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THE CHALLENGES OF SCALING UP HIGH-THROUGHPUT WORKFLOW

WITH CONTAINER TECHNOLOGY

Abstract

by

Chao Zheng

High-throughput computing (HTC) is about using a large amount of computing

resources over a long time to accomplish many independent and parallel computa-

tional tasks. HTC workloads are often described in the form of workflow and run

on distributed systems through workflow systems. However, as most workflow sys-

tems are not liable for managing the task execution environment, HTC workflows are

regularly limited in dedicated HTC facilities that have required settings.

Lately, container runtimes have been widely deployed across public cloud because

of its ability to deliver execution environment with lower overheads than the virtual

machine. This trend provides users of HTC workflows an opportunity to use unlimited

computing power on the cloud. However, migrating complex workflow systems to a

container environment is cumbersome.

To containerize HTC workflows and scale them up on the cloud, I synthesize my

experiences on using container technologies and develop a methodology that con-

tains seven design factors: i) Isolation Granularity – the granularity of isolation

should be determined by characteristics for target workloads; ii) Container Man-

agement – container runtimes must be adapted to the distributed environment, and

the under-layer distributed systems best does the management of containers; iii) Im-

age Management – a cooperated mechanism can help to speed up and improve the



Chao Zheng

efficiency of image distribution in distributed environment; iv) Garbage Collec-

tion – timely garbage collection is necessary given the massive amount of interme-

diate data generated by the HTC workflow; v) Network Connection – excessive

network connections should be avoided considering the plenty of small transmissions;

vi) Resource Management – customized resource management mechanisms that

fully consider the characteristics of the target workflow are required; vii) Cross-layer

Cooperation – implementation of advanced features requires cooperation between

the upper-layer workflow system and the under-layer cluster manager.

In addition to HTC workflows, I validate the above factors through my work of

standardizing resource provisioning process for extreme scale online workloads, and

observe that they are equally applicable to the HTC workflow as well as the extreme

scale online workload.
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CHAPTER 1

INTRODUCTION

1.1 High-Throughput Workflows

High-throughput computing (HTC) workloads usually demand a tremendous amount

of computing resources for an extended time to accomplish many parallel tasks. Com-

pared to high-performance computing (HPC), HTC focuses on accomplishing as many

tasks as possible in a given period of time instead of trying to minimize the execu-

tion time of an individual task. Consequently, the key to HTC is effective resource

management and exploitation.

A popular way for executing workload is users use workflow, which is often rep-

resented in the form of directed acyclic graph (DAG) ( figure 1.1), to describe the

data and task dependencies of large HTC workloads, and execute them through the

workflow system on the distributed system.

1.2 The Challenge of Scaling Up HTC Workflows

However, most workflow systems are good at describing and running workflows

but keep silent on the question of what execution environment each task of the work-

flow demands. As a result, HTC workflows are often limited to dedicated facilities

and spend a long time waiting for compatible computing nodes.

Container technologies are recently appearing as an alternative to manage cus-

tomized environments. Compared to the conventional virtual machine, rather than

starting a new operating system (OS) from scratch each time, a container share the

3



(a) BWA Workflow (b) Shrimp Workflow

Figure 1.1: Sample Workflows, (a) The Burroughs-Wheeler Alignment (BWA) work-
flow consists of 4082 parallel tasks; (b) The SHRiMP workflow consists of 5091 parallel
tasks aligning genomic reads against a target genome

same OS kernel with the host system, which greatly lower the overheads of delivering

isolated execution environments. Also, emerging container orchestrators allow users

to implement more elastic applications that can adjust underlying infrastructure dur-

ing runtime. As a result, container technologies are widely deployed across private

and public clouds as a new means for resource management. This trend presents

users of HTC workflows a chance to access the nearly infinite computing resources in

the cloud.

Nonetheless, container technologies are initially developed for latency-sensitive

programs not discrete tasks [88, 61]. Latency-sensitive workloads, like web servers,

video conferencing, and online games, intent on minimizing response time for re-

quests, while HTC workflows concern with accomplishing the maximum amount of

tasks in a given time. Their optimization goals are so separate that technologies

which work for one of them, might not apply to another.

Take the resource autoscaler as an example. For platforms serving microservices,

to minimize the response time to requests, the resources load must stay low, which
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Workflow Manager
(eg. Makeflow)

Task Scheduler
(eg. Work Queue)

Cluster Scheduler
(eg. Apache Mesos, Kubernetes)

System Software
(eg. Network File System)

Workflow 
System

Cluster 
Manager

Figure 1.2. High-throughput Computing Software Stack

allows autoscalers to reactively resize the cluster based on the resource load. However,

HTC workflows scavenge as many resources as they can, which results in the resource

loads of the platforms are always close to saturation. Therefore, the autoscaler works

for latency-sensitive workloads but will not work for the HTC workflow.

Another example is data storage. Latency-sensitive services usually are stateless

and shared-nothing, which treats local memory space as a brief, single-transaction

cache, while intermediate data that need to persist are stored in a stateful distributed

storage. In contrast, HTC workflow often generate a massive amount of intermediate

data. Repeatedly reading and writing them from and to stateful distributed storage

can cause significant overheads.

1.3 How to Containerize HTC Workflows

Generally, an HTC software stack includes two components (see figure 1.2):

Workflow System, which contains two sub-components, i) Workflow Man-

ager, which interacts with end user, describes the data and task dependencies of

workflow; and ii) Task Scheduler, which receives tasks submitted by workflow man-

ager and dispatches ready tasks to task executors running on computing nodes.

Cluster manager, which abstracts resources of computing nodes into a unified

resource pool shared by applications. The cluster manager also contains two sub-
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components from bottom-up: i) System Software, which interacts with hardware

or the operating system of the individual node and encapsulate physical resources in

forms that are useable to the upper-layer system, examples include virtual machine,

Docker, Linux container, and distributed filesystem; ii) Cluster Scheduler, which

unifies resources of computing nodes into a resource pool shared by applications,

common ones include, Kubernetes [27], Apache Mesos [58], Apache YARN [100],

HTCondor [94] and Omega [91].

Consequently, container technologies can be adapted to HTC workflow from four

aspects: i) integrating container with workflow manager, ii) running task scheduler

with the container, iii) bridging workflow systems to container orchestrators, and

iv) optimizing container runtime with distributed software.

In this dissertation, I share practical lessons learned from five years of research on

adapting container technologies to each layer of the HTC software stack, and distilled

seven design factors that can be helpful for building container-based systems

for HTC workflows. Even though this dissertation uses specific technologies as ex-

amples – i.e. Cooperative Computing Tools (CCTOOLS), Docker container runtime,

Mesos and Kubernetes, I believe the seven factors are referable to users who intend

to apply new technologies to the HTC software stack.

1.4 Overview of Dissertation

The rest of this disserataion is organized as follows (figure 1.3 shows the roadmap

of dissertation):

Chapter 2: Background. This chapter will give the details of the systems and

the software used in this dissertation.

Chapter 3: Related Works. This chapter reviews the literature on integrat-

ing container technology to the workflow system and adapting container runtime to

distributed environments.
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Figure 1.3. Roadmap of Dissertation

Chapter 4: Containers in Workflow System. Conventional workflow sys-

tems have been evolved for decades and are very good at executing HTC workflows.

Consequently, the first option I tried is integrating container runtime into existing

workflow systems. This chapter evaluates a variety of configurations for integrating

container runtime into different components of the workflow system (i.e. workflow

manager and task scheduler). I compare them by running practical HTC workflows

with them and considering task execution time, network overhead, and resource us-

age. Through this work, I identify the first two design factors that are worth being

considered, i.e. i) Isolation Granularity – the granularity of isolation should be

determined by characteristics of target workloads; ii) Container Management –

container runtime should be optimized for target workloads and the management of

containers should be done by under-lying distributed system without user interven-

tion.

Chapter 5: Container Orchestrator and Workflow System. Container

orchestrators have quickly risen as a promising way for resource management on

cloud. Therefore, the second option I consider is bridging the workflow system to

the container orchestrator. Chapter 4 explores the possibility of connecting Make-
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flow to Apache Mesos, and indicates three important design factors: iii) Garbage

Collection – timely garbage collection is necessary given the massive amount of

intermediate data generated by the HTC workflow; iv) Network Connection – ex-

cessive network connections should be avoided considering the large amount of small

transmissions; and v) Resource Management – resource management mechanisms

should be developed based on the characteristics of the target workflows.

Chapter 6: Distributed Container Runtime. In this chapter, I explore

how to optimize the performance of the container runtime by sharing container im-

ages through the distributed filesystem and develope a distributed version of Docker

runtime, i.e. Wharf, which dramatically reduces network overhead and shortens con-

tainer startup time by sharing container images through the network filesystem. I

summarize the lessons learned from this work into the design factor vi) Image Man-

agement – a cooperated mechanism can help to speed up and improve the efficiency

of image distribution in distributed environment.

Chapter 7: Autoscaling HTC Workflow. Performance objectives of HTC

and latency-sensitive workloads are so separate, which results in autoscaler works for

one of them but does not work for the other. Chapter 6 reveals that Kubernetes’s

autoscaler, which resizes resource pool based on system indicator does not work for

the HTC workflow. To make an accurate and timely scaling plan, I propose a new

strategy that scales the resource pool based on the real-time status of the workflow

system as well as the cluster manager. Through this work, I identify the sixth design

factor that vii) Cross-layer Cooperation – to implement advanced features, like

autoscaling, cooperation between the upper-layer workflow system and the under-

lying cluster manager is required.

Chapter 8: Cross-Checking with Online Workload. The large online work-

load and the HTC workflow have much in common. For example, both of them need

to handle frequent and extensive resource requests; they often generate a large num-
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ber of intermediate data at runtime, they all have many independent tasks running

concurrently. Chapter 8 validates the seven factors by using them to design re-

source provisioning strategy for extreme-scale online workloads. Through this work,

I conclude that the seven-factor methodology is equally applicable to both the HTC

workflow and the sizeable online workload.
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1.5 A Note on Terms

Next, I give definitions of some terminologies. These terms can have different

meanings beyond the scope of this dissertation, but I will use them consistently as

follows

• Task: A program instance running as a process on physcial resources.

• Workload: A collection of tasks that can have different properties.

• Workflow: An abstraction describing the data dependencies and task order of
workloads in the form of DAG.

• Workflow System: A system translating workload into workflow and execut-
ing tasks of workflow in order.

• Cluster Manager: A distributed system coordinating different system soft-
wares in cluster environment.

• Cluster Scheduler: A software allocating resources for tasks run on cluster.

• Container Orchestration Tool: A platform coordinating containers running
across computing nodes (interchangeable with Container Orchestrator and Con-
tainer Scheduler)

• Online Workload: A workload composed mostly of interactive or latency-
sensitive tasks.

• Resource Utilization: The percentage of resources been assigned.
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CHAPTER 2

BACKGROUND

2.1 Workflow Systems

There exist a variety of workflow systems that fall into several distinct communi-

ties and use cases, but all provide two standard functions of i) describing the structure

of workflows, and ii) running tasks across available computing nodes.

In the Cooperative Computing Lab at the University of Notre Dame, we use two

applications to perform above functions respectively (i.e. Makeflow for describing

workflow structure, and Work Queue for coordinating computing nodes and systems

to execute tasks).

Workflow

Describes tasks,
dependencies,

and environment.

= File = Task

Makeflow

Releases tasks
when ready.

Master

Schedules tasks
and data on workers.

Worker

and run tasks.
Manage storage

Sandbox

File

Cache

Task 1

Sandbox

Task 2

start ta
sk

start task

store files

(link) (copy)

W
W

W

Master Node One Worker Node

Pool of Workers

Figure 2.1: System Architecture Before Containers

Figure 2.1 shows the architecture of Makeflow and Work Queue. While our dis-

cussion focuses on these technologies, similar comments apply to other workflow

systems.
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2.1.1 Makeflow

Makeflow is a workflow manager for defining large complex workflows. Makeflow’s

syntax is similar to that of classic Make, which allows users to describe any workflow

expressible in a Directed Acyclic Graph (DAG) structure. Each task of the workflow

cooresponds to a rule that specifies the inputs, outputs, and command. For instance,

to describe a task whose input files are inp1 and inp2, output file is oup, and com-

mand is ./execCmd inp1 inp2 > oup, a user would write the following rule in the

Makeflow file.

oup : inp1 inp2 execCmd

. / execCmd inp1 inp2 > oup

After the user creates the workflow description, Makeflow parses this file and

generates an in-memory representation of the workflow’s DAG structure, which it

uses to distribute tasks to various batch systems following the data dependencies

of the workflow. Makeflow is production-ready and used daily to launch complex

workflows with the different batch system, including HTCondor, Work Queue, Sun

Grid Engine (SGE), and Torque, among others. Makeflow has evolved to support

large scale workflows that consist of millions of tasks running on thousands of nodes

for months at a time, with a variety of tools available to analyze the behavior of the

workflow.

2.1.2 Work Queue

Work Queue consists of a master library and a large number of worker processes

that can be deployed across multiple clusters, cloud, and grid infrastructures. The

master exports an API that allows the user to define tasks consisting of a command

line to execute, a set of input files, and a set of expected output files. The master

schedules tasks to run on remote workers.
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The worker executes tasks as follows. As input files are transmitted from the

master, they are stored in a cache directory. For each task to be run, the worker

creates a temporary sandbox directory, links in the input files, runs the command,

and then copies the output files back to the cache directory, where they await return

to the master. In this way, each task is given a fresh namespace that does not

interfere with other tasks. On a multicore machine, multiple tasks may safely execute

simultaneously (As long as each stays in its current working directory.)

When working with Makeflow, each rule of the workflow is submitted as a task

for Work Queue. The implementation of Work Queue is designed to provide precise

execution semantics expected by Makeflow. Because both Makeflow and Work Queue

require all files to be explicitly declared, the combination can run without a shared

filesystem.

2.1.3 Resource Monitor

Workflow systems like Makeflow and Work Queue are efficient on describing and

executing high-throughput workflows, but have remained silent on the question of

how many resources are required by the workflow.

Users seldomly have precise knowledge of the resources (e.g., cores, memory, or

disk) needed to execute a task. As a result, users have to estimate the resource

requirement of the workflow and reserve a fixed amount of resources for workflows,

which often leads to low resource usage or unacceptable performance.

To remedy this problem, the resource monitor [96] is developed, which measures

resource usage of tasks and reports it to Makeflow. By enabling resource monitor (see

figure 2.2), Makeflow can be directed to manage the computational resources assigned

to tasks automatically, refining the resources allocated per job to minimize the waste.

This management is built as a resource feedback loop that considers the measurement

of resources used per task, the allocation and enforcement of resources, and automatic

13



retries on resource exhaustion.

Task

Resource 
Monitor

Batch System

Adjust Resource
Specification

Workflow
Specification

Figure 2.2: Resource Monitor

Initially, tasks are run using a maximum allowable resource size. As tasks are

completed, their real usage is measured and recorded, and allocations are computed

for newly created tasks to minimize the waste or maximize the throughput. Some

tasks may exhaust these allocations and are retried using the maximum allowable

sizes. As presented in [96], a small number of retries leads to substantial increases in

throughput and decreases in resource waste.

2.2 Container Runtime

Lightweight containers are a promising operating-system virtualization technol-

ogy that could be used to deliver isolated execution environments. Unlike virtual

machines, containers are implemented by mounting filesystems on top of an existing

operating system kernel, which largely eliminates the overheads found in traditional

virtual machines. While the basic technology behind containers has been available for

decades, the concept has recently seen considerable development in the Linux com-

munity, combining the cgroups [9] – resource control framework – and the Linux

namespaces [30] – kernel resources partition feature – to provide complete isolation.

While the Linux kernel has included support for containers for over a decade, they
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Figure 2.3: Docker Ecosystem

have only recently received extensive attention, which is due to the rise of container

runtimes such as Docker [2], which drastically simplify the creation, execution, and

sharing of containers.

Operating system containers [74, 92] are rapidly becoming a popular solution

for sharing and isolating resources in large-scale compute clusters. As an example,

Google reports to run all of its applications in containers, resulting in more than two

billion launched containers per week [44]. Furthermore, all major cloud vendors have

added container services to their offerings [5, 29, 18, 22].

There exist many container runtimes, e.g., Docker [15], cri-o [12], singularity [63],

and LXC [3]. Among them, Docker has emerged as the most widely used one. Due

to its easy interface, image management facilities, and active community, it is now

relatively easy to create, share and deploy container images by name. For example,

by typing this command, Docker will work as follows (see figure 2.3):

docker run ubuntu bwa −index seq . f a s t a

1. docker client (e.g., docker command line tool) contacts Docker daemon (dockerd)
to pull the image ubuntu;

2. dockerd pulls the ubuntu image from remote registry;
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3. dockerd stores image in local image storage by layer (e.g., aufs, overlay2, de-
vicsmapper);

4. dockerd creates container instance by union read-only layers of the target image
with an empty writable layer on top;

5. command bwa -index seq.fasta is executed within the newly created con-
tainer.

2.3 Container Orchestrator

Container technologies have changed the way of building and delivering execution

environments for applications. However, managing containers and microservices at

scale is still an operational challenge. To resolve this, container orchestration tools

are developed, which aim at automating the deployment, management, and scaling

of container-based applications.

2.3.1 Kubernetes

Kubernetes is the container management system developed by Google, which

helps developers to manage distributed applications built around micro-services and

hosted in multiple containers. There exist various Kubernetes objects for describing

the state of the cluster, e.g., Pods, Deployment, Statefulset and Service. The pod

is the basic work unit of Kubernetes. A Pod often consists of one main container and

several auxiliary containers with shared storage and network. Kubernetes allows the

user to give specifications for each container, including, storage volume, disk image,

forwarded ports, restart policy, and entry point. A Deployment object represents

a set of identical Pods with non-unique identities, which runs multiple replicas of

the application and automatically replaces failed instances. Statefulset is similar to

Deployment except for each pod of the Statefulset has a unique identity. Service

objects are responsible for providing a stable, virtual IP address for applications.
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Figure 2.4: Kubernetes Architecture

While pods are ephemeral and mortal, services allow clients to visit micro-services

hosted at fixed virtual IP addresses reliably.

The system architecture of Kubernetes follows the Master/Worker model, which

consists of at least one master node and multiple computing nodes. The master is

responsible for handling user requests, scheduling objects, and managing the clus-

ter. Each computing node runs a container runtime, i.e. Docker and rkt, and an

agent process that communicates with the master. Kubernetes adopts a monolithic

scheduling architecture, which uses a global scheduler called kube-scheduler. The

default scheduling algorithm is FitPredicate, which finds the appropriate node for

a submitted object based on resource requirements and the rankings of nodes. The

rankings are derived from several system parameters. For example, if multiple nodes

meet the resource requirement, the scheduler prefers the machine has more allocat-
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able resource, which prevents an excessive number of objects from being scheduled

on only a few nodes.

Setting up micro-services or computational frameworks on Kubernetes involves

following steps (see figure 2.4)

1. users sending requests for creating objects to Kubernetes API server;

2. API Server forwards requests to kube-scheduler;

3. kube-scheduler learns the latest resource specifications of computing nodes
from etcd;

4. kube-scheduler creates objects on proper nodes;

5. if objects failed or success to run, informer will receive notice.

Note that the above procedure excludes the step of data transfer between the

user and the Kubernetes cluster. This is because Kubernetes aims at running con-

tainerized applications that involve very little user interaction after the application

starts.

2.3.2 Mesos

Mesos is a container-based resource management system. It uses containers to

encapsulate computing resources and match an offer to an appropriate task. Different

from kube-scheduler of Kubernetes, which follow the monolithic scheduling archi-

tecture, Mesos adopts the two-level scheduling model (see figure 2.5) that enables

each application to have its own customized scheduler. This scheduler is used to

communicate with Mesos master, which receives resource offers from Mesos master.

If the scheduler finds a task that has resource requirements match an offer, it will

claim the offer and ask Mesos to launch the task on the agent provide this offer.

Since a long task can occupy many offers that can be used by other short tasks,

Mesos encourages frameworks to run short tasks, which may be a limitation for run-
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Figure 2.5: Mesos Architecture

ning high-throughput workflows on Mesos, because large workflows normally contain

heterogeneous tasks that can be either short or long.
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CHAPTER 3

RELATED WORK

In this chapter, I discuss works related to the dissertation. I start with introducing

some notable workflow systems other than Makeflow and Work Queue (section 3.1).

Then I discuss container technologies in general, including container runtimes other

than Docker (section 3.2), container image management (section 4.4). I introduce

several popular container orchestration platforms (section 3.4) and virtualization in

HTC environments ( section 3.5) Finally, I conclude with discussing cluster resource

management (section 3.6) and autoscaling technologies in cloud environments (sec-

tion 3.7).

3.1 Workflow Systems

There exist many workflow systems other than Makeflow and Work Queue, which

share similar principles but fall into different communities and use cases. Some

notable ones are:

Kepler [69] provides a graphic user interface that allows users to create a sci-

entific workflow by merely dragging and dropping components and connecting the

components to construct a specific data flow. Kepler is designed for users with little

background in computer science. For example, a Quantitative analyst can develop a

new component that uses R statistical analyses and share it. Others do not have to

know how to program in R and the pre-programmed R components can be dragged

into their workflows. Kepler also allows users to access to continually growing data

repositories, computing resources, and workflow libraries global wide.
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Galaxy [59] provides a way to compose multi-step computational workflows.

Similar to Kepler, it also renders a graphical user interface for assisting users with

limited computer science background to create the workflow. In addition to a work-

flow system, Galaxy is also a biological data integration platform that allows users to

upload their experimental data. Though Galaxy is initially developed for genomics

workflow, it is essentially domain agnostic and can be applied to different scientific

domains.

Apache Taverna [59] is a collection of tools used to design and run scientific

workflows from different domains. Taverna is written in Java and contains three

components: i) Taverna Engine, which executes tasks of workflows parallelly across

computing nodes; ii) Taverna Workbench, which is the desktop client application;

and iii) Taverna Server, which empowers the user to execute workflows remotely.

Swift [108] project includes not only Swift runtime system for executing work-

flows but also Swift script language for describing workflows. The workflow described

in Swift language can be executed in parallel automatically if there are no data de-

pendencies with tasks. Furthermore, Regardless of the execution order of statements,

computations of the same Swift workflow are guaranteed to be deterministic.

Pegasus [46] workflow management system maps scientific domain and the ex-

ecution environment. It match high-level workflow abstraction to distributed re-

sources, locates required input data, and makes plan for all data transfers and job

submission operations for executing workflows. In addition, Pegasus is able to re-

structure the workflow to improve the efficiency and performance of running large

workflows on large distributed infrastructures.

Directed Acyclic Graph Manager (DAGMan) [51] is a meta-scheduler for

HTCondor [95]. The resource scheduler of HTCondor arranges tasks to proper ma-

chines, but does not schedule task based on dependencies. To submit tasks in order,

DAGMan analyzes the DAG structure and dispatch tasks to HTCondor in such a way
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as to enforce the DAG’s dependencies. Additionally, DAGMan also handles failed

recovery and reporting.

3.2 Container Runtimes

In addition to Docker, several container runtime systems have emerged to meet

specific user requirements. Charliecloud [87] enables container workflows without

requiring privileged access to data center resources through user namespaces. Sin-

gularity [63] is an alternative container solution that aims to provide reproducibility

and portable environments. It prevents privileged escalation in the runtime envi-

ronment, which improves cluster security when containers can run arbitrary code.

Other two popular runtimes are Snappy ubuntu [36] and RedHat Project Atomic [4].

Both platforms minimize operating system level contents and automate the process

of deploying containers across multiple hosts.

Combining container technology with a distributed system is commonly done.

There exist container runtimes that are dedicated to distributed environments. rkt [35]

is a container engine initially developed for CoreOS [1], which is characterized by its

pod-native approach, pluggable execution environment, and well-defined surface area.

Rather than being used independently as Docker, rkt is normally used as integration

with other systems. The emerging of container orchestrators also brings forward new

requirements for lightweight containers. cri-o [12] is a lightweight container runtime

for Kubernetes, which implements the container runtime interface (CRI) of the Ku-

bernetes. cri-o keeps only necessary functions required by Kubernetes, which makes

it a lightweight alternative to Docker when running in Kubernetes.

3.3 Container Image Management

With the prevalence of container technologies in large distributed environments,

many works have been done to improve the efficiency of managing and distributing

22



container images. These works mainly focus on two aspects.

One is reducing the cost of image management by Optimizing Registry and

Daemon. VMware Harbor [37] is an optimized registry server designed for enterprise-

level clusters. To expedite the distribution of container image, each cluster holds a

regional registry that periodically synchronizes with a global registry. With this

mechanism, clusters can pull and push the image from the region registry, which

decreases the turnaround time and reduce the network overhead. CoMICon [77] in-

troduces a decentralized, collaborative registry design to enable daemons to share

images. Specifically, on each node, a CoMICon agent is running with the Docker

daemon, which keeps sending the image/layer information of the daemon to CoMI-

Con registry. Consequently, rather than pulling new layers/images from a remote

registry, daemons check with CoMICon registry and retrieve the desired layers from

nearby daemons if they have them. By using CoMICon, the application provisioning

time has been reduced by 28%. Anwar et al. [39] analyze registry traces (e.g., image

popularity, HTTP request statistics, and requests correlation) and suggest several

mechanisms for speeding up image pulls ( e.g., image prefetch and two-level cache).

The other is speeding up image distribution by optimizing data transfer pro-

tocol. Slacker [57] proposes to lazily load image content from a shared storage

backend to reduce the amount of transferred available image data. By using Slacker,

the container startup time can be improved by 5−20×. Shifter [54] supports sharing

images from a distributed file system, which implements its flat image format to serve

images. When the same backing filesystem is used, Shifter successfully accelerate the

container startup time by 7− 10×. Dragonfly [67] and FID [62] share the same idea

of using a P2P protocol to speed up the image pulling across daemons within the

same cluster. By using FID, the network overhead has been reduced by 97%, and

image distribution time has been decreased by 83.50% compared to origin Docker.
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3.4 Container Orchestration Platforms

Other than Kubernetes and Apache Mesos, there exist various container orches-

tration platforms which have been widely deployed:

Docker Swarm [14] is a mode for cluster management embedded in Docker

Engine. A swarm is a cluster of Docker hosts with swarm mode enabled and acts as

managers (managing membership) or workers (running container). As an embedded

mode, swarm inherently works with Docker better than other orchestrators, which is

easy to have new/old Docker hosts join/leave. However, without a robust centralized

manager, swarm clusters are relatively hard to manage at scale.

Mesosphere Marathon [28] is software that expands upon Apache Mesos,

which is designed for executing long-running applications. Apache Mesos is initially

developed for generic cluster resource management with lacking features – like load

balancing, health checks and application reboot – desired by micro-services. The

emergence of Marathon remedies this problem and makes Apache Mesos a fully-

functional platform for micro-services.

CoreOS [1] as a lightweight Linux distribution aims at providing infrastructure

to clustered deployments, running all services and applications inside containers,

which facilitate the security, reliability and scalability of clusters.

Nomad [21] is a lightweight workload orchestrator, which inherently supports

diverse virtualization technologies, including container, virtual machine, or even stan-

dalone application. Nomad merely aims at providing cluster management and task

scheduling and therefore lighter than other orchestrators.

Even though the implementation details of the above orchestrators vary, they all

support Docker container runtime. Therefore, the seven design factors distilled from

my previous works can be applied to them as well.
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3.5 Virtulization in HTC Environments

There exist many ways to improve the performance of the HTC system whose

main enabling technology is virtualization. By using hardware with virtualization

technology, the latency caused by virtualization [83] is reduced. Another way is to

enable the hypervisor to deal with the guest processing directly, which eliminates

the overhead for latency-sensitive tasks [79]. By reducing the memory footprint in a

virtualized large-scale parallel system, the system performance, reliability, and power

can also be enhanced [110].

With the growing adoption of container-based computing, researchers have started

to consider using container runtime in HTC environments. Generally, there exist

three options for connecting container technologies to HTC systems.

The first is integrating container runtime into the workflow system. Batch

systems like IBM Spectrum LSF [23] and Altair’s PBS Professional [33] all provide

support for Docker containers. Though these deployments exploit existing workflow

system that has been developed over the years to support HTC workflows, it is

complicated to deploy such a system on a commercial cloud which often renders

more and newer hardware with evolved and compelling infrastructure.

Some other works try to look into the possibility of bridging workflow systems to

container orchestrators. Some well-known ones are, KubeFlow [25], which is dedi-

cated to deploying leading data analytics frameworks and workflow systems on Ku-

bernetes; and Argo [6], a container-native workflow engine for executing parallel tasks

on Kubernetes. This option accommodates properties of both HTC workflows and

container orchestrators. However, be cautioned that most container orchestrators are

initially developed for micro-services, not discrete jobs, thus system optimizations are

required.

The third is allowing workflow systems and container orchestrator to coexist in
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a shared environment. Navops by Unvia [31], takes this approach. It includes cus-

tomized scheduling policies for HTC workloads using the Kubernetes scheduler, which

makes Kubernetes the cluster resource manager responsible for assigning resources

for both non-containerized HTC workloads and containerized micro-services. Navops

set up the HTC scheduler as a service on a Kubernetes cluster.

3.6 Cluster Resource Management

In the cluster environment, there exists a variety of resource management mech-

anisms that can be divided into three categories.

Central Scheduling. Schedulers of this category usually have a central resource

manager, which is responsible for assigning resource to all tasks, some well-known

systems are Borg [101], TORQUE resource manager [93], old Hadoop scheduler [107]

and Sun Grid Engine (SGE) [53]. As the resource manager has to hold the information

of all computing nodes, when the cluster scales, the resource manager has to bear

the network and storage pressure.

Two-level Scheduling. Schedulers using this mechanism have a central resource

scheduler, which allocates resource quota for frameworks running on the cluster, and

framework scheduler for each framework, which assigns resources to tasks within its

quota. Some famous two-level schedulers are HTCondor [95] and YARN [100]. These

systems enable applications to have their own task assignment semantics, which is

more flexible and allow different workloads to share the resource. However, it comes

with a drawback: the framework scheduler lacks the global view of the cluster, which

impedes the implementation of advanced features, like task preemption and dynamic

resource provisioning.

Distributed Scheduling. Schedulers of this category don’t have a centralized

scheduler; instead, each framework running on the cluster does not share a global

resource manager but fully relies on its own scheduler, which makes scheduling de-
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cisions based on its local state. As there is no synchronization process, a scheduling

plan can be quickly established. A famous distributed scheduler is Sparrow [81].

3.7 Autoscaling in Cloud Computing

The critical characteristic of cloud computing is elasticity, which allows users to

resize resource pool on-demand. However, deciding the right amount of resources is

not trivial.

For workloads facing unchanged throughput, preserving a fixed amount of re-

sources is possible, while applications on cloud often need to handle unplanned events,

fluctuating throughput, and spiking load, which makes autoscaling techniques crucial.

When it comes to autoscaling, previous studies can be classified into two groups.

Works of the first group try to solve the problem from users’ perspective and

focus on capacity autoscaling in clouds. They aim at adjusting the allocated

capacity to satisfy the required performance or SLO. Therefore, the two main hurdles

of these works are accurately predicting the capacity and ensuring the capacity is

available when required. To accomplish these, four approaches are commonly used.

Threshold-based Autoscaling. This approach requires users to specify an in-

dicator or a set of indicators that implies real-time system load. Then, the system

autoscaler reactively increases the capacity when the system load is over the thresh-

olds and vice versa. Due to its simplicity and intuitive nature, this method is widely

adopted by cloud providers and third-party tools [16, 34]. However, setting thresh-

olds requires users to have a deep understanding of the workload, which is rare among

average users.

Queuing Theory. This approach scales the cluster based on the length of the

task queue and the average waiting time, which uses either the conventional queu-

ing model or queuing network to model the applications’ behavior. Previous works

have mainly focused on developing an advanced queuing model for more complicated
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cases [75, 102, 99]. The main pitfall of this approach is the nonuniversality. The

queuing model is usually highly optimized for specific cases and might not work when

external factors are changed, e.g., task arriving rate, spiking throughput, hardware

upgrading, etc.

Control Theory has been widely used to manage the resource capacity for web

server systems, data centers, and other systems [65, 66, 82, 84, 85]. There exist

three commonly used control system: i) Open-loop controllers, which changes the

system only according to a current state; ii) Feedback controllers, which correct the

system by analyzing the previous system outputs; iii) Feedforward controllers, which

estimates the system behaviors based on models and react before errors occur. In

practical, Feedback and Feedforward controllers often used together.

Time-series Analysis. This approach analyzes the historical data and trys to

find a repetitive pattern in time-series, which usually contains four steps: i) splits the

lifecycle of workloads into a sequence of data points, ii) periodically samples several

intervals between data points, iii) predicts the future system load, iv) and changes the

capacity. Existing works using this approach mainly focus on remove noise from his-

torical data [65, 84] or using mathematical methods [43, 56] to improve the accuracy

of prediction. Though this approach works well in domains of finance, economics, and

bioinformatics, when it comes to workloads that might have unpredictable behaviors,

fully relying on the prediction model might result in failing to handle the incidental

event.

The works from the second group try to tackle the problem from infrastructure

provider’s perspective, which aims at improving the resource utilization

and energy efficiency of the whole infrastructure. Comparing to individual

users, cloud providers often rely on consolidation strategies [55, 73] that synthetically

consider energy usage as well as application performance, or adopting resource over-

commit strategy [41, 98] which merely increase the resource allocation of applications
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if they can enhance overall revenue.

The autoscaling mechanism discussed in chapter 7 tries to solve the problem from

the users’ perspective and improve the accuracy of capacity estimation and timeliness

of resource provisioning. It accomplishes this by combining two existing autoscaling

mechanisms, i.e. Queuing Theory and Control theory, with new features provided by

Kubernetes, i.e. Infrastructure As Code [24] and Cloud Native [10].
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CHAPTER 4

CONTAINERS IN WORKFLOW SYSTEMS

4.1 Introduction

In this chapter, I will introduce my work of integrating the container runtime (i.e.

Docker) into the workflow system (i.e. Makeflow and Work Queue) and the first two

design factors. An abridged version of this chapter has been published as ”Integrating

containers into workflows: A case study using makeflow, work queue, and docker”

in Proceedings of the 8th International Workshop on Virtualization Technologies in

Distributed Computing.

Back in 2014, Docker was just coming into people’ view as a tool for building

testing environments. In addition to software testing, I see an opportunity of using

container runtime to manage execution enironments for HTC workflows. However,

there are few container orchestration tools available back then, therefore, the fastest

way of using the container runtime in HTC environment is integrating container

runtime into the existing workflow system. The expected outcome is a comprehensive

system that has workflow system focus on executing tasks across available computing

nodes, and container runtime responsible for delivering execution environment for

tasks.

Generally speaking, the workflow system runs each task as a process or thread

within a private sandbox (e.g., a filesystem directory) on a computing node, and con-

tainer runtime starts container instances as new processes with isolated namespaces

and exclusive computing resources but share same host OS kernel. To coordinate

these two contexts, I break down the design considerations into three categories:
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1. what level of isolation need to be achieved, i.e. task level or worker level.

2. How to manage the lifecycle of containers, i.e. when to initiate or delete con-
tainers.

3. How to distribute container image across computing nodes, i.e. rely on central-
ized registry or distribute as part of workflow data.

Specifically, I examine four different methods of integrating Docker with Makeflow

and Work Queue.

1. Wrapping each task at the workflow level, which is simple but inefficient due
to lack of information about image state (see figure 4.1a).

2. Running each worker inside a container, which eliminates startup overheads,
but exposes more of the system to container overheads (see figure 4.1b).

3. Running each task inside a container, which limits the scope of the container,
but increases startup/shutdown events (see figure 4.1c).

4. Running multiple compatible tasks inside one container, which minimizes star-
tup/shutdown events, but decreases isolation (see figure 4.1d).

To evaluate these configurations, I execute a bioinformatics workflow which con-

sists of a large number of relatively short tasks, which emphasizes the efficiency of

container startup and shutdown. The final configuration achieves performance very

close to that of a system without containers, if one is willing to sacrifice isolation

between tasks. I observe that this technique requires that the execution system must

be container-aware, rather than simply wrapping each task with the desired con-

tainer operations. The lesson I learned is there exists tradeoff between granularity of

isolation and performance, which leads to the first two design factor, i.e. Isolation

Granularity – the granularity of isolation should be determined by characteristics

of target workloads; and Container Management – container runtimes must be

adapted to the distributed environment, and the under-lying distributed systems best

does the management of containers.
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Figure 4.1: Container Management Options

4.2 Execution Environments

As described so far, Makeflow and Work Queue accurately capture the data de-

pendencies of a workload, but say nothing about the environment in which a task

should be executed. Including the program as an input dependency is a good first

start, but does not capture all of the shared libraries, script interpreters, configuration

files, and other items on which it may depend. Ideally, the end user will provision

worker nodes that have exactly the same operating system, installed applications,

and so forth.
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Unfortunately, this is easier said than done. My experience is that end users

construct complex workflows in an environment not of their own creation, such as

a professionally managed HTC facility. In this situation, the user’s environment is

a mix of a standard operating system, patches and adjustments made by the staff,

locally installed applications, and items from the user’s home directory. When moving

the application to another site, it is not at all obvious what components should be

included with the workflow. Should the user copy the executables, the libraries, the

Perl or Python interpreters, or perhaps even the entire home directory?

An alternate approach is to define the environment explicitly when the work-

flow is created. Rather than accept the current environment as the default, the user

would be required to explicitly name an image that contains the operating system,

applications, and all other items needed by the application. This image could be con-

structed by hand by the user, but is more likely provided by administrators. Once

explicitly named, the image can easily be transported along with the workflow. A

single image might apply to all tasks in the workflow, or might vary between tasks.

However, the combination of these technologies is not as simple as putting docker

run ubuntu in front of every command, because the workflow data dependencies must

be connected to the executing image. To address this problem, there are two different

design questions need to be answered. The first is container management: namely,

which component of the system is responsible for configuring, deploying, and tearing

down containers. The second is image management: namely, how the container

images must be moved to the (possibly thousands) of workers that comprise the

system in an efficient way. The remainder of this chapter considers each of these

problems in detail.
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4.3 Container Management

First, I consider four strategies for assigning the responsibility of creating and

tearing down containers within the workflow system. Each of these methods has

been implemented and is evaluated below.

Base-Architecture. (Figure 2.1) The basic architecture of Makeflow and Work

Queue effectively uses a directory as a placeholder for a container. For each task to

be executed, the input files are linked from the cache directory of the worker into

the task sandbox directory, the task is run within the directory, and then the output

files are copied back into the worker’s cache for later use. This can be thought of as

a (very) lightweight container in as much as each task has an assigned namespace,

assuming each task is well behaved and stays within its current working directory.

This method has the advantage that it is simple, requires no special privileges,

and imposes no overhead on the execution of the application. Of course, the only

environment that can be provided to the application is the operating system in which

the worker runs.

Wrapper-Script. (Figure 4.1a) The simplest step up from the base architecture

is to use a wrapper script to provision a container for each task. A small script can be

written which will contact the local dockerd, pull the desired image to the execution

host, run the desired task in the container, then tear down the image. To simplify

access to the task’s files, the task sandbox directory is mounted into the container as

the task’s working directory, such that neither the task nor the worker must change

their behavior.

This method has the advantage that no change is necessary to either Makeflow

or Work Queue, and can be applied transparently by the end user. Each task will be

isolated from all other concurrent tasks. If necessary, different tasks could execute

in different environments. (In the common case that all tasks require the same
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environment, the --wrapper command-line option to Makeflow can be used to easily

apply a single wrapper globally without modifying the workflow itself.) However,

as shown below, this method imposes a container startup and shutdown cost on

each task, and does not give the distributed system visibility into the location and

movement of the (possibly large) images.

Worker-in-Container. (Figure 4.1b) An alternative approach is to simply take

the entire worker itself and place it into a container for the entire duration of the

run. This requires a small modification to the provisioning of the worker itself, to

pull the image and create the container. In fact, the same wrapper script as above

can be used, if the worker itself is provisioned by an underlying system manager.

This approach succeeds in delivering the desired execution environment to each

task and avoids paying the startup and shutdown costs for each task. In the common

case where all tasks in the workflow require the same environment, one can easily

imagine provisioning a number of workers in bulk before the workflow execution.

However, it does not provide isolation between tasks, which all execute in a sandbox

directory in the same container, so the same degree of trust must be assumed as in the

base case. More subtly, the worker itself must pay the costs of executing within the

container, such that there may be a penalty applied to the network communication

between master and worker, as well as in the management of the local cache directory.

Finally, this configuration relies on the union filesystem (e.g., aufs, overlayfs, etc. ),

which is reported to cause non-negligible overheads when using a container with

multiple layers and deep-nested filesystem structure [50].

Containers-in-Worker (Figure 4.1c) Another approach is to modify the worker

code itself to run each task within a specified container. The effect of this is very

similar to that of the wrapper script, but with one important difference: the worker

itself now has some knowledge of the state of the local dockerd and can execute more

efficiently. Rather than attempting to pull and transform images for each container
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invocation, the worker can prepare the image once, and then instantiate multiple

containers from the same image.

This approach allows each task to provision a distinct container and allows the

worker itself to avoid container overheads, while still providing isolation between

tasks. Further the container image itself can becomes an input dependency of the

task, which allows for the scheduler to explicitly take advantage of this information.

For example, tasks can be scheduled preferentially to nodes where the image has

already been transferred and cached.

Shared-Container. (Figure 4.1d) Finally, I may attempt to combine the benefits

of multiple approaches by allowing tasks to share the same container where possible.

In the Shared-Container approach, the worker is again responsible for creating and

deleting containers, but will only create one container for each desired environment.

Containers are not removed when tasks complete, but remain in place for the next

(or concurrent) task to be placed inside.

This approach allows each task to run in different environments, where needed,

avoids the overhead of multiple container creation, but does not provide isolation

between tasks beyond the base case. As with the previous case, it also gives the

scheduler visibility into image locations.

4.4 Image Management

Considering a large scale workflow application running on thousands of workers,

the cost of moving the environment to each node can become a significant component

of the overall cost, depending on the form in which it is transferred and the source of

the transfer. There are three commonly used forms for communicating an executable

environment in Docker:

A dockerfile describes the entire procedure by which an image is built, start-

ing with the base operating system image, adding software packages, and running
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arbitrary commands until the desired result is achieved. Building an image from a

dockerfile is comparable to installing a new machine from scratch and could take any-

where from minutes to hours, depending on the number of layers involved. However,

a dockerfile is quite small (1KB or less) and is easily transferred across the system.

A binary image is the result of executing a dockerfile, and is the executable form

of a container ready for activation, with all files laid out into the form of a multi-layer

directory tree that can be directly mounted and used. The image is a binary object

required backend support of specific union filesystem and may not be appropriate for

portability or long term preservation.

A tarball is a more portable form of a binary container, in that all the layers of

the filesystem have been collapsed into a tree of files and directories encoded in the

standard tar format. A tarball is much more suitable for sharing and preservation,

but must be unpacked and encoded back into a binary image before it can be executed

directly by Docker. A tarball can be used directly by other technologies, such as a

chroot based sandbox.

By default, Docker encourages end users to create containers by pulling binary

images from the global image registry (i.e. Docker Hub). This would be the result

of using the Wrapper-Script method with reference to an image name. This method

is quite useful for sharing frequent-used container images over limited number of

computing nodes. But, when employing thousands of workers for a single workflow,

this could result in extraordinary loads on the public network. Further, using the

central hub may be inappropriate for images with security, copyright, or privacy

concerns.

Another approach would be using the workflow system to distribute the dockerfile

itself, relying on the workers to construct the desired images at runtime. This would

dramatically reduce the network traffic from workers pulling images, but would result

in all workers duplicating the same effort for minutes to hours to generate the same
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Figure 4.2. Container Creation and Deletion

resulting image. The effort would be better expended in one location before allocating

workers.

In the context of a large workflow on thousands of nodes, the most appropriate

solutions seems to be for the workflow manager itself to build the desired environment

image on the submit machine, either by executing a dockerfile or by pulling an image

from a repository. Once generated, that image can be exported from Docker as a

portable tarball and then included as an input dependency for each task. In this

way, if the submit machine is inside the network of the computing cluster, it can take

advantage of the existing file transfer mechanisms on the data center network, which

has much larger network bandwidth than the public network.

However, users of high-throughput workflows often create container images on

private workstation outside of the data center network. To study the system behavior

under this circumstance, following examples using the public registry for images

management, where they are pulled and installed.
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4.5 Experimental Evaluation

I evaluated each of the configurations above by implementing them as options

within Makeflow and Work Queue, then observed the performance of a large bioin-

formatics workflow on a Docker-enabled cluster. The cluster consisted of twenty-four

8-core Intel Xeon E5620 CPUs each with 32GB RAM, 12 2TB disks, 1Gb Ethernet,

running Red Hat Enterprise Linux 6.5 with Linux kernel 2.6.32-504.3.3.el6.x86 64

and Docker 1.4.1.

Before evaluating the workflow as a whole, I performed some basic micro-benchmarks

on a single machine to evaluate the low level performance of the container technol-

ogy. I employed sysbench to measure CPU performance and memory bandwidth,

netperf to evaluate the performance of TCP throughput both on and off the ma-

chine and bonnie++ to evaluate local disk performance. I expected (and confirmed)

that the CPU, memory, and network benchmarks would all result in virtually indis-

tinguishable performance between the host and container, since the container mech-

anism primarily affects the namespace of kernel objects and not the direct access to

machine resources.

However, based on previous reports, I expected to see that the I/O performance

within the container would take a significant penalty due to the use of union filesys-

tem. For example, Felter [49] mention that aufs should be avoided due to the

overhead of metadata lookup in each layer of the union filesystem. What I observed

was more difficult to characterize: generally, reads from aufs would see performance

similar to that of the host, while writes to aufs would be sometimes be faster than

the host, as changes were simply queued up until a later docker commit which would

flush changes out. The overall effect was very inconsistent performance, sometimes

better and sometimes worse than the host filesystem.

That said, aufs performance is less relevant in this setting because three of the
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configurations relies on mounting a sandbox directory from the host in order to access

workflow data. The performance of this mount was indistinguishable from the host.

The Worker-in-Container relies on aufs, but the size of the input file and output file

for each task are around 10MB to 20MB. To access small files like this, the difference

of I/O performance is negligible.

Where overheads were more clear was in the cost of creating and deleting con-

tainers at runtime. To evaluate this, I created a base operating system image, and

then progressively increased the size of the image by adding files. Then, I measured

the minimal container startup time by executing docker run debian /bin/ls and

then the time to delete the image after the command completed. Figure 4.2 shows

the average of ten startups and deletes at each size. I was surprised to see that the

startup time was essentially constant with respect to the image size, but the deletion

time increased linearly with the image size. These overheads have a significant effect

on workflow executions, depending on the container management strategy chosen.

To evaluate the overall system performance, I executed the BWA workflow in

each of the five container management configurations discussed above. Commonly,

there are three kinds of workflow, workflows which consist mainly of long-running

tasks, the ones that containes many short-running tasks, and the ones including both

type of tasks. For long-running tasks, in comparison to the overall execution time,

environment set up time is negligible. While the workflow has many short tasks gains

concrete benefits from shorter environment setting up time. In order to present the

maximum level of speedup gain from applying lightweight container technology, The

selected BWA workload consists of 4082 short-running parallel tasks.

The workload was run on a cluster, each task a single-core process, such that up

to 192 tasks (or containers) would run simultaneously. Workers were deployed onto

the cluster in each of the five configurations described earlier, with Makeflow running

on the head node to coordinate the computation.
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Figure 4.3 shows the results of each run, with each configuration in a row. The

first column gives the key details of the total runtime, the average execution time of

each task, and the average transfer performance between the master and the worker.

The second column gives a histogram of individual task execution times for the 4000

tasks of the workflow, while the third column gives a histogram of transfer rate of

individual file between the master and the worker to support each task.

As expected, the Base-Architecture has the fastest overall execution time (25

min) and a compact distribution of task execution times. The simplest extension,

the Wrapper-Script, has the worst performance of the five (38 min), primarily be-

cause each task must independently pull an image, execute the task, and then clean

up the image when done. The variation in task execution times is also much higher,

due to the interference between tasks managing images and doing work. Worker-

in-Container achieves faster and more compact task execution times but still pays

a penalty due to overhead applied to the worker itself. Containers-in-Worker shows

a slightly worse performance because each task must create and delete a container,

but the worker handles the image management. Finally, the Shared-Container case

achieves performance very close to that of the Base-Architecture, because the con-

tainers are created once per worker, and then shared among up to eight tasks simul-

taneously.

I included the file transfer histograms because I expected to see some variation in

transfer performance, particularly in the case of the Worker-in-Container. However,

I do not see any differences significant enough to draw conclusions.

As can be seen the selection of a strategy for managing containers within a work-

flow has a significant impact upon the bottom line, primarily due to the non-trivial

expense of booting and removing containers. A tradeoff must be made between

achieving complete isolation and maximum performance.
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Worker in Container
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Transfer rate: (113 +/- 13)MB/s

 1

 10

 100

 1000

 10000

 0  10  20  30  40  50

#
 T

a
s
k
s

Execution Time (s)

 1

 10

 100

 1000

 10000

 0  20  40  60  80  100  120

#
 T

ra
n

s
fe

rs

Transfer Speed (MB/s)

Container in Worker
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Shared Container
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Figure 4.3: Workflow Performance for Each Configuration: In each row of the table,
details of the configuration, task execution time histogram and task transfer rate
histogram are presented. (1) for configuration details, total execution time, average
execution time +/- standard deviation, average transfer rate +/- standard deviation
are given (2) for task execution time histogram, The frequencies of tasks execution
time in different time intervals are presented. The x-axis is the time intervals and the
y-axis is the number of tasks in certain time interval. (3) for task transfer rate his-
togram, we show the frequencies of tasks’ file transfer rate in different time intervals.
The x-axis is the time lapse and the y-axis show the number of tasks.
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4.6 Conclusions

With the advent of container technology, many of the benefits of traditional vir-

tualization can be achieved at significantly lower cost. However, as I have shown,

the costs of instantiating and managing a large number of containers can lead to

significant system overheads, and efficiently using container technologies with large

computational framework is still an open challenge. In this chapter, I compared four

configurations of integrating container runtimes into different components of existing

workflow system. I evaluate these configurations by running a large bioinformatics

workflows with them and considering tradeoffs between performance, isolation, and

consistency. The results show that for large workloads including thousands of tasks,

launching and removing large amount of containers cause notable overheads. The

overheads can be eliminated by sharing containers across multiple tasks in the cost of

losing isolation for each task. More broadly, the design factor derive from this work is

that container runtimes must be adapted to the distributed environment,

and the under-lying distributed systems best does the management of con-

tainers, rather than simply leaving it to the user to invoke a container from within

each task.
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CHAPTER 5

USING CONTAINER ORCHESTRATOR

5.1 Introduction

With the prevalence of container technology, container orchestrators have been

widely used as a new means for managing resources on the cloud. In the last chapter,

I suggested that container management is better done by the lower layer distributed

system. Therefore, rather than developing dedicated container scheduling systems for

HTC workflows, a better solution might be running HTC workflows on the leading

container orchestrators that have been optimized for managing containers at scale.

The work described in this chapter has been published as paper ”Deploying High

Throughput Scientific Workflows on Container Schedulers with Makeflow and Mesos”

in 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing.

Even though container orchestrators have been widely adopted to run the com-

mercial workflow, there are few use cases about using them for HTC workflows.

Therefore, there might exist incompatibilities between HTC and container orchestra-

tors. To explore the possibility of running HTC workflows on container orchestrators,

I considered four configurations of connecting Makeflow and Work Queue to Apache

Mesos:

1. running workflows directly on Mesos with Makeflow;

2. running Makeflow on Mesos with Resource Monitor which measuring and up-
date resource requirement of tasks at real-time;

3. setting up Work Queue framework on the Mesos cluster and running Makeflow
on Work Queue;
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4. setting up Work Queue framework on Mesos, launching Makeflow on Work
Queue, and enabling Resouce monitor to update resource requirements of tasks
at real-time.

To evaluate these configurations, I run the SHRiMP workflow with them, which

consists of 5079 parallel tasks and transfers 10148 small files during the runtime.

I observe that Work Queue can help to avoid resource starvation with fewer user

interference and increase the average transfer throughput; and by using Resource

Monitor, the resource usage has been greatly increased. Through this work, I sum-

marize three design factors: Garbage Collection – timely garbage collection (i.e.

removing intermediate data that is no longer needed) is necessary given the massive

amount of intermediate data generated by HTC workflows; Network Connection

– excessive network connections should be avoided considering the large amount of

small transmissions during the runtime; and Resource Management – resource

management mechanisms should be customized based on the characteristics of the

objective workflow.

5.2 Challenges with Container Orchestrators

HTC workflows from different domains have several common features:

1. tasks of HTC workflows might have intricate dependencies, large workflows
often group tightly coupled tasks into the same phase and execute each phase
sequentially;

2. HTC workflows often consist of heterogeneous tasks that can be either short (i.e.
seconds) or long (i.e. hours), which requires sophisticated resource management
mechanism;

3. HTC workflows usually generate a hundred gigabytes of intermediate data,
which can result in high I/O and storage pressure;

4. resource requirement of tasks are usually unknown in advance;

These features pose five challenges to users who plan to scale up HTC workflows

on container orchestrators.
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First, the default framework scheduler of Mesos cannot synchronize the workflow

status between Makeflow and Mesos. Thus the workflow scheduler must be aware of

the completion of tasks on Mesos side, and inform Makeflow to dispatch ready tasks

of the next phase.

Second, as many tasks are running concurrently during runtime, an enormous

amount of data fetching requests are generated simultaneously, which may results

in network congestion on the client-side. When a Mesos agent starts running a new

task, an internal fetcher process tries to fetch inputs of the task simultaneously. As

many tasks are running concurrently, and all input files of a workflow are normally

located in the same host, the host has to handle hundreds of fetch requests. Thus

the fetching process may become the bottleneck of the whole system.

Third, delayed garbage collection can cause disks to be filled up quickly. By

default, rather than sending results back to the user after the tasks complete, Mesos

agents temporarily store results in executors’ sandboxes and mark them as garbage.

By default, Mesos agent collects garbage in one week. Even though delay time can

be set as short as one day, it is still too long for HTC facilities. In my experience,

five runs of SHRiMP workflows on Mesos cluster that has 26 nodes can produce

83GB to 119GB of intermediate data on each node in just one day, and there are

usually far more than five workflows being launched on the cluster every day. Another

option to reduce the garbage collection cycle is setting a threshold of maximum disk

usage. However, the threshold can only be set on a cluster level, which affects other

workloads, and some workloads might prefer to keep results on the cluster.

Fourth, as HTC workflows might contain long-running tasks that occupy multiple

resource slots for a long time, other workloads running on the same cluster might

suffer from resource starvation and the rules of fairness between workloads can be

broken.

Fifth, the core idea of Mesos’s resource scheduler is the two-level resource match-

46



(a) Makeflow on Mesos

(b) Makeflow and Work Queue on Mesos

Figure 5.1: System architectures

ing, which matches resource requests proposed by users with resource offers rendered

by computing nodes. This mechanism requires users to specify the resource require-

ment of each container. However, users of HTC workflows usually do not know the

resource requirement of tasks in advance. Even though experienced users might be

able to provide a coarse-grained prediction, it is far from optimal.

5.3 Proposed Solution

To cope with above challenges, I consider four configurations for launching scien-

tific workflows on Mesos with Makeflow and Work Queue. In order to make the best

use of Mesos’s two-level scheduler, in two of the configurations, I enable the Resource

Monitor of Makeflow, which keeps monitoring the resource consumption of each task

and provide a real-time resource usage evaluation.
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5.3.1 Makeflow and Mesos

The first configuration is connecting Makeflow to Mesos directly. Shown in fig-

ure 5.1a, I develop the Makeflow Mesos Scheduler (MMS) to connect them. During

the runtime, Mesos executes each task with an independent executor on an available

agent. Next, two daemon threads are spawned by Mesos scheduler, one is responsi-

ble for polling the file that has information of ready tasks, and another one starts

an HTTP server for handling file fetching requests from executors. Since some of

the tasks share the same inputs, to mitigate the network pressure, I cache inputs on

Mesos’s agent.

Figure 5.1a shows how does MMS work: i) Makeflow writes the information of

ready tasks to a file; ii) the task monitor poll information of ready tasks; iii) MMS

sends resource requests to the Mesos master; iv) Mesos agents register resource of-

fers with Mesos master; v) Mesos master advertises resource offers to the workflow;

vi) scheduler assigns offers to proper tasks, and launches an executor on agents that

provide offers; vii) executors retrieve inputs from client or cache directory if exist;

viii) executor run tasks; ix) after tasks complete, executors send output URIs to

scheduler; x) scheduler retrieves outputs from executor’s sandbox and deletes the

outputs; xi) scheduler writes the information of finished tasks to file; xii) Makeflow

keeps checking whether there are new finished tasks and mark them as completed.

This configuration is straightforward and resolves the first three design challenges.

It uses one daemon thread with scheduler and one sub-process with Makeflow to

synchronize the workflow status between Makeflow and Mesos. For bandwidth issue,

I implement an HTTP server with a thread pool on the scheduler side, which handles

each fetching request by an independent thread. The HTTP server limits the number

of threads to 30 and maintains a request queue to cache the incoming requests when

no thread is available. To avoid resource starvation, there exist two options, i) running

long tasks locally, or ii) limiting the resource quota for frameworks that have long
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tasks. The first option will not work if target workflows contain many long tasks,

while the second option requires users to extend the default resource allocator, which

is not trivial. To prevent disks from being filled up quickly, I implement a customized

executor, which deletes intermediate data after they are retrieved.

The remaining hurdle is, how to provide accurate task resource requirements.

Imprecise resource requirements can result in long workflow execution time or low

cluster resource usage.

5.3.2 Makeflow, Work Queue, and Mesos

The second configuration I tried is using Work Queue as the workflow execution

layer between Makeflow and Mesos (see figure 5.1b). The main idea of this setting is

relying on Work Queue factory, which sets up Work Queue framework on Mesos.

The configuration works as follows: i) the Work Queue factory creates a Work

Queue master; ii) the Work Queue master is linked to the Makeflow through a catalog

server; iii) the Work Queue master writes the ready workers’ information to a file;

iv) the MMS keep polling the text file, get information of ready workers; v) the Mesos

scheduler submits tasks of launching workers for Mesos master; vi) Mesos agents

render resource offers to the Mesos master; vii) the Mesos master advertises resource

offers to the Mesos scheduler; viii) the Mesos scheduler match resource offers with

proper workers, and then launches workers on agents provided offers, each worker is

treated as a task and run in an executor; ix) Work Queue workers work for the master,

execute tasks of the workflow, x) the Work Queue master informs Makeflow about

the completion of tasks; x) after the workflow completes, workers are deactivated;

xi) status monitor of the worker keeps checking the list of deactivated workers and

informs the factory to remove them.

Compare to the first configuration; this configuration addresses the issue of re-

source starvation by limiting the resources quota of each workflow. Specifically, work-
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ers are run with fix amount of resources. As Work Queue extends the semantics of

Makeflow, Mesos is transparent to Makeflow and Work Queue can delete all interme-

diate data for Makeflow, the default executor can work just fine.

However, this approach creates a new problem: how many resources does each

worker require? If the resource requirement of each task is unknown, how many tasks

a worker can run parallelly? Considering two harmful use cases: few tasks are run

on a worker, which can lead to inefficient resource usage and reduced throughput;

too many tasks run on a worker, which can result in resource contention and reduced

performance.

5.3.3 Enable Resource Monitor

To pair up resource offers with tasks, both of the above configurations rely on

resource requirements provided by users. However, it is rarely possible for average

users to provide accurate resource requirements. To remedy this problem, I run the

Resource Monitor with the Makeflow to measure and update task resource require-

ments in real-time. The system works as before, except that each Makeflow task

is run with a Resource Monitor thread. Initially, tasks use all available resources

in a worker, and the peak resource consumption of tasks are collected. When re-

source consumption of a completed task is reported, task resource requirements in

the same category are updated. With the known resource requirements, the Work

Queue worker is able to run multiple tasks concurrently. Following is a Makeflow file

includes rules of Resource Monitor.
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.MAKEFLOW CATEGORY l o c a l s p l i t

subseq . 1 . . subseq . 5 0 7 9 : seq . inp s p l i t r e a d s . py

LOCAL python s p l i t r e a d s . py 5079 seq . inp

.MAKEFLOW CATEGORY remote map

.MAKEFLOW MODE MIN WASTE

output . 1 : seq . t a r g e t subseq . 1 rmapper

. / rmapper subseq . 1 seq . t a r g e t > output . 1

. . .

output . 5 0 7 9 : seq . t a r g e t subseq .5079 rmapper

. / rmapper subseq . 1 seq . t a r g e t > output . 1

.MAKEFLOW CATEGORY loca l combine

output : output . 1 . . output .5079 combine . sh

LOCAL . / combine . sh

Above Makeflow file classify tasks into three categories: i) local split, which con-

tains one task that splits the input sequence into 5079 sub-sequences and run locally

without resource reinforcement; ii) remote map, which consists of 5079 tasks with

each aligning a sub-sequences to a portion of the target sequence, tasks of this phase

run on Mesos with the MIN WASTE mode enabled, which starts a reinforcement

loop that uses a small portion (100 by default) of tasks to collect resource con-

sumption data and update resource requirements of waiting tasks dynamically; (3)

local combine, which combines all the results generated by tasks from the second
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phase and generates the final output.

5.4 Experimental Evaluation

5.4.1 Experimental Setup

To measure the performance of the above four configurations – i.e. Makeflow and

Mesos; Makeflow, Resource Monitor and Mesos; Makeflow, Work Queue and Mesos;

Makeflow, Work Queue, Resource Monitor and Mesos. I run each configuration with

the SHRiMP workflow on the cluster which consists of twenty-four 8 core Intel Xeon

E5620 CPUs each with 32 GB RAM, 12 2TB disks, 1GB Ethernet, running Red Hat

Enterprise Linux 6.8 with Linux kernel 2.6.32-642.6.1.el6.x86 64 and Mesos 0.26.

To stress the problem of low resource usage caused by inaccurate resource esti-

mation. I assume that a greedy resource plan is provided initially, which requires 4

CPUs, 5120 MB of memory and 5120 MB disk for each task. For the same reason,

when using the Work Queue, I assign 4 CPUs, 5120 MB of memory, and 5120 MB

disk to each worker.

TABLE 5.1

PERFORMANCE SUMMARY OF EACH CONFIGURATION

Makeflow,

Mesos

Makeflow, Mesos,

Resource Monitor

Makeflow, Mesos,

Work Queue

Makeflow, Mesos,

Work Queue,

Resource Monitor

Total Exec Time (Hours) 11.17 6.7 8.97 5.37

Average Task Exec Time (Seconds) 408 445 327 355

Average Transfer Rate (MB/S) 43.11 26.88 106.87 104.66

Average CPU Usage (#used/#allocated) 0.500 0.976 0.501 0.975
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5.4.2 Results and Analysis

Table 5.1 presents four system metrics: workflow execution time, average task

execution time, average transfer rate between the Makeflow and the Mesos agent, and

the average CPU usage. To illustrate how different data transmission mechanisms can

affect the performance of the workflow. I include the data transmission time as part

of the task execution time. Figure 5.2 presents the task execution time histogram and

transfer throughput histogram with each row represents a configuration respectively.

The first column gives a histogram of individual task execution times of 5079 tasks

and the second column include histograms of transfer rate. Figure 5.3 shows the

histograms of the number of cores being allocated/used. The first column gives the

complete CPU usage, during the second column zooms in and illustrates the CPU

usage during the first 30 minutes.

Makeflow
and

Mesos  0.1

 1

 10

 100

 1000

 10000

 0  50  100 150 200 250 300 350 400 450 500 550 600 650

#
 
T
a
s
k
s

Execution Time (Seconds)

 0.1

 1

 10

 100

 1000

 10000

 0  20  40  60  80  100  120  140  160

#
 
T
a
s
k
s

Transfer Throughputs (MB/s)

Makeflow,
Resource Monitor

and Mesos  0.1

 1

 10

 100

 1000

 10000

 0  50  100 150 200 250 300 350 400 450 500 550 600 650

#
 
T
a
s
k
s

Execution Time (Seconds)

 0.1

 1

 10

 100

 1000

 10000

 0  20  40  60  80  100  120  140  160

#
 
T
a
s
k
s

Transfer Throughputs (MB/s)

Makeflow,
Work Queue,

and Mesos  0.1

 1

 10

 100

 1000

 10000

 0  50  100 150 200 250 300 350 400 450 500 550 600 650

more compact
execution time

#
 
T
a
s
k
s

Execution Time (Seconds)

 0.1

 1

 10

 100

 1000

 10000

 0  20  40  60  80  100  120  140  160

high and compact
       throughput

#
 
T
a
s
k
s

Transfer Throughputs (MB/s)

Makeflow,
Work Queue,

Resource Monitor,
and Mesos  0.1

 1

 10

 100

 1000

 10000

 0  50  100 150 200 250 300 350 400 450 500 550 600 650

failed due to
out of memory

#
 
T
a
s
k
s

Execution Time (Seconds)

 0.1

 1

 10

 100

 1000

 10000

 0  20  40  60  80  100  120  140  160

#
 
T
a
s
k
s

Transfer Throughputs (MB/s)

Figure 5.2: Task Execution Time and Transfer Rate, In each row of the table, task
execution time histogram and transfer throughput histogram of each configuration
are presented.
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Figure 5.3: CPU Usage Rate, Each row shows the complete CPU usage timeline, and
the CPU usage timeline of the first 30 minutes are presented. The total number of
available cores is 208. The solid line depict the number of allocated cores, and the
dashed line depict the number of cores in use.

As shown in table 5.1, running Makeflow directly on Mesos has the longest work-

flow execution time (11.17 hours) with a low average CPU usage (0.500). Shown in

the first column of the first row in the figure 5.3, during the runtime, only half of

the allocated cores are in use. The average task execution time is 408 seconds, which

is longer than the configurations using Work Queue. This is due to the repetitive

setting up of TCP connections. After Mesos master assigns a task to an executor,

the file fetcher fetches each input file of the task with an independent HTTP request.

Moreover, after the task is complete, the scheduler retrieves each output file with an

HTTP GET request. As there are an enormous amount of small files (i.e. 10150 small

files with each file has a size range from 70 bytes to 1 MB) transferred during the

runtime, TCP connections are repetitively set up, which also results in lower average

transfer rate (i.e. 43.11 MB/S) comparing to other configurations.
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As expected, by using Resource Monitor, the resource usage is increased from

0.5000 to 0.976, which also shorten the workflow execution time (6.7 hours). Shown

in the second column of the second row in the figure 5.3, the number of cores in use

are gradually increased during the first 20 minutes, and finally reach the number of

allocated cores. Therefore, even though the average task execution time is still long,

the overall performance is improved by 1.67×. By using Work Queue, the average

task execution time is shortened. Work Queue worker reuses a single TCP connection

to handle all the data transmission. Even though this configuration achieves a better

overall performance, it still pays the penalty due to the waste of resources. I remedy

this problem by running the Work Queue with Resource Monitor, which further

reduces the workflow execution time to 5.37 hours.

5.5 Conclusion

In this chapter, I exploit the possibilities of running workflow systems on container

orchestrators. I list five design challenges and try to resolve them by using four

configurations, which combine Makeflow, Work Queue, and Resource Monitor in

different ways. To compare the four configurations, I run the SHRiMP workflow. The

experimental results show that by using Work Queue and Resource Monitor, both

performance and resource usage are improved by up to 2×. Consequently, I conclude

that when running HTC workflows on container orchestrators, three important factors

that need to be considered are: Garbage Collection, Network Connection, and

Resource Management.
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CHAPTER 6

DISTRIBUTED CONTAINER RUNTIME

6.1 Introduction

So far, I have attempted to integrate container runtime into workflow systems and

bridge workflow systems to container orchestrators. In this chapter, I will show how

to adapt popular container runtime to the distributed environment in general, which

can then benefit workflow systems running in it. The work described in this chapter

has been published as paper ”Wharf: Sharing Docker Images in a Distributed File

System” in ACM Symposium on Cloud Computing.

Docker as one of the most popular container runtime, has been widely deployed

across public clouds and private clusters. Docker provides a set of interfaces, imple-

mented by the Docker daemon, which allow users to conveniently package an appli-

cation and all its dependencies in images and to start containers from these images.

To facilitate image storing and sharing, Docker provides a registry service which acts

as an image repository. Daemons can push/pull images to/from the registry and run

them locally.

In Docker, each daemon process is shared-nothing, i.e. it pulls and stores images

in local storage and starts containers from the local copies. This design introduces a

tight coupling between the daemon and the node’s local storage. However, considering

the rate at which containers start in cloud environments [44] and the low startup

latencies required for micro services [90], this tight coupling leads to four major

problems: i) if containers start from the same image on different nodes, the image
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exists on all of the nodes, this wastes storage space; ii) large-scale applications often

consist of thousands of identical tasks, which are distributed across a large number

of nodes, to run such an application, each node has to pull the same image from

a Docker registry to its local storage, this wastes network bandwidth and increases

the application startup time; (iii) while only 6.4% of the image data is read

by containers on average [57], each node pulls the complete image from

a registry, which further wastes storage space and network bandwidth;

(iv) some clusters, e.g., in HTC environments, only offer shared storage while compute

nodes themselves are diskless [54, 104], which prohibits running containers in such

environments.

To solve these problems and exploit the benefits of a highly scalable shared

storage layer [78], I suggest that the architecture of the container runtime should

be able to provide a way of storing images in a shared file system, and each daemon

should only maintain the minimum necessary private state. In addition, I present

Wharf, a system for efficiently serving container images from a shared storage layer

such as NFS [80] or IBM Spectrum Scale [19]. Wharf enables distributed Docker

daemons to collaboratively retrieve and store container images in shared storage and

create containers from the shared images. Wharf significantly decreases network

and storage overheads by holding only one copy of an image in central stor-

age for all daemons. Designing Wharf requires careful attention to the semantics

of operations on container images to ensure consistency, scalability, and performance.

Wharf exploits the structure of Docker images to reduce the synchronization over-

head. Images consist of several layers which can be downloaded in parallel. Wharf

implements a fine-grained layer lock to coordinate access to the shared image store.

This allows daemons to pull different images and different layers of the same image

in parallel and therefore increase network utilization and avoid excessive blocking.

Wharf splits the data and metadata of each daemon into global and local state to min-
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imize the necessary synchronization. Additionally, using the layer lock, Wharf

ensures that only consistent layer state can be seen by each daemon and

prevents the entire cluster from failing when single daemons fail.

Wharf is designed to be transparent to users and allows to reuse existing Docker

images without any changes. Wharf is independent of the distributed storage layer

and can be deployed on any storage system, which provides POSIX semantics. Wharf

currently supports two common Docker copy-on-write storage drivers – i.e. aufs [7]

and overlay2 [32]. Furthermore, a generic principle I learned from Wharf is that

when using container runtime in distributed environment, one should consider opti-

mizaing Image Management mechanism by using distributed storage.

6.2 Design

In this section, I discuss how to run Docker on distributed storage. I first describe

the naive approach, which is inherently supported by Docker, and discuss its short-

comings (subsection 6.2.1). I then introduce the design goals for a native, efficient

integration of Docker with distributed storage (subsection 6.2.2).
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Figure 6.1. Docker on distributed storage, naive solution

6.2.1 Naive Solution

In its current deployment mode, Docker assumes that local storage is used exclu-

sively by a single daemon. The daemon uses this storage to store image and layer

data, and metadata on the state of the daemon and its running containers. Hence,

two daemons cannot operate on the same storage as they would override each other’s

state. This does not only hold for multiple daemons accessing the same shared storage

but also for multiple daemons on the same host, accessing the same local storage.

The simplest way of enabling Docker to run on distributed storage is to partition

the distributed storage. Each daemon receives its own partition where it can store

all of its state and image data (see figure 6.1). The partitioning can be physically
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done as part of the storage or simply by assigning each daemon a different directory.

This approach is supported by Docker today without any additional implementation

effort, as long as the underlying storage exposes a POSIX interface.

While this design is simple, it comes with several shortcomings: i) it does not

solve the problem of redundant pulls during a large-scale workload, each daemon still

has to pull an image separately and store it in its partition, which leads to both

network and storage I/O overhead and increased container start-up latencies; ii) it

over-utilizes storage space because a copy of the image has to be stored for each

daemon, as image garbage collection is still challenging, it is a common problem for

Docker users to run out of disk space due to unused images/containers not being

removed, which can quickly lead to high storage utilization; iii) image pull latencies

can be much higher – up to 4× longer in our experiments – compared to Docker on

local storage, due to extra data transfers between the daemon and the distributed

storage.

6.2.2 Design Goals

The above issues suggest that the naive approach is not sufficient to successfully

integrate Docker with a distributed storage layer. Based on the shortcomings of the

naive solution, I identify five main design goals for a native integration approach.

1) Avoid redundancy. To efficiently run on distributed storage, a native so-

lution needs to avoid redundant data transfers. If an image is required by multiple

daemons, it should only be retrieved and stored once. Additionally, all daemons

should be aware of the existing layers. If an image requires layers that are already

present in the distributed storage, only the missing layers should be pulled.

2) Collaboration. Docker daemons should work together collaboratively to en-

sure correct and efficient operation. For example, images can be pulled in parallel by

multiple daemons to speed up pulling as more resources are available. Furthermore,
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coordination is necessary to prevent individual daemons from deleting images if they

are still in use by other daemons.

3) Efficient synchronization. When multiple daemons access the same storage,

locking and synchronization between the daemons is necessary to avoid race condi-

tions. To minimize the impact on container startup times, synchronization should

be lightweight and exploit Docker’s layered image structure, i.e. accesses should be

synchronized at layer rather than image granularity.

4) Avoid remote accesses. As data is now accessed remotely from the shared

storage layer, additional latency is induced for read/write operations. This can im-

pact both Docker client calls and the workload running inside a container. In the

worst case, when connectivity drops due to network failures, the entire container can

stall until the connection is restored. Hence, the amount of necessary remote accesses

should be minimized.

5) Fault Tolerance. The system as a whole must stay operational even if one

or several individual daemons fail, i.e. a failing daemon should not corrupt the global

state and pending operations should be finished by the remaining daemons.

6.3 Wharf

Based on above goals, I design a distributed version of Docker, i.e. Wharf, , which

meets the above described design goals. Wharf allows Docker daemons based on the

same distributed file system to collaboratively download and share container layers

and thereby, reduce storage consumption and network overhead. First, I discuss the

overall architecture of Wharf (figure 6.3.1) which addresses design goal 1) and then

explain fine-grained layer locking (figure 6.3.2) which implements design goals 2) and

3). Next, I describe Wharf’s local write optimization ( figure 6.3.3) to address design

goal 4) and finally discuss Wharf’s approach to fault tolerance (design goal 5) in

figure 6.3.4.
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6.3.1 System Architecture

The core idea of Wharf is to split the graph driver contents into global and local

state and synchronize accesses to the global state. Global state contains data that

needs to be shared across daemons, i.e. image and layer data, and static metadata

like layer hierarchies and image manifests. It also includes runtime state, e.g., the

progress of currently transferred layers, relationships between running containers,

and pulled images and layers. Global state is stored in the distributed file system to

be accessible by every daemon.

Local state is related to the containers running under a single daemon, such as

network configuration, information on attached volumes, and container plugins, such

as the Nvidia GPU plugin, which simplifies the process of deploying GPU-aware

containers. This data only needs to be accessed by its corresponding daemon and

hence, is stored separately for each daemon. Local state can either be stored on a

daemon’s local storage or on a separate location in the distributed file system.

Splitting the graph driver content into global and local state ensures that all

image-related information is stored once and not duplicated across different daemons.

This addresses design goal 1) as no redundant information is retrieved or stored.
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Figure 6.2. Wharf architecture

The architecture of Wharf is shown in figure 6.2. It consists of three main compo-

nents: Wharf daemons, an image management interface, and a shared store for data

and metadata.

1) Wharf daemons. Wharf daemons run on the individual Docker hosts and

manage their own local state for their local containers. When a Wharf daemon

receives a request to create a container, it sets up the container root file system such

that the writable layer is stored at a private, non-shared location and the read-only
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layers are read from the distributed file system. Wharf daemons exchange information

via updating the global state on the distributed file system but do not communicate

with each other directly.

2) Image management interface. The image management interface is the

gateway through which Wharf daemons access the shared global state. It ensures

that concurrent accesses are synchronized by locking the parts of the global state

which are updated by a Wharf daemon. This keeps the global state consistent. The

image management interface offers different ways of implementing a distributed lock,

e.g., using zookeeper [60] or etcd [17], if these systems are available. If supported by

the underlying file system, Wharf can also rely on file locking (fcntl() interface) for

access synchronization. This approach is highly portable as it does not require any

additional external services.

3) Shared store. The shared store hosts all global state and is split into two

parts. The Shared Content Store contains the data of the readonly layers and the root

file systems of the running containers. The Shared Metadata Store holds the metadata

on which layers and images exist (Shared Layer Store and Shared Image Store), are

currently being pulled (Shared Transfer Store), and currently being referenced by

containers (Shared Reference Store). Each of these metadata stores can be locked

individually. The metadata is concurrently readable by multiple daemons, but can

only be updated by one daemon at a time. Any attempt by a daemon to access a layer

from the Shared Content Store requires it to first read the Shared Metadata Store

and check the status of the layer, i.e. whether it already exists, is currently being

pulled, or is referenced by a running container. As write access to the metadata is

protected, daemons are guaranteed to have a consistent view of the Shared Content

Store.
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6.3.2 Layer-based Locking

Design goals 2) and 3) state that locking should be efficient and daemons should

collaborate with each other when retrieving or deleting images. Wharf achieves this

by exploiting the layered structure of Docker images and implements layer-based

locking as part of the image management interface. Layer-based locking allows Wharf

daemons to write to the shared store by adding single layers rather than an entire

image. Read accesses do not have to be synchronized. This means that multiple

Wharf daemons

1. can collaboratively pull different layers of an image in parallel;

2. only lock a small portion of the shared store such that unrelated, parallel op-
erations are unaffected;

3. do not pull or remove the same layer at the same time to avoid redundant work;

4. and can read data from the same layer in parallel.
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Figure 6.3. Implementation of concurrent layer pulling

Figure 6.3 shows how an image is pulled in parallel under layer-based locking. In

Docker, a daemon can start multiple transfers and each transfer is responsible for

pulling one layer. Each transfer has two states: running and waiting. By default,

each daemon has 3 threads for pulling layers in parallel.

When a daemon receives a layer pulling request, it will create a Master Transfer

and register it in a local map data structure (Local Running Transfers). If all pulling

threads are busy, the daemon will add the request to the Local Waiting Transfers

queue for later processing, once a thread becomes available. If another client tries

to pull a layer that is already being pulled by the daemon, the daemon will create a

Watcher to report the pulling progress back to the client.
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In Wharf, pulls not only have to be coordinated across multiple local clients but

also across multiple remote daemons (and their clients). Therefore, Wharf uses three

additional map data structures, Global Running Transfers, Global Waiting Transfers,

and Global Complete Transfers, which are serialized and stored in the Shared Transfer

Store on the shared storage. Write access to the Shared Transfer Store is protected

by a lock.

Each time a Wharf daemon tries to pull a layer, it will first check the Global

Running Transfers map for whether the requested layer is already being pulled by

another daemon. If not, it will create the Master Transfer and add it to both the

Local and Global Running Transfers. Waiting transfers are also registered in both

the local and global data structures. Daemons are responsible for removing waiting

transfers from the global map once they start retrieving the corresponding layer.

If a Wharf daemon finds that a layer is already being pulled by another daemon,

it will create a Dummy Transfer and add it to the list of running transfers. The

Dummy Transfer is a placeholder to transparently signal the client that the layer is

being pulled without actually occupying a thread. Each daemon runs one background

thread to periodically check, whether a Master Transfer for a corresponding Dummy

Transfer has finished. Therefor, it polls the Global Complete Transfers map where

finished Master Transfers are registered.

By using layer-based locking, Wharf accelerates image transfers for large images,

which consist of multiple layers and are required by many daemons. It also avoids

redundant layer pulling and increases the layer usage as it can now be shared by

containers across different daemons. To avoid potential conflicts caused by deleting

layers that are currently in use by other daemons, Wharf uses a global reference

counter for each layer. A layer can only be deleted from the Global Layer Store if its

reference counter is 0.
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6.3.3 Local Ephemeral Writes

In a typical Docker deployment the root file system of a container is ephemeral,

i.e. the changes written to the file system while the container is running are discarded

after the container stops. This translates to the removal of the writable layer by the

underlying storage driver. User applications frequently create substantial amounts

of intermediate data in the root file system which inflates the writable layer. Fur-

thermore, overlay storage drivers, like overlay2 and aufs, copy the whole file to the

writable layer even when only a small portion of the file is modified. This leads to

significant write amplification at the file system-level compared to the user writes.

Docker typically stores writable and readable layers in the same file system. In

case of a distributed file system, this translates to a large quantity of ephemeral con-

tainer data being transferred across the storage network, adding network and remote

storage server overhead. Unlike Docker, Wharf stores writable and readable layers

in two separate locations. Specifically, Wharf puts the writable layers of running

containers on locally attached storage while readonly layers are stored in the shared

storage so that any daemon can access it. This design addresses design goal 4) by

decreasing the amount of writes to the distributed file system.

6.3.4 Consistency and Fault Tolerance

To achieve design goal 5), Wharf requires a strong consistency model for its global

state and needs to deal with daemon crashes.

Consistency. As mentioned in section 6.3.2, a fine-grained layer lock is used

to synchronize the global image and layer state between daemons. While the global

state can be read by multiple daemons simultaneously, it can only be written by

one daemon at a time. Additionally, global metadata cannot be cached locally at

daemons to prevent them from operating on stale data. Exclusive writes combined
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with no caching of state provides the necessary strong consistency of the global state

across daemons and makes sure that daemons always operate on the same metadata

view.

When a daemon performs an operation that requires updating image data, e.g.,

pulling a new image or layer, it proceeds in three steps: i) It goes through a metadata

phase in which it locks the necessary part of the global state and registers its actions,

e.g., pull layer l1, if no other daemon is already performing the same action. It then

releases the lock; ii) it then continues with a data phase during which the actual data

is retrieved; iii) finally, if the operation was successful, it again acquires the necessary

metadata lock and updates the metadata. As the data phase is always preceded by

a metadata phase, no two daemon can perform the same action twice.

Fault Tolerance. Wharf needs to deal with two types of failures: First, Wharf

needs to handle the case of a daemon crash while that daemon is still holding a lock.

In such a case, the entire system can be stalled if the lock is not released correctly.

To avoid such a situation, Wharf uses lock timeouts after which any lock will be

released automatically. As daemons only need to acquire a lock to access metadata,

the periods during which a lock is required are short and hence, timeouts can be set

to low values (e.g., 1 s).

Second, Wharf needs to handle daemon crashes during data phases. If a daemon

crashes while pulling a layer, the corresponding image (and all other images that

depend on that layer), will never finish pulling. To continue downloading an image

after a daemon crashes, Wharf daemons use heartbeats. Heartbeats are periodically

sent and the last heartbeat timestamp is stored with the transfer in the Global

Running Transfers map. This allows other daemons to check, whether a daemon is

still pulling its layer or has crashed. In case of a crash, a new daemon can continue

the transfer.
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6.4 Implementation

Next, I describe implementation details of Wharf. I first describe how Wharf

is able to share global state between the individual daemons (section 6.4.1) and

then explain how images can be pulled collaboratively in parallel (section 6.4.2).

The described implementation adds approximately 2,800 lines of code to the Docker

code base. To run Wharf, the user only has to run the Docker daemon with the

shared-root parameter set. All other commands can be used without any further

changes for the user.

6.4.1 Sharing State

To efficiently share the global state between daemons, Wharf has to deal with

two main problems: distributed synchronization for access to the global state and

in-memory caching of state in individual daemons.

Docker uses three main structs which store the global state:

1. LayerStore for information on available layers (readonly and writable layers);

2. ImageStore for information on local images (storage backend and image meta);

3. ReferenceStore, which includes the references to all available images.

Each daemon keeps an in-memory copy of these data structures and can generate

them by reloading the directory that holds the persistent state of the daemon. To

accommodate multiple concurrent clients, a Docker daemon protects its in-memory

state via a mutex.

Wharf extends the design of Docker by serializing the above data structures and

to make them available to all daemons, it stores them in the shared storage. It uses

a distributed locking mechanism to synchronize accesses. Read accesses can happen

concurrently and only require a read-only lock whereas write accesses require an

exclusive lock on the part of the state that should be updated.
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By default, Wharf uses the fcntl system call to implement the locking. As

fcntl is supported by most distributed file systems, this approach can be used out-

of-the-box without extra software and library dependencies other than what Docker

requires. Via Wharf’s Image Management Interface, it also allows users to replace

the default file-based locking with, e.g., an in-memory key/value store.

As multiple daemons can now update the global state, the in-memory state of

an individual daemon can become invalid. Hence, before reading from their in-

memory state, daemons have to check whether the global state has been updated.

To ensure daemons always have the latest version of metadata before processing any

operation, Wharf applies a lazy update mechanism, which only updates the cache

of an individual daemon if the operation requires metadata access. Wharf updates

its in-memory data structures by deserializing the binary files from the distributed

storage and overwrite its in-memory data with the retrieved data.
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6.4.2 Concurrent Image Retrieval
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Figure 6.4. Layer pull procedure in Wharf

When pulling an image concurrently, Wharf daemons need to collaborate such

that no redundant data is pulled. To enable multiple daemons to pull layers con-

currently, Wharf extends the layer transfer model of Docker by adding two new

components: the SharedTransferManager and the SharedTransferStore, to com-

72



municate between daemons. The SharedTransferManager is the distributed version

of Docker’s TransferManager struct while the SharedTransferStore is part of the

global state and also serialized to the shared storage. Figure 6.4 describes in detail

how an image is pulled in parallel by multiple Wharf daemons if they require the

same image at the same time.

Each daemon starts by fetching the image manifest and extracting the layer in-

formation. The daemons will then dispatch a configurable number of threads to pull

the image layers in parallel. A daemon will first check if the layer already exists. If

not, it will check whether it is already being pulled by one of its local threads.

In case another thread is already pulling the layer, the daemon will generate a

watcher to monitor the progress of the transfer. Otherwise, the daemon will check

if the layer is currently being pulled by another daemon on a different host. This

information can be obtained via checking the SharedTransferStore. If another

daemon is found, a dummy transfer is generated to monitor the master transfer.

If no other daemon is pulling the layer and not all of the daemon’s local threads

are busy, the daemon will generate the master transfer and dispatch a thread to start

downloading the layer. Once the master transfer is complete, the daemon will update

the SharedTransferStore. The SharedTransferStore is accessible by all daemons,

thus other daemons with allocated dummy transfers can learn about the completion

of the matching master transfer.

In case all local threads are busy pulling other layers, the daemon creates a waiting

transfer and pushes it to a local and global waiting transfer queue. Once a local

transfer finishes, the daemon will take the next waiting transfer from the local queue

and if it is still on the global queue, start the download. Otherwise, that layer is

already being pulled by another daemon.
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6.4.3 Graph Drivers and File Systems

As Wharf does not have direct access to the underlying block storage, its appli-

cability is limited to the category of overlay drivers. Currently, Docker supports two

overlay drivers: aufs and overlay21. Conceptually, Wharf is compatible with both

graph drivers and any POSIX distributed file system. However, running overlay2

drivers with a distributed file system is less common and, therefore, not well tested.

I found that some combinations are currently not operational. I tried two different

file systems with Wharf: NFS and IBM Spectrum Scale [19].

NFS. Wharf can work with NFS and both the aufs and overlay2 graph drivers.

However, I observed a problem when using NFSv4 and overlay2 due to the system.nfs4 acl

extended attribute, which is set on NFS files. OverlayFS is not able to copy the ex-

tended attribute to the upper file system, i.e. the file system which stores the changed

files (ext4 in our case). I believe this is due to incompatibilities between NFSv4 ACLs

and the ACLs of the upper file system. While it is possible to mount NFSv4 with a

noacl option, we found that this is not supported in our Linux distribution.

Spectrum Scale. I also were able to run Wharf on top of IBM’s Spectrum Scale

parallel file system. While the aufs driver was working correctly, I again experienced

problems using overlay2. I observed that Docker tries to create the upper file system

for OverlayFS on Spectrum Scale, even though, local writes to ext4 are configured.

This leads to an error (“filesystem on ’/path’ not supported as upperdir”).

I currently do not know the exact reason for this behavior, especially because I

was able to manually create an OverlayFS mountpoint on Spectrum Scale, but are

planning to investigate the problem in the future.

As OverlayFS is part of the mainline Linux kernel and hence, offers better porta-

bility, I used the combination of overlay2 and NFSv3 for our experiments with Wharf.

1While there is an older driver based on OverlayFS, Docker recommends to use the new overlay2

driver.
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6.5 Evaluation

To evaluate Wharf, I compare it to two other setups: (i) DockerLocal, which uses

local disks to store the container images, the corresponding layers, and the writable

layers; and (ii) DockerNFS, which uses NFS as a storage backend but separate

directories to store the data for each daemon.

I run the experiments on an Amazon EC2 cluster using 5 to 20 t2.medium in-

stances. Each instance has 2 vCPUs, 4 GB RAM, and 32 GB EBS disks and runs

Ubuntu Linux 16.04 with kernel version 4.4.0-1048-aws. Wharf is based on Docker

Community Edition 17.05 and I use this version in all of the experiments.

To avoid network speed variations between a public Docker registry and the dae-

mons, I set up a private registryt2.medium instance.

6.5.1 Pull Latency and Network Overhead

To measure the impact of Wharf on image pull latencies, I run a set of microbench-

marks. I consider five dimensions: (i) the number of layers; (ii) the size of each layer;

(iii) the number of files per layer; (iv) the network bandwidth between the registry

and the daemons; and (v) the number of daemons. I set up five experiments, and

in each, vary one of the above dimensions while fixing the others. I use the default

number of 3 concurrent pulling threads for each daemon.

To investigate how the granularity of images influences the pulling latencies for

the three different setups, I pull an image that has a varying number of layers

ranging from 2 to 40. Each layer contains one file. I use 10 Docker hosts and fix the

image size to 2 GB. I measure the average pull latencies of daemons. The first row

of figure 6.5 presents the results. Wharf shows the shortest average pull latencies

(73 s) and lowest overheads for both external (to the registry) and internal (to NFS)

network traffic. During each pull operation, all Wharf daemons combined receive on
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Figure 6.5: Pull latencies and network performance, The figures show image pull
latencies and network utilization for different configurations. From the first row to
the last row: (i) 10 daemons pull 20 images each, each image size is 2 GB and layers
per image number vary from 2 to 40; (ii) 10 daemons pull 20 images with each image
containing 20 layers and the size of each layer varies from 5 MB to 100 MB; (iii) 10
daemons pull 18 images and each image has 20 layers with 50 MB per layer and
50–900 files per layer; (iv) 10 daemons pull 20 images from a local registry with the
egress network bandwidth varying from 100 Mbps to 1000 Mbps; (v) 20 images are
pulled by a cluster with a varying number of nodes, ranging from 5 to 20.
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Figure 6.6: Time diagram of layer pulls per client per thread, every rectangle rep-
resents a pull of a single layer. C stands for client and T for thread. The layer
identifiers L are placed on top of their corresponding rectangles.

average 2128 MB from the registry, 532 MB from the NFS server, and sent 2049 MB

to the NFS server. For a small number of layers, I observe a slight increase in pulling

times as in those cases Wharf cannot exploit the available parallelism.

The performance of DockerNFS is limited due to the data transfer between each

daemon and the NFS server. It has the longest average pull latencies (953 s) and

highest external and internal network traffic, receiving/sending an order of magnitude

more data from the registry/to the NFS server compared to Wharf.

DockerLocal generally performs worse than Wharf, due to the fact that when all

daemons are redundantly pulling the same image, the network link to the registry

becomes a bottleneck. On the other hand, DockerLocal performs significantly better

compared to DockerNFS as the retrieved image data does not have to be sent over

the network again. Similar to Wharf, I also observe a slight increase in pulling times

for DockerLocal when the number of layers is low.

Next, I vary the size of each layer from 5 to 100 MB to analyze the impact of

different image sizes. I fix the number of layers for the test image at 20 and again use

10 Docker hosts to pull the image in parallel. The results are shown in the second

row of Figure 6.5.

For all three setups, I observe an increase in pull latency for larger layer sizes.
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This is expected as more data needs to be pulled as the image size increases. Because

Wharf only has to pull the image once, its pull latency only increases by a factor of

1.1× overall while DockerNFS and DockerLocal increase by 16× and 7×, respectively.

Due to the same reason, the network traffic for DockerNFS and DockerLocal grows

significantly faster compared to Wharf.

When looking at small image sizes, I observe that Wharf adds a small overhead

compared to DockerLocal and DockerNFS. For a layer size of 5 MB, Wharf takes 21 s

to pull the image while DockerLocal takes 9 s and DockerNFS takes 16 s. This is due

to the remote accesses and the additional synchronization in Wharf. When moving

to a layer size of 10 MB, the overhead disappears and Wharf performs similarly to

DockerLocal (18 s and 15 s respectively) while outperforming DockerNFS (49 s).

In early tests with NFS, I observed large pulling latencies due to unpacking the

compressed layer tarballs. This is because NFS was using synchronous communica-

tion by default, i.e. the NFS server replies to clients only after the data has been

written to the stable storage. To mitigate this effect, I change the communication

mechanism of NFS to asynchronous. To see if the number of files in the tarball can

affect pulling times even in asynchronous mode, I vary the number of files per

layer from 50 to 900 while fixing the number of layers at 20 and the total image size

at 2 GB.

As shown in the third row of Figure 6.5, the pull latencies of DockerLocal and

Wharf are close and are unaffected by the file size. Consistent with previous results,

DockerNFS performs worse than the two but also does not show any significant

variation due to the number of files per layer.

The default bandwidth between our private registry and daemons is between

1 Gbps and 10 Gbps (as per AWS specification). However, in practice, when con-

necting to a public registry via a wide area link, bandwidths can vary and throughput

can drop significantly. To explore how network bandwidth affects the system, I use
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TABLE 6.1

RUNTIME PERFORMANCE SUMMARY

Container

Runtime

Total Exec

Time

Avg Exec

Time (s)

Min Exec

Time (s)

Max Exec

Time (s)

Data

Rev (MB)

Data

Sent (MB)

Docker 7 m 26 s 158 31 252 3227 50

Wharf 7 m 47 s 154 46 263 354 768

the Linux tool tc to vary the egress bandwidth of the registry node from

100 Mbps to 1 Gbps and measure the pull latencies. The pulled image consists of

20 layers of 50 MB each and I use 10 daemons to retrieve the image in parallel. I

fix the bandwidth to the NFS server to simulate a realistic scenario in which dis-

tributed storage is cluster-local and available via a fast interconnect. The fourth row

of Figure 6.5 shows the results.

For the lowest bandwidth of 100 Mbps, the average pull latencies are 118 s, 885 s,

and 889 s for Wharf, DockerLocal and DockerNFS, respectively. As bandwidth in-

creases, the pull latencies of DockerNFS and DockerLocal drop quickly, while pull

latency of Wharf stays almost constant. As Wharf minimizes the network traffic to

the registry, it offers stable performance and is independent of bandwidth variations

on the registry connection.

In order to analyze how the cluster size affects system performance, I vary the

number of nodes, and hence the number of daemons, from 5 to 20. The same

20-layer image is used as in the above experiment for pulling and again measure the

average pull latencies of daemons and accumulated network traffic. The results are

presented in the fifth row of Figure 6.5.

As the number of nodes increases, the image pull latencies of DockerNFS grow
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significantly from 129 s with 5 nodes to 826 s with 20 nodes. While the growth for

DockerLocal is less, it is visible and spans from 40 s with 5 nodes to 215 s for 20. In

contrast, Wharf shows stable pull latencies regardless of the number of nodes.

The reason is that DockerNFS and DockerLocal pull the image to each node, i.e.

as the number of nodes increases, the load increases. Wharf only pulls an image

once and is hence independent of the number of nodes. This is also reflected in the

network traffic which stays constant for Wharf but increases for the other two setups.

To take a closer look at an image pull operation, I zoom into the pull operation at

the layer level and consider three microbenchmarks with varying pull parallelism:

(i) one Docker daemon with 9 concurrent pulling threads; (ii) three Docker daemons

with 3 pulling threads each; and (iii) three Wharf daemons, with 3 pulling threads

each. The image pulled consists of 10 layer with each layer ranging from 100 MB to

120 MB.

As shown in Figure ??, the single Docker daemon with 9 threads completes the

task in 40 s. This is similar to Wharf, which completes the task in 33 s. In both

cases, the image is only pulled once with 9 parallel threads but as Wharf combines

the resources from three machines to retrieve the image, it can improve the pull

latency.

The three Docker daemons take 151 s to 256 s to complete the task. As each

daemon pulls the image separately, every layer needs to be pulled 3 times which

causes network contention and slows down the individual daemons.

6.5.2 Runtime Performance

While sharing images from distributed storage can reduce storage and network

overhead, containers have to now access data remotely. This could add additional

latency to individual tasks in a workload.

To analyze any potential runtime performance degradation in Wharf, I run the
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BWA workflow and compare its performance to DockerLocal. I use Makeflow and

WorkQueue to and run them on 10 nodes with 1,000 parallel tasks with DockerLocal

and Wharf.

Table 6.1 presents the summary of execution times. On average, Wharf only adds

an absolute overhead of 4 s which is equal to 2.6%. Looking at the total execution

time, the 5 workflow executions run 21 s slower in Wharf compared to DockerLocal,

translating to an overhead of 4.7%. This shows that the remote accesses incurred

by Wharf only add a small overhead. As showed in microbenchmarks, the benefit of

Wharf also increases with larger cluster sizes and hence, I expect Wharf to perform

better compared to DockerLocal at scale.

Additionally, Wharf requires significantly less network resources, retrieving 9.1×

less data from the external network. While Wharf introduces more sent network

traffic (15× larger compared to Docker) due to NFS traffic, the interconnect to the

distributed storage is usually faster compared to an external, wide area network and

hence, I do not expect it to become a bottleneck.

Figure 6.7 shows a histogram of the task execution times for one of the runs of the

workload. In general, Wharf produces more short running tasks compared to Docker

which is due to the shorter image pull latencies. In general, the two system setups

have a similar distribution of task execution time, therefore, I conclude that using

Wharf does not introduce significant runtime performance degradation.
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Figure 6.7. Effect of Wharf on task execution time

6.6 Conclusion

In this chapte, I attempt to optimize the container runtime in distributed envi-

ronment by managing container images through distributed file system. I discuss the

drawbacks of a naive solution and the design goals for a native and more efficient

approach. I develop Wharf, a shared Docker image store, which fulfills the design

goals and allows Docker daemons to collaboratively retrieve, store, and run images.

Wharf uses layer-based locking to support efficient concurrent image retrieval and

allows to write data to local storage to reduce remote I/Os. The experimenal results

show that Wharf can reduce image pull times by a factor of up to 12× and network

traffic by up to an order of magnitude for large images while only introducing a small

overhead of less than 3% when running container workloads. An important design

factor derived from this work is that Image Management mechanism can be highly

optimized through distributed storage.
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CHAPTER 7

AUTOSCALING HTC WORKFLOW

7.1 Introduction

By now, I have exploited how to use container technologies in the HTC environ-

ment. However, new virtual machine technologies, like TinyX [70] and unikernel [109],

can deliver virtualized environment with reduced overhead, even lower than the con-

tainer, then why should users choose container over virtual machine? Is there an

obvious advantage that makes container out-compete other options? In this chapter,

I develop a resource autoscaler for HTC workflows on Kubernetes, which dramati-

cally improves the resource usage of the cluster and cannot be accomplished by using

other platforms.

HTC workloads are resource-intensive and have resource usage vary substantially

during runtime, making autoscaling essential for efficient resource use. Figure 7.1

shows the three essential components of an HTC system – a workflow manager, a

task scheduler, and a cluster manager – and their corresponding autoscaling strategy.

First, A generic autoscaling strategy that can be performed by the cluster manager

is scaling cluster via a feedback loop that observes resource load or response time.

When any metric is too high, the autoscaler increases the resource pool, which has

the effect of reducing the metric. However, such strategy does not work for HTC

workflows: high resource use is the normal case, and increasing the resource pool

simply allows more jobs to run.

The other two strategies are dedicated to HTC workflows: i) analyzing the

workflow structure through workflow manager and preserving resources in advance;
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Figure 7.1: Resource Provisioning for HTC Workflows

ii) scaling the resource pool based on the length of the task queue reported by

task schedulers. However, these two strategies have their own pitfalls which make

them sub-optimal. When going with strategy i), resource requirements of tasks are

also required in advance, which is not available in most cases. If choosing strategy

ii), the resource preparing latency needs to be informed as well, which can only be

achieved from cluster manger. As a result, an open challenge in the HTC community

is how to autoscale resource pools accurately.

To resolve this problem, I refine the autoscaling problem into two sub-problems,

i) what is the size of an essential resource unit? And, ii) how many resource units are

required by the target workflow? I resolve the first problem by comparing various sys-

tem settings and observe that if runtime resource monitoring is enabled, and I align

each resource unit with an independent node, workflows will achieve the max degree

of parallelism with the largest network bandwidth. For the second problem, I suggest

that a better strategy that can accurately resize resource pool for HTC workflows

require information from all three components – the resource consumption of tasks

from the workflow manager, the real-time status of the task queue from a task sched-

uler, and also the resource preparing latency of the cluster manager. However, for

the virtual machine, to extract application-level knowledge, extra compo-

nents such as paravirtualization drivers and in-guest controller agents are
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required, which makes it difficult to transcend the boundary between components

and collect necessary information.

In contrast, the container orchestrator, like Kuberetens, provides API that allows

applications to monitor and control resources by using the container as the basic unit,

which blurs the barrier between applications and the infrastructure. Consequently, I

extend my idea and develop a middleware called High-Throughput Autoscaler (HTA),

which sets up the Work Queue framework on Kubernetes and controls the lifecycles

of deployment units based on the progress of running workloads. The experimental

results show that compared to the default acutoscaler of Kubernetes, HTA improves

resource utilization by 5.6× and shortens the workflow execution time by up to 3.65×.

Also, a generic design factor distilled from this work is that when implementing

advanced features, one should consider Cross-layer Cooperation.

7.2 A Use Case

Before developing a new autoscaling approach, I migrate an existing workflow sys-

tem to Kubernetes. The new software stack contains three components (figure 7.2).

Workflow Manager
(Makeflow)

Task Scheduling Framework
(Work Queue)

Container Orchestrator
(Kubernetes)

Figure 7.2: The Software Stack of Running HTC Workflows on Kubernetes
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1) Makeflow, a workflow manager for defining large and complex workloads.

Makeflow’s syntax is similar to that of GNU Make, which allows users to describe any

workload expressible in a Directed Acyclic Graph (DAG) structure. After the user

creates the workload description, Makeflow parses the description and generates an

in-memory representation of the workload’s DAG structure, which it uses to distribute

tasks to different execution framework.

2) Work Queue, a framework for building large-scale master-worker applications

that spawn workers across different cloud platforms. Each master program has a

worker pool consisting of a set of connected workers. The size of the worker pool

varies dynamically with the available computing resources. During runtime, the

master finds available workers and assigns tasks to them, and then the worker will

arrange data transfer and execute each task it receives.

3) Kubernetes, a container orchestration tool developed by Google which gives

the developer the ability to manage distributed applications hosted in containers.

Kubernetes allows users to describe resources using different objects. I focus on

three of them, i) Pod, which is the primary deployment unit and a mortal object

which might fail or restart; ii) StatefulSet, which contains a set of pods and each of

them has a unique and sticky identity; iii) Service, which defines the network protocol

for accessing the micro-services hosted on a set of pods.

For deploying Work Queue on Kubernetes, there exist several configurations de-

pending on which deployment unit is chosen to manage worker container. As work-

ers will be created and deleted frequently during the runtime, removing workers by

deleting the deployment unit that is wrapping them will result in worker containers

and tasks running on them be interrupted with the risk of losing intermediate data.

Rather than using advanced deployment unit to control the lifecycle of worker con-

tainer, I intend to control them directly. To this end, I align each worker container

with an independent Pod and manage the lifecycle of each worker container through
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Work Queue.

7.3 Problems

After determining to align each worker container with an independent pod, I refine

the problem of how to autoscale resource pools for HTC workflows into two

sub-problems: what is the size of each worker-pod (§7.3.1), and what is the amount

of worker-pods (§7.3.2).

7.3.1 Size of a Worker-Pod

Typically, HTC workflows consist of many parallel tasks. Without knowing the

resource requirements of individual tasks, assigning multiple resource-intensive tasks

to a single worker and running them simultaneously may lead to resource starvation.

To prevent this, Work Queue assigns only one task to a worker at a time. This

setting makes the size of worker critical to the performance of the individual task.

Thus, when setting up the Work Queue on Kubernetes, the resource capacity of each

worker-pod should be carefully determined.

Assume that the size of the resource pool is fixed, then a fine-grained configuration

that has many, small workers will have the ability to run more tasks concurrently,

while a coarse-grained configuration that has few, large workers will have a lower

degree of parallelism. However, since the outgress network bandwidth of a master

is constant, the fine-grained configuration has to share limited bandwidth across

more workers with more data movements. This imposes extra network overheads

and might cause longer workload execution time. Therefore, which configuration is

better depends on whether the target workload is data-intensive or compute-intensive.

However, this information is difficult to obtain without running the workload multiple

times.
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7.3.2 Number of Worker-Pods

Even though the size of worker-pod is determined; the number of worker-pods

still need to be figured out. The resource demands of different workloads vary dra-

matically. Even for a single workload, resource demands change substantially during

runtime.

To decide the quantity of worker-pods, one option is using the Horizontal Pod

Autoscaler (HPA) of Kubernetes [26]. HPA changes the number of pods based on the

ratio between a desired metric value and the current metric. For example, the desired

amount of CPU can be calculated through equation (7.1), with CurrentCPU and

CurrentCPUUse reported by Kubernetes and the DesiredCPUUse set by users.

DesiredCPU = CurrentCPU × CurrentCPUUse

DesiredCPUUse
(7.1)

However, the nature of HPA only allows it to make belated responses to potential

changes in resource demand. Although this mechanism works well with latency-

sensitive micro-services, it does not work for HTC workflows. Applying HPA to

HTC workflows may lead to three negative results, i) the cluster scales slowly which

misses the peak resource demand; ii) resources are over-provisioned when they are

no longer needed; or iii) workloads never scale up to the desired degree.
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Figure 7.3: Workload Runtime Statistics with Different HPA Target CPU Load

To show the negative results, I run the BLAST bioinformatics workload [8] on
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GKE with different HPA target CPU loads that are 10%, 50% and 99% (hereinafter

referred as Config-10, Config-50, and Config-99) and the cluster can be scaled up to

15 nodes. The input is split into 200 parts which give us a parallel workload consists

of 200 tasks. I assume that the resource requirements of individual tasks are known

in advance. Shown in figure 7.5, four dimensions are considered: i) the number of

worker-pods connected, ii) the number of idle worker pods, iii) the desired number of

worker-pods calculated by HPA, and iv) the number of worker-pods required in an

ideal scenario. Config-10 and Config-50 have similar workload execution time, (1294

versus 1304 seconds) and close CPU usage (68.3% versus 65.2%). And both of them

have cluster size increased to the capacity limit, i.e. 15 nodes. The main difference

is that Config-10 has a more extensive cluster upscaling variation with latency –

the latency of transferring from the old scale to the desired scale – than Config-

50. This is due to the more considerable disparity between current and target CPU

load. By contrast, Config-99 never scales up and results in the workload execution

time almost four times longer (4682 seconds) than the other two configurations. In

summary, though Config-10 and Config-50 finally scale up to the desired degree, they

are still far from the ideal, which is to have the workload complete in 240 seconds.

Therefore, the autoscaler reacting to system indicators does not always work for HTC

Workflows.

7.4 Proposed Solution

7.4.1 Large Pod with Resource Monitoring

As discussed in section 7.3.1, for an arbitrary workload, it is challenging to decide

which configuration to go with. However, if tasks’ resource requirements are foreseen,

Work Queue will be able to run multiple tasks on a single worker concurrently. The

coarse-grained configuration will not only benefit from larger network bandwidth but
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also have a high degree of parallelism as in the fine-grained configuration. To prove

this, I run a bioinformatics workload (i.e. BLAST workload [8]), which is made up of

100 parallel tasks with each task having 1.4GB input and 600KB output.

Individually, I consider three setups on a GKE cluster consisting of 5 physical

nodes with each node having 3vCPUs, and 12GB RAM. Configuration (a) has 15

workers with each worker occupying 1 vCPU, 4 GB RAM, configuration (b) has 5

workers with each worker occupying an entire physical node and configuration (c)

has a similar worker setup as (b) however, resource requirements are known for all

tasks in this case.
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Figure 7.5: Runtime Statistics of Workload with Unknown Resource Requirements

Shown in figure 7.5, when using the fine-grained configuration, the workflow com-

pletes in 6 minutes 51 seconds with 278.382 MB/S average bandwidth and 87.21%
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CPU usage. If the coarse-grained configuration is used, the workflow completes in

10 minutes 32 seconds with 452.138 MB/S average bandwidth and 32.43% average

CPU use. If the resource requirements of tasks are known in advance, the coarse-

grained configuration completes in 5 minutes 30 seconds with 466.173 MB/S average

bandwidth and 85.73% average CPU usage, which outperforms the other two config-

urations in terms of both resource utilization and network bandwidth. Therefore, I

convert the problem of deciding the size of worker-pods to how to obtain the tasks’

resource requirements for arbitrary workloads.

As HTC workflows often consist of parallel tasks that fall into sub-categories

with tasks in the same category sharing similar resource requirements, I propose

an approach that obtains the resource requirements of tasks by referring to the re-

source consumption of completed tasks belonging to the same category. Specifically,

it contains three steps (figure 7.4), i) tag tasks of the workload by category before

execution; ii) for a task with unknown resource requirements, it uses a worker ex-

clusively, has resource consumption measured, and updates the resource requirement

of its category; iii) for tasks that belong to categories with known resource require-

ments, Work Queue will run multiple tasks concurrently on a single worker which

has enough resources.

7.4.2 Well-informed Autoscaling

Most HTC workflows are resource-intensive, which often results in a fixed, high

system load during runtime despite the number of available resources. Therefore,

rather than using a reactive autoscaler that relies on system indicators, a better-

informed autoscaling approach that considers system runtime metrics, as well as

workload status, is more applicable.

In a queue-based submission model, jobs are queued up and wait for appropriate

resource slots. Therefore, the basic idea of autoscaling is adding new resources to
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make up for the resource shortage when the job queue length is increasing and remov-

ing idle resources vice versa. For any given time point, the resource shortage can be

estimated by considering resource requirements and quantity of waiting and running

tasks. However, a critical problem of this approach is that the length of the task

queue might keep changing while the cluster manager is adding new resources. This

can result in resource over-provisioning or under-provisioning. Therefore, an efficient

autoscaling approach needs to consider the variation of resource shortage when the

cluster manager is preparing new resources.

To illustrate my approach, I define five terminologies, i) Resource In-use (RIU),

the amount of resources currently being used by running tasks; ii) Resource Short-

age (RSH), the amount of resources desired by the waiting tasks; iii) Resource De-

mand (RD), the sum of resources in-use and resource shortage; iv) Resource Sup-

ply (RS), the amount of available resources supplied by the cluster manager; v) Re-

source Waste (RW), the amount of ideal resources. During runtime, resource de-

mand is uncontrollable, and there often exists a maximum resource quota depending

on user budget. Despite the above factors, an efficient autoscaling approach should

maximize resources in-use and workload throughput; meanwhile, minimize

resource waste, resource shortage, and workload execution time.

Formally, I define a time interval between the time point of submitting new re-

sources request (tnr) and the time point when all new resources are ready (trr) as

a resource preparing cycle. Then resource shortage of the system can be calculated

by equation (7.2), specifically, ∆RSH(t) is the resource amount of newly enqueued

tasks waiting for available resources at t, and ∆RIU(t) is the resource amount of

finished tasks at t

RSH(trr) = RSH(tnr) +
trr∑

t=tnr

(∆RSH(t)−∆RIU(t)) (7.2)
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A potential problem of this approach is, if the variation rate of the resource pool

– when and how many resources the cluster manager will add – is unknown, it will

be challenging to estimate ∆RSH(t) and ∆RIU(t). However, I notice that cluster

managers usually process reservation requests in batches thus request submitted in

the same batch that ask for the same machine types and container images in the

same geographical region should experience similar resource preparing latencies. In

other words, resources reserved at the same time should be ready almost at the same

time.
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To verify this, I measure the resource preparing latency (including machine reser-

vation and container pulling time, see figure 7.7) by creating pods that have resource
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requirements that cannot be met by existing nodes. I ran the benchmark 10 times

on GKE and found that the resource preparing latency changes little (mean: 157.4

seconds, standard deviation: 4.2 seconds). Therefore, I assume that the size of the

resource pool is constant during a resource preparing cycle and simplify the problem

of estimating ∆RSH(t) and ∆RIU(t) to the problem of simulating the execution of

a workload with a fixed resource pool during a given resource preparing cycle.
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Figure 7.8: A Well-Informed Autoscaling Approach

From this observation, I present a well-informed autoscaling approach (Figure 7.8)

which autoscales the resource pool for HTC workflows by considering re-

source consumption of completed tasks, the real-time status of the task

scheduling framework, as well as the resource preparing time of the clus-

ter manager. Specifically, this approach contains three steps, i) obtaining the latest

resource preparing time from the cluster manager, the resource consumption of com-

94



pleted tasks from the workflow manager, and the real-time status of the task queue

from the task scheduling framework; ii) simulating the workload execution with the

current resource pool in a resource preparing cycle and determining the resize action

corresponding to different simulation results. (i.e., scale down – there is resource

waste, scale up – there is resource shortage, and do nothing – resource supply and

demand are in balance) iii) proceeding corresponding action (i.e., scale up/down or do

nothing) there might exist pending pods that cannot find nodes which have met their

resource requirements or idle nodes that are underutilized. The cluster autoscaler of

Kubernetes will add new nodes for pending pods or delete idle nodes, waiting for a

resource preparing cycle and repeat i) to iii);

If the above approach is applied, the system should get a resource relationship that

looks like Figure 7.7, which has three states corresponding to each resize action (i.e.

scale up, scale down, and do nothing).

7.5 Implementation

7.5.1 System Components

I implement the above approach in a new middleware called High-throughput

Autoscaler (HTA). HTA deploys Work Queue task scheduling framework on Kuber-

netes, helps workflow application to submit tasks, and manages the container cluster

through the Kubernetes master during runtime. Figure 7.9 shows related system

components.

1) Makeflow Kubernetes Operator contains four sub-components, i) Kube

Informer which will receive notice when registered deployment units (i.e., Pod, Ser-

vice, and Statefulset) are created, updated, or deleted. It keeps tracking new nodes

adding latency and the pulling latency of container image; ii) Resource Provisioner

which evaluates resource usage and resizes clusters based on the status of task queue,
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statistics of completed tasks, and resource preparing latency; iii) a TCP Client which

sets up a network connection to the Work Queue master, submitting ready tasks, re-

ceiving completed tasks to and from the Work Queue master, and getting the task

queue status for the resource provisioner; iv) and a TCP Server which is responsible

for all communication, including task inputs/outputs movement and task informa-

tion transmission, between HTA and Makeflow. HTC workflows often produce a

large number of data transmission during runtime. To decrease network overheads,

I keep the connections between Makeflow, HTA, and Work Queue alive during the

entire lifecycle of workloads.

2) Container Cluster On GKE, HTA sets up a container cluster to run the

Work Queue framework. As discussed in section 7.4.1, I use the configuration of large

worker-pods with each pod occupying an entire physical node. Initially, the cluster

has 3 nodes 1 and will scale up on-demand later. To avoid loss of intermediate data

and ensure a restarted master pod can run on the same physical node with the same

identity, I encapsulate the master pod inside a StatefulSet and dump intermediate

data into a persistent volume. Since users often start workflow applications locally or

from a network namespace different from container cluster, I set up dedicated services

for HTA and worker-pods to access the master pod from outside and inside of the

cluster.

7.5.2 Resource Preparing Latency

To estimate resource usage, I simulate the workload execution of a period of time

equal to latest resource preparing cycle. This requires three pieces of information:

i) resource requirement of individual tasks, which can be estimated by referring to

complete tasks belong to the same categories; ii) number of waiting and running tasks,

1A GKE cluster with a size smaller than 3 nodes might be unreachable during the Kubernetes
master node upgrade. To avoid unnecessary disruption, I start with 3 nodes.
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which can be obtained by inquiring Work Queue; iii) resource preparing latency of

the cluster manager.

To obtain the latest resource preparing cycle, I use the informer API to track the

lifecycle of each worker-pod, which includes four states (see Figure 7.10):

1) No Available Node This state happens when Kubernetes receives requests

for creating new worker-pods, but no existing physical node can meet the resource

requirement. The worker-pod will stay in Pending phase with event Insufficient

Resource. Then Cluster autoscaler of Kubernetes will detect the pending pods and

reserve new physical nodes that can hold all pending pods.

2) No Container Image In this state, the worker-pod will turn into Pending
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phase with event Pulling Image. Meanwhile, Kubelet pulls container images of

worker-pods to new nodes. The current version allows users to specify a container

image for workloads that have Work Queue worker executable included.

3) Worker-Pod Running This state happens after Kubelet pulling container

image. In this state, Kubelet starts worker-pods.

4) Worker-Pod Stopped When the worker process in worker-pod completes,

the worker-pod will stop and be removed. In this state, Worker-pod turns into

Succeeded phase. If, Kubernetes receives a request for worker-pod creation between

two synchronization cycle of cluster autoscaler, new worker-pod will be created, and

worker-pod will go back to state 3), else the node will be marked as underutilized

and removed by cluster autoscaler.
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Kubenretes provides powerful API for tracking status of the different deployment

units. I implement an informer module, which keeps tracking the lifecycle of each

worker-pod and its event. If the creation process of a worker-pod experiences three

states – No Available Node, No Container Image, Worker-Pod Running – I will use

the time interval between HTA generating creation request for worker-pod and the

worker-pod is up as the latest resource preparing latency.

7.5.3 Resource Autoscaling

The autoscaling process includes three stages:

1) Warm-Up stage In this stage, HTA sets up the Work Queue framework on

Kubernetes with 3 nodes and start collecting the resource preparing latency. Make-

flow submits the first batch of tasks to HTA. Instead of fanning out all tasks at once,

HTA sends out only a portion of tasks with one task per category to collect resource

statistics of each category.

2) Runtime stage During runtime, HTA periodically estimates resource needs

and resizes the cluster on-demand. As shown in algorithm 1, when proceeding

resource estimation, the latest resource preparing latency, information about run-

ning/waiting tasks, category information that contains tasks runtime data (i.e. re-

source requirement and execution time) grouped by categories and information of

active workers are passed to the function. The estimation function checks the cur-

rent resource balance, simulates the task dispatching process, and returns the desired

scale variation.

If the scale variation is larger than zero, a scaling up action will be applied which

creates new worker-pods, and scaling down action will be taken if the scale variation

is smaller than zero, which drains worker pods, i.e. stop the worker once all running

tasks on it are finished. To avoid system thrashing caused by frequently resizing, time

intervals between two resizing actions is always set as the latest resource preparing
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cycle.

3) Clean-Up stage Finally, when there are no more tasks that need to run,

HTA will receive a notification from Makeflow and drain all workers. Once all tasks

are complete, HTA will erase intermediate data, delete all deployment units left on

Kubernetes, and send out a notification to the user.

7.6 Evaluation

Resource
Autoscaler

Workflow
Runtime
(second)

Accumulate
Waste

(core× s)

Accumulate
Shortage
(core× s)

HPA(20% CPU) 2656 51324 34813
HPA(50% CPU) 2480 39353 66611

HTA 3060 9146 40680

(a) Blast Workflow Performance Summary

Resource
Autoscaler

Workflow
Runtime
(second)

Accumulate
Waste

(core× s)

Accumulate
Shortage
(core× s)

HPA(20% CPU) 6670 159 337737
HPA(50% CPU) 7230 82 357640

HTA 1823 2028 31840

(b) I/O Bound Workflow Performance Summary

Figure 7.11: Workflow Performance Summary

In section (§7.3), I show that with CPU load higher than 50%, HPA would rarely

scale up the cluster. Therefore, I compare HTA to two setups: (i) HPA-20%, which

use HPA of Kubernetes with target CPU load 20%; and (ii) HPA-50%, which use
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Algorithm 1: Resource Estimation Algorithm

Data: newRsrcLatency, runningTasks, waitingTasks, taskCategoryInfo,
activeWorkers

Result: scaleChanged, timeToNextAction
/* simulate the execution of workflow */

1 rsrcCap = TotalRsrc(activeWorkers)
2 avaRsrc = AvaRsrc(activeWorkers, runningTasks)
3 for t = 1; t < newRsrcLatency; t+ + do
4 completeTasks = TasksCompleteAt(t, runningTasks)

/* return resource used by complete tasks */

5 foreach task in completeTasks do
6 avaRsrc = avaRsrc+ task.rsrc
7 end

/* simulate task dispatching */

8 foreach task in waitingTasks do
/* no resource available, moving on */

9 if AvaRsrc == 0 then
10 break
11 end

/* dispatch waiting tasks */

12 if task.rsrc < avaRsrc then
13 avaRsrc = avaRsrc− task.rsrc
14 runningTasks = append(runningTasks, task)
15 delete(waitingTasks, task)

16 end

17 end

18 end
/* resources are enough, do nothing */

19 if Len(waitingTasks) == 0 then
20 return 0, DefaultCycle
21 end

/* scale down if there is spare resources */

22 if avaRsrc ¿ 0 then
23 return -NumIdleWorkers(avaRsrc), MaxRuntime(runningTasks)
24 end

/* scale up, otherwise */

25 return WorkerRequired(waitingTasks), newRsrcLatency
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HPA of Kubernetes with target CPU load 50%.

All experiments are run on a Google Kubernetes Engine (GKE) with Kubernetes

version 1.13 using 20 n1-standard-4 instances. Each instance has 4 vCPUs, 15 GB

RAM, and 100 GB SSD with Container-Optimized OS from Google. To avoid network

speed variations between a public Docker registry and the daemons, I set up a private

container registry on Google cloud. As discussed in section (§7.4.1), I set up Work

Queue framework with one worker per pod. To monitor the resource consumption of

tasks, I enable the resource monitor [97] of Work Queue.

7.6.1 Multistage Workload

I start by considering a multistage BLAST workload, which contains three stages

and each stage involves three steps, i.e. . splitting an input data, aligning subse-

quences, and reducing intermediate results. Five dimensions are considered: i) work-

load execution time; ii) resource shortage; iii) resource supply; iv) accumulate re-

source shortage; and v) accumulate resource waste. Particularly, accumulate resource

shortage/waste is the definite integral of resource shortage/waste in the time range

of the workload lifecycle.

As shown in Figure 7.12a, the first and last stages of the workload contains tasks

more than the second stage (200, 164 compared to 34). I expect to see a decrease

in resource demand in the middle of the lifecycle, and a bump up once the work-

load entering into the third stage. And an ideal autoscaler should resize the cluster

according to the same pattern.

However, as shown in Figure 7.12b, if HPA is applied, the cluster size will gradu-

ally increase and stay at the capacity limit (i.e. 20 nodes, 60 cores) until the workload

completes. This is because, to avoid pods from thrashing, there is a stabilization in-

terval between two downscale operations and the default value is 5 minutes. Even

though the frequency of downscale can be increased by tuning this value, different
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workloads have various resource changing rate, without running a workload multiple

times, it is challenging to pick the right value.

In contrast, HTA autoscales the cluster as expected. As shown in table 7.11a, even

though there is a slight increase in workload execution time (12.5% compare to HPA-

20%, 16.6% compared to HPA-50%), HTA reduces the resource waste dramatically

(5.6× compare to HPA-20%, 4.30× compare to HPA-50%).

In general, when resizing resource pool for workload with fluctuant resource de-

mands, HTA can make a more accurate autoscaling plan compare to HPA as HTA

considering information from every component of the software stack.

7.6.2 I/O Intensive Workload

While CPU load is a good indicator for system load, applications’ performance

might be bound by other resources. Choosing a wrong indicator might cause HPA

scaling cluster to an inappropriate degree. To reveal how will autoscaler behave for

workload bounded by resources other than CPU, I create a synthetic workload that

contains 200 I/O intensive parallel tasks. Each task of them run dd commands to

read/write data from a disk device. Same dimensions as previous benchmark are

considered 7.6.1.

As shown in sub-figures (i) and (ii) of Figure 7.13b, while tasks are queueing up

on Work Queue, the cluster size maintain in 1. The reason is that each task is busy

at reading/writing data, and the CPU load is rarely over 20%. In contrast, HTA is

able to scale up the cluster to the desired size as it considering CPU load as well as

other resources (e.g., max number of processor required by task) usage when making

an autoscaling plan. As a result, by using HTA, the cluster is successfully scaled up,

and the workload execution time is shortened by around 3.66×.

In terms of resource waste, even though configuration using HPA does not have

resource waste, the significant resource shortage and small cluster scale results in
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unacceptable throughput and execution time. In contrast, when running with HTA,

even though there is a small amount of resource waste at the beginning as Work

Queue master assigning tasks to workers, once the cluster upscaled to the desired

degree, this is no resource waste during the entire lifecycle of workload.

In general, using HPA require users to know the workload well and pick the correct

resource indicator. Moreover, to scale the cluster to the desired degree, users need

to fine-tune multiple system options. However, without running workloads multiple

times, it is challenging for regular users to choose appropriate parameters for each

option. By contrast, HTA estimates the resource shortage based on the real-time

status of different system components, and dynamically adjust the stabilization cycle

by considering the latest resource preparing latency.

7.7 Conclusion

In this chapter, I develop and implement HTA, a better-informed resource au-

toscaler for HTC workflows on Kubernetes. I show that HTA outperforms the default

autoscaler of Kubernetes – which improves the resource usage by 5.6× and shortens

the execution time of workflows by up to 3.66× – by synthesizing resource consump-

tion of complete task, real-time status of task queue and resource preparing latency.

An important lesson I learned is that the Cross-layer Cooperation provided by

the emerging container orchestrator can help us to improve the system performance

that can’t be done by using conventional technologies.
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Figure 7.12: Blast Workflow
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CHAPTER 8

CROSS-CHECKING WITH ONLINE WORKLOADS

8.1 Introduction

Even though online workloads (i.e. latency-sensitive workload) have optimization

goal different from HTC workflows, when their scale is increased enough (e.g., start-

ing hundreds of services per second), they share common characteristics with HTC

workflows: task schedulers are busy most of the time; resource supply cannot meet

resource demand; also, a tremendous amount of data is generated. Consequently, a

methodology that works to HTC workflows should be applicable to large scale online

workloads as well. In this chapter, I validate the seven-element methodology by ap-

plying it to my work in Alibaba which standardizes the resource provisioning process

for extreme-scale online workloads.

Large organizations often run millions of tasks over cloud-scale computing clus-

ters [40]. To efficiently manage resource at scale, many efforts have been made [45,

111, 38]. These works mainly focus on improving system scalability and efficiency of

handling stable daily workloads. However, bursting workloads that spike CPU us-

age, network traffic happen occasionally. For example, during major sporting events,

millions of audiences watch games through online streaming services; rideshare plat-

forms receive overwhelming requests from sites around large events; during holidays

and promotion events, online marketplaces need to handle a substantial amount of

transactions that can be 100×more than usual. Inefficiently handling such workloads

can lead to customer unsatisfaction and immediate economic loss [42, 86, 52].
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Back in summer 2018, I work with the team of container platform in Alibaba as

a research intern. During that time, I cooperate with engineers and scientists from

Alibaba to develop a new generation of container orchestrator for cross datacenter

resource management. A major challenge we faced is how to manage resources for

extreme-scale online workloads efficiently. To overcome this challenge, I design new

resource scheduling policies for the cluster manager as well as standardize the over-

all resource provisioning process consisting of existing resource management mecha-

nisms.

In Alibaba, there are millions of online services running across datacenters world-

wide daily. Besides, the annual sales event (ASE) on November 11th has almost all

active users involved, which generates a peak throughput of 100 × higher than daily

average and 10 × higher than daily peaks. Thus, the critical challenge of handling

ASE is how to handle the higher volume of requests without using excessive extra

resources. Specifically, three facts that make it insurmountable are: (i) purchasing

dedicated servers just for handling this event is undesired, since new resources will be

underutilized the rest of the year; (ii) given that tremendous resources are required,

renting resources from public cloud services is unrealistic; (iii) current autoscaling

mechanisms are not agile enough, as the bursting workload can hit the through-

put peak in minutes while existing autoscaling mechanisms have comparatively long

feedback loops [72, 71]

To address these problems, I analyze the characteristics of bursting workloads,

synthesize existing mechanisms, and standardize the resource provisioning process.

Throughout the work, I observe that the seven-element methodology developed for

HTC workflow applies to extreme-scale online workloads as well.
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8.2 Extreme Load Event

In this section, I give the details of the bursting online workload happened by

ASE (section 8.2.1). I divide the problem of how to efficiently handle bursting on-

line workload into three subproblems and resolve them by extending three heuristic

approaches (section 8.2.2).

8.2.1 Bursting Online Workload
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Figure 8.1: Container Created Hourly

In Alibaba, the eCommerce services consume 40% of the total resources every

day. As most offline marketplaces, the eCommerce platform has promotion events

happening year-round, which results in throughput several times higher than usual.

As shown in figure 8.1, the number of requests for creating new containers are 2.5 to

4 times more than average.

Among all promotion events, the ASEhas the largest peak throughput that is
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Figure 8.2. Problem Definition

hundreds of times higher than the daily average. For example, the ASEof 2017 had

gross sales larger than the sum of Black Friday and Cyber Monday ($25.3 billion vs.

$19 billion dollars), which produced 325, 000 of peak TPS with 256, 000 orders placed

per second (see figure 8.3 and figure 8.4).

A vital characteristic of the ASE is that customers intend to place orders in the

first few minutes due to the limited stock, which is due to the nature of promotion

event, i.e. low price but limited stocks. This behavior spikes the throughput

which reaches the peak within seconds. Considering the products’ stock, logis-

tics capacity, advertising, and sales strategies, another essential feature of promotion

events is that the starting time, ending time and the max trading volume

are predictable
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8.2.2 Redefine the Problem

A common way to handle increasing throughput is reactive autoscaling, which

monitors particular system metrics and scales the resource pool on-demand. Au-

toscaling works well for workloads with steadily growing throughput, but it put for-

ward two requirements that prevent it from being used for bursting online workloads.

First, target workloads must be latency tolerant. Even under ideal conditions, it can

take minutes for autoscaling mechanisms [72, 71] to scale up the resource pool, while

bursting workloads often reach the peak throughput in seconds. Second, there must

be enough available resource for scaling up, while bursting workloads have throughput

hundred times higher than usual, which can quickly exhaust the resource buffer.

To efficiently handle bursting workloads, first, I redefine the problem based on

the data from ASEof 2017. As shown in figure 8.2, in regular times, online and batch

workloads own 60% and 40% of the resources pool respectively. During the ASE, on-

line workloads will consume 220% of additional resources. In line with the budgetary

constraint, only 30% of extra resources are available. Also, to maintain key produc-

tion workloads, the resources owned by batch workloads can not be lower than 10%.
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Therefore, the maximum amount of resources available to online workloads is 120%,

and a better-defined problem is: how to successfully handle bursting online

workloads that require 5.5× more resources than daily average with 2×

more available resources? To resolve this problem, I synthesize existing mecha-

nisms developed by engineers in Alibaba and standardize the resource provisioning

process by extending three heuristic approaches:

1) Increasing Resource Amount, which includes dynamically changing the

resource shares between online and batch workloads, and more agile scheduling with

finer-grained resource isolation. This approach fuses two factors of the seven-factors

methodology, i.e. Isolation Granularity, and Resource Management.

2) Improving Resource Efficiency, which contains properly assessing the

trade-offs between availability and reliability, scaling up/down selective services, and

establishing an optimal allocation plan in advance. The development of this approach

conforms to four factors of the SFM, i.e. Container Management, Image Management,

Resource Management, and Network Connection.

3) Ensuring the Reliability, which includes iteratively validating the resource
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allocation plan with the gradually increased workload. This approach requires coop-

eration between components and correlates to the factor Cross-Layer Cooperation.

8.3 Increasing Resource Amount

First, to increase the resource amount, I explore i) how to acquire maximum re-

source share for online workloads ( section 8.3.1); ii) how to construct an on-demand

resource buffer (section 8.3.2), which conforms the factor, Resource Management ;

and iii) how to develop hyper-threads(HT) level isolation for agile scheduling (sec-

tion 8.3.3), which correlates to the factor, Isolation Granularity.

8.3.1 Dynamic Quota Change
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Figure 8.5. Sigma Architecture
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In Alibaba, there exist two resource manager allocating resources for online and

batch workloads with a shared resource pool, i.e. Sigma for online workloads and

Fuxi for batch workloads. As the allocation plan for the ASE is kept evolving before

the event (details of how to enact the allocation plan will be introduced in later sec-

tions), resource quota between the Sigma and the Fuxi is changed more frequently

than usual (e.g., ten times per day vs. one time per day), which poses two chal-

lenges, i) how to quickly spread new resource quotas across thousands of machines

across datacenters, also, ii) how to improve the overall resource utilization without

downgrading the QoS of online services.

To resolve the first challenge, Level-0 collocation coordinator is developed, which

vertically integrates into every stack of the infrastructure. As shown in figure 8.6, to

change the resource quota, Level-0 configurator first reads the latest resource quota,

then pass it to Level-0 controller, which enforces Sigma master and Fuxi master to
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allocate tasks based on the new quota. Meanwhile, a Level-0 agent is running on each

node, which will gracefully terminate jobs that are using resources not belonging to

its corresponding scheduler. In addition to the function of quota assignment, Level-0

is also responsible for collecting and aggregating resource statistics.

The top priority during the ASE is ensuring the QoS of online services, thus, a

portion of batch workloads are temporarily paused and spared their resource share to

online services. As Shown in figure 8.7, during the ASE, the resource shares owned

by online and batch workloads are 80% and 20% respectively. At the same time, the

boundary of resource pools of two schedulers are blurred (i.e. a portion of resources

are available to both Sigma and Fuxi), and three tasks levels are defined and applied

to both online and batch workloads: (i) Guarantee – this level of tasks are always

able to obtain enough resources, critical online services belong to this level; (i) High

– tasks of this level can access resources assigned to corresponding scheduler, non-

critical online services, and critical batch jobs are marked as High; (iii) Best Effort –

tasks of this level are allowed to access spare resources belong to the other scheduler

and will be interrupted when there is no enough resources for higher-priority tasks,

non-critical batch jobs are marked as Best Effort.

By assigning different priority levels to tasks, batch jobs can exploit any idle

resources that not being used by online services, which increases the resource uti-

lization. As shown in figure 8.8, through dynamic resource sharing and three-level
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priority, the CPU and memory utilization have been improved by 1.7× and 1.2×

respectively.

8.3.2 On-demand Resource Buffer

To handle unexpected events – servers down, network fault, and power outage,

etc. – a standby resource buffer is set up on the cloud. Considering the massive

amount of required resources, entirely relying on the public cloud providers may

affect the performance of currently running services. Consequently, to ensure there

is no adverse effect on existing services on the cloud, the QoS of the existing services

are closely monitored.

Recalling the Resource Management factor from SFM for HTC workflows, the

above mechanisms share the same principles with it, i.e. high resource utilization

requires customized resource management mechanisms that thoroughly considered

the characteristics of target workloads.
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Figure 8.9: Task Preemption, For testing Task Preemption, we run two configurations
with/without task preemption. Both configurations have 1 × 105 online tasks and
5×1010 batch. Configuration that schedules online tasks in shorter period, has better
performance.

8.3.3 Fine-grained Resource Isolation

To share resources between online workloads and batch workloads without inter-

ference with each other, finer-grained isolation is required. When collocating online

and batch workloads on the same machine, batch jobs might affect the decision made

by process scheduler, which results in online services suffering from resource starva-

tion. Besides, two jobs running with different hyper-threads in the same core will

interfere with each other due to cache and data pipeline competition.

To avoid resource starvation, two mechanisms are integrated into Complete Fair

Scheduler (CFS) [76], The first one is Task Preemption, which is based on the

Borrowed-Virtual-Time (BVT) scheduling [64, 48]. To measure the performance, I

run hackbench - a benchmark tool for the Linux scheduler. As shown in figure 8.9,

by eliminating the scheduling long tail, the total scheduling time has been decreased

from 21.182 seconds to 18.278 seconds.

The second mechanism is Optimised Queue Balancing (OQB), which con-
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run sleep wait total
receiver 2.8s 4.3s 6.1s 13.2s
sender 4.0s 4.2s 4.8s 13.2s

OQB rec 2.9s 3.0s 5.5s 11.5s
OQB sndr 4.2s 3.4s 3.6s 11.1s

(a) Optimized Queue Balancing

Setting TPS
No neighbor noise 22629
Disable noise clean 19063
Enable noise clean 21541

(b) Noise Clean

Figure 8.10: Performance Gain through Optimizing CFS, (i) For testing Optimised
Queue Balancing (OQB), two setups are compared, transfer time between a receiver
and a sender, and transfer time between an OQB receiver and an OQB sender. (ii) For
testing Noise Clean, we run 16 threads PostgreSQL and y-cruncher with eight tasks
and more than 100 threads on one node, and execute pgbench with eight threads
without neighbor on the other node.

siders historical task execution pattern, i.e. task run time and sleep time and avoid

allocating multiple online services on the same core. By applying OQB, a task with

short execution time will not be migrated to the core with less waiting task. To mea-

sure the perfoamance, I execute hackbench with customized receiver/sender setting.

Shown in figure 8.10a, OQB shorten the scheduling latency by 20.5% compared to

default CFS.

There are previous studies focused on avoiding the cache contention [89], but

Hyper-Threads (HT) running on the same core might also compete with each other

for the instruction pipeline. To avoid not only cache but also pipeline competition,

a list of competitive jobs is maintained globally. To prevent competitive jobs from

stacking on the same core or HT, four core/HT sharing labels are developed (core

refer to physical core, HT or CPU refer to a Hyper-threading) on datacenter scheduler

level. They are (i) SameCoreFirst – containers with this label prefer being allocated

on the same physical core, e.g., to increase resource utilization and energy efficiency,

the process scheduler prefer scheduling batch jobs with small resource requirement

on busy CPUs than idle CPUs; (ii) SpreadFirst – jobs marked by this label won’t

be scheduled on a busy core, (iii) Exclude apps – jobs with this label reject to be

scheduled with containers belong to the given apps on the same core, for example,
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two compute-intensive batch jobs can not share the same core; (iv) Exclusive – if

a core is occupied by an exclusive job, no other job will be allocated on it, e.g., a

critical online service need to monopolize a physical core.

In addition, Noise Clean – a new mode for CFS – is developed as well, which

prevent a batch job from being executed on a core that has online jobs running on

it. As shown in table 8.10b, after activating noise clean mode, online services can

handle 1.3 × more transactions per second.

The above mechanisms improve the granularity of isolation provided by contain-

ers, which allow programs to monopolize vCPU as well as hardwares like cache and

instruction pipeline. These mechanisms share a similar principle with the factor iso-

lation granularity – target workloads should codetermine isolation granularity and

the distributed environments they are run in.

8.4 Improving Resource Efficiency

Next, I describe how to improve the resorce efficiency (i.e. the ratio of resource

actually being used) without affecting QoS. To achieve this, five approaches are taken:

1. container resource usage are measured in real time (section 8.4.1);

2. selective services, like online model training and streaming data analytics, are
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scaled down (section 8.4.2);

3. tightly coupled services are allocated as groups, e.g., cooperative services that
operate as a single component (section 8.4.3);

4. an optimal scheduling plan is developed in advance (section 8.4.4).

5. an optimized container runtime and image distribution platform is developed (sec-
tion 8.4.5)

Among the above approaches, the first, the second and the third approach share

the same principle with the factor Resource Management of SFM, and the fifth ap-

proach correlates to the factors Container Management and Image Management.

8.4.1 Realtime Resource Estimation

To receive resources from a shared pool, developers or systems from upper layer

need to submit resource requests for container/service to cluster managers, then the

managers will make best effort to fulfill these requests. However, developers usually

don’t have a global view of the cluster (e.g., the capacity of the machine is affected

by the workloads running on it [47]), and intend to request resources that are more

than enough, which results in low resource efficiency.

As the computing resources are under pressure during the ASE, low resource

efficiency can only exacerbate this problem. To remedy this, resource requirements

proposed by developer are used as references and a resource allocation plan is made

by cluster manager based on runtime resource utilization. To achieve more accurate

resource estimation, resource utilization from past weeks to past hours are taken

into consideration. Shown in figure 8.11a, using the resource estimation model help

Alibaba to save 35% of CPU resources (i.e. 1× 105 cores),

8.4.2 Selective Services Scaling

Besides providing the resource requirement of each container, developers also need

to specify the maximum and minimum replication number for each service. During
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the runtime, the cluster manager will then scale services in the range based on the

ingressing throughput and the response time (RT) of each service. This process is

sufficed for daily workload, while resources demands of bursting workloads often spike

in minutes. Consequently, the replication number of each service must be precisely

defined in advance.

In Alibaba, online services fall into two categories: core services which can be a

performance bottleneck of the entire platform and require high stability and safety;

and non-core services that provide ancillary functions, like beta features testing.

Particularly, services have the following characteristics will be classified as core

services and won’t be scaled down during the ASE.

• Statful – services with state are usually non-deterministic and rely on ephemeral
data that are nonrecoverable.

• Stable – services that has not been updated for months. They are usually
APIs that interact with a bank or other financial institutions, which require
high stability and safety level.

• Memory-Intensive – services that have memory usage higher than 90%. They
normally require short read/write latency, which needs to reload large dataset
into memory on failure.

• Long Startup Time – services have startup time longer than 600 seconds. As
the bursting workload only lasts for minutes, the failure of these services can
be critical.

• High Startup Failure Rate – services that have a startup failure rate higher
than 5%.

To evaluate the risk of scaling down non-core services, the nice value is calcu-

lated and assigned to each service. Services with larger nice value have lower risk

to be scaled down. There exists various attributes that can affect the nice value.

An attribute will be considered, if it, i) implies the service’s significance level, like

the service type; ii) indicates the service’s resource utilization, like the desired re-

source type; iii) suggests the ability to recover from fault, like the application startup
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time and success rate. The nice value is the sum of the product of each attribute’s

estimated cost and weight.

To determine the weight of each attribute of N attributes, N significance lev-

els are defined and weight of each attribute are assigned through paired compari-

son. For example, considering three attributes, Resource Type (ResType), Services

Type (ServType) and Application Start Time (StartT ime), as shown in the first row

of table 8.1, ServType is twice as important as ResType, StartT ime is threefold as

important as ResType. The reset of the table are filled out based on same idea.

TABLE 8.1

WEIGHTS OF ATTRIBUTES

ResType ServType StartTime Weight

ResType 1 1/2 1/3 0.149

ServType 2 1 1/3 0.273

StartTime 3 3 1 0.578

For a given service with ResType = 2, ServiceType = 1, and StartupT ime = 1,

the nice value is, 2× 0.149 + 1× 0.273 + 1× 0.578 = 1.149. This method thoroughly

compares every pair of characteristics, and makes it easier to add new attributes in

the future.

Before the ASE, marketing department synthetically considers the produce stock,

data from previous years, advertising and sale strategy, and give an estimation of the

maximum transactions. As a result, the maximum TPS and the demand capacity of
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Figure 8.12. Resources Saved by Scaling Down, Above figures show the
amount of memory in terabyte saved on a 1900 nodes’ cluster by scaling
down the selective services in seven consecutive days. (i) the relationship
between decreasing number of containers and amount of freed memory.

(ii) the relationship between the number of involved nodes and amount of
freed memory.

core services is known in advance, and the scale of core services is determined based

on these data.

As shown in figure 8.12, after performing selective scaling down on a cluster

contains 1900 nodes, the average number of running containers has been reduced by

1250, which involves 359 nodes and free 6.1 Terabytes of memory on average.

8.4.3 Gang Scheduling

As shown in figure 8.13, a complete business transaction consists of more than

200 services and 60 database operations. Due to power and footprint limitation,

without enforcement, services can be spread over datacenters. As the network latency

between datacenters varies from tens of seconds to minutes, the QoS can be primarily

affected. Therefore, when making a resource allocation plan for services, a non-

negligible factor is the latency between API calls. Figure 8.14 shows the latency

of some API calls, if two consecutive API calls are located in different datacenters,

the latency between them can range from 27 to 34 milliseconds, while the shortest

latency inside a datacenter is only 3 milliseconds.
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To decrease the latency, tightly coupled services are bundled and scheduled as

a group. As shown in figure 8.15, services and their related data are divided into

two categories, i.e. Unit and Central Unit. Each Unit is responsible for a geographic

region, hold services and data for customers from the region. Also, it also keeps

a copy of all commodities and sellers’ data. On the other hand, the Central Unit

is responsible for running all trade-related services, holding information of buyers,

sellers and commodities. During the promotion event, each datacenter will contain

several Units, and all Units are connected to the Central Unit with several standby

replicas. The Unit can handle almost all buyers’ operations, including stock checking,

product browsing and choosing. Only when an order is placed, the Central Unit will
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get involved.

Inside the Central Unit, the strong consistency is ensured, i.e. once the information

of products or customers is updated, all following read requests sent by customers

will return the latest state. In contrast, the eventual consistency model is enforced

between Unit and Central Unit. Products and buyers’ data in each Unit is updated

asynchronously. Even though inconsistency might happen between Unit and Central

Unit, each transaction will end up with updating global state in Central Unit, which

ensure faults caused by inconsistency can be detected.

Through services gang scheduling, unnecessary network transfers that cross dat-

acenters are avoided, which also validates the factor, network connection.
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8.4.4 Scheduling under Constraints

As mentioned in section 8.3.3, programs might be incompatible to each other on

CPU and thread-level. Thus new scheduling policies are enforced on process sched-

uler. Likewise, programs can interfere with each other on the machine level, for

example, running multiple memory-intensive programs on the same machine might

result in memory starvation. To prevent these from happening, advanced scheduling

policies are developed for cluster manager, which labels services by scheduling con-

straints (i.e. services (anti-) affinity, CPU/Server monopolization, etc. ). Establishing

an optimal allocation plan without violating constraints is equivalent to solving a high

dimensional bin-packing problem, which can be transferred into the Mixed Integer

Linear Programming (MILP) problem and solved by algorithms like Q-learning [106].

The Q-learning algorithm explores the action space and receives rewards from the

cluster state. An expected accumulated discount reward is learned for each state-
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action pair, given by equation 8.1

q∗(st, at) = E

{
∞∑
k=0

γkr(st+k, at+k)

}
. (8.1)

In equation 8.1, reward r is the increment of objective value based on cluster state s

and action a, and it consists of weighted sum of factors including container allocation

cost, host usage cost, balance of resource utilization, requirements on mutex, etc.

Q(st, at) represents the estimation of q∗(st, at), which is updated according to the

following equation,

Qt(s, a)← r(s, a) + γmax
a∗

Q(s′, a∗) (8.2)

as shown in equation 8.2, Qt(s, a) is the target value of Q(s, a), and s′ is the state

immediately following s. The target value is the sum of rewards of current cluster

state and its estimated successor’s states based on the action. To implement Q(s, a),

a deep learning network (DNN) is set up with experiences (s, a, r, s′) stored and

randomly picked by mini-batches during the training process.

Figure 8.11b shows the CPU utilization after using different scheduling mecha-

nisms. Comparing to the average CPU usage of online scheduling algorithm (66%),

the Q-learning algorithm increase the utilization to 87%.

8.4.5 Container Deployment

Rather than extending popular container runtimes, like Docker and LXC, engi-

neers in Alibaba developed a new container runtime, i.e. PouchContainer [68], Pouch-

Container is developed for satisfying special demands of large-scale distributed envi-

ronment, including: i) Strong isolation – supporting security features, like hypervisor-

based container technology and packed Linux kernel; ii) Fast image distribution –

PouchContainer runtime speeds up image distribution by using Dragonfly [67], a P2P

container image distribution system; iii) Backward Compatibility – PouchContainer
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can work on Linux Kernel before 2.7; iv) Standard Compatibility – PouchContainer

conforms to popular industry-standard, e.g., CNI [11] and CSI [13]

By using PouchContainer and Dragonfly image distribution platform, a large num-

ber of containers are able to be deployed in a short time. This also suggests that

container and image management are two essential factors need to be considered

when executing large workloads in container environment.

8.5 Ensuring the Reliability

Most extreme load events are short but critical, thus system error is not tolerated

during the runtime. Through above technologies, an optimal resource allocation plan

can be established, but without extended testing, its reliability can not be ensured.

When designing an applicable testing framework, there exist three problems: i) ser-

vices are tightly coupled – some core functions cannot be covered by unit tests, for

example, the success of a function may depends on callback functions from other

services; ii) bugs can not be revealed with small workloads – service can behave dif-

ferently depend on the scale of target workloads, e.g., with increasing throughput,

the performance of individual instance may decrease to maintain high availability;

iii) large-scale testing is expensive - clusters dedicated for testing usually is not ex-

tensive enough, while repeatedly running large-scale testing on production clusters is

expensive and can affect the performance of production workloads.

To solve the above problems, Full-Load-Testing (FLT) is developed, which tests

all related services as a whole and incrementally validate the allocation plan using

gradually increased workloads. FLT emulates the scenario of the ASE by running

simulation workflows which include every step of the real business transactions except

for the payment step.

Figure 8.16 describes the workflow of FLT, Starting with a small workload (e.g.,

max workload generated by a Unit), only a small amount of resources are required (e.g.,
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10000 instances). Next, the scale of the workload is increased, and the QoS (i.e.

growth of response time, CPU, memory utilization, etc. ) of involved services are

being monitored. If any of the parameters grow dramatically, the system log and

configuration will be rechecked, and potential software defects will be fixed. Then

the FLT will be restarted, if the alternation of system parameters is stable, the work-

load will be increased. Otherwise, the resource pool will be scaled up. When reaching

the max throughput, the FLT is successfully finished. By this, a solid resource allo-

cation plan is established. To overload the platform without affecting the production

workloads, FLT is run during the trough of daily business.

Reminiscent of the design factor of Cross-layer Cooperation, which is essential for

implementing advanced features for HTC workflows. When developing complicated

features for large scale online workloads, this factor is also critical, as systems used

to handle online workloads usually contain multiple layers.

8.6 Standardize the Process

Synthesize above mechanisms, I standardize the resource provisioning process as

follows (see figure 8.17):
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1. collecting the resource statistics of online services and batch workloads;

2. choosing necessary batch workloads;

3. estimating the resource capacity of these workloads;

4. reassigning resource quota for online and batch workloads;

5. calculating the peak TPS and estimating total amount of resources required;

6. dividing online services into core and non-core services;

7. scaling up/down services based on their nice value;

8. grouping services in Unit and Central Unit ;

9. converting the resource allocation problem to MILP problem;

10. solving the MILP problem through Q-learning algorithm;

11. validating resource allocation plan through FLT ;

12. constructing standby buffer on-demand.
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8.7 Conclusion

In this chapter, I introduce my work of standardizing the resource provisioning

process for extreme-scale online workloads. Through this work, I observed essential

design factors that share the same principles with the SFM, and I conclude that the

SFM transcends the boundary between the two contexts, i.e. online workload, and

HTC workflow, and is equally applicable to both.
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CHAPTER 9

CONCLUSION

9.1 Recapitulation

The emergence of container technology opens up a new possibility to HTC work-

flows: scaling up on a public cloud with infinite computing resources. However, past

studies rarely look into how to containerize HTC workflows. In this dissertation, I

explore the possibility of integrating container technology into HTC systems, opti-

mize the system from different aspects, and summarize seven design factors that are

generally applicable to container-based system design.

I compare four configurations of integrating container runtime into different layers

of existing workflow systems, and summarize two factors: Isolation Granularity

can be varied and should be determined according to the characteristics of objec-

tive workloads; Container Management should be done by underlying distributed

system without user intervention.

I develop a customized scheduler for connecting workflow systems to Apache

Mesos, which improves resource usage as well as shorten the workflow execution

time by up to 2× comparing to a primitive setting. Three factors I distilled from this

work are: Garbage Collection should be done timely considering the tremendous

amount of intermediate data generated; excessive Network Connection should be

avoided given the quantity of data transmission is enormous; Resource Manag-

ment mechanisms should be customized based on the characteristics of objective

workloads.
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I design and develop a distributed version of Docker, i.e. Wharf, which improves

the efficiency of image storage and speeds up the distribution of the images by using a

distributed file system. I conclude that the Image Management mechanism should

be optimized in a distributed environment considering a large number of redundant

images across nodes.

I propose an autoscaling strategy that scales HTC workflows according to resource

usage of complete tasks, length of task queue, and response time of cluster manager.

I implement this strategy by developing HTA – a middleware follows the cloud-native

way and resizing HTC workflows on-demand. The general design factor I distill from

this work is that Cross-layer Cooperation can be used to implement advanced

features.

Finally, I standardize the resource provisioning process for extreme-scale online

workloads in Alibaba. During this work, I validate the seven design factors by ap-

plying them into different steps of the resource provisioning process. I conclude that

the seven design factors are equally applicable to designing systems for both HTC

workflows and large scale online workloads.

9.2 Future Work

9.2.1 Scheduling Workloads from Different Categories

Due to the diversity of workload categories and the variability of workload be-

haviors, resource scheduling on the cloud has been a challenging topic for a long

time. On the one hand, generic schedulers that aim at serving various workloads can

only provide standard functions far from ideal. On the other hand, a domain-specific

scheduler that works well for a category of workloads might result in side effects on

other workloads residing in the same cloud environment.

In this dissertation, I focuses on improving resource usage for HTC workflows
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within their quota. However, this might hurt other workloads to reside on the same

cluster. For example, a computing-intensive machine learning task and an HTC task

might be assigned to two separate threads located on the same physical core through

two schedulers, which can result in cache contention.

A valuable scheduler should be hierarchical as well as cross-framework aware.

Specifically, it can extend the conventional two-level architecture, which has a global

scheduler to be responsible for allocating resource the quota for different frameworks;

and the framework schedulers to assign resources to individual tasks. Besides, to

achieve cross-framework awareness, framework schedulers can report unaccountable

failures to the central scheduler, and then the central scheduler can rearrange the in-

compatible frameworks to different physical machines or informing framework sched-

ulers to reallocate the failed tasks.

However, implementing such a system is not trivial. It requires i) sorting out

failures that are caused by conflicts between frameworks, ii) supporting container live

migration for framework relocation and ii) developing an API that allows framework

schedulers to reschedule failed tasks caused by framework conflicts but not interfere

with other schedulers. Each of them can be extended to an independent research

topic.

9.2.2 Resource Management in Heterogeneous Environment

With the incoming wave of AI, the requirement for computing resources have

been dramatically increased. At the same time, different categories of computing

tasks have their own best suitable hardware. For example, It is better to use GPU for

tasks fitting the single-instruction, multiple-data execution model (e.g., deep learning

workloads), while for tasks not large enough to require a GPU, and not small enough

to be done in a core (e.g., calculating a midsize polynomial function), FPGA can

be a good choice. Therefore, the heterogeneous computing cluster that consists of
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different processing units (e.g., GPU, FPGA, AP [103], etc.) connected through the

high-speed network have attracted tremendous attention in recent years.

So how to manage resources in a heterogeneous environment? Resource manage-

ment in a distributed environment is hard, resource management in a heterogeneous

distributed environment is even harder as the dimension of the scheduling model will

increase dramatically. I see possibilities of mitigating this problem from two aspects.

First, from users’ perspective, rather than composing workloads that require rare

and expensive hardware, one can create portability workloads that compatible with

different hardware, which increases their chances to be scheduled and the possibility

of being scaled up. However, this approach requires users to write a modified version

of the same program by using different programming languages (e.g., CUDA for

GPU; VHDL, Verilog for FPGA), which can largely prolong the development cycle.

So what is the best strategy? Should we invent a new programming paradigm that

hides certain aspects of the hardware from the programmer? Alternatively, should

we develop new interfaces with a mainstream programming language?

Second, from the cluster manager’s perspective, virtualizing scarce and expensive

hardware can be a good option. However, how to achieve this is still an open ques-

tion. Should we develop dedicated frameworks [105] for managing these virtualized

hardware? Alternatively, should we implement new drivers [20] for attaching them to

existing platforms? All the above questions can be developed into research projects

worth studying.
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