
The Consequences of Decentralized Security
in a Cooperative Storage System

Douglas Thain, Christopher Moretti, Paul Madrid, Philip Snowberger, and Jeffrey Hemmes
Department of Computer Science and Engineering

University of Notre Dame

Abstract

Traditional storage systems have considered security as
a problem to be solved at the perimeter: once a user is au-
thenticated, each device internal to the system trusts the de-
cision made elsewhere. However, as storage systems be-
come ever more distributed, shared, and dynamic, it be-
comes necessary to enforce security at the boundaries of
each storage device, rather than around the system as a
whole. This form of decentralized security presents sev-
eral new challenges in the design and implementation of
distributed storage systems. We explore challenges in dis-
tributed file systems, third party transfer, active storage, and
group management in the context of a 200-node cooperative
storage system deployed at the University of Notre Dame.
These explorations result in three recommendations for fu-
ture system designs.

Key words: Decentralized security, distributed file sys-
tems, third party transfer, active storage, access control.

1 Introduction

Traditional storage systems place security concerns high
in the complex software stack that separates end users from
physical storage. This design decision comes from archi-
tectures carried over from conventional filesystem design.
For example, a traditional operating system kernel identi-
fies the calling user at the system call interface, and then
asserts that identity without question at every layer below,
including the virtual filesystem switch, the filesystem code,
and the device driver. In a similar fashion, a modern net-
work storage appliance identifies the calling user as requests
come in from the network and then asserts that identity into
an internal RAID or SAN. Even large distributed storage
systems often assume trust between all of the internal nodes
of a system. Essentially, the security concerns are solved in
a centralized manner, even if the back end storage may be
parallel or distributed.

client

security security security

clientclient

untrusted network

(A) Centralized Security (B) Decentralized Security

security layer

client client client

trusted network

untrusted network

disk disk disk disk disk disk

abstraction layer

abstr abstr abstr

Figure 1. Centralized vs. Decentralized
A decentralized security system moves the primary security
mechanism closer to each storage device. Although this
places more power in the hands of each device owner, it
introduces new challenges for the clients of the system.

However, as storage devices become more and more
distributed, shared, and dynamic, it becomes necessary to
move the security mechanisms deeper and deeper into the
software stack. When users may harness multiple storage
devices, each perhaps owned by different people, each de-
vice must be responsible for enforcing the requirements of
its owner. When many users collaborate in a large dis-
tributed or grid computing system, each device must be re-
sponsible for enforcing the requirements of the hosting in-
stitution. When multiple applications with varying privilege
levels operate within a single domain, each device must in-
dependently enforce policy appropriate to each application.
In each of these situations, both the devices and the security
mechanisms are distributed. Figure 1 compares centralized
and decentralized security mechanisms.

In this paper, we explore how the necessities of dis-
tributed security mechanisms affect the design and imple-
mentation of traditional distributed system abstractions. We

1

explore these issues in the context of a 200-node cooper-
ative storage system deployed across several clusters and
workstations at the University of Notre Dame. Each node
consists of a user-level file server that exports space to re-
mote users, subject to the policy constraints of its owner.
Each server is independently responsible for enforcing a
local security policy with local mechanisms. On this sub-
strate, we may build up structures such as filesystems and
databases, but their design and operation is greatly affected
by decentralized security mechanisms and policies.

We explore three problems in detail. First, we consider
how decentralized security affects the semantics of a dis-
tributed file system spread across multiple nodes. A dif-
ficulty arises from that fact that one concept (filesystem
permission) is divided into two mechanisms (directory per-
mission and storage permission.) Curiously, this difficulty
offers an interesting new opportunity in file system man-
agement. Second, we consider how decentralized security
affects the problem of third-party transfer, a necessary tech-
nique for efficient use of large storage systems. We survey
several possible techniques and describe one solution based
on temporary access controls. Third, we consider how de-
centralized security affects the concept of active storage.
Essentially, the notion of process ownership must be di-
vorced from the local user database, allowing a system to
run programs associated with arbitrary identities. Finally,
we consider how to implement distributed user groups.

Our contribution is a discussion of both the challenges
and opportunities that arise by pushing security mecha-
nisms deeper into the software storage stack. Relying on
existing techniques for authentication and encryption, we
consider how raising new barriers affects the design and
implementation of distributed storage. Based on this expe-
rience, we offer three recommendations for future systems.

2 Overview of Cooperative Storage

A brief overview of a cooperative storage system is
needed before proceeding to the main matter on decentral-
ized security. The interested reader may consult an ear-
lier publication for greater detail on the semantics, perfor-
mance, and applications of cooperative storage [25]. Sec-
tions 2 and 4.2 of this paper recap material from the previ-
ous paper. In addition, section 5.3 applies material from an
earlier work on sandboxing [24]. More detail on the adapter
component is available in reference [26].

A cooperative storage system is a large collection of stor-
age devices owned by multiple users, bound into a loosely
coupled distributed system. There are many reasons why
cooperating users may bind together multiple devices: they
may backup data to mitigate the risk of failure; they may
construct large repositories that cannot fit on any single
disk; they may improve performance by spreading data

adapter adapter

client client

adapter

client

adapter

client

security security security

disk disk disk

security security security

disk disk disk

distributed shared filesystem

distributed shared database

central filesystem

untrusted networkuntrusted network untrusted network

kerberos realm nd.edu

gsi with ca=nsf gsi with ca=doe

Figure 2. A Cooperative Storage System.
A cooperative storage system consists of multiple indepen-
dent storage devices, each with a distinct security policy
and mechanism. Users create a variety of abstractions on
the devices, and connect them to applications with adapters.

across multiple devices; or they may wish to share data and
storage space with external collaborators. We assume that
users have some external reason to cooperate and so we do
not explore issues of fairness or compensation. However,
we do assume that resource owners wish to control quite ex-
plicitly whom they cooperate with. One user may be willing
to share public data with the world at large, while another
might only share scratch space with one trusted colleague.
Others might share resources with an organization such as
a university department or a commercial operation.

Figure 2 shows the structure of a cooperative storage sys-
tem. At the lowest level, it is composed of an array of
file servers that export a Unix-like I/O interface. Each file
server may conceivably have a different owner with distinct
authentication and authorization policies. In practice, we
expect that groups of servers will have a common owner
and policy. For example, in our prototype system, there are
four distinct owners, while the servers are grouped into six
research clusters and five workstations clusters, each with
roughly uniform policies limiting what users to admit. As
the figure suggests, various groupings of the machines may
accept different types of user credentials.

Building up from the basic filesystem interface, users
may construct a variety of abstractions using any subset of
the available file servers. The simplest abstraction is the
central file system (CFS), by which multiple clients may
share a single filesystem remotely. A distributed shared
filesystem (DSFS) abstraction spreads file data across mul-
tiple servers while exporting a single filesystem interface.
A distributed shared database (DSDB) uses a database to
index large data files spread across multiple servers. In

2

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

Sep
2004

Nov
2004

Jan
2005

Mar
2005

May
2005

Jul
2005

Sep
2005

Nov
2005

 0
 20
 40
 60
 80
 100
 120
 140
 160
 180
 200

S
to

ra
ge

 S
pa

ce
 (

T
B

)

of

 S
er

ve
rs

Storage Space
of Servers

Figure 3. Growth of UND Storage Pool
The size of a storage system over one year, measured at
weekly intervals. Although the system grows in several de-
liberate bursts, the most notable feature is the fluctuation in
running servers available at any given time.

each case, an adapter is used to connect abstractions to ap-
plications. The current adapter interposes on system calls
through the ptrace interface, allowing unmodified appli-
cations to use the abstractions layered on the servers.

By separating storage resources from the abstractions
that use them, users gain a great deal of freedom. They may
create, destroy, and reconfigure abstractions without any in-
teraction with a system administrator or resource owner. As
long as they work within the policies established by each
resource owner, users may work as they see fit.

The challenges discussed in this paper have been ex-
plored within the context of one cooperative storage system
deployed at the University of Notre Dame and currently em-
ployed by several user communities in high energy physics
and molecular dynamics. Figure 3 shows the growth of this
system over the course of the last year, measured at weekly
intervals. The system was initially deployed on two re-
search clusters in fall 2004, expanded to research and desk-
top machines on a department scale in early 2005, and then
expanded to classroom workstations in fall 2005. However,
the more notable feature is a high fluctuation in available
servers at each measurement. In a system of any scale, this
behavior is to be expected: servers come and go accord-
ing to the failures, reboots, and policies of each machine
owner. This behavior must be understood and accommo-
dated at higher levels of software, as we will discuss below.

3 Challenges of Decentralization

A cooperative storage system has decentralized mecha-
nisms and policies. Each device is responsible for perform-
ing both authentication and authorization upon the clients
that connect to it. This grants the owner of each file server
fine-grained control over how it is used. It also introduces

new challenges in the design and implementation of dis-
tributed systems. Some of these challenges are:

Unbounded Set of Users. In a decentralized system,
there is no static, global list of users. Certificate authorities
may mint new identities daily or hourly. Users may wish to
express access controls that refer to identities that a given
system has not yet encountered. No two systems are likely
to know of the same subset of users. For these reasons,
we cannot construct a simple local user database or even
assign unique integer IDs to users. We must identify users
by strings that refer to external authorities. This prevents us
from making use of conventional file system technologies
such as NFS or CIFS, which rely heavily upon integers.

Multiple Identities per User. A given user may be
known by multiple distinct identities, depending upon the
ability of both the user and the system to carry out a given
authentication technique. A user may choose among multi-
ple valid identities, depending upon the task she wishes to
carry out. For the same reasons as above, we cannot estab-
lish a canonical list of identities for a single user.

New Decision Points. A complex operation in a coop-
erative storage system may involve several servers, each of
which may have a different obligation to perform authenti-
cation and authorization. What might be an unchecked ac-
tivity in traditional system (i.e. allocating a block on disk)
might now be limited by a new access control. Such an ac-
tion might succeed at one access control, but fail at the next.
Users must be aware of the multiple decision points when
deploying or debugging a system.

Unexpected Policy Coupling. When multiple servers
must participate in an activity, their policies may interact in
unexpected ways. As we will show in an example below,
a user that deploys a filesystem across multiple nodes may
accidentally discover that the file placement policy interacts
with the possible access controls that may be placed upon
those files. A higher-level system that wishes to retain its
own freedom of policy must vet the policies of the compo-
nents that may employ before attempting to use them.

To explore these challenges in detail, we must first de-
scribe the basic security mechanisms supported by the file
servers. Higher-level abstractions that use these basic mech-
anisms will encounter these challenges.

4 Basic Security Mechanisms

Each file server is responsible for enforcing a local secu-
rity policy by performing authentication on each incoming
client and then authorizing each operation that it attempts.
We may consider both phases of security independently.

3

4.1 Authentication

Each file server provides several authentication methods.
The simple hostname method allows a client to be identi-
fied as the domain name of the connecting host. The unix
method relies on a challenge and response within the lo-
cal filesystem: the server challenges the client to touch a
file in /tmp and then infers the client’s identity from the
response. (Of course, the unix method can only be used
to authenticate a user on the same machine, and is typically
only employed to identify the server’s owner.) Theglobus
method allows a client to authenticate via the Globus Grid
Security Infrastructure (GSI) [7]. A file server may hold ei-
ther user or host GSI credentials. The kerberos method
uses the Kerberos [22] private key authentication system.

Of course, GSI and Kerberos are each logically central-
ized systems. Each user of GSI has a certificate that must
be signed by a central authority. If a client and server do
not share a common authority, they cannot communicate.
Likewise, a Kerberos client and server must share the same
key server. However, the system is still decentralized in the
sense that there may be multiple disjoint roots of trust. Fig-
ure 2 shows four hosts using GSI, trusting the DOE certifi-
cate authority, two using GSI trusting NSF, and three using
Kerberos in the Notre Dame realm.

To negotiate an acceptable authentication method, the
client proposes a method, which the server may accept or
decline. If the server accepts, both sides attempt to authen-
ticate. If the server declines or the attempt fails, then the
client may propose another method. By default, client soft-
ware attempts all methods, but the user may override the
order if needed. Once authenticated, the agreed-upon iden-
tity is returned to the client for verification, and the client is
free to attempt file accesses. Each access is then controlled
by the authorization controls described below.

Many readers initially express some reservations about
two aspects of this mechanism. First, it may seem unusual
that the client controls the selection of the authentication
method. Shouldn’t the client present all of its methods, and
the server choose among them? (i.e. “I want to see a pass-
port, but failing that a driver’s license, and failing that, a
birth certificate.”) A counterexample demonstrates that this
is not enforceable. A devious client could reverse the or-
der by only claiming the ability to perform one method,
and then disconnect and re-connect if the method is de-
clined. Thus, we allow the client to control the negotiation
by choosing one method at a time, observing that it does not
force the server to accept a method it does not respect.

Second, it may seem restrictive that the user can only
employ one identity at a time. Many users employing GSI
have multiple credentials issued by multiple certificate au-
thorities. All users could be identified by hostname in ad-
dition to any other method. We argue that, sooner or later,

users must choose one credential with which to perform a
task. When creating a new object, it must be assigned an
owner for accounting purposes. With multiple simultane-
ous identities, users would be forced to choose one identity
to be the owner. When performing debugging or adminis-
tration, users would need additional controls to temporarily
drop identities they do not wish to use. Thus, we force the
user to make a choice once when authenticating and the re-
sult simplifies later steps. A user with multiple credentials
must re-connect in order to act with a different identity.

Once authenticated, the client is assigned a string iden-
tity that is used for all later authorization decisions. The
name is composed of the method name, followed by a name
decided by the authentication mechanism. For example, the
following are all valid names for one author of this paper,
each employing a different authentication mechanism:

unix:dthain
hostname:hedwig.cse.nd.edu
kerberos:dthain@nd.edu
globus:/O=NotreDame/CN=DouglasThain

Note that the many ways of identifying oneself can eas-
ily lead to confusion. A common problem in our deployed
system is the expiration of credentials. By default, GSI
and Kerberos credentials expire after several hours after
which the negotiation mechanism automatically falls back
to hostname. Often, users are puzzled because they are
able to login, yet are denied access to their files. Two mech-
anisms have been added to prevent confusion. First, the
server supports a whoami RPC that sends back the client
the server’s perception of its identity. This is displayed
prominently in client-side tools. Second, users can man-
ually choose to employ one and only one authentication
method, so that the expiration of credentials leads to failed
connections and a more explicit error. This problem arises
again in third-party transfer, which we explore below.

Note also that each user of a system is given a security
context that corresponds to the user-level adapter. Two si-
multaneous users on a given client may bear different cre-
dentials and will authenticate to servers on different TCP
connections. Security contexts are not mixed together on a
single connection, as in filesystems derived from NFS.

4.2 Authorization

Each file server stores ordinary directories and files as in
a Unix filesystem. However, instead of employing the usual
Unix mode bits for protection, each directory is protected
by an ACL resembling those used in AFS [11] and similar
systems. Each entry in the ACL lists a free-form text subject
and a list of access rights granted to that subject. A subject
may include wildcards if needed. For example, the follow-
ing ACL allows for all hosts in a domain to read, write, and

4

list, but also allow a given Kerberos user also modify the
ACL.

hostname:*.cse.nd.edu RWL
kerberos:dthain@nd.edu RWLA

Of course, it makes no sense for multiple users to share
the same directory with all of their files mixed together,
each readable and writable by the other. So, the file servers
support a reservation (V) right which allows an authenti-
cated user to create a new directory with fresh permissions.
Using the V right, a more sensible top-level ACL would be:

hostname:*.cse.nd.edu V(RWL)
kerberos:dthain@nd.edu V(RWLA)

This would allow the named users to perform only a
mkdir in the top level directory. The newly created di-
rectory would obtain the rights following the V for only the
named user. Reservation is similar to the concept of am-
plification [12]. For example, if hedwig.cse.nd.edu
were to perform mkdir at the top level, the newly created
directory would have permissions:

hostname:hedwig.cse.nd.edu RWL

Note that reservation allows the storage owner to con-
trol whether the accessing user can delegate access rights
to external users. This is a variation on mandatory access
control (MAC.) In the example above, users authenticating
via hostname may use the storage but not grant rights to
others. However, the kerberos user gains the A right via
reservation and would be able to grant access to others.

These combined techniques of negotiated authentication
and access control lists with reservation give each individ-
ual storage device a high degree of flexibility in security
mechanism and policy.

5 Consequences of Decentralization

Decentralization of security brings both new challenges
and opportunities. Some formerly simple interactions be-
tween components are made more complex, but new modes
of interaction between users become possible. We consider
how decentralization affects shared filesystems, third party
transfers, active storage, and distributed access control.

5.1 Distributed Shared Filesystems

Figure 4 shows the structure of a distributed shared
filesystem (DSFS), which allows users to bind multiple file
server together into one large filesystem. Much like the
Google file system [8], one file server is used to store the
directory tree, while the remaining file servers are used to

store the actual file data. On the directory server, directories
are stored as ordinary directories, while the files are stub
files that contain pointers to other file servers. The abstrac-
tion layer at the client side is responsible for interpreting the
stubs and transparently serving the requested data.

A DSFS has a more complex permissions model than a
traditional file system. In order to access a file, a client must
satisfy the access controls on both the directory server and
the relevant file server. Likewise, in response to a request to
change the access controls on a file, the DSFS must change
the access controls on both the directory server as well as
the corresponding file server. This is not a problem for the
user that creates and configures the filesystem, but it may be
a significant problem for others that gain access.

For example, consider a user that establishes a DSFS us-
ing a directory server that he owns and using file servers
located on workstations owned by his department. Suppose
that he can establish arbitrary access controls on his direc-
tory server, but the department workstations will only allow
access to department members, and do not grant the A right
to those that allocate space. He creates a large filesystem
spread across these devices. Now, he wishes to grant access
to a certain file to an external collaborator. He is able to
change the access controls on the directory server, but the
policy of the workstations prevents him from granting ac-
cess to the external user, so the change of permissions fails!

There are several ways to attack this problem. First, the
user might request a change in the access control policy of
the file servers. Failing that, he could relocate the desired
data to another server with a less restrictive sharing policy.
If that proves to be too expensive, he could deploy a proxy
server that authenticates the remote user and relays the op-
erations to the restricted file server. (Although this doesn’t
violate the letter of the file server policy, it likely violates
the spirit.) Of course, he user might have avoided this prob-
lem in the first place if he had considered whether the target
servers would be compatible with likely access controlled
policy. Thus, with decentralized security, data placement
policy must be guided by intended access control.

This in turn, requires examination of the relationships
along the sharing-owning continuum. A system that is opti-
mized for ease of sharing (both within-department and with
external parties) necessarily has weaker access restrictions.
This can result in a lesser “personal ownership” of the disk
space and the possibility for users to experience discontent
with sharing their space, in general, or with certain other
parties. This has to be balanced, however, against those
users’ gained ability in an easily-shared system to consume
many more resources than he has individually available.
Additionally, ease of sharing is necessary to implement a
DSFS that evenly distributes files across several disks.

Viewing both the distinction between directory and stor-
age access control and the interaction along the sharing-

5

security

disk

client

coord

adapter

file
access

security

disk

client

coord

adapter

file
access

disk

client

coord

adapter

security

operations
directory

Figure 4. Distributed Shared Filesystem
A user may employ several storage devices in order to build
a filesystem larger than can fit on a single device. A large
directory structure can be stored on one disk, while the files
themselves are scattered across others. Decentralized secu-
rity complicates access control mechanisms in this system.

owning continuum from another perspective can be used to
solve a perennial problem in file system design: organiza-
tions often wish to share a namespace while avoiding the
resource contention that typically comes with it. A common
example of this is a shared file server for home directories.
Users enjoy the convenience of being able to access their
home directory from any machine in an organization. How-
ever, the usual approach of putting all home directories on a
file server results in users competing for both storage space
and file server bandwidth. One aggressive user can prevent
others from performing work.

Decentralized security can be used to share a namespace
without sharing server resources for data transfers. A DSFS
can be established for an organization, giving each user
a home directory within the same filesystem namespace.
However, each user can be assigned a private file server —
perhaps their own workstation — on which only they are
allowed to consume space. The entire directory namespace
remains shared between users, but both space and load are
partitioned for each user. (Of course, load on the directory
server is still shared.) Individual users may even provision
new space without administrator help by bringing a new file
server online and storing new files there.

Not surprisingly, however, the policy for diverse users
and hosts that make up an organizational shared namespace
DSFS raises performance issues. For example, a problem
with giving each user his own file server in the context of
the larger namespace is file placement. An administrator
for the DSFS may logically conclude that some users will
use very little of their space, while others will needlessly
overload their allotted disk, so distributing data from heav-

 0

 5

 10

 15

 20

 0 5 10 15 20 25

P
la

ce
m

en
t T

im
e

(s
ec

on
ds

)

of servers (out of 26) with Placement Permissions

Memoized Placement
Non-Memoized Placement

Figure 5. Effectiveness of Memoization in File
Placement

A memoized round-robin placement algorithm performs
comparably with a non-memoized version of the same al-
gorithm for systems with high node-availability, and out-
performs the non-memoized version by larger margins as
node-availability decreases.

ily burdened disks is a good idea for performance. This is as
simple as changing some of the parameters of the DSFS file
placement algorithms, yet without a wholesale change in
policy to allow every user access on every disk, this policy
of attempted distribution can have disastrous performance
implications in such a system. If there are a large number
of hosts in the namespace, but many users (those without
the special permission to spread their data out for the men-
tioned reasons) have access to only their own disks, apply-
ing an even-distribution round-robin placement algorithm to
these users’ systems will result in unsuccessfully attempting
to create/open-for-writing on every machine on the system
before rotating back to its one available host.

An effective solution to avoiding this worst-case scenario
is an implementation that memoizes on accessible disks.
Specifically, the placement algorithm “remembers” whether
it had permission on a host before. In this DSFS situation it
is unlikely that a user will suddenly gain access on another
host to which he previously was denied, memoizing the list
of hosts unavailable to him will save fruitless attempts to
place a file where he has insufficient permissions. This is
a key and subtle characteristic, without which the solution
could not only be ineffective, but actually detrimental. If
hosts that are currently denying access to a user are likely
to grant the user access in the future, performance could be
hurt, and impartial distribution among all the available disks
prevented, by permanently eliminating temporarily unavail-
able hosts. Additionally, for the case where all disks are
available, memoization of available hosts is unnecessary.

Figure 5 is a performance comparison between a memo-
ized round-robin placement algorithm and a non-memoized

6

version of the same round-robin algorithm. The data were
collected on a DSFS containing 26 identical storage servers,
each located approximately the same distance from the di-
rectory server. The storage servers were Pentium 4 3.2 GHz
PCs running GNU/Linux. The times shown are the mean
times to place 260 1KB files into the DSFS. The results in-
dicate that memoization can give significant performance
benefits; in our tests, memoizing accessible disks cut the av-
erage time to place a file on the pathological case by more
than half. On the other extreme, where all but one of the
disks are accessible, the memoized algorithm achieved per-
formance measures similar to the non-memoized algorithm.

5.2 Third Party Transfer

Many storage systems rely heavily on third-party trans-
fer: the transfer of data from a source to a target under the
control of client in a third location. Third-party transfer
may not be strictly required — a system can accomplish
a third-party transfer by way of two ordinary transfers —
but it may result in a dramatic performance improvement
by avoiding the transfer to the client. As an example appli-
cation, a filesystem may rely on third-party transfer in order
to replicate files for efficient backup. By using third-party
transfer instead of ordinary transfers, it can manage several
simultaneous replications at once while taking advantage of
the parallelism inherent in switched networks.

Of course, third-party transfer is hardly a new con-
cept. Third-party transfer has been present in FTP [17]
for decades. The difficulty arises when third-party transfers
must be authenticated. FTP provides no authentication for
this mechanism, so it is disabled in most servers. In systems
with centralized security, this difficulty is not a problem be-
cause the entire transfer is authenticated externally and then
carried out between two mutually trusting devices.

The real question is how to perform third-party transfer
in a system with decentralized security. The fundamental
problem is that the target must have some way of knowing
that the source is acting on behalf of the client. There are
three solutions to this problem that we are aware of, each
with some benefits and drawbacks.

One solution is delegation of credentials. This solution
is employed by GSI-enabled FTP servers [1]. In this model,
the client transmits an attenuated proxy certificate to the
source server, which then uses it to authenticate to the tar-
get server. The target server then perceives the source to
be equivalent to the client, and permits the transfer. This
solution is powerful, but it requires all parties to share a
common certificate authority and requires the client to trust
the source not to steal the proxy and use it to impersonate
the client elsewhere. Proxy certificates are typically given
short lifetimes to limit potential damage.

Another solution is to use capabilities. An example

of the capability approach is demonstrated by the Internet
Backplane Protocol [16]. In order to perform a third party
transfer, the client obtains a write capability from the target
server and passes it to the source when requesting a trans-
fer. The source presents the write capability to the target
and is permitted to make the transfer. Capabilities are cer-
tainly an elegant solution to this problem but have long been
a source of some controversy. Most relevant to this discus-
sion are the facts that the secure transmission of capabili-
ties relies on some existing key-based infrastructure such as
GSI or Kerberos and that extensive use of capabilities re-
quires careful storage management by the client. It should
be noted that capabilities have attracted more attention in
recent years and future storage systems may offer extensive
support for capabilities.

A third solution is to use temporary access controls,
shown in Figure 6. The basic file server ACL mechanism
is used to give the source permission to write a file in the
proper place on the target, which is then reverted after the
transfer is completed. The wrinkle is that it is not always
obvious to the client precisely how the source will authen-
ticate to the target. If using hostname authentication, for
instance, the use of domain name aliases or multiple net-
work interfaces might yield an unexpected name which may
not map to the permissions that the client will set to facili-
tate the transfer. If the target holds a GSI or Kerberos host
certificate, it may be able to identify itself with its own cre-
dentials instead of that of the client.

In order to avoid such confusion, the client asks the
source to attempt to authenticate to the target in order to
determine the expected name. The source then issues a
whoami command to the target to find out the name that the
client must use and then feeds this data back to the client.
This whole sequence is called a remote whoami.

Now that the client knows exactly how the source will
authenticate to the target, it can initiate the third-party trans-
fer using temporary access controls. Third-party transfer
under this scheme works in this fashion:

1. The client requests a rwhoami of the source file
server, asking it to whoami against the target server.

2. The source file server authenticates to the target server
and performs a whoami to determine its identity. This
name is returned to the client.

3. The client adjusts the access control on the target in
order to allow the source to write the necessary file.

4. The client instructs the source to thirdput a file to
the target server.

5. The source transmits the file to the target.

6. The client reverse the access controls.

7

disk
source target

disk

client

security security

1.
rw

ho
am

i

2. whoami

5. putfile

3. setacl4.
thi

rd
pu

t 6. setacl

Figure 6. Third Party Transfer

Third-party transfer with decentralized security requires
several steps. 1. The client asks the source to test its iden-
tity with the target. 2. The source tests its identity. 3. The
client changes the ACL on the target to allow the source to
write. 4. The client instructs the target to send the file. 5.
The source sends the file to the target. 6. The client reverts
the ACL changes on the target.

Like the other two methods, temporary access controls
are not perfect. If a rogue process on the source machine
can employ the same credentials as the file server (i.e.
hostname authentication), then the target file could be
attacked. However, damage would be limited to only that
file, and only during an interval controlled by the client. In
contrast, stealing delegated credentials would allow imper-
sonation of a user, while stealing a write capability would
allow access to the file until the capability was revoked. For
clients wary of attacks, the file server provides a remote
checksum facility to check for unauthorized change.

Fundamentally, any method for authenticating third
party transfer involves some level of risk that must be
weighed on a per-application basis. For some applications,
the gain in performance and scalability may be worth the
risk. For others, it may be simpler and more secure to sim-
ple perform two direct transfers.

Figure 7 shows a performance evaluation of third-party
transfer using temporary access controls. We transfered
variable-length files across 1 Gb/s Ethernet using third-
party transfer and the traditional transfer method (get the
file, put the file) on three personal computers using 2.8 GHz
Pentium 4 processors and running RedHat Enterprise Linux
3. For very small files, the overhead incurred by executing
the third-party transfer is greater than the actual file being
transfered. For larger files, third-party transfer catches up.
Around 6 MB sized files, third-party transfer becomes faster
than the traditional method because the overhead incurred
by setting up the transfer is smaller than the gain received
from avoiding the middle man.

80

70

60

50

40

30

20

10

1 GB32 MB1 MB32 KB

T
ra

ns
fe

r
ra

te
 (

M
B

/s
ec

)

File size

third-party transfer
two direct transfer

Figure 7. Third-party Transfer Performance

For small files, third party transfer is slightly slower than
two direct transfers, due to the overhead of authentication.
For larger files, third party transfer achieves twice the band-
width by avoiding an extra network and disk copy.

5.3 Active Storage

The concept of active storage proposes that storage de-
vices should be equipped with a facility for executing pro-
grams directly on the storage device [18, 13]. By doing
so, one may avoid large amounts of data transfer over the
connection between the main CPU and the disk, whether it
be an I/O bus or a long-haul network. Active storage has
great potential for parallelizing data-intensive applications,
and has been employed to great benefit in databases [18, 19]
and filesystems [14, 6, 2].

The cost of performing even very complicated authen-
tication is minimal compared to the potential time savings
of executing code remotely rather than pulling the data to
the local host and executing locally. The dichotomy be-
tween the two approaches becomes even clearer when data
is distributed across multiple hosts. In this context, it makes
sense to integrate active storage with the DSFS abstraction.

However, a suitable security model for active storage is
not yet settled, primarily because it is imagined that active
storage programs will execute in devices far below the level
of the operating system, where the notion of process iden-
tity is very weak. Typically, active storage programs are
required to run in a sandbox of some kind, either given only
a few capabilities to access streamed data [18], or by re-
stricting programs to trusted codes vetted by the server [2].

We propose that active storage can be achieved for arbi-
trary applications if the mechanism exists to associate exter-
nal identities with running processes and files. This allows
an active storage server to safely execute a process using
only string compare to perform authorization, assuming that
a higher level of software has already performed authentica-
tion. An ideal implementation of this facility would require
modifying the operating system, but it can be approximated

8

sandbox

calls
system
trapped

appl

/O=ND/CN=Joe

exec appl as:
/O=ND/CN=Joe

security layer

ACL:
/O=ND/CN=Joe RWL

authorization

access file

process identity:

file

Figure 8. Active Storage via Sandboxing

Active storage is simplified if external identities can be asso-
ciated with both processes and files. In this model, a sand-
box is used to attach an X.509 identity to a process, which
then may access files where permitted by ACLs.

through the use of system-call sandboxing technologies.

To demonstrate this concept, we have added an active
storage facility to the cooperative storage system. Upon re-
quest by a client, a file server can execute an arbitrary ap-
plication that is already stored on it as a ordinary file. The
application is run under the control of a sandbox that traps
and interprets its system calls. The application is assumed
to be owned by an identity selected by the authentication
layer, such as globus:/O=NotreDame/CN=Joe, thus
we call this technique identity boxing [24]. Of course, this
identity does not exist in the user database, so there is no
equivalent integer user ID. Upon each file access by the ap-
plication, the sandbox examines ACLs in the file system —
the same ACLs enforced by the file server — and deter-
mines whether the application may have access. In this way,
the execution system can safely run arbitrary code while
employing identities established by external mechanisms.

A few remaining details of the authorization system con-
trol where and how active storage may be employed. A user
must have the X right on a file in order to execute it on a
file system. The owner of a file server may provide a fixed
list of trusted binaries by providing a directory offering the
RX rights to trusted users. Or, an owner might provide a
writable directory with the WX rights, allowing a user to
stage in and execute arbitrary code.

We illustrate the performance potential of this mecha-

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2 4 6 8 10 12 14 16

T
im

e
(s

ec
on

ds
)

Number of Hosts

traditional filesystem
active storage

pre-loaded active storage

Figure 9. Scalability of Active Storage

Executing tasks in parallel on a traditional file system and
an active storage system. Time required grows linearly for
traditional and active storage systems, since in both, data
or an executable must traverse the network. Time required
stays constant when the executable is already in place.

nism with the following experiment. We assume a DSFS
containing a large number of files that must be check-
summed. In a traditional storage system, this would involve
extracting the data from the system and then computing
upon it. Using an active storage mechanism, the checksum
program is sent to the storage nodes to be executed.

We created a DSFS populated with 2 MB data files to
be analyzed with a 512 KB executable. For the traditional
storage case, we measured the total time needed to down-
load the data files to the local machine and run the local
copy of md5sum on them. For the active storage case, we
measured the total time needed to upload the analysis ex-
ecutable and calculate remotely the md5sum of the data
file. We also measured the time needed to only calculate
the MD5 checksum, representing the case when the anal-
ysis executables have already been distributed. For each
case, each task consisting of an upload (or download) and
checksum was run in parallel, and the time measured was
from the beginning of the first upload (or download) to the
completion of the last calculation.

Figure 9 shows that the cost of executing multiple, paral-
lel operations on remote data remains constant versus the
number of remote hosts accessed, when the analysis ex-
ecutable has been pre-distributed. This is because in this
ideal case, no bulk data traverses the network. In the other
cases, the cost of executing said tasks grows linearly with
the number of hosts accessed, because either the data or the
executable must be transferred. When the executable is of
size E and the data files are each of size D, active storage
gives a speedup proportional to D/E. Thus, active storage
is best for small executables and large data sizes.

9

 0

 50

 100

 150

 200

 0 10 20 30 40 50 60A
ve

ra
ge

 B
an

dw
id

th
 U

til
iz

at
io

n
(K

b/
s)

Cache Duration (s)

Figure 10. Network Bandwidth Utilization

The impact of caching policies on network throughput.
Caching group files, in this case a group of 200,000 users,
results in lower average bandwidth consumed as the dura-
tion of the cache increases.

5.4 Access Controls for User Groups

As described earlier, each directory in a cooperative stor-
age system is protected by an ACL listing a free-form text
subject and a list of access rights granted to that subject.
However, a resource owner may wish to grant directory ac-
cess to a number of users large enough that explicitly listing
them in each ACL would be impractical. Not only would
each ACL in every shared directory need to be modified
separately, but ACLs themselves can grow very large in size
as well. To reduce the burden of doing such, we are im-
plementing a distributed group access control mechanism
into the cooperative system in which groups of users can
be defined by any resource owner at any location within the
system and referenced within ACLs. For example, a group
entry in a directory ACL would appear as:

group:hedwig.cse.nd.edu/dthain/team RWL

which not only specifies the group name and owner, but the
host on which the group is defined. Upon encountering an
ACL entry such as this, a server would then determine if
the current user is a member of the group team owned by
user dthain defined on host hedwig.cse.nd.edu and
grant or deny permissions accordingly.

Because file servers in a cooperative system may have
many concurrent users accessing directories for which
ACLs grant permissions on a groupwise basis (and there
may be a large number of groups), and in turn each group
may potentially contain thousands or even millions of users,
performance is a key consideration. To avoid overloading
file servers with expensive group lookup operations, we are
implementing the means for resource owners to set their
own flexible security policies. Resource owners may allow
external servers to cache group definition files for a period
of time they specify so lookups can be performed locally by

Exec Time (ms) Exec Time (ms)
Command (Uncached) (Cached Decision)

ls 143 47
get 162 12
put 116 1
rm 98 9
mv 151 3
stat 102 2

Table 1. File Command Performance

The impact of decision caches on file commands in
Chirp. By eliminating redundant, expensive group lookups,
caching individual decisions significantly improves perfor-
mance of commands that require one or more ACL checks
to complete. Group size in all cases is 300,000 users.

those requesting servers as needed. We are also studying the
effects of caching individual lookup decisions for a period
of time specified by the resource owner.

Such mechanisms allow resource owners to define their
own dynamic security policies on a per-server basis within
a cooperative system. As is typical in a distributed system,
each policy potentially involves tradeoffs between consis-
tency and performance. However, the group access con-
trol mechanism presented in this paper allows system users,
rather than system administrators, to decide for themselves
exactly what and how much to trade off. For instance,
caching policies improve lookup performance and overall
server performance possibly at some cost of consistency
when members are added or removed from group files, or
when the groups themselves are deleted, while at the same
time providing a degree of fault tolerance in the event a
server hosting a group file fails.

Deciding what to cache and for how long may have a
cost in terms of either performance (in terms of network
bandwidth utilization and CPU time) or consistency. Fig-
ure 10 shows the impact of caching policies on network
bandwidth utilization. As the duration of the cache in-
creases, average bandwidth utilization decreases possibly
at the expense of consistency. Caching the remote file and
performing a lookup is expensive, so providing a mecha-
nism for caching individual lookup decisions can improve
overall performance in terms of both network utilization
and lookup time. Table 1 shows the performance effects
of caching lookup decisions on a number of common file
system commands.

6 Recommendations

Based on our experience with the above areas, we offer
three pieces of advice for the design and implementation of

10

future systems with decentralized security. We believe these
recommendations flow easily from our experience above,
and although easily stated, are not obvious, nor necessarily
easy to carry out in practice.

Servers must employ meaningful identities deep in the
software stack. Traditional operating systems and file sys-
tems rely heavily on integers to represent user identity. In-
tegers are used at the system call interface (i.e. getuid),
in the data structures of filesystems (i.e. inode owners), and
in network protocols (i.e. the owner subfield of the stat
structure). However, the use of integers to represent identity
assumes that all participants share a common user database
with a consistent mapping of names to numbers. This is not
the case in a system with decentralized security. There is no
global user database, nor can we expect each participating
system to add a new entry to the local user database every
time it interacts with a new client.

Instead, meaningful string identities must be used
throughout the system, from server processes, to the oper-
ating system, down to filesystem storage. We were able to
meet this requirement by employing a user-level file server,
storing permissions in auxiliary files, and using a custom
I/O protocol. If we were to use standard protocols and stor-
age systems, we would simply not be able to store the nec-
essary identity strings. Thus, we recommend that systems
move toward a model where identity is stored as a free-form
string to be interpreted by higher levels of software. This re-
quires some adjustments to traditional OS structures.

Clients must be prepared for a wide array of failures.
Any coordinated activity in a cooperative storage system
must be prepared for one part of the transaction to succeed
and another to fail. For example, a distributed file system
must allow for the possibility that the insertion of a direc-
tory entry succeeds, but the creation of the corresponding
file object is rejected. (This is not a possibility in conven-
tional file systems.) A third party transfer must allow for the
possibility that the ACL change may be accepted, but the
file transfer may fail. In each case, the client must record
the activities attempted at each site, and then roll back the
incomplete changes. Of course, the rollback may fail as
well, so the client must choose a sequence of operations
that do not pass the system through a dangerous state. For
example, the directory insertion must occur before the file
creation so that a failure yields a (safe) dangling pointer in-
stead of unreferenced garbage.

Users need tools for debugging security mechanisms. In
a decentralized security system, an attempt to access an ob-
ject may be denied for an enormous number of reasons in
both authentication and authorization. Consider how many
ways the third party transfer in Figure 6 may fail. The client
may fail to negotiate an authentication method with the tar-
get. Authentication with the target may fail, if perhaps a
certificate has expired. The user may not have permission

to change the ACL. A similar array of problems occurs
between the client/source and between the source/target.
When presented with a failed third party transfer, users are
left scratching their heads over what may have failed.

To attack this problem, we require tools for debugging
security mechanisms. The whoami and rwhoami RPCs
are examples of very simple debugging tools. To go farther,
we might include with each failed operation some details
of the reason for the failure: for example, which necessary
right was not present in the ACL? Or, client side tools might
take a more aggressive approach and probe a server repeat-
edly, trying similar operations in different combinations to
flesh out the scope of a problem. Of course, revealing the
reason for a denied access may not be suitable for very high
security systems: this may reveal exploitable weakness. For
less critical systems, debugging tools would be a great help.

7 Related Work

Although there exist many distributed storage systems
with flexible and powerful security models, nearly all have
a centralized point for authentication and then perform op-
erations within a trusted perimeter. GPFS [21], PVFS [3],
Lustre [4], and the Google file system [8] all follow this
model. Riedel et al. [20] offer a framework for evaluating
the security mechanisms of systems following this general
model. while our focus is more on the unexpected results of
new security mechanisms.

The cooperative storage system model has some of the
flavor of object-based and network attached storage as de-
scribed by Gibson et al. [9, 15] Gobioff [10] describes a
security model for network attached storage. The primary
distinction is that cooperative storage must deal with au-
thentication at a higher semantic level because there is no
global mapping of text identities to local tokens.

A variety of systems perform a high-level authentication
step at a centralized point, which yields a lower-level cre-
dential that can be employed at many distinct sites. For ex-
ample, Kerberos [22] requires the client to authenticate with
the key server and then a ticket granting service, which then
issues credentials to interact with individual services. In
effect, this is centralized authentication, but decentralized
authorization. In a related manner, work in the grid com-
puting area has proposed a centralized authentication and
authorization service that issues tickets to access individual
objects [5]. This has some of the flavor of capabilities.

Capabilities have long been an object of study in com-
puter architectures [12], as well as distributed comput-
ing [23], distributed storage [16], and active storage [19].
This mechanism has always been quite controversial, as ca-
pabilities clearly admit a wide range of security policies,
but also present new challenges in management, storage,
and transmission. In a cooperative storage system, it is nec-

11

essary to have an ACL-based mechanism, because storage
owners wish to have fairly detailed knowledge of and con-
trol over remote users.

8 Conclusion

Decentralization of security mechanisms introduces new
challenges into the design and implementation of tradi-
tional storage systems. We have presented four challenges
in shared filesystems, third-party transfer, active storage,
and group management. From this experience, we offer
three recommendations for future system designers: (1)
Systems should store meaningful identities deep in the soft-
ware stack. (2) Clients must be prepared for a wide array of
failures. (3) Users need tools for debugging security mech-
anisms. The general philosophy of a cooperative storage
system is that users should be given many of the powers
currently reserved for system administrators. In order to ex-
ercise these powers effectively, users require tools that assist
them with the natural complexity of such an environment.

References

[1] W. Allcock, A. Chervenak, I. Foster, C. Kesselman, and
S. Tuecke. Protocols and services for distributed data-
intensive science. In Proceedings of Advanced Computing
and Analysis Techniques in Physics Research, pages 161–
163, 2000.

[2] S. V. Anastasiadis, R. G. Wickremesinghe, and J. S. Chase.
Lerna: An active storage framework for flexible data access
and management. In High Performance Distributed Comput-
ing, 2005.

[3] P. H. Carns, W. B. Ligon, R. B. Ross, and R. Thakur. PVFS:
A parallel file system for linux clusters. In Annual Linux
Showcase and Conference, 2000.

[4] Cluster File Systems. Lustre: A scalable, high performance
file system. white paper, November 2002.

[5] D. Feichtinger and A. Peters. Authorization of data access in
distributed systems. In Workshop on Grid Computing, 2005.

[6] E. Felix, K. Fox, K. Regimbal, and J. Nieplocha. Active stor-
age processing in a parallel file system. In LCI Conference
on Linux Clusters: The HPC Revolution, 2005.

[7] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A security
architecture for computational grids. In ACM Conference on
Computer and Communications Security Conference, 1998.

[8] S. Ghemawat, H. Gobioff, and S. Leung. The Google filesys-
tem. In ACM Symposium on Operating Systems Principles,
2003.

[9] G. A. Gibson, D. Nagle, K. Amiri, F. W. Chang, E. M. Fein-
berg, H. Gobioff, C. Lee, B. Ozceri, E. Riedel, D. Rochberg,
and J. Zelenka. File server scaling with network-attached
secure disks. In Measurement and Modeling of Computer
Systems (SIGMETRICS), 1997.

[10] H. Gobioff, D. Nagle, and G. Gibson. Integrity and perfor-
mance in network attached storage. In Proceedings of Inter-
national Symposium on High Performance Computing, 1999.

[11] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satya-
narayanan, R. Sidebotham, and M. West. Scale and perfor-
mance in a distributed file system. ACM Trans. on Comp.
Sys., 6(1):51–81, February 1988.

[12] A. K. Jones and W. A. Wulf. Towards the design of secure
systems. Software - Practice and Experience, 5(4):321–336,
1975.

[13] K. Keeton, D. A. Patterson, and J. M. Hellerstein. A case for
intelligent disks (IDISKs). SIGMOD Record, 1998.

[14] X. Ma and A. L. N. Reddy. MVSS: an active storage ar-
chitecture. IEEE Transactions on Parallel and Distributed
Systems, 14(9), September 2003.

[15] M. Mesnier, G. Ganger, and E. Riedel. Object based storage.
IEEE Communications, 41(8), August 2003.

[16] J. Plank, M. Beck, W. Elwasif, T. Moore, M. Swany, and
R. Wolski. The Internet Backplane Protocol: Storage in the
network. In Network Storage Symposium, 1999.

[17] J. Postel. FTP: File transfer protocol specification. Internet
Engineering Task Force Request for Comments (RFC) 765,
June 1980.

[18] E. Riedel and G. Gibson. Active disks - remote execution
for network-attached storage. Technical Report CMU-CS-
97-198, Carnegie-Mellon University, 1997.

[19] E. Riedel, G. A. Gibson, and C. Faloutsos. Active storage
for large scale data mining and multimedia. In Very Large
Databases (VLDB), 1998.

[20] E. Riedel, M. Kallahalla, and R. Swaminathan. A framework
for evaluating storage system security. In Conference on File
and Storage Technology (FAST), 2002.

[21] F. Schmuck and R. Haskin. GPFS: A shared-disk file system
for large computing clusters. In USENIX Conference on File
and Storage Technologies (FAST), Jan 2002.

[22] J. Steiner, C. Neuman, and J. I. Schiller. Kerberos: An au-
thentication service for open network systems. In USENIX
Winter Technical Conference, pages 191–200, 1988.

[23] A. S. Tanenbaum, S. J. Mullender, and R. van Renesse.
Using sparse capabilities in a distributed operating system.
In International Conference on Distributed Computing Sys-
tems, 1986.

[24] D. Thain. Identity boxing: A new technique for consistent
global identity. In International Conference for High Perfor-
mance Computing and Communications (Supercomputing),
November 2005.

[25] D. Thain, S. Klous, J. Wozniak, P. Brenner, A. Striegel, and
J. Izaguirre. Separating abstractions from resources in a tac-
tical storage system. In International Conference for High
Performance Computing and Communications (Supercom-
puting), November 2005.

[26] D. Thain and M. Livny. Parrot: Transparent user-level mid-
dleware for data-intensive computing. In Workshop on Adap-
tive Grid Middleware, New Orleans, September 2003.

12

