nature of jobs in scientific workflows. In this sec-
tion, we discuss the advantages of a density-based algorithm,
model structure, crucial definitions, and strategy for selecting
parameters in our clustering model.

A. Clustering Algorithm

Clustering is used to discover inherent groupings, or rela-
tionships within all related jobs, and provide an ideal resource
allocation strategy for users. Usually, users do clustering with
very little or no detailed information of each task. We assume
that users are not always able to determine how many clusters
should be in the scientific workflow. Moreover, the distribution
of hundreds or thousands of jobs are not always able to have
regular shapes like circles or squares. Actually, the distribution
of all tasks in a scientific workflow often have various shape
and size. Some classic clustering algorithms, for example, K-
means [9] which clusters data by trying to separate samples
in n groups of equal variance, minimizing a criterion known
as the inertia or within-cluster sum-of-squares, is limited by
requiring the number of clusters to be specified in advance
and its poor performance when clusters have irregular shapes.

The density-based clustering algorithm [10] was selected in
our strategy due to two main advantages: (1) clusters found
by density can be any shape; (2) the number of clusters is not
required to be specified a priori. The density-based clustering
algorithm views clusters as areas of high density separated
by areas of low density, so the shape of clusters depends on
density differences between points, which means clusters are
not required to be convex shaped that is required in K-means
and other clustering algorithms. Also the number of clusters
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Fig. 2. Clustering result of BWA-GATK. The density-based clustering model
used in our method is four dimensional, in terms of weighted cores, memory,
disk and wall-time. Four dimensional distribution is hard to express in a figure.
So we present the clustering result in two dimension: cores, and memory.

is determined by parameters in our algorithm, so the number
of clusters is not required to be specified beforehand.

B. Feature Extraction

We consider the clustering results related to a job in four
stages: (1) how many cores the job used, (2) how much
memory the job used, (3) how much disk the job used, and (4)
how much wall-time the job took. Cores, memory, and disk
are three main parameters for resource allocation, so they are
selected as parts of features. Wall-time is also selected as a
feature for measuring the job size or function type.

The resource monitor provides summary files about compu-
tational resources of per task, so all these summary files are
used to be data source of our clustering model. In our method,
we extract features from reports in terms of the quantity of
cores, memory, disk, and wall-time consumed by each task.

C. Model Parameters

Using data clustering, we are able to obtain several clusters,
label all points (tasks) with cluster numbers and calculate the
maximum resources (cores, memory, disk) of each cluster. As
show in Fig. 2, we provide the clustering result of BWA-
GATK-workflow [11] as an example. This workflow is a
bioinformatics example using Makeflow to parallelize the



Burroughs-Wheeler Alignment and Genome Analysis Toolkit
(BWA-GATK) tool.

The structure and parameters of the density-based cluster-
ing model have a large influence on the clustering results.
Clustering model with different features or parameters will
have various results. With data from the resource monitor tool,
cores, memory, disk and wall-time are extracted as features of
each single task, and we set weights to these four features.
Then we provide a clustering model based on density for
discovering clusters in large spatial databases. The central
component is the concept of core samples, which are samples
that are in areas of high density. A cluster is therefore a set
of core samples, each close to each other (measured by some
distance measure) and a set of non-core samples that are close
to a core sample (but are not themselves core samples).

The following are several crucial definitions in the density-
based clustering model:

o distance. The definition of distance in our method is
weighted-Minkowski. The distance D(X,Y) between two
points X = (x1,x2,x3,%x4) and ¥ = (y1,y2,y3,y4) is defined
as:

D(X7Y)=(Z4‘,W>< i = il ") /P (1)
i=1

w represents the weights, we use the familiar Euclidean
distance (p = 2), and the distance D(X,Y) also represents
inherent relationship or similarity between two points.

o weights. Weights represent the importance of features(or
axes). In our method, memory was considered to be
the most representative and important feature of task at-
tributes, so memory was given the largest weight. Weights
of cores, memory, disk and wall-time were set to be 0.1,
0.7, 0.1, 0.1 respectively.

e eps. The maximum distance between two samples for
them to be considered as in the same cluster(or neigh-
borhood). If the eps is too small, we will get too many
clusters; on the other hand, if the eps is too large, we will
get too few clusters due to points would be considered
in the same cluster when their distance is smaller than
eps. The value of eps should be modified in different
workflows to achieve better performance.

o minimal samples. The minimal number of sample in a
cluster. If minimal samples was set to be more than 1,
which means each cluster has two points at least, the
point isolated with any other points would be seen as
noise. To be noted, each job should have its cluster label
to calculate its ideal resource requisition. Thus, minimal
samples is set to be 1 in our method.

As seen in Fig 2 (b), rvery point represents a task, and
different colors represent different clusters. As also shown in
Fig. 2, all tasks have their own cluster labels, which means
they have a specified number of resources according to their
labels. In each cluster, the maximal resources consumed by
tasks, in terms the quantity of cores, memory, and disk, are
selected to be the ideal value of resources limitation. Then we
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Fig. 3. Match Performance for SHRIMP. SHRIMP is a bioinformatics

workflow and the workflow graph clearly shows the general structure. The
corresponding cluster labels: (cluster 1, cluster 2, cluster 3), show the high
matching performance of our clustering model and the real structure.

are able to do an optimal resource allocation of all jobs in the
scientific workflow.

D. Parameters Selection Strategy

We have discussed the algorithm and structure of the
density-based clustering model, also the value of weights,
minimal samples, and distance have been discussed above.
However, the value of eps is required to be modified in
individual workflow in order to performance better.

How do we select the value of parameters in clustering
model, and how do we evaluate the performance of clustering
model with different value? We present two ways to evaluate
the result of clustering: (1) compare with workflow structure,
the higher the similarity, the better we think of the perfor-
mance, (2) use Calinski-Harabaz index [12], the higher the
score, the better we think of the performance.



1) Compare with Workflow Structure: Comparing the com-
mand line with the clustering result is a relatively simple
method and this method is suitable for workflows with simple
structure, such as SHRIMP [13]. In this method, the structure
of workflow or the command line is used to be the ground
truth of clustering results. If the clustering result is similar
with the workflow structure, we think the clustering model
have a good performance. When the value of eps makes the
clusters match best with the workflow structure, this value
will be selected as the optimal one. As shown in Fig. 3 for
the SHRIMP workflow, of a best match between clustering
result and the visualization of workflow structure. We present
the figure in two axes, memory and disk, due to the value of
cores consumption of all tasks in this workflow are 1.

As shown in Fig. 3, this workflow has three layers, and
the clustering model also found three clusters. Meanwhile,
corresponding clusters between Fig. 2(a) and (b) include the
same tasks. We conclude the clusters obtained by clustering
model match perfectly with the workflow structure, and the
value of eps in this model is the optimal number.

We also select parameter value by comparing the work-
flow structure and clustering results in Lifemapper and BWA
worflows. When the structure is simple, we could have an
ideal clusters using this method. However, sometimes scientific
workflow might be complex and hard to do the comparison.
Then we need to use an index to evaluate the performance of
clustering model.

2) Index evaluation: When the workflow structure is too
complex or users do not have detailed information about the
tasks in the workflow, the Calinski Harabaz index [12] can be
used to evaluate the model, where a higher Calinski Harabaz
score (C-H score) relates to a model with better defined
clusters. The definition of C-H score is: for k clusters, the C-H
score s is given as the ratio of the between-clusters dispersion
mean and the within-cluster dispersion:

k) = Tr(B) N—k

TTrWy) k-1 @
where Tr(A) represents the matrix trace of matrix A, By is
the between group dispersion matrix to measure the dispersion
degree between different clusters, and Wy is the within-cluster
dispersion matrix to measure the similarity of points within the
same cluster, and they are defined by:

k
Wik = Z Z (x_cq)(x_cq)T (3)

g=1xeCy
By :an(cq—c)(cq—c)T 4)
q

with N being the number of points in our data, C, being the
set of points in cluster g, ¢, being the center of cluster g, ¢
be the center of E, n, be the number of points in cluster g.
As shown in Fig. 4, BWA-GATK has a relatively complex
structure with many layers, which means it is unrealistic for
users compare the clustering result with workflow structure.
Thus, we use C-H score to select an ideal value of eps. In

Fig. 4. Structure of BWA-GATK-workflow. BWA-GATK-workflow is a
bioinformatics workflow that performs genotyping of sequences related to
the oak tree.
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Fig. 5. eps and C-H Score. We measure the C-H score of various eps from
60 to 220 with each 20 intervals. Each red scatter point has its related C-H
score.

this method, which the value provides the highest C-H score
is the optimal number. Using BWA-GATK as an example, we
present the relationship between different value of eps and its
C-H score.

As shown in Fig. 5, C-H score fluctuates with different value
of eps. When the eps is changed from 60 to 220, the C-H score
first increases, then decreases, and the highest score is 1180
when eps is 160. So in this workflow, we select 160 as the
optimal value of eps. When eps is selected, the number of
clusters, k, will be determined in the clustering model. In this
workflow, the number of clusters is twelve, and the clustering
result is shown in Fig. 2.

In BWA-GATK workflow, we use C-H score to find the
optimal parameter value for the clustering model. However,
it should be noted that the optimal value we find is a local
optimal number rather than a global optimal number since it
is impossible for users to test all values from zero to infinity.
Thus, we give a relatively sufficient number of values for



parameters, and then we use C-H index for finding the optimal
one.

IV. EVALUATION

To evaluate our method, we apply it to data collected
from production workflows runs on a local machine and the
HTCondor batch system. For each job in a workflow, we use
the resource monitor tool to produce a summary file about how
many resources ware consumed by each job. Using this data,
we use the density-based clustering model for labeling each
task with its cluster number, calculating the maximal resources
consumed by tasks in each cluster. Thus, we obtain an ideal
resource allocation strategy. Using Makeflow, we convey the
resources information about what resources each job needs
by resetting the variables cores, memory, and disk ahead of
each job. Then we re-run the workflow with this new resource
allocation strategy, and capture the cores, memory, disk, and
wall-time consumed by each job. Finally, we compare two
resource consumption reports described above and analyze
cores, memory, disk, and time savings of each workflow.
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Fig. 6. Clustering result for Lifemapper. In (a), we use a simplified model to
shown the workflow structure clearly. In (b), We use four features to cluster
data. Considering four dimensional distribution is hard to express in a graph,
we present the clustering result in two dimension: memory and wall-time.

We evaluate these results on four different workflows:
Lifemapper [14] consists of three steps: pre-processing,
maxent, and projection. This workflow produce the most

interesting results due to the real data it used, which leads
to the various resource consumption reports when we run the
same Lifemapper- workflow multiple times. Thus, we run it
for three times, and use all reports captured in these three
times to get a more adaptive resource allocation strategy.

SHRIMP consists of 763 jobs, divided in three steps: split,
analysis, and join. The structure of this workflow is relatively
simple, which has discribed in Section 3.4.

BWA [15] is a bioinformatics workflow build on the Bur-
rows Wheeler Alignment (BWA) tool, and it consists of 102
jobs, divided three steps: split, analysis, and join. Thus, the
structure of this workflow is relatively simple, we analyze this
workflow and do clustering in the same way as SHRIMP-
workflow described in Section 3.4.

BWA-GATK is a bioinformatics workflow that parallelize
the Burroughs-Wheeler Alignment and Genome Analysis
Toolkit (BWA-GATK) tool. The structure of this workflow is
the most complex one in these five workflows.

A. Improvement Index

We analyze the reduction of resource consumption in four
stages: time, cores, memory, and disk savings. Their definitions
are described in the following:

o time savings represents the decrease of running time. ¢ is
the number of cores consumed for running the workflow,
then cores savings f; are define as::

ty = (tp —ta)/tp X 100% (5)
tp is time consumed before clustering, #, is time consumed
after clustering.

e cores savings represents the decrease of cores consump-
tion. ¢ is the number of cores consumed for running the
workflow, then cores savings ¢, are define as:

cs = (cp—cq)/cp x 100% (6)
cp is the number of cores consumed before clustering, ¢,
is the number of cores consumed after clustering.

« memory savings represents the decrease of memory con-
sumption. m is the number memory (GB.min) consumed
for running the workflow, we find the m to be:

m= Z t; X m;

i=1.23...

i is the number of task, so the memory savings m are
define as:

mg = (mg —mp)/cy x 100% (7)

my, is memory consumed before clustering, m;, is memory
consumed after clustering.

o disk saving represents the decrease of disk consumption.
d is the number disk (GB.min) consumed for running the
workflow, we find the s to be:

Z i X m;

i=1,23...

d =



resource allocation Resource Consumption
Lifemapper | Job cores memory (GB) disk (GB) | time (s) cores memory (GB.min) disk (GB.min)
First run | 153 8 8000 50000 1394 1224 539 3370
Second run | 153 4 8000 50000 542 612 406 2540
Third run | 153 2 8000 50000 246 306 293 1833
cluster 1: Preprocessing
1 100 3000
. cluster 2: Maxent
After clustering | 153 ) 5000 3000 212 255 149 112
cluster 3: Projection
2 1500 3000

Fig. 7. Resource consumption for Lifemapper-workflow. We run the same Lifemapper three times with different resource allocation. Considering users often
have little knowledge about detailed job, we use a fixed allocation strategy before clustering and record the resource consumption as shown in table. Comparing
with our clustering resource allocation strategy, the resource consumption is noticeable as shown in the table.

Lifemapper . Resources Savings '
time cores  memory disk
1% run | 84.79% 79.17% 72.36% 96.68%
2" run | 60.89% 58.33% 63.30% 95.59%
3 run | 13.82% 16.67% 49.15% 93.89%

Fig. 8. Resources savings for Lifemapper-workflow. The results of time,
cores, memory, and disk savings are calculated as Function (5), (6), (7), and
(8), respectively. For instance, the memory consumption of the first run is
539 GB.min, and the memory consumption of our approach is 149 GB.min.
Thus, with function (7), we are able to measure memory savings between our
approach and the first run is 72.36%.

i is the number of task, so the disk savings m; are defined
as:

ds = (da —db)/Cl x 100% (8)
d, is disk consumed before clustering, d; is disk con-
sumed after clustering.

B. Offline Analysis

We applied the density-based clustering model to all four
workflows and compare the resource consumptions before
clustering and after clustering. The results are used to demon-
strate the efficiency improvements with our method. We show
the results in Fig.s 6, 7, 8 for Lifemapper, and show the
results in Fig.9, 10, 11 for BWA, SHRIMP, and GWA-GATK,
respectively.

Lifemapper provides an interesting result. If users run the
same workflow multiple times, they may get different output
due to the special real data this workflow used. As shown in
Fig. 6 (a), it consists of three steps, and each step contains 51
jobs. We ran this workflow three times, and we found that tasks
in the second step Maxent consume various resources between
each run. For example, task 68 consumes 2166 GB memory in
the first run, but it consumes 1357 GB memory in the second
run. Thus we use reports from all three times and use the
maximal reports of each task. Then, we do the clustering for
finding ideal clusters. We use the strategy described in Section
3.4.1 to find the ideal parameters’ value and the clustering
result is shown in Fig. 6 (b).

As shown in Fig. 6 (b), we obtain three clusters and each
cluster contains the same task with their corresponding steps.
We use this clustering model to calculate the max number of
resources of each cluster in order to gain the ideal resource
allocation. In practical workflow, we add a little more to the
number we get to make sure all task succeed.

Then we re-run Lifemapper and the results of resources
savings are shown in Fig. 8. We ran Lifemapper locally, so
time savings are the reduction of running time for the whole
workflow. We can note that the time savings corresponds
closely to the cores savings. The reason is that a task would not
run faster with more cores, but requesting too many cores will
increase the waiting time of the following tasks. So when we
use new resource allocation, in which we set cores requisition
to 1 rather than 2, we decrease the waiting time for tasks. Thus,
the time and cores savings are similar and all range from about
80% to about 15%. The results also show obvious memory and
disk savings, the least memory savings are 49.15% and the
least disk savings are 93.89%. We observe a very noticeable
resources savings with our method.

We also applied our method to SHRIMP, BWA, and BWA-
GATK. We show the visualization of their structure, the
clustering results, and the resources savings results in Fig. 9,
10, 11, respectively. In all these four workflow experiments,
we compare the resource consumption with a fixed resource
management, which is often adapted by users, and the ideal
resource allocation strategy provided by our approach.

Comparing Fig. 9 and Fig. 10, we are able to find that clus-
tering result of our density-based clustering model is related to
the layers, or steps, in the workflow structure, which indicates
that our clustering model can find inherent relationship within
hundreds or thousands of jobs. The clustering approach is not
only able to calculate ideal resource allocation strategies, but
also help users better understand their workflow.

We note that SHRIMP was run on top of the HTCondor
batch system, and the number of workers we used fluctuated
during the running. Often times, a workflow will run faster
with more workers. Thus, time savings are not discussed in
these three workflows.

In Fig. 12, the table highlights the advantages of using
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Fig. 9. Visilization for scientific workflows
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Fig. 10. Clustering results for scientific workflows. We use four features to cluster data in SHRIMP, BWA, BWA-GATK workflows. To show the clustering
results clearly, we present the clustering results in two dimension: memory, and disk. Comparing corresponding workflows in Fig. 9 and Fig. 10, we are able
to visualize the relation of real workflow structure and clustering result.

. resource allocation resource consumption
workflow category job . .
cluster cores memory disk cores memory disk
(GB) (GB) (GB.min) (GB.min)
w/o clustering 763 1 2 8000 50000 1526 18703 116892
1 1 100 1300
SHRIMP with clustering 763 2 1 1000 5000 763 1845 9238
3 1 100 10000
w/o clustering 102 1 2 2048 2048 204 8.78 8.78
1 1 10 800
BWA | yith clustering 102 2 I 200 1000 102 0.40 4.23
3 1 10 1400
w/o clustering 530 1 8 8000 10000 4240 4287 5359
1 2 100 300
2 1 100 300
3 5 1500 100
4 6 1500 100
5 4 1500 100
BWA-GATK . . 6 3 1000 100
with clustering 530 7 7 1500 100 1734 215 278
8 7 1000 100
9 3 1200 100
10 1 100 3500
11 1 500 3500
12 1 300 2000

Fig. 11. Clustering results for scientific workflows. We run SHRIMP, BWA, and BWA-GATK for evaluation. Considering users tend to set a relatively large
resource requisition to run each job succeed, we use a relatively large resource requisition before clustering.



resources saved

workflow .
cores  memory disk
SHRIMP 50.00% 90.14% 92.10%
BWA 50.00% 95.44% 51.82%
BWA-GATK 59.10% 9498% 94.81%

Fig. 12. Clustering results for scientific workflows. The results of time, cores,
memory, and disk savings are calculated as Function (5), (6), (7), and (8),
respectively. For instance, the memory consumption of the SHRIMP is 18703
GB.min, and the memory consumption of our approach is 1845 GB.min. Thus,
with function (7), we are able to measure the memory savings between our
approach and the first run is 90.14%.

memory allocations and disk allocations with our clustering
model. The cores savings are 50.00%, the memory savings
are 90.14%, and the disk savings are 92.10%. These results
demonstrate that we are able to have a large percentage of
memory and disk saved when we have clustering informa-
tion rather than setting a relatively high resource requisition
to ensure no task failed. We are capable running all tasks
successfully and have a noticeable memory and disk savings
with our method.

Resources savings results for BWA is also noticeable. We
ran the BWA on the HTCondor batch system. We show the
results of cores, memory, and disk savings. The cores savings
are 50.00%, the memory savings are 95.44% (noticeable high),
and the disk savings are 51.82%.

We composed small, medium, and large instances of BWA.
We ran a medium one, and the clustering result of this medium
size can predict the resource request for the large one. If users
want to run a large workflow, they could first run a small
batch of the workflows, and get new resource allocation with
our clustering model. Then, users can run the large size with
ideal resource allocation.

We do the same analysis to BWA-GATK. In Fig. 12, the
table shows the results for BWA-GATK. We can highlight the
following numbers: cores savings are 59.10%, and memory,
and disk savings are 94.98%, and 94.81%, respectively. These
results demonstrate that our method can produce large im-
provements without detailed information, even the workflow
structure is complex.

Often times the workflows or scientific workflows are com-
plex and users do not have detailed information about how
many resources should be given to each job. Thus, comparing
with fixed resource allocation strategies, our method provides
an efficient way for determining resource requisition for jobs
in complex workflows, which is useful for scientists.

V. CONCLUSIONS

This paper introduced a density-based clustering model
for efficient use of computational resources for scientific
workflows. We use reports collected by a resource monitor
tool as a data source, use a clustering model for discovering
inherent clusters within hundreds of or thousands of jobs, and
then provide ideal resource allocation for future runs.

Our method is able to reduce resource consumption when
users need to run the same workflow multiple times or run a

small workflow to obtain optimal resources assignments before
running the whole scientific workflow. Using our method,
users can both run scientific workflows in a more efficient way,
and discover some interesting inherent relationship between
jobs.
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