
METHODS ENABLING PORTABILITY OF SCIENTIFIC WORKFLOWS

A Dissertation

Submitted to the Graduate School

of the University of Notre Dame

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Nicholas Hazekamp

Douglas Thain, Director

Graduate Program in Computer Science and Engineering

Notre Dame, Indiana

December 2019



c© Copyright by

Nicholas Hazekamp

2019

All Rights Reserved



METHODS ENABLING PORTABILITY OF SCIENTIFIC WORKFLOWS

Abstract

by

Nicholas Hazekamp

Scientific workflows are common and powerful tools used to elevate small scale

analysis to large scale distributed computation. They provide ease of use for domain

scientists by supporting the use of applications as they are, partitioning the data for

concurrency instead of the application. However, many of these workflows are written

in a way that couples the scientific intention with the specificity of the execution

environment. This coupling limits the flexibility and portability of the workflow,

requiring the workflow to be re-engineered for each new dataset or site.

I propose that workflows can be written for pure scientific intent, with the id-

iosyncrasies of execution resolved at runtime using workflow abstractions. These

abstractions would allow workflows to be quickly transformed for different configura-

tions, specifically handling new datasets, diverse sites, and different configurations.

I examine three methods for developing workflow abstraction on static workflows,

apply these methods to a dynamic workflow, and propose an approach that separates

the user from the distributed environment.

In developing these methods for static workflows I first explored Dynamic Work-

flow Expansion, which allows workflows to be quickly adapted for new and diverse

datasets. Then I describe an algorithm for statically determining a workflow’s stor-

age needs, which is used at runtime to prevent storage deadlocks. Finally, I develop

an algebra for transforming workflows, which isolates site and configuration specific



Nicholas Hazekamp

designs to be applied to workflows as needed. These methods were combined and

applied to a dynamic workflow, adapting a site bounds MPI application to a dynamic

cloud workflow.

I combine these methods and formulated the Continuously Divisible Jobs ab-

straction to separate the domain scientist’s application from the distributed logic of

a dynamic workflow. This abstraction defines an API which applications can imple-

ment to allow for dynamic distributed computation, showcasing the flexibility and

portability provided through workflow abstractions.



CONTENTS

Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Scientific Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Methods for Improving Workflow Flexibility . . . . . . . . . . . . . . 5
1.3 Overview of this Dissertation . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Example Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 2: Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Static Workflow Systems . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Workflow Specification Languages . . . . . . . . . . . . . . . . 18
2.2 Dynamic Workflow Systems . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Batch Computing Systems . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Resource Provisioning and Management . . . . . . . . . . . . . . . . 24

2.4.1 Storage Management . . . . . . . . . . . . . . . . . . . . . . . 26
2.5 Environment Re-Creation . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 Makeflow and Work Queue . . . . . . . . . . . . . . . . . . . . . . . . 28

Chapter 3: Dynamic Workflow Expansion . . . . . . . . . . . . . . . . . . . . 30
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Galaxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Dynamic Job Expansion . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Example Application . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5.1 Dependency Management . . . . . . . . . . . . . . . . . . . . 37
3.5.2 Remote Execution . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5.3 Garbage Collection . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Opportunities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6.1 Expression of Job Status . . . . . . . . . . . . . . . . . . . . . 41
3.6.2 Checkpoints and Partial Failure . . . . . . . . . . . . . . . . . 42

3.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

ii



3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Chapter 4: Static Analysis and Dynamic Management of Workflow Storage . . 50
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Definition of Files and Storage in Workflows . . . . . . . . . . . . . . 51
4.3 Storage Management Components . . . . . . . . . . . . . . . . . . . . 53
4.4 The Storage Footprint . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5 Example Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.6 Static Analysis Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.7 Dynamic Storage Management . . . . . . . . . . . . . . . . . . . . . . 65

4.7.1 Dynamic Storage Algorithm . . . . . . . . . . . . . . . . . . . 65
4.7.2 Worked Example . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.7.3 Impact of Local Storage . . . . . . . . . . . . . . . . . . . . . 68

4.8 Overall Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.8.1 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Chapter 5: An Algebra for Robust Workflow Transformations . . . . . . . . . 74
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 Challenges in Transforming Workflows . . . . . . . . . . . . . . . . . 76
5.3 An Algebra of Workflow Transformations . . . . . . . . . . . . . . . . 79

5.3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3.3 Transformations as Functions . . . . . . . . . . . . . . . . . . 82
5.3.4 Applying the Sandbox Model . . . . . . . . . . . . . . . . . . 86

5.4 Transformations in Practice . . . . . . . . . . . . . . . . . . . . . . . 86
5.4.1 Composability versus Commutability . . . . . . . . . . . . . 86
5.4.2 Command Description . . . . . . . . . . . . . . . . . . . . . . 88
5.4.3 File List Management . . . . . . . . . . . . . . . . . . . . . . 90
5.4.4 Resource Provisioning . . . . . . . . . . . . . . . . . . . . . . 90
5.4.5 Environment Elaboration . . . . . . . . . . . . . . . . . . . . 91

5.5 Applications of Transformations . . . . . . . . . . . . . . . . . . . . . 92
5.5.1 Sandbox Transform . . . . . . . . . . . . . . . . . . . . . . . . 92
5.5.2 Container Transform . . . . . . . . . . . . . . . . . . . . . . . 92
5.5.3 Resource Monitoring Transform . . . . . . . . . . . . . . . . . 93
5.5.4 Environment Transform . . . . . . . . . . . . . . . . . . . . . 93
5.5.5 Failure Handling Transform . . . . . . . . . . . . . . . . . . . 94

5.6 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.6.1 Resource Usage in a Container . . . . . . . . . . . . . . . . . . 95
5.6.2 Failure Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.6.3 Complex Software Configuration . . . . . . . . . . . . . . . . . 97

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

iii



Chapter 6: Applying Static Techniques to Dynamic Workflows . . . . . . . . . 102
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2 Jetstream . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3 Portable Reproducible Environments . . . . . . . . . . . . . . . . . . 103

6.3.1 Machine Images . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.2 Container Images . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.3 Deployment Services . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.4 VC3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.5 Deploying MAKER . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.4.1 MAKER’s MPI Behavior . . . . . . . . . . . . . . . . . . . . . 108
6.4.2 WQ-MAKER . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.4.3 Scaling Up vs Scaling Out . . . . . . . . . . . . . . . . . . . . 110

6.5 Exposing Execution Feedback . . . . . . . . . . . . . . . . . . . . . . 111
6.5.1 Clean Environment Builds . . . . . . . . . . . . . . . . . . . . 111
6.5.2 Deploying Workers . . . . . . . . . . . . . . . . . . . . . . . . 111
6.5.3 Evaluate Performance . . . . . . . . . . . . . . . . . . . . . . 112
6.5.4 Diagnosing Errors . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Chapter 7: Continuously Divisible Jobs . . . . . . . . . . . . . . . . . . . . . . 119
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.4 Continuously Divisible Jobs . . . . . . . . . . . . . . . . . . . . . . . 123

7.4.1 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.4.2 Abstract Jobs . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.4.3 Job Coordinators . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.4.4 Design Considerations . . . . . . . . . . . . . . . . . . . . . . 130

7.4.4.1 File Partitioning . . . . . . . . . . . . . . . . . . . . 131
7.4.4.2 Job Namespaces . . . . . . . . . . . . . . . . . . . . 131
7.4.4.3 Execution Sandbox . . . . . . . . . . . . . . . . . . . 132
7.4.4.4 Job Ordering . . . . . . . . . . . . . . . . . . . . . . 132

7.5 Virtual File Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.5.1 Operations on Virtual Files . . . . . . . . . . . . . . . . . . . 133

7.5.1.1 Indexing . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.5.1.2 Partitioning . . . . . . . . . . . . . . . . . . . . . . . 134
7.5.1.3 Index Look-up . . . . . . . . . . . . . . . . . . . . . 135
7.5.1.4 Instantiate . . . . . . . . . . . . . . . . . . . . . . . 135
7.5.1.5 Serialization . . . . . . . . . . . . . . . . . . . . . . . 135

7.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.6.1 Example Continuously Divisible Job Application . . . . . . . . 137

iv



7.6.2 Virtual Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.7.1 Dynamic Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.7.2 Virtual File Effectiveness . . . . . . . . . . . . . . . . . . . . . 142
7.7.3 Tiered Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Chapter 8: Conclusions and Broader Impact . . . . . . . . . . . . . . . . . . . 146
8.1 Recapitulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.2.1 Continuously Divisible Jobs . . . . . . . . . . . . . . . . . . . 149
8.2.2 Nested Workflows and Transformations . . . . . . . . . . . . . 150

8.3 Impact: Software and Publications . . . . . . . . . . . . . . . . . . . 151

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

v



FIGURES

1.1 Diagram showing Example static workflow. Typical static workflow
which makes an initial static partitioning decision, executes an appli-
cation on each partition, and joins the results. . . . . . . . . . . . . . 3

1.2 Partitioning’s affect on BWA execution. This is a sample bioinformat-
ics(BWA) workflow’s performance with the input partition size varied.
The number of partitions was varied from 10 to 100,000, using a stat-
ically size query of 1,000,000 sequences. . . . . . . . . . . . . . . . . . 4

1.3 Map of dissertation. The top graphic illustrates a static DAG, which
partitions a dataset, runs an pipeline of applications, and the concate-
nates the results. Chapter 3 looks at dynamically expanding a dataset
and pipeline to create a workflow, as well as handling data partition-
ing sizes. Chapter 4 then looks at statically analyzing storage needs of
a workflow and dynamically managing it. Chapter 5 follows, explor-
ing how to address environment needs using workflow transformations.
The middle graphic shows a dynamic workflow, whose partitions are
determined during execution. The lessons learned for static workflows
are applied and discussed in Chapter 6. Finally, bridging the two cat-
egories, Continuously Divisible Jobs are introduced in Chapter 7 and
enable a static application definition to use dynamic runtime behavior,
with the goal of avoiding bad partitioning decisions. . . . . . . . . . 12

vi



3.1 This diagram shows the dynamic job expansion process. In Stage 1,
the job has been created by the user from the tool launch page. Once
Galaxy gets the launch, the job is given an id, a working directory
is created, and the job is added to the history. Stage 2, the files se-
lected at launch are located via the file database, and the location
is communicated to the job. Stage 3, inputs are collected, either di-
rectly or linked, in the job sandbox. Following setup, a script creates
the performance workflow. Stage 4, Makeflow is launched with the
performance workflow in the job sandbox, and the workflow begins
processing. Stage 5, a Makeflow creates a Work Queue master that
communicates with workers to create execution locations. Stage 6, the
worker receives task, retrieving the inputs and task information. The
task is computed and the output delivered back to Work Queue, who
relays this to Makeflow. The performance workflow will move through
stages 4, 5, and 6, until the workflow is complete. After completion,
stage 4 will finalize the outputs and copy it to the output location de-
fined by Galaxy. If successful, stage 3 is cleaned up, and the wrapper
process concluded. At stage 1 Galaxy will change the job status and
the user will be informed. . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Diagram showing detail of example application. The top level shows
a workflow as it is represented in Galaxy. Each box is a tool, with the
names and arrows differentiating inputs and outputs. The Galaxy Log-
ical Workflow lever simplifies the Galaxy representation to the simple
logical workflow that it implies. This level shows the sequential nature
of the jobs. The Galaxy Execution level defines the environment in
which they are running, local being on the Galaxy instance and Make-
flow denoting that the Makeflow process is local, but is creating tasks
for parallelism. The Makeflow Environment level shows the process
of expanding a single job. This level clearly shows the split-process-
join nature of the performance workflow created. The lowest layer
illustrates that workers from a number of systems can be utilized to
perform the individual tasks. . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Results of BWA-GATK workflow on various datasets. This shows the
execution of BWA, sorting, adding read groups, and using GATK to
refine the results. The thin line of each graph shows the number of
tasks available to be executed. The thick line shows the number of
tasks executing. The gray bars show data transfer during a 10 second
period. The left axis corresponds to the two lines, while the right
axis corresponds to the data transfer. The four graphs, from top to
bottom, show the small, medium, large, and large with shared cache
workflows. As you can see we are able to dynamically create partitions
that allowed for greater parallelism and performance in both BWA and
GATK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

vii



3.4 Histogram showing the sizes of dynamically expanded workflows. The
top image shows a histogram of the number of dynamically expanded
workflows that had a max of X workers running. The bottom image
shows the number of total tasks that each dynamically expanded work-
flow had over the course of its execution. All workflows shown were
run with Work Queue and managed through Makeflow, and contains a
mix of workflows run concurrently and alone. The difference between
the graphs comes from two sources. The first being the tiered na-
ture of the workflows, only allowing a portion of the total tasks being
executed at any given point due to dependencies. The second being
that for BWA the amount of concurrency was limited to 50 to pre-
vent overloading the network. The last is the potential for better task
partitioning and handling in future iterations as not every situation is
perfectly matched with workers. . . . . . . . . . . . . . . . . . . . . 45

3.5 Scatter-plot of BWA-GATK usage in Galaxy. The above image shows a
scatter-plot of the concurrency expressed, in terms of number of tasks,
opposite of the concurrency achieved, the number of running tasks.
As mentioned above, there are several reasons for disparity between
expressed and achieved, but it also showcases area for improvement
in workflow creation. This would benefit from modeling functions to
better partition the workflows. . . . . . . . . . . . . . . . . . . . . . 48

4.1 File relationship between workflow and task. In the DAG, files are rep-
resented as squares and programs as circles. When a node is submitted,
the input files are sent to the task sandbox, where upon completion
the output files are retrieved. These files are held in the workflow
sandbox, which is managed by the Workflow Management System. . 52

4.2 Diagram show three example workflows. Three example workflows
used to evaluate storage management strategies. Binary Tree is a
synthetic workflow which generates 1GB files in a tree structure, re-
sulting in a large amount of intermediate data. Montage is a widely
used workflow benchmark which produces image mosaics from raw as-
tronomical images. BWA-GATK is a bioinformatics workflow that
performs alignment and genotyping of sequences related to the oak
tree. Each graph shown is reduced in cardinality from the actual work-
flow in order to more clearly show the general structure. . . . . . . . 54

4.3 Worked Storage Example DAG . . . . . . . . . . . . . . . . . . . . . 61

viii



4.4 Diagram showing dynamic allocation data structure. Shown is the
execution of the worked example from Figure 4.3. Numbered boxes
represent storage allocations for nodes. Lettered Boxes represent allo-
cations for specific files. Boxes with slashes through them are alloca-
tions which are being removed because either the node is complete or
the file is no longer needed. Allocations are removed when no longer
relevant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Storage limits applied to example workflows. Timeline of storage con-
sumption for each of the three example workflows, in different con-
figurations. The top row shows uncontrolled executions which exceed
the desired limit. The second row shows naive storage limits which
can result in deadlock. The third row shows a limit applied using the
dynamic algorithm. The fourth row shows the minimum storage foot-
print enforced. In each graph, the dark area shows storage actually
consumed, while the light area indicates storage committed to future
use. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1 Diagram showing an example workflow. This basic workflow shows
standard split-join behavior. The first task partitions the work, the
next set of tasks analyze the individual partitions, and the last task
joins them all back together. Each task executes independently from
each other and are often run on batch execution systems. . . . . . . . 77

5.2 Basic task defined using JSON. . . . . . . . . . . . . . . . . . . . . . 80

5.3 Diagram showing the sandbox model of task execution. This shows the
different steps needed to isolate the task from the underlying workflow
environment to prevent side-effect on the environment and filesystem. 82

5.4 JSON defining abstract Singularity transformation. Describes the
Singularity command, added files (such as image and output log), and
increases the required disk space. Note, several of the variable are
unbound, and will be resolved when applied to a task. Unaltered
fields are left undefined. . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Resulting task of applying Singularity to T1. The transformed task
has all of the variables bound. The file lists have combined the previ-
ously defined files with the files added by Singularity. The resources
are resolved and the required values account for the original task and
the transformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.6 Script created when evaluating Singularity(T1). . . . . . . . . . . . 85

5.7 Verbose JSON object file specification. In this example the resource
monitor uses a statically name default summary, ”summary”. In this
case, the the summary file is statically named, but will collide in the
global workflow context. To avert this collision the file is specified with
its static inner name, and a unique outer name using the task’s ID. . 88

ix



5.8 General approach to Sandbox model of execution. The environment
that exists at task execution is the result of several sources. The en-
vironment starts at the DAG where variable are resolved internally
and from the host machine. These values define the task’s initial en-
vironment. Transformations are applied to this task which extend the
environment, but are only applied at execution. At the execution site,
the environment is defined by the execution node and batch system.
As execution starts, each transformation is applied and invokes its
environment, limiting their affect to that transformations execution. . 89

5.9 Evolution of task as transformations are applied. Starting from the
left, we have the initial task with a single input and output. Next,
a resource monitor is applied which passes through the original files,
but also creates a summary of the resources used. After the resources
monitor, a Singularity container is used to provide a consistent operat-
ing system, requiring a image to run from and creating a log. Finally,
a sandbox is created to isolate execution, limiting file access when
singularity maps the current directory. . . . . . . . . . . . . . . . . . 94

5.10 Histogram of task execution with nested transformations. The dis-
tribution of task execution grouped by applied transformations. The
first configuration runs the resource monitor inside of a Singularity, the
second runs just Singularity, the third runs just the resource-monitor,
and the last runs the task inside of an application sandbox. We see
that the distribution of execution time is consistent between runs, and
the amount of transformation overhead is minimal. . . . . . . . . . . 96

5.11 JSON showing stack trace transformation. The stack trace transforma-
tion allows a user to capture a core-dump of a failed task and convert
it into a stack trace. This is done by setting the ulimit to allow the
full core-dump, running the script, and then analyzing the core-dump
with GDB. The step of touching the stack trace file prevents non-failed
tasks from missing output. . . . . . . . . . . . . . . . . . . . . . . . . 98

5.12 JSON showing VC3-Builder transformation. VC3-Builder is typically
self-contained, and the specified cmd is sufficient for most software.
MAKER, however, relies on several libraries with restricted licenses
that must be provided by the user. As a result, the transformation
must create the install structure and extract these libraries to the
correct location prior to VC3-Builder. We specify cores for the make
threads and increase the disk for the installation. . . . . . . . . . . . 100

x



6.1 Diagram showing MAKER, MPI MAKER, and WQ-MAKER mod-
els. MAKER, without MPI, runs the sub-process analysis sequen-
tially. MPI MAKER executes by sharing work, with MPI processes
going to the pool of ready tasks and executing them. These processes
are synchronized using data-structures(in MAKER) and data files(in
MAKER’s sub-tools) passed between sub-process (see dotted lines).
WQ-MAKER partitions the data and sends it to separate workers.
Each worker executes MAKER locally using MPI MAKER. . . . . . . 109

6.2 Graph showing comparison of methods on Fungal(41MB) dataset. The
Fungal dataset contains 231 contigs. With similarly runtimes, we can
see there was little or no overhead when using WQ-MAKER, though
little gained beyond 34 cores. . . . . . . . . . . . . . . . . . . . . . . 112

6.3 Graph showing comparison on partial Hummingbird(900MB) dataset.
This subset of Hummingbird contains 5000 contigs. In this image we
can see improvement of WQ-MAKER over the MPI run, likely as a
result of reduced contention for resources. . . . . . . . . . . . . . . . 113

6.4 Performance of Saguaro Cactus genome(1.6GB) annotation using WQ-
MAKER on Condor. The two lines of note are the running tasks
and cores. The running tasks indicate the number of actively running
MAKER tasks. The cores indicate the cores utilized by WQ-MAKER.
Condor’s volatility as a job scavenging systemcauses the variability in
available resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.1 Effect of partitioning on BWA execution. This is a sample bioinfor-
matics(BWA) workflow’s performance with the input partition size
varied. The number of partitions was varied from 10 to 100,000, using
a statically size query of 1,000,000 sequences. . . . . . . . . . . . . . . 122

7.2 Diagram of Continuously Divisible Job architecture. This diagram
outlines the relationships between the data slice, Continuously Divisi-
ble Job interface, abstract jobs, and the job coordinator. An abstract
job consists of a data slice, the applications, and the interface wrapper.
Abstract jobs may map a single slice, or contain several independent.
These abstract jobs are managed by the job coordinator, which splits,
executes, and joins the work. The job coordinator decides how and
when jobs are placed on resources. . . . . . . . . . . . . . . . . . . . . 124

7.3 Capabilities of Continuously Divisible Job abstraction. Using the Con-
tinuously Divisible Job abstraction, jobs can be partitions and run
locally. Using the same design we can also distribute to multicore
workers or to other job coordinators that further distribute the work.
This highlights how the Continuously Divisible Job interface relates to
overall recursive design. . . . . . . . . . . . . . . . . . . . . . . . . . . 130

xi



7.4 File usage of normal and virtual file implementations. In the normal
case, the application directly opens and navigates the file. In the vir-
tual file case, the reads are directed through the virtual file using either
an index or query to resolve and redirect to the read location. This
approach introducing overhead of creating the index and resolving the
data. However, as these application are partitioned for concurrent ex-
ecution, the normal usage requires expensive physical partitions, while
partitioning of virtual files is essentially free, allowing concurrent use
of the data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.5 Performance of static partitions, Continuously Divisible Job, and Con-
tinuously Divisible Job using virtual files. Jobs are partitioned as
previous work is finished allowing the size to dynamically find a sta-
ble partition, and all of the cores remain busy. As a combination of
lightweight partitioning and direct data access, we can see the virtual
file implementation performs consistently better. The base Continu-
ously Divisible Job, however, see a bump in execution time from the
added cost of redundant file writes. . . . . . . . . . . . . . . . . . . . 137

7.6 Performance of ROOT and SQL Dimuon detection methods. To eval-
uate both the benefit of the virtual file and dynamic sizing, each imple-
mentation was run using static partitions and then dynamic partitions.
We can see in the static case, the SQL implementation provides a con-
sistent advantage over the ROOT file. However, in the dynamic case,
as the initial partitions get smaller the difference shrinks. This is due
to ROOT’s high overhead more quickly pushing to a better partition. 138

7.7 Performance of virtual files with static partitions. This shows a stan-
dard BWA bioinformatics workflows where only the size of each parti-
tion is varied. This is compared with similarly static partitioned Con-
tinuously Divisible Job implementations. We can see that lightweight
partitioning and dynamic joining help them out perform the fully static
case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.8 Comparison of tiered performance for several configurations. This
compares static partitioning against several configurations of Contin-
uously Divisible Job using virtual files. Each line is grouped by the
initial master size and the X axis shows the initial worker size. As can
be seen across each case, at the right the limited worker partitioning
under-utilizes the cores. To the left, the small starting size suffers from
initial splitting overhead. . . . . . . . . . . . . . . . . . . . . . . . . . 144

xii



TABLES

3.1 Dataset Size and Task per Worker Reference . . . . . . . . . . . . . . 46

4.1 Worked Storage Example Variables . . . . . . . . . . . . . . . . . . . 62

4.2 Static Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 Comparison of Core-Dump and Stack Trace Data. . . . . . . . . . . . 99

5.2 MAKER Build-times using VC3-Builder on Various Sites. . . . . . . . 101

6.1 Genomes Sequenced with MAKER on Jetstream . . . . . . . . . . . . 116

6.2 Comparison of MAKER Methods Performance . . . . . . . . . . . . . 117

xiii



ACKNOWLEDGMENTS

First and foremost, I want to thank Dr. Douglas Thain, my advisor, who always

had the time to discuss the big ideas. Dr. Thain has always pushed me ask the

right questions, verify my results, and have pride in the solutions we create. I deeply

appreciate all of the opportunities that have offered to through time with Dr. Thain,

everything from teaching tutorials and classes, traveling for conferences, and having

a graduate experience where my time was valued.

I also want to thank:

Dr. Scott Emrich, who has been a mentor and supporter of my research since

my graduate career began. Dr. Emrich has always provided helpful insight into the

many bioinformatics projects I undertook, and makes an effort to keep in touch and

apprised of my progress since moving to UTK.

Dr. Nirav Merchant, who has provided a wealth of work through our collabora-

tions. I have appreciated the enthusiasm you bring to discussing different problem

solutions and your willingness to find time for our remote discussions.

Dr. Jarek Nabrzyski, Dr. Paul Brenner, and the Center for Research Computing

for supporting all of the computing I could attempt. Even though I have not always

been an ideal computing tenant, the CRC finds the time help find a solution or discuss

different approaches.

Dr. Aaron Striegel, who helped guide my early graduate career with Operating

Systems where I learned how to read and discuss research.

Dr. Jakob Blomer and the CVMFS team who supported my work and collabo-

ration for the Shrinkwrap project, as well as my wonderful summer in Geneva, for

xiv



which I will always cherish.

Dr. Ben Tovar who has through all projects been a great sounding board for ideas

and programmatic approaches. Ben has help mold me into a decent programmer,

having spent patient afternoons walking through some large and messy pull-requests.

Nate Kremer-Herman and Tim Shaffer who are always willing to talk through

ideas. The honest and upfront approach with which you both discuss ideas, whether

related to research or not, has provided helpful feedback and refreshingly candid

conversations. I am only sad that our future lunches are limited and I will have no

more conferences to experience with you both. Thanks for keeping it interesting.

Charles Zheng, Peter Ivie, Haiyan Meng, Patrick Donnnelly, and the whole Co-

operative Computing Lab whose many collaborations helped give me a broader view

of distributed computing. Throughout my career, the many member of the CCL,

both past and present, have been instrumental in keeping aware of the field and what

talents we all bring to the table.

Joyce Yeats and the Computer Science Administrative staff, without whose help

I would never have been able to get a degree, buy a house, or find answers to innu-

merable questions.

My parents, Jeff and Gwen Hazekamp, who have supported me through all of

my endeavors, academic and otherwise. Their wonderful support and the occasional

’shouldn’t this be done already’ has motivated me to finish.

And lastly as a constant source of encouragement, I thank my wife, Laura Hazekamp.

Laura has helped and supported through my whole graduate career, motivating me

to finally be done. Despite the concerns of my lengthening graduate program, she

resisted the urge to press, remaining steadfast in support.

xv



CHAPTER 1

INTRODUCTION

1.1 Scientific Workflows

With the increased demands of scientific computing, there is a constant search

for improved ways to harness available resources from clusters, clouds, and grids. A

variety of fields are experiencing a boom of data production and there is increased

need for user friendly approaches to process the vastly growing data. Workflows

are a main avenue scientists are utilizing to exploit these resources for analysis[118],

with examples in a number of fields such as bioinformatics[4, 12, 48, 50, 55, 78],

high energy physics[35, 124], astronomy[36]. Workflows are used to organize a set

of tasks describing the transformation from inputs into outputs. Scientific workflows

are advantageous since they can be written once and do not need to be tailored or

compiled for the specific resource chosen. Well organized workflows can be scaled to

any amount of data produced and leverage resources as required.

Users working to process large scale data find workflows provide a tractable so-

lution. Workflows are designed with a specific application or processing pipeline in

mind, based on the developer’s experience and data. Workflows are based on many

assumptions from the developer such as data, execution site, and configurations.

Common cases include assumptions like: adequate partition size for efficient resource

usage, target type or number of resources being provisioned, or even options passed

to the underlying application. If assumptions do not change, the initial workflow will

perform consistently on the desired resources.

1



Workflows designed for a specific purpose are hard coded. Using workflows de-

signed for other configurations requires updating, but even in easily configurable

workflows, changes can be time consuming and resulting effects may be unknown.

Users adapting existing scientific workflows need to understand the tunable variables

and how these variables relate to their data. The process of finding a good configura-

tion may be difficult, including determining partition granularity, managing several

workflows at once, and providing mechanisms to adjust for new sites or configura-

tions.

I will define workflows in two categories: static with systems such as Pegasus[38],

Kepler[3], and DAGMan[31]; and, dynamic with systems such as Parsl[10], Work

Queue[16], and SWIFT[121]. Static workflows make one-time bulk partitioning de-

cisions on the data. Data is partitioned and then operated on concurrently. Static

workflows enable more complex or strict scheduling and resource handling as their

apriori knowledge of tasks and dependencies can be used. Dynamic workflows parti-

tion data on demand to process large data sets or iterate over many parameters. The

dynamic nature of partitioning allows workflows to converge on results, use available

resources, or modify the search space and configurations. Dynamic workflows allow

for more complex computational loops, but require a higher level of understanding

of the analysis and workflow computing to perform efficiently.

In static workflows, the partitioning of the data set is determined by a static

partition size or number of partitions desired. Cases using static sizes, changes to

data structure or density affect performance. This is exacerbated when the num-

ber of partitions is static as concurrency does not track with increased size. Using

bioinformatics as an example, differences between genome contigs and large scaf-

folds, hundreds of base pairs versus thousands respectively, introduces an order of

magnitude difference on execution and resource needs. Inappropriate partitioning

can result in two scenario: under- and over-sized. Under-sized partitions leads to

2



Input

APP

OutputAPP

APP

Input 1

Input 2

Input 3

Out 1

Out 2

Out 3

Split Join

Figure 1.1. Diagram showing Example static workflow. Typical static
workflow which makes an initial static partitioning decision, executes an

application on each partition, and joins the results.

increased overhead, limited concurrency (result of shorter tasks), and lower utiliza-

tion of resources (from limited bandwidth of the coordinator). Over-sized partitions

leads to limited resource capacity (from a lack of available partitions), more expen-

sive fault-tolerance (from reduced granularity), and larger resource requirements to

accommodate execution.

To show a simple illustration of this problem I varied the partition size of a BWA

workflow, a bioinformatics alignment application. The BWA workflow takes a query

and reference genome, partitions the query genome, and performs alignments between

the query partitions and the reference. This BWA workflow maps cleanly to the

example workflow shown in Figure 1.1. Figure 1.2 shows the affect partitioning has on

the execution time of BWA. This result measures execution time for different numbers

of partitions of the query genome sequence. The log scale graph shows a valley where

performance is reasonable, with many sizes yielding acceptable performance. At the

edges of the graph we see orders of magnitude longer execution as a result of under-

and over-sizing.

As a result of partitioning decisions resources are acquired (or intermittently

needed) beyond the scope of the initial workflow state and used concurrently with

3



Figure 1.2. Partitioning’s affect on BWA execution. This is a sample
bioinformatics(BWA) workflow’s performance with the input partition size
varied. The number of partitions was varied from 10 to 100,000, using a

statically size query of 1,000,000 sequences.

the resources needed to execute the workflow. This means that additional storage

is needed for intermediate and partially completed tasks, resources for managing

and retrieving external data, and management of out-of-workflow resources such as

databases and servers. Persistent usage of storage provides a clear illustration where

additional storage accrued in execution then leads to execution limitations and fail-

ures (i.e. deadlocking the workflow in need of storage space). This problem is exac-

erbated as users run multiple workflows concurrently with no control or coordination

mechanism.

Workflows that are properly sized and have resources appropriately allocated

indicates the workflow was designed with a specific site, resource, and configuration

in mind. As a user looks to change these expectations, they are left to change the

underlying workflow to reflect the desired environment. Containers serve as a premier

example as they are both commonly used in scientific computing and are delivered in a

number ways such as Docker[89] and Singularity[74]. Containers are used in scientific

workflows to replace the underlying operating system and environment configuration.

Existing workflows can be modified to build the container into the existing tasks,

4



but this creates new dependencies and does not pertain to the original intent of

the scientific workflow. If the workflow is modified for a specific container, the new

workflow may only be suitable for sites using that container engine, requiring updates

for future or different technologies. The difficulty is further extended for additional

changes needed, resulting in tasks with undefinable or indefinite definitions.

I will demonstrate several methods for increasing the flexibility and portability of

workflows. Methods include how to cleanly expand static workflows, track resources

required, and transform tasks and workflows for new configurations. These methods

are applied to dynamic workflow as proof of wider applicability. Finally, I will de-

fine the Continuously Divisible Jobs abstraction for bridging the simplicity of static

definition with the flexibility of dynamic execution.

Most workflows are designed with the intention of pure scientific anal-

ysis, then cluttered with site and configuration specific implementations.

Incorporating methods for abstracting the execution specifics from the

scientific intention allows sound scientific workflows to be used more flex-

ibly; adapting to new data, sites, and configurations without changing the

underlying analysis.

1.2 Methods for Improving Workflow Flexibility

I will be examining methods for improving the flexibility and portability of work-

flows, first by developing methods for static workflows and then by applying them

to dynamic workflows. Three main areas of focus will be partitioning and expanding

workflows, analysis and management of sustained resources needs, and methods for

transforming existing workflows to accommodate new requirements. Though these

are not exhaustive when looking at improving flexibility, they tackle several of the

main concerns encountered by scientific users. The culmination of these methods will

be presented through the Continuously Divisible Job abstraction, as a novel approach

5



to workflow design.

Dynamic Workflow Expansion allows for a template workflow to be defined

and expanded at runtime. This uses static partition sizes and known application

behavior to expand applications to workflows in target systems with limited user

interaction. Dynamic Workflow Expansion has three objectives for expanding the

workflow behind a user interface to reduce the user’s required knowledge and make

partitioning decisions that target the software and site of deployment while delivering

results comparable to normal execution. This allows the user to seamlessly employ

the application workflow in a larger analysis pipeline.

Workflow Resource Management uses static analysis of the workflow to de-

termine the expected size, then employs this knowledge for runtime management of

the workflow. This concept relies on the static nature of directed acyclic graph (DAG)

workflows to analyze the full workflow, estimating the need and lifetime of resources.

One method uses strict scheduling of the DAG to limit overall size and overlapping

resource usage. This method requires knowledge of resources requirements and ac-

curate execution time to effectively execute concurrently. While difficult to know

apriori, an incorrect estimations reduces the overall performance significantly. The

method developed relaxes the expected knowledge of execution time, relying solely

on resources and allowing logical constraints to be placed on the DAG without strict

scheduling. The workflow can utilize the maximum concurrency without over com-

mitting resources that will be needed later. The underlying design statically analyzes

task footprints to determine the allocated resources and their commitment length.

This approach is used at runtime to determine if an execution branch can reserve the

requisite resources, allowing concurrency within specified limits.

Workflow Transformations allow workflows to be dynamically adapted for

new requirements without changing the underlying workflow. Changing the size

and parity of the data while running concurrently requires recreating the necessary

6



environment for task execution. As new resources or execution sites are adapted the

original expected environment needs to be distributed. This environment extends

beyond the simple definition of task inputs and includes information not pertinent

to the scientific analysis but necessary for execution. This approach uses a strict

task sandbox to outline a task definition and how tasks are transformed for new

environments. This is demonstrated using the base case of a single task: capturing

the tasks behavior and then applying several task transformations to adapt to new

configurations.

As outlined above, these three methods are used to increase flexibility of static

workflows, but can also dynamic workflows. This is explored by apply the lessons

learned to dynamic workflows by examining how to transform tasks to: accommodate

complex software configurations, manage dynamic task sizing, and provide clear tools

with feedback to the user to make informed decisions about resource allocation.

Continuously Divisible Jobs abstraction is based on the methods and lessons

learned from both static and dynamic workflows. The importance of separating the

application mechanism, which the user understands, from the execution policy, which

relies on distributed computing knowledge, is emphasized. An abstraction for creating

static applications that enable dynamic partitioning and execution is needed. The

proposed solution, Continuously Divisible Jobs, defines a simple API that allows an

application to encode how data is manipulated and the analysis executed. This API

is then used by job coordinators to enable different partitioning models, scheduling

methods, and execution systems. Utilizing Continuously Divisible Jobs decisions to

handling data can be determined based on the underlying systems and abstracted

away from the application level allowing users to focus on writing applications, and

using job coordinators for allocating available resources.

7



1.3 Overview of this Dissertation

Each chapter is briefly outlined, including an outline of the conclusion. A pictorial

overview is shown in Figure 1.3. Chapters are labeled numerically on the overview,

with a corresponding description in the caption.

Chapter 2 focuses on background and related work, exploring existing tech-

nologies and related work. Specifically this section looks at existing work in scientific

workflows, differentiating between static and dynamic workflows. It explores exist-

ing work in data partitioning, resource provisioning, and storage analysis. Next,

highlighting research related to different approaches for capturing, replicating, and

providing environments. Then I delve more in depth on the software used throughout

this research, including examples of static and dynamic workflow systems.

Chapter 3 focuses on the dynamic workflow expansion. Dynamic workflow

expansion is explored to create BWA and GATK workflow that are expanded behind

the Galaxy user-interface. The goal of dynamic job expansion is to capture a logical

workflow created by the user and expand each step into a workflow of concurrent

tasks. Relying on a model of the software behavior, dynamic job expansion acceler-

ates performance with minimal user interaction. This chapter focuses on alleviating

the upfront cost from a user’s perspective, while avoiding under- and over-sizing of

partitions in a target system.

Chapter 4 focuses on the static and dynamic resource management which

analyzes the entire workflow to prevent deadlock from storage exhaustion. The al-

gorithm developed analyzes a static DAG and reports the estimated minimum and

maximum storage needed by a workflow. This data is then used for dynamic work-

flow management, which accounts for allocated storage space. This technique is able

to consistently prevent deadlock and safely execute a workflow within a user spec-

ified limit. This chapter focuses on analysis and management of intermittent and

accumulated resource needs of scientific workflows.

8



Chapter 5 focuses on workflow transformations. Workflow Transformations

aim to address the problems that arise in accurately executing partitioned work on

different resources. I explore how to model and then transform workflows to provide

a consistent, correct task execution environment. This is accomplished by defining a

model of isolation using task sandboxes. Using strictly defined task sandboxes, tasks

and transformations can be arbitrarily nested allowing for flexible task and workflow

handling.

Chapter 6 focuses on applying static methods to dynamic workflows. Key

challenges in this work looked at: providing the correct environment for a dynamic

partition, handling complex input and output setups, and scaling using both external

concurrency and internal parallelism. Using WQ-MAKER, the local parallel perfor-

mance using MPI was compared with the remote concurrent performance using Work

Queue, a master-worker framework. Following this, the Work Queue implementation

was used to analyze several larger datasets to show the continued scalability of the

framework and flexibility of applied methods.

Chapter 7 focuses on an abstraction for bridging static and dynamic work-

flows. Introducing the Continuously Divisible Jobs model, which defines an API for

applications that is used by job coordinators for execution. The goal is to separate the

mechanism of the application and the execution on a platform, using the API and job

coordinators respectively. Leveraging the flexibility of dynamic workflows to avoid

bad configurations, while using static application definitions for easier creation. This

work illustrates the need for Virtual Files to abstract the logical data partitioning

from physical data movement. I show that by using Continuously Divisible Jobs in

conjunction with Virtual Files, execution consistently outperforms static workflows.

Chapter 8 Conclusions focus on evaluating the overall effectiveness and appli-

cability of the different methods defined in this dissertation. Reiterating the contri-

butions as they apply to workflows and looking more broadly at how these methods

9



apply to scientific computing in general. I then briefly discuss the software that

was created in the process of completing this work, peer-reviewed publications that

resulted, and the broader impacts of this work.

1.4 Example Applications

Now I will outline several of the consistently used applications throughout this

dissertation’s research. The applications will be briefly introduced, as well as an

outline of their typical behavior. These applications provide examples of behavior

seen in a number of fields, such as bioinformatics and high-energy physics.

BWA[77] employs the Burrows Wheeler Transform algorithm to align genome

queries. BWA is a light-weight alignment tool that supports paired-end mapping,

gapped alignment, and various file formats like ILLUMINA [30] and ABI SOLiD [53].

The output format is SAM (Sequence Alignment Map), which can be analyzed using

a number of tools such as GATK and the SAMtools package [79]. In related work[27]

we observed that the runtime of BWA is roughly proportional to the product of the

reference and the input size. Partitioning the reference is possible, but increases the

complexity of joining and negatively impact the benefit of cached files. The joining

phase of the BWA workflow separates the header and content of each of the output,

generating a single result using a single header and concatenated results.

Genome Analysis Toolkit(GATK)[94] employs a Bayesian algorithm to com-

pare aligned sequences with the reference. GATK provides a number of functions,

such as HaplotypeCaller and UnifiedGenotyper, used for variety analysis in genomics.

HaplotypeCaller functions by indexing the input set and creating walkers to locate

variations between the query and reference. Once a difference is detected, Haplo-

typeCaller performs local assemblies to fill gaps or correct mistakes. This produces a

output that expresses how closely alignments match, the match confidence, and other

statistics of the analysis. GATK is generally used to prune alignment information for

10



later analysis. The execution time of GATK is dominated by the size of the reference

file, attempting to map the full reference in memory. Thus, partitioning both the

query file and reference allows for performance that outweighs the additional data

handling, allowing consistent performance on smaller machines. There is added com-

plexity to join results from correcting quality scores, but the effect on execution time

is less than serial execution.

MAKER[18] is a bioinformatic pipeline used to annotate genomic information.

MAKER utilizes standard programs in bioinformatics to customize the processing

and preparation of the raw data. This includes processes to identify repeats, align

ESTs and proteins to a target genomes, predict genes, and quantify the quality of the

results based on the provided evidence. MAKER focuses on automating the entire

annotation process to create an easy and consistent initial annotation. MAKER

is still under active development and is used in many areas of organism modeling.

MAKER is interesting because as a pipeline there are a large number dependencies

and hurtles that need to be overcome for setup and execution. These include a

number of restrictions such as database handling, hardcoded installation paths, and

specific data locations and names. Additionally, MAKER supports MPI internally

which provides opportunities for increased concurrency on workers.

Dimuon Detection is a high energy physics application that analyzes events

from the Large Hadron Collider(LHC) for dimuon activity. The input to this detec-

tion relies on the event data presented in ROOT[14] format. This format is large and

can be cumbersome when analyzing events concurrently. This leads to interesting

opportunities for rearranging data and handling in scientific workflows.

11



Input
APP

Output

APP

APP

Input 
1

Input 
2

Input 
3

Out 
1

Out 
2

Out 
3

Split Join

Dynamic App
Split APP

Feedback

Input

Parse

Output

Join

3

6

5

4

7
Data

Slice App
CDJ 

Job instance(s)

Abstract Job

Job 
Coordinator

Resource

JOIN

SPLIT

EXEC

Continuously Divisible Jobs

Dynamic Workflows

Static Workflows

Figure 1.3. Map of dissertation. The top graphic illustrates a static DAG,
which partitions a dataset, runs an pipeline of applications, and the

concatenates the results. Chapter 3 looks at dynamically expanding a
dataset and pipeline to create a workflow, as well as handling data

partitioning sizes. Chapter 4 then looks at statically analyzing storage
needs of a workflow and dynamically managing it. Chapter 5 follows,

exploring how to address environment needs using workflow
transformations. The middle graphic shows a dynamic workflow, whose

partitions are determined during execution. The lessons learned for static
workflows are applied and discussed in Chapter 6. Finally, bridging the two

categories, Continuously Divisible Jobs are introduced in Chapter 7 and
enable a static application definition to use dynamic runtime behavior,

with the goal of avoiding bad partitioning decisions.

12



CHAPTER 2

RELATED WORK

In this chapter, I will outline and discuss existing work related to this disser-

tation. The primary focus is on existing workflow systems, where I will separate

static (Section 2.1) and dynamic workflows (Section 2.2). I will also briefly highlight

some related batch execution systems(Section 2.3). Following discussion of workflow

systems, I will review research related to the problems tackled and solutions used

throughout task and workflow resource provisioning (Section 2.4), workflow storage

analysis, and management (Section 2.4.1), and environment creation tools such as

containers (Section 2.5). Finally, I conclude with a more in depth look at the tools

used for this research, specifically Makeflow and Work Queue (Section 2.6).

2.1 Static Workflow Systems

Pegasus [38, 40] is a workflow management system which utilizes directed acyclic

graphs (DAG) similar to Makeflow. It makes data flow and movement a priority and

attempts to optimize these in scheduling. Pegasus focuses on grouping and man-

aging the individual tasks of the workflow to partition the work while minimizing

communication overhead[37]. This was explored further to combine results of the

workflow partitioning with the resource provisioning[22] and then refined for storage

constrained conditions[21]. Pegasus explored a number of different workflow opti-

mizations such as task clustering, job throttling to limit traffic, and pre-staging of

data.[20] Pegasus[37, 38] is Workflow Management System(WMS) that focuses on

static planning of workflows on remote sites. It utilizes a multi-stage method to

13



plan, execute, monitor, and re-use workflows across multiple platforms. Pegasus’s

similar DAG structure would allow methods like dynamic-job expansion and work-

flow transformations to be applied in very similar ways, though with Pegasus’s more

verbose task structure care would need to be taken when translating transforma-

tions. Additionally, Pegasus’s emphasis on static planning may limit the interface

with Continuously Divisible Jobs, where task are dynamically created.

DAGMan[31] is a DAG manager built as a meta-level job manager on top of

HTCondor. DAGMan controls the order and speed tasks are submitted to HTCondor

based on workflow dependencies. DAGMan relies on HTCondor to allocate and

control the resources needed for a task, trickling jobs in as dependencies are met.

Much like Pegasus and Makeflow, DAGMan operates on DAG workflows, allowing

the dynamic workflow expansion and workflow transformations to apply cleanly to

the defined abstraction. DAGMan supports a similar role in job throttling to the

job coordinator described in Continuously Divisible Jobs, but the static DAG nature

limits the flexibility. Unlike Pegasus and Makeflow, the dependecies for DAGMan

are describe purely at the job level, rather than through files. This limits the clear

mapping of the static and dynamic storage manage as DAGMan does not define a

global view of files and their lifetimes.

Snakemake[76] allows for static workflow definitions that exploit file wildcards.

It is written in Python and allows data scaling without the need to rewrite workflows,

functioning similar to what was achieved with dynamic workflow expansion. Snake-

make is growing in popularity as it supports a number of bioinformatic tools out of

the box, is easy to learn and write, and support Python, shell, and R scripts directly.

Snakemake assumes a similar task structure to what is used in other workflow sys-

tems, which would allow workflow transformations to be applied. The flexibility and

ease of use are tempered by the limited support for batch systems; targeting newer

cloud platforms but supporting only Sun Grid Engine(SGE) for clusters. Snakemake

14



determines dependencies using files and generates the workflows as jobs are executed.

This limits the amount of verification that can be done on the workflow prior to ex-

ecution, as well as limiting the ability to statically analyze the storage needs.

Dryad[66, 72] is a distributed execution engine geared toward data-parallel appli-

cations. It’s workflows are defined as DAGs, where the vertices describe computation

and the edges consist of data communications. This description is vague as Dryad

supports a number of different communication pathways, such as files, TCP pipes,

and shared-memory queues. The underlying design of Dryad is to allow scaling from

a single machine up to large scale distributed environments. The inherent complex-

ity of Dyrad’s supported communications pathways limits the direct applicability of

methods used within this papers. Dynamic workflow expansion assumes there is a

partition point at which the work can be split into multiple files. This is possible

with these other communication methods, but complicates workflow creation, vali-

dation, and management. Similarly, in Chapter 5 a task is defined using only files

as they are a stable way to pass data through several layers. Each different method

used complicates the transformation method and increases the fragility of the process

based on the shell used.

PaRSEC[13] is a task scheduling system used for hybrid distributed systems.

PaRSEC is a dataflow system that builds a directed acyclic graph based on the im-

plied data connection. This graph is then traversed, launching parallel task available

resources. It’s focuses on leveraging available hardware accelerators for computation[125].

Additionally, in moving toward a dynamic approach, the most recent implementation

provides dynamic task discovery[65] which allows tasks to be injected into an exist-

ing runtime as they are created. PaRSEC operates on sequential code, transforming

the code into a DAG workflow, producing tasks as function calls in a parallel envi-

ronment. For this to work, the environment is assumed to be highly connected and

consistent, much akin to an MPI application. This assumption limits the effective-

15



ness of solutions such as dynamic workflow expansion and static workflow analysis,

as the workflow are derived from the application and not around a workflow struc-

ture. Additionally, workflow transformations use a strict task definition and nesting

using processes, which eliminates the advantages of PaRSEC’s close to the hardware

approach.

Some workflow management systems operate as high-level applications that fo-

cus on the development and organization of workflows for a User. These workflow

management systems are GUI-based, providing a rich editing environment for users

and are often the first point of entry for users into the realm of workflows. These

systems facilitate easy workflow design. The high-level nature of these systems lack

expressiveness for dynamic concurrency when compared with the above solutions.

In practice this is remedied by partitioning the data prior to submitting but this is

additional burden on the users.

Galaxy[12, 48] is a web-based workflow management system focused on bioin-

formatics. Galaxy is built with similar goals as Kepler, with an emphasis on low

barrier to entry and simple workflow development, using drag-and-drop components.

To facilitate this ease of development, users are provided a curated set of applications

and tools for analysis. However, tools can not be added by normal users and must

be managed by system administrators. Workflows in Galaxy are comprised of ap-

plications/tools that are linked together graphically by the user to connect outputs

with the tools that require them. In Galaxy concurrency is limited as workflows lack

any means of dynamic partitioning. As is discussed in Chapter 3, Galaxy provide an

opportunity to abstract the concurrency from the user using dynamic job expansion

during execution. Additionally, job clean-up may be inconsistent, so high-level work-

flow storage management using static analysis and dynamic management is crucial

to safely deploying dynamic workflows.

Kepler [3] is workflow management system that provides a GUI interface for user

16



to build and refined workflows. The core design targets ease of use for users with

little background in workflows or distributed computing. Kepler aims to provide tools

for creating generic scientific workflows where portability and power are important.

Unlike other Workflow Management systems, Kepler allows the workflow design to

be separated from the computational model, more akin to typical workflow execution

systems. It also offers support in tracking and managing provenance. Combining

the provenance and workflow design aspects, Kepler, facilitates workflow sharing for

collaboration and reproducibility. The similarities between Galaxy and Kepler allow

the methods described in Chapter 3 and Chapter 4 to apply.

Apache Taverna[114, 122] allows the user to create a static workflow that is

used as a template, but the degree of partitioning is static within the workflow un-

less other means are provided. It supports a wide range of tools and domains for

scientific workflow, with three core elements. Taverna: Engine executes tasks of

workflows concurrently across resources, Workbench is the desktop client applica-

tion targeted for the end user, and Server empowers the user to execute workflows

remotely. Like Galaxy, Taverna is comprised of applications/tools that are linked

together graphically by the user to connect outputs with the tools that require them.

The underlying complexity Taverna modifies the approach needed to leverage avail-

able resources. Dynamical job expansion would need to configure how to submit new

jobs to the Taverna Engine for new task execution, as opposed to Galaxy where the

resources were out of Galaxy’s control.

Uintah[32] is a parallel design environment, where workflows are constructed of

components that create and consume data to other components or into data ware-

houses. Uintah strives to provide a clear interface for scientists to develop and steer

large scale computation, and stands apart from several of these workflow management

systems in that it builds parallelism into is design. This assumption of flexible con-

currency allows for powerful scaling, without having to re-engineer the entire system.

17



Uintah is actively continuing development targeting next-generation exascale system.

The approach Uintah provides for concurrency pushes the work and complexity of

defining concurrency points onto the user, which differs from the more abstracted

approach examined using dynamic job expansion in Galaxy.

Prune[67] focuses on preserving and providing provenance for scientific computa-

tion and workflows. Though not specifically a workflow management system, Prune

tracks the organization of workflows which allows data to be changed or updated

triggering fresh computation. Prune uses Makeflow as a target back-end, interfacing

to allow for complex workflows to be executed and preserved. As a result of the

provenance information, these workflows and computations can be shared for collab-

oration, similar to the goals of Kepler and Galaxy. Storage management is crucial

benefit of Prune, as files can be removed and regenerated as needed across several

workflows. This helps to avoid storage deadlocks entirely, as the space is actively

managed by Prune. Additionally, Prunes support for Makeflow workflows and tasks

allows both dynamic job expansion and workflow transformations to be applied as

needed, with the caveat that each transformation or expansion may define new paths

in Prune, limiting the reuse of previously executed tasks.

2.1.1 Workflow Specification Languages

As a side-effect of creating a new and unique workflow system, a specification

is created. Many of these specifications have unique design considerations such as:

implicit concurrency, parameter mapping, or system specific properties. For most

workflows, the core components remain the same: inputs, outputs, and analysis.

There have been many attempts to create a universal specification, but many do

not reach a wide level of usage due to a lack of consistency. Common Workflow

Language[6] strives to unify workflow specification languages. Though the Com-

mon Workflow Language does not support its own implementation, it boast support

18



from a large number of popular workflow systems. In a similar approach, the Broad

Institute has developed Workflow Description Language[117], which is coupled

with their Cromwell implementation. Both approaches aim to be a common interface

or intermediate representation of workflows, though in many cases design decisions

limit their overall applicability in specific workflow systems.

Though there are minor differences between the specifications, both define tasks

similar to existing workflow systems, particularly Makeflow, which allows dynamic job

expansion and workflow transformations to apply, with the restriction that dynamic

file names are not compatible as used in the Common Workflow Language. The Com-

mon Workflow Language allows for inputs and outputs to defined as both static file

names and file name blobs which may be resolved using wildcards or Javascript func-

tions. This dynamic and possibly non-deterministic file mapping limits the proper

handling of partitioned tasks in a dynamically expanded job.

2.2 Dynamic Workflow Systems

As opposed to static workflows, dynamic workflows allow for flexible execution

patterns. To achieve this flexibility, the work of partitioning the data, defining tasks,

and controlling dependencies is left to the user. Once the user has defined this level

of detail, they are provided a robust set of execution tools to migrate and scale

work as needed. With all of these systems, the inherent dynamic behavior leads to

incompatibilities with the dynamic job expansion and static storage analysis at the

master level. Dynamic job expansion would be possible if applied to the resulting task

submitted by the workflow system, at which point the tasks is static in definition.

In the same way, workflow and task transformations assume a static definition, and

would need to be applied after the task is submitted.

RADICAL-Pilot[90] is a pilot-based system that aims to provide scalable ap-

proaches on a variety of platforms. RADICAL-Pilot is written in Python, allowing

19



easy adaption from the currently flourishing scientific python community. It is built

on the SAGA[51] platform, providing support for common execution platforms such

as Portable Batch System and Sun Grid Engine. RADICAL-Pilot operates very sim-

ilar to Work Queue from a user’s perspective by providing a clear task definition

and pilot jobs for execution. These similarities would allow a job coordinator for

Continuously Divisible Jobs to be created similarly to what was designed using Work

Queue.

Swift[121] is dynamic workflow system built on a unique scripting language[129].

Swift’s scripting language is a implicitly parallel functional language whose goal was

to provide a simple language to define parallel workflows. It has even been used to

investigate parallel approaches integrated with Galaxy[85], similar to what is explored

in Chapter 3. The difference between these methods is how the concurrency in

Chapter 3 is abstracted from the user. Swift uses compiler techniques to collapse and

expand tasks within the implicit task parallelism[7]. Swift operates most similar to

Continuously Divisible Jobs in that Swift applications define how a workflow operates

and what operations are allowed for partitioning, and then allows the underlying

engine to evaluate and execute the workflow.

Parsl[10] is a python based workflow system that separates the user from the

execution engine. Applications are written in python with functions tagged as Parsl

tasks, which are parsed and distributed with little user interference. The decisions

on how to execute remote tasks are defined by the user specified execution engine.

This allows for a number of execution techniques and systems to be combined for an

application specific configuration.

Pydron[92] performs semi-automatic parallelization of python code to support

multi-core and cloud execution. Pydron has a similar philosophy to Parsl, aiming

to provide a simple interface for users to achieve parallelism in a language they are

already using. Pydron adds two decorators to Python that allow functions to be

20



marked as either schedule, saying the function should be parallel, and functional,

saying the function is free of side-effects. Schedule runs the execution on the same

machine, while functional can be run on other machines.

Both Parsl and Pydron focus on providing an easy interface for users and less

on creating a distributed execution platform, favoring existing solutions configured

for python tasks. From this perspective, Parsl and Pydron operate to create jobs

and submits to existing job coordinators similar to abstract jobs in the Continuously

Divisible Job definition. Both systems rely on the user to make concurrency deci-

sions, whereas Continuously Divisible Jobs passes a concurrency definition to the job

coordinator.

From here on, the dynamic workflow systems are similar in principle to the ones

already discussed, but the underlying task structure and definitions vary highly. As a

result workflow transformation is applicable in concept, but in practice the difference

in task structure would need to be resolved. As an example, Spark defines tasks using

inputs, outputs, and the code to execute, but environment and resource definitions

are relegated to the executing platform such as Hadoop. Charm++ and Legion on

the other hand define lower level tasks that may not be tied to files, but data more

generally making clean task encapsulation more loosely tied to an single process

execution. As a result, transformations such as applying a container don’t make

sense in these environments.

Spark [126] is another powerful dynamic workflow implementation, that focuses

on utilizing the RAM to achieve higher performance, and could be leveraged to further

boost performance. It relies on the concept of Resilient Distributed Datasets[127] to

address both a performance issues as well as the storage issue created by holding the

data in memory, and performs well with sufficient memory for the analysis. Spark

functions similar in execution to Continuously Divisible Jobs by defining how the a

type of analysis is done, relegating the concurrency to the underlying batch execution

21



(Hadoop). Hadoop does the data partitioning and distribution, allowing Spark to

define execution.

Charm++[71] is not directly a dynamic workflow system, but relies on task-

based concurrency similar to most workflows. Charm++ is a parallel programming

system that interfaces with applications using C++. A C++ interface allows for

applications to create Charm++ objects which are used as the base concurrent unit,

define data, coupled functions, and relationship to other objects.

Legion[11] is a programming model that organizes applications into logical re-

gions. These regions define both locality of computation, independence of data, and

analysis from other logical regions. Applications that have defined their logical re-

gions then leverage the Legion runtime system that identifies independent tasks and

available parallelism. To simplify the creation of these logical regions, Regent[103]

allows the user to write high level programs that define tasks and logical regions, and

are compiled to Legion.

The last several approaches are all similar because they provide a mechanism for

describing or translating concurrency into a form that can be executed in a distributed

manner. Spark does this using Hadoop, Charm++ and Legion do this using threads

and MPI. This approach has similar high-level goals as Continuously Divisible Jobs,

mainly allowing the user to define analysis, while an automated execution system

performs parallelism. However, a key difference in these approaches is the limited

task execution platforms, which are assumed to be closely bound to the host node.

Continuously Divisible Jobs are defined such that communication and task execution

can be delegated to a number of difference services when defined as job coordinators.

2.3 Batch Computing Systems

One of the key advantages of using a workflow system is that it allows the user

to leverage large scale resources for computation. To achieve this workflow system in

22



turn rely on the underlying batch system to allocate resources and schedule tasks.

Generally, Batch systems operate as a centralized coordinator of all available

resources. These systems provide an interface for submitting jobs and specifying

resources. The centralized scheduler then finds available resources, places the job on

the resources, and starts the job. For most large scale compute sites this is the norm,

with systems such as SLURM[69], Sun Grid Engine (SGE)[45], and the Portable

Batch System (PBS)[63].

HTCondor[80] is a cycle-scavenging batch system, that provides large scale com-

putation scheduling for resources. Jobs are submitted to HTCondor labeled with

resource needs (using ClassAds[97]), and when a suitable resource becomes avail-

able the job is placed. HTCondor differs from many standard batch system as it

coordinates resources and submits, rather than having a single centralize decision

engine.

MapReduce[33], as implemented in Hadoop, is a parallel execution engine which

strives to move the computation to the data. This is achieved by partitioning the

data when it enters the system, and creating replicas as specified. The combination of

partitions and replicas allows the data to be operated on concurrently for each piece

with no data movement. This is leverage in a number of systems, such as Spark, to

provide the underlying concurrency for execution.

ATLAS PanDA[83, 84] is a large scale workload management system deployed for

organizing the LHC ATLAS experiment analysis, primarily the US ATLAS collabo-

ration. Rather than creating and organizing individual workflows, PanDA operations

on all jobs submitted for analysis, and coordinates their execution on available re-

sources.

When considering the applicability of methods explored throughout this disser-

tation, workflow transformations and Continuously Divisible Jobs have clear impli-

cations of possible value for any batch system. Though workflow transformations

23



look at apply transformations to full workflows, it builds off of the single task base

case. This base case is directly applicable to batch systems, where each job generally

defines a single task of class of similar tasks. If a transformation evaluator was writ-

ten for any of these batch systems, the lessons and techniques used could be applied

quickly.

In all of these cases, each batch system defines a potential job coordinator. The

consistency and similarities between how most of these systems define tasks would

allow job coordinators be easily written. This in term could provide a consistent

base case on which system administrators could tune or refine the job coordinator

for their specific site. One except to this is MapReduce/Hadoop, which generally

assumes control and partitioning of the data internally, which prevents Continuously

Divisible Jobs from dynamic reactive partitioning of data.

Liu et al.[81] proposed the idea of elastic job bundling, which defines a method for

implicitly decomposing large jobs into smaller jobs to reduce queue wait time. This

approach is positioned between the parallel application and the underlying batch

system to break up monolithic jobs. This approach has similarity to the work dis-

cussion in Chapter 3 and Chapter 7, in that the further partitioning of work is done

without user input. A significant difference here is that jobs are tightly bound to a

single batch system, relying on the assumed parallel environment to accommodate

data movement and consistency. Additionally, partioning and join jobs acts only

on virtual data reference, not physically partitioning the data as may be needed for

non-shared distributed computing.

2.4 Resource Provisioning and Management

Resource provisioning can be viewed from either the resources needed by the work-

flow or more specifically the resources used by each individual task. Statically planned

workflows employ workflow-wide provisioning to ensure there are ample resources or

24



to minimize the needed resources through scheduling [28, 39, 70, 86, 91, 102]. Many

of these approaches take into account the resources provisioned at the task level but

require information at the planning stages that may not be known in a dynamic

workflow. The more fine-tuned task level specification is the most useful as it allows

different categories of tasks to be specified with their required resources.

Workflow systems utilize one of three approaches:

• Naive approach - Assumes task will fit on any resource. Each task is scheduled
to the whole resource, and resources are harder to adjust at the master.

• Static solution - Tasks are labeled with resource needs and scheduled only on
machines that can satisfy the needs. This is often backed by systems such as
Classads in HTCondor[97] or resource advertising in Mesos[64]. This is done
on the workflow side by setting static attributes to the task, as evidenced in
the workflow systems that statically determine resource before hand.

• Dynamic solution - Task resource specification is adjusted to meet the actual
performance of the workflow. An example of this is the Resource Monitor[49].

Using these approaches, a wide variety of works [43, 62, 75, 99, 110] have pro-

posed different approaches for solving the classic DAG scheduling problem. These

approaches typically focus on minimizing the overall execution time, while considering

utilization of various resources as a means of determining good candidates. However,

in a storage constrained environment these algorithms may over commit the system

with limited calculations on the persistent storage needed to hold files produced. As

we show in Chapter 4, naive accounting of storage without consideration for depen-

dencies can lead to deadlock. When operating with more dynamic execution, as with

Continuously Divisible Jobs, approaches like the resource monitor[49] could prove to

be a powerful tool for capturing resource usage and relating that used to a model of

the data and computation.

25



2.4.1 Storage Management

The persistent nature of storage use changes the nature of the problem beyond

what much of this above resource aims to address. For a better understanding, there

needs to be a discussion the workflow data management and how to manage data

lifetimes[34]. An example of this is Overflow[113], which provides a uniform data

management system over several sites based on the needs of a scientific workflow.

Overflow aims to be a plug-able solution into workflow to coordinate and manage

data usage, being cognizant of cost of storage and transfer.

Pegasus’s strict planning allows for more strict adherence to quota limits and at-

tempts to leverage the maximal parallelism, even across multiple sites[19]. This strict

planning also allows Pegasus to pre-stage data to limit task lifetimes when storage

is available[26]. It also allows for changes to a workflow, doing so internally by clus-

tering tasks[23–25], spawning clean-up tasks to remove files[104], and restructuring

the workflow[52]. Pegasus has also explored using a data store for long term storage

and staging data in as needed for execution[115]. However, in none of these cases

does the workflow analyze the expected storage needs of the workflow, limiting the

effectiveness of planning in storage constrained environments. The similar structure

and expectations of Pegasus means that the static analysis and runtime management

used in Chapter 4 could also apply. The case of managing storage across several sites,

as is often done in Pegasus, is more complex, but the core file lifetimes and footprints

still apply.

2.5 Environment Re-Creation

As part of making workflows more flexible and mobile it is crucial to be able to

capture, preserve, and replicate a task or workflow execution environment[47, 82, 106,

130]. A variety of solutions exist within this space, and understanding these available

26



technologies is key to providing adequate abstractions for any solution.

A common consideration when looking for a way to build a reproducible envi-

ronment is to use container technologies such as Docker [89], Singularity [73, 74],

CharlieCloud[95], NERSC’s Shifter[46], or Slacker[54]. Containers provide a means

of creating reproducible execution environments. They can differ from the execu-

tion platform even at the operating system level. Similar to containers, Umbrella[88]

captures the state of execution and data, so that it can be used for reproduction.

Umbrella expands on the expectations of containers to capture every aspect of an

analysis for preservation, as opposed to the more constrained container builds.

Similarly there are several automation systems [44, 98] that rely on system config-

uration to provide consistent environments. Richer formats such as RPMs and DEBs

provide version requirements for software. However, both solutions are installed with

administrative privileges.

Virtual Cluster Builder[111], does not replicate the original operating system but

builds the tools on the current system, allowing Virtual Cluster Builder to operate

at the user-level. The goal of this system is not to provide the exact execution

environment, build the required tools in the new environment. This allows the Builder

to provide a consistent software stack on a flexible platform.

Each of these approaches have different benefits and restrictions, but may be the

correct solution needed depending on the application and sites configurations. These

different approaches are discussed in Chapter 5, where applying transformations that

update or recreate an environment are some of the most common, powerful, and

complex transformations. The methods explored in here can also be seen in use for

Chapter 6, where the Virtual Cluster Builder was used to compile and configure a

complex MAKER software stack. This software stack was shown to be flexible and

consistent across hundreds of cores. Lastly, these methods provide a solid basis,

for quickly and consistently deploying job coordinators for Continuously Divisible

27



Jobs, where execution needs to be consistent between a number of heterogeneous

distributed nodes, as seen in Chapter 7.

2.6 Makeflow and Work Queue

Makeflow[2] is a system built to create and run workflows using a syntax that

is very similar to that of classic Make, and now expanded to support a JSON like

syntax called JX[100]. Each rule in the workflow must explicitly state input and

output dependencies along with the command to run. Makeflow can dispatch jobs to

a variety of execution systems, including Condor, SGE, and Work Queue.

The simple syntax supports DAG-structured workflows, which are ideal for trans-

formation of input to output over a number of predefined steps. This syntax also

makes it easy to write or have a script write rules for a workflow based on the inputs

which allow for the dynamic creation of performance workflows based on the provided

input, and a means to execute them. Makeflow is great for running workflows on a

distributed platform as it supports several different execution engines. For improved

flexibility, Makeflow assumes there is no shared file system and provides the execu-

tion engines with the information about file dependencies. Since many workflows are

structured as a series of defined tasks that can be mapped across the input; scripts

can readily describe the workflow as a Makeflow. This architecture also performs well

as a lightweight workflow manager that can express resources needed by tasks and

schedule when these requirements are met.

Work Queue [16] is a lightweight master-worker platform. Workers consist of

a process that is started at an execution site and communicates with the master

process to retrieve, execute, and return tasks. While preparing the task, the required

dependencies described by Makeflow or the dynamic workflow application are staged

and a sandbox is established. To utilize a worker, the site runs the worker, allowing

workers to be created on any supported platform or through a batch system. Work

28



Queue provides several benefits that help performance workflows. Workers are pro-

cesses that persist outside of the execution of single tasks. This allows the master

to cache files on the worker and reuse them to limit multiple transfers to a single

worker. Caching helps to limit the execution time as well as the number of workers

needed to impact performance. This benefit can be extended by utilizing ”multi-slot”

workers on multi-core machines. If a task is labeled with resource requirements and

the worker is larger than the task’s requirements, multiple tasks can be scheduled

on the same worker. When a worker performs several tasks, they share a cache that

limits transfers and total disk usage. This also prevents over-subscription of workers,

which is crucial when running MPI or multi-threaded tasks.

Worker persistence also enables workers to be given tasks as soon as they are

available, without the overhead of waiting for the task to be scheduled through the

batch system. Side-stepping the batch scheduler allows short tasks to be rapidly

scheduled, with less overhead. The uninstantiated workers still need to go through

the scheduling process, but once at an execution site they can be utilized. Further,

a Work Queue pool can be created that scales active workers up and down as need

arises. As more workers are needed, the pool will submit them to the specified

resource, and lets them time out when more exist than are needed.

29



CHAPTER 3

DYNAMIC WORKFLOW EXPANSION

3.1 Introduction

In the previous chapter, I reviewed a large selection of systems available for writ-

ing, managing, and executing applications concurrently using workflows. A core

conceit of workflows is the leverage they provide users to scale applications with min-

imal modifications is a concurrent manner. Many workflow systems are expressed

as easy to use, but any system has a learning curve that must be overcome for the

results to be worth the work. Once a workflow system is selected the user is locked

into the specifics of the system they have chosen with only a cursory knowledge of

workflows and how they would need to use them in their execution. The question

becomes, how do we provide the performance and flexibility of workflows in a opaque

way, such that the user see no difference in behavior of their data pipeline, only an

improvement in performance.

A great test bed for answering this question is in the context of workflow man-

agement systems such as Galaxy[12, 48, 50], Taverna[123], and Kepler[3]. Workflow

management systems provide an high-level view of workflow design, linking files and

tools to define the logical workflow for data processing. Abstracting the execution

environment from the organization of the workflows allows workflow management

systems to provide flexible and resilient experience for users. However, the simplicity

of expression make specifying dynamic concurrency difficult. As data becomes larger

there is either limited or no mechanism to increase concurrency. Enabling additional

30



parallelism must then come as either a change to the workflow management system’s

job handling, or an extension of the job structure already in place.

Dynamic job expansion provides a solution where each job of a logical work-

flow is expanded at runtime into a performance workflow in which the majority

of the work is done in parallel, accelerating the performance of the original pro-

cess. The purpose is to create tools that are indistinguishable from sequential tools,

while supporting greater concurrency. Abstracting concurrency from the user allows

dynamic job expansion to be utilized by workflow management system without user

involvement and enables the parallelization to be specialized to the local environment.

Ideally this method could apply to any computation that consists of data-independent

sub-groups, which we find to be prevalent in bioinformatics.

3.2 Galaxy

Galaxy is a web portal that was created to provide biologists with ready access

to a number of bioinformatic tools. It creates an environment where the user only

supplies inputs and selects the tool to perform computation. This abstraction pro-

vides biologists with a generic analysis framework without the need for specifying

resources. The administrator of a Galaxy instance configures the underlying infras-

tructure and provides the tools available to the users. The portal records how and

when the tools are run, so that reproduction of an experiment is consistent and easy.

Each tool consists of a predefined web page that serves as a launch for the tool, as

well as scripts in the background to provide the correct setup.

Galaxy also provides the user with a means of creating DAG-based workflows.

Workflows use the data dependencies between tools to determine order, and provide

a means of creating a logical flow for processing inputs in a consistent way. Workflows

created may be configured with predefined parameter values and can be shared so

that analysis can be reproduced easily by numerous parties.

31



Figure 3.1. This diagram shows the dynamic job expansion process. In
Stage 1, the job has been created by the user from the tool launch page.

Once Galaxy gets the launch, the job is given an id, a working directory is
created, and the job is added to the history. Stage 2, the files selected at

launch are located via the file database, and the location is communicated
to the job. Stage 3, inputs are collected, either directly or linked, in the job
sandbox. Following setup, a script creates the performance workflow. Stage
4, Makeflow is launched with the performance workflow in the job sandbox,

and the workflow begins processing. Stage 5, a Makeflow creates a Work
Queue master that communicates with workers to create execution

locations. Stage 6, the worker receives task, retrieving the inputs and task
information. The task is computed and the output delivered back to Work
Queue, who relays this to Makeflow. The performance workflow will move

through stages 4, 5, and 6, until the workflow is complete. After
completion, stage 4 will finalize the outputs and copy it to the output

location defined by Galaxy. If successful, stage 3 is cleaned up, and the
wrapper process concluded. At stage 1 Galaxy will change the job status

and the user will be informed.

The portal creates an environment through which users can analyze data without

the hassle of data and resource management. Galaxy’s abstraction makes using tools

quick and easy, while offering a platform to create meaningful results. It also provides

a means of sharing results and the process required to achieve them. Work can then

be verified and analyzed by many people at once, allowing for easy collaboration.

3.3 Dynamic Job Expansion

Dynamic job expansion is the run-time transformation of a single job in a log-

32



ical workflow into a performance workflow. The resulting performance workflow

must be logically indistinguishable from the original job by accepting the same input

files and generating the same output files, while hiding the complexity from the user.

Figure 3.1 gives an overview of dynamic job expansion.

For each type of logical job to be expanded, we must write a job expansion

tool. This is a command-line tool that is invoked in an identical manner to the

underlying application. Instead of running the application directly, it writes out the

desired performance workflow, invokes the performance workflow manager, and waits

for it to complete. From the perspective of the logical workflow manager, the job

expansion tool is the job to be run.

Naturally, job expansion must be specialized to a given application and must

take advantage of details of the application’s structure and performance. For many

applications, a split-process-join pattern is effective. The initial step of the gener-

ated performance workflow evaluates the size of the input and split the inputs into

appropriately sized pieces. Then, the primary application runs on each split of the

input, generating multiple outputs. The final step merges the results into a single

output file. In simple cases, this might be concatenation of the outputs, while in more

complex cases, it could require recomputing statistical results. The more complex

cases rely on knowledge of properly dividing the work, possibly in stages, to maintain

equivalence with the original tool.

Using Galaxy, Makeflow, and Work Queue, the process works as follows. For

each tool in the logical workflow, Galaxy assigns the job an identifier, specifies input

locations, and generates output file-handles. Galaxy creates a working directory for

the job and job execution is moved to the directory where the job expansion tool

can create the performance workflow. The Galaxy wrapper script links inputs to

the directory and copies down the necessary execution files. The job expansion tool

writes a performance Makeflow based on the input’s characteristics.

33



After the performance workflow is created, the job expander invokes Makeflow

with Work Queue as its execution environment. Makeflow verifies that the structure

of the performance workflow is correct, and confirms the presence of required input

files. The split and join processes, which require most of the existing files, run locally

to limit the data transfer. The remaining tasks utilize a subset of the files and are

run in parallel. Makeflow sends each task through the Work Queue master to workers

as required files become available.

The Work Queue master communicates with workers to send tasks and inputs.

When the task is ready at the worker, the process is executed in a task sandbox.

The completed task returns the output to the master. Having verified that the task

produced a successful return value, the output is collected and returned. Makeflow

continues to submit and collect tasks until all the tasks have been completed.

Upon completing the tasks, Makeflow joins the result and the wrapper copies out-

puts to the specified file-handles. The Galaxy wrapper script completes and Galaxy

verifies that the output files have been created. After the verification, Galaxy changes

the state of the job to either successful or failed. The results are then delivered to

the user, and the Galaxy job is complete.

Dynamic job expansion benefits from several characteristics of this process.

• Hidden Complexity Using an expansion tool to write and run a performance
workflow alleviates the user need to understand the inter-process complexities
and expand within the logical workflow. This allows lay users to quickly pick
up a tool and use it interchangeably with the original tool, without needing to
know the background process.

• Environment Aware Decisions Expanding the workflow at the execution
environment provides several benefits. Inputs are defined and can be used
to make intelligent partitioning decisions [29]. Intermediate files are managed
locally and do not fill the data store and history. Processes utilizing many
inputs, such as split and join, can be run locally to prevent large amounts of
data traffic.

• Flexible Execution Resources The ability to utilize resources that are not
primarily dedicated provides a flexibility in scaling. This flexibility also provides

34



a means of users coming to a portal with their own resources.

3.4 Example Application

To demonstrate job expansion, we show a logical workflow that transforms gen-

eral genomic data to aligned genotyped data. The working data is a query of 32GB

of reads against a reference dataset of 36MB, which are the reference loci of Red

Oak. This is done using BWA alignment, SAMtools sort, Picard AddOrReplac-

eReadGroups, and GATK HaplotypeCaller. When run on the working data, the

BWA alignment and GATK genotyping steps take the longest to execute: 19 hours

and 12 days, respectively. These two steps were used to demonstrate dynamic job

expansion, and remaining intermediate steps were left as sequential jobs.

Figure 3.2 details how this particular logical workflow was expanded at runtime.

The expansion strategy is slightly different for each of the two tools:

BWA implements the Burrows Wheeler Transform algorithm to align genome

queries. BWA is a light-weight alignment tool that supports paired-end mapping,

gapped alignment, and various file formats like ILLUMINA [30] and ABI SOLiD [53].

The output format is SAM (Sequence Alignment Map), which can be analyzed using

a number of tools such as GATK and the SAMtools package [79].

In previous work[27] we observed that the runtime of BWA is roughly proportional

to the product of the reference and the input size. The input dataset was partitioned

into splits of approximately 50K reads each. Partitioning the reference is also possible,

but would increase the complexity of joining and negatively impact the use of cached

files. We kept the reference whole and distribute it to all nodes of the performance

workflow. The joining phase of the BWA workflow separated the header and content

of each of the output splits, then generate a single output with one header and

concatenated contents.

35



Figure 3.2. Diagram showing detail of example application. The top level
shows a workflow as it is represented in Galaxy. Each box is a tool, with

the names and arrows differentiating inputs and outputs. The Galaxy
Logical Workflow lever simplifies the Galaxy representation to the simple
logical workflow that it implies. This level shows the sequential nature of

the jobs. The Galaxy Execution level defines the environment in which they
are running, local being on the Galaxy instance and Makeflow denoting
that the Makeflow process is local, but is creating tasks for parallelism.

The Makeflow Environment level shows the process of expanding a single
job. This level clearly shows the split-process-join nature of the

performance workflow created. The lowest layer illustrates that workers
from a number of systems can be utilized to perform the individual tasks.

36



GATK employs a sophisticated Bayesian algorithm to compare aligned sequences

with the reference. In this workflow, GATK’s HaplotypeCaller walker was used for it

higher sensitivity, when compared with GATK’s UnifiedGenotyper. HaplotypeCaller

functions by indexing the input set and creating walkers to locate variations between

the query and reference. Once a difference is detected, HaplotypeCaller performs local

assemblies to fill gaps or correct mistakes. This produces a output that expresses how

closely alignments match and other information about the analysis as a whole.

The runtime of GATK is dominated by the size of the reference file. Thus, the

job expander splits both the query file by size and the reference by distinct reference

contigs. There is added complexity after completion due to correcting quality scores,

but affects the runtime of the application less than if the input were a single piece.

Using Galaxy’s workflow creation system, we were able to create tools that split

and join the input files. However, the tool, in order to be used in a workflow, needed

to have a static number of inputs and outputs, limiting the dynamic nature of this

approach. This static design requirement is lifted when expanding a job at runtime

allowing the number of partition be dynamically based on the input and not an

arbitrary decision made when creating a tool.

3.5 Design Considerations

In the process of implementing job expansion, we encountered several problems

that resulted from converting what was previously a locally executed job into a perfor-

mance workflow: dependency management, remote execution, and garbage collection.

3.5.1 Dependency Management

Problem: Jobs depend, explicitly and implicitly, on things being in the local

environment. An input file is an example an explicit resource and is straight-forward

to express. Explicit resources are specified in the command, and expressed by the

37



user at launch. Implicit resources are, by nature, left unspecified and known only by

the program. Implicit resources fall into two categories, the first is reference material,

such as database indexes, that are expected to exist within the environment. When a

user is not expected to specify these resources, modifying a tools to require expression

confuses tool implementation. The second category is environment resources, Java

being a great example. Java is often required, but the environment’s version may not

be clearly expressed. This causes confusion for the developer as they attempt to use

incorrect or absent versions.

For explicit resources, Galaxy tools clearly request resources using the tool XML

launch page. This handles the expression of resources such as inputs and reference

files. Implicit resources such as database index files, are added to a default location

within the Galaxy instance. Referencing location in the environment allows the

indexes to be located by the tools at execution. This solution requires users utilize

existing indexes, or add references and indexes, which is performed by administrators.

Implicit resources, such as Java versions, are more difficult to deal with as they can be

dynamic. Versioning, in systems like Java, creates incompatibility that are difficult

to handle in the program and necessitate the program expresses these requirements.

These requirements need to either be provided by the developer or expressed in a

manner so tools could access the intended variable or installation.

Solution: When designing an expanded tool, both the explicit and implicit re-

sources must be expressed prior to execution. BWA alignment requires its reference

be indexed and the index be present. Many users know these files, but often over-

look them as they are assumed to be present. Galaxy allows this implementation,

assuming that the reference is in a common location. This limits the references that

the user can use as this location file needs to be updated for every additional refer-

ence, along with having the files moved to a safe location. This was addressed here

by creating the index files at job execution. This adds the index files to the local

38



environment, but must be recreated every run. In the ideal situation, the first time

an index is created it is stored and the reference is for future use. This option does

not require changes to the tool implementation that utilize the indexes, but must be

monitored as these files are moved and collect in the system.

Handling environment settings also presents an interesting set of problems. Java

is a great example, as many programs that utilize Java require a minimum and

maximum allowed version. This is remedied by utilizing a script that unpacks the

required version from an archive file and sets the necessary environment variables to

utilize the unpackaged version. This allows the required environment to be created at

any execution site specified. Packing the environment with the tools allows freedom of

movement for the execution, as well as guarantees that it is utilizing the correct tool.

Environment replication is a well known issue encountered distributed computing. In

our simple example, a python script was created to package Java locally prior to the

workflow and one that unpacked Java at the execution site. More complex situation

can be handled by tools such as Docker [89] and Umbrella [87].

3.5.2 Remote Execution

Problem: Galaxy assumes that all jobs are run and handled by the machine

on which Galaxy is running. This restraint was relaxed with the introduction of

CloudMan [1], which allows the user to send jobs to a number of different cloud

resources. CloudMan allows for the creation of a runner that submits jobs to a cloud

resource. Galaxy’s assumption that each task in a workflow is a single job allows

for easy mapping from a Galaxy workflow to the scheduled task on a cloud resource.

An issue that arose in our implementation is that the tool creates tasks that cannot

use cloud resources without having a mechanism to launch them within the Galaxy

controlled environment.

Solution: This was solved by utilizing Work Queue as an execution engine. Using

39



Makeflow in conjunction with Work Queue, the tool uses a single port on the Galaxy

machine that communicates with Work Queue workers on a variety of platforms. A

pool of Work Queue workers was used to supply a steady stream of cloud resources.

This allows tools to be used at different sites and execution engines. Work Queue

utilizes project names and passwords to allow workers to connect without knowing the

specific location ahead of time. The project names allows the tools to be configured

by allowing Galaxy to name projects dynamically or for the user set it. Allowing users

to devote resources to a project, even if the resources on the workflow management

system are limited.

3.5.3 Garbage Collection

Problem: When running an application, it is important to create a clean names-

pace for the application to work in, and clean the work-space after. Galaxy enforces

this by creating a job working directly when a tool is launched. Galaxy runs the

entire application from within this newly created directory. Tools limit the amount

of space used by specifying the absolute path to the scripts, executables, inputs, and

outputs. When using this method, tools make no noticeable footprint within it and

require no clean up. Some applications create temporary files and miscellaneous out-

puts by default that are not cleaned by the tool. The tool implementation creates

partitions of the input, as well as the creation of many intermediate files that are

ignored by Galaxy, and would exist only at the working directory.

Solution: The solution strives to minimize the footprint and clean the direc-

tory. At the end of the a tool execution, after the outputs are transferred back, the

tool utilizes the Makeflow clean option. This option removes all intermediate files

and output files that are located in the current directory. Following this, the only

remaining things to clean are executables and inputs that were fully transferred to

the directory. It is the responsibility of the developer to clean any files that were

40



explicitly added, as they are neither dynamically created nor removed by Makeflow.

3.6 Opportunities

We also observed two opportunities for better integration between Galaxy and

Makeflow, but did not address them in this work: expression of job status and check-

pointing.

3.6.1 Expression of Job Status

Problem: Galaxy expresses a job as running, waiting, or complete. However,

there is no clear indication of either a job’s progress, or why a job is waiting. Ad-

ditionally, the completion status relays to the user only if a job failed or completed

as expected. Failures can be clarified by looking at the logs and system output, but

leaves investigation of the cause to the user. The job running and completion status

relay to the user the barest amount of information about the job. Some tools, such

as GATK, give progress of what is being done and progress through the input. This

helps estimate the time needed to finish as well as assure the user that processing

continues. These simple estimates would help Galaxy users to better understand the

tools and Galaxy’s overall progress.

Solution: Our tool implementation does not directly address this design choice,

but a simple solution may be found. If, within a tool, a status file were designated,

the workflow management system could be configured to follow the tail of the status

file. This would allow any tool to create a status file of a supported format to allow

the workflow management system to track progress. A simple example of this would

be processes reporting their percentage done. The workflow management system

would need a means of expressing status in a location other than the output files

history. The workflow management system is informed about the location of the

working directory and status file to draw from. After this, tools need to simply

41



create a status file to enable status updates. If a tool did not create a status file,

then no more information would be relayed than already provided.

3.6.2 Checkpoints and Partial Failure

Problem: Completion in Galaxy is a binary state, where the job has either

failed or completed, but there is no concept of checkpointing or partial failures.

This is adequate for tools that are extensively tested and there is little possibility

of system circumstances interfering with completion, such as intermittent network

connection. Galaxy treats jobs as local Unix tasks, where the process is either done

or not. Performance workflows, however, can be represented as partially finished, as

either a result of failure or the workflow is still computing. These partially completed

workflows have checkpoints, that allow for the workflow to be moved and restarted.

For example, Makeflow can be rerun using the Makeflowlog, when intermediate data

is present. Though workflow management system can preserve the logs, it is difficult

to preserve the working directory for reuse. A manner of expressing both checkpoints

and non-fatal failures allows the underlying system to better express and handle

failures. Also,workflows are easily created and run, but there is no functionality

that allows for workflows to be rerun, as you would for a single tool. Utilizing

previously computed results in restarting a partial workflow would improve usability

and reproducibility.

Solution: The solution would be to define a means of returning either the working

directory, if the user has machine level access, or creating an archive for the user to

modify. The user resubmits the job after determining it was a non-fatal error, or

modifies to correct a user error. This package or directory would then be resubmitted

through a generic tools that detects the required tool. This solution fundamentally

changes how workflow management system views tools and would require careful

thought for correct design.

42



As Work Queue utilizes network resources, failures that are unrelated to the

execution tool may occur. Failures in Work Queue are not necessarily failures in the

workflow, but possibly an issue on the resource on which the task ran. In this case,

running the Makeflow-Work Queue process again from the same directory and log

changes the outcome of the workflow, while not recomputing any previously successful

work.

A mechanism within the workflow management system that allowed directly re-

running a workflow introduces a similar issue for workflows. Assuming the workflow

management system allowed rerunning workflow directly, utilizing the previous re-

sults in a rerun would be as straight forward as using the links within the workflow to

determine the work that has been previously done. The same result could be reached

by creating a workflow log that would link previous progress to a new run of the

workflow.

3.7 Evaluation

To evaluate the combined system, we implemented dynamic job expansion on

BWA and GATK as described above, and then ran the combined workload in four

different configurations, using a campus Condor [107] pool to provision workers on

demand for the expanded jobs. We varied the amount of query data in the first three

configurations, using workers configured to each run a single task. In the fourth

configuration (described below), the workers were configured to run four tasks at

once, sharing a local cache.

Figure 3.3 shows the timeline of execution for each configuration. The thin line of

each graph shows the number of tasks available to be executed, the thick line shows

the number of tasks executing, and the gray bars show data transfer over a 10 second

period. Note that the left axis measures tasks ready/running, while the right axis

measures data transfers. In the first graph, dotted lines indicate the phases of the

43



 0

 20

 40

 60

 80

 100

 120

 140

 160

00:00

00:02

00:04

00:06

00:08

00:10

00:12

00:14

00:16

 0

 20

 40

 60

 80

 100

 120

 140

 160

T
a
s
k
s
 R

e
a
d
y
/R

u
n
n
in

g

D
a
ta

 T
ra

n
s
fe

r 
(M

B
/s

)

Time (HH:MM)

Small Workflow Performance

BWA Sort Add
Read

Groups

GATK

Data Transfer Tasks Ready Tasks Running

 0

 20

 40

 60

 80

 100

 120

 140

 160

00:00

00:02

00:04

00:06

00:08

00:10

00:12

00:14

00:16

00:18

T
a
s
k
s
 R

e
a
d
y
/R

u
n
n
in

g

Medium Workflow Performance

BWA

00:00

00:02

00:04

00:06

00:08

00:10

00:12

00:14

00:16

00:18

 0

 20

 40

 60

 80

 100

 120

 140

 160

D
a
ta

 T
ra

n
s
fe

r 
(M

B
/s

)

GATK

 0

 50

 100

 150

 200

 250

00:00

00:10

00:20

00:30

00:40

00:50

01:00

01:10

01:20

T
a
s
k
s
 R

e
a
d
y
/R

u
n
n
in

g

Large Workflow Performance

BWA

00:00

00:05

00:10

00:15

00:20

00:25

00:30

00:35

00:40

00:45

 0

 20

 40

 60

 80

 100

D
a
ta

 T
ra

n
s
fe

r 
(M

B
/s

)

GATK

 0

 20

 40

 60

 80

 100

 120

 140

 160

00:00

00:10

00:20

00:30

00:40

00:50

01:00

01:10

01:20

T
a
s
k
s
 R

e
a
d
y
/R

u
n
n
in

g

Large Workflow with Shared Local Caches

BWA

00:00

00:05

00:10

00:15

00:20

00:25

00:30

00:35

00:40

00:45

 0

 20

 40

 60

 80

 100

 120

 140

 160

D
a
ta

 T
ra

n
s
fe

r 
(M

B
/s

)

GATK

Figure 3.3. Results of BWA-GATK workflow on various datasets. This
shows the execution of BWA, sorting, adding read groups, and using

GATK to refine the results. The thin line of each graph shows the number
of tasks available to be executed. The thick line shows the number of tasks

executing. The gray bars show data transfer during a 10 second period.
The left axis corresponds to the two lines, while the right axis corresponds
to the data transfer. The four graphs, from top to bottom, show the small,
medium, large, and large with shared cache workflows. As you can see we

are able to dynamically create partitions that allowed for greater
parallelism and performance in both BWA and GATK.

44



 0

 5

 10

 15

 20

 0  100  200  300  400  500N
u
m

b
e
r 

o
f 
W

o
rk

fl
o
w

w
it
h
 X

 R
u
n
n
in

g
 T

a
s
k
s

Peak Number of Running Tasks Achieved in Workflow

(140)

 0

 5

 10

 15

 20

 0  100  200  300  400  500N
u
m

b
e
r 

o
f 
W

o
rk

fl
o
w

w
it
h
 X

 T
o
ta

l 
T

a
s
k
s

Total Number Tasks in Workflow

(80)

Figure 3.4. Histogram showing the sizes of dynamically expanded
workflows. The top image shows a histogram of the number of dynamically

expanded workflows that had a max of X workers running. The bottom
image shows the number of total tasks that each dynamically expanded
workflow had over the course of its execution. All workflows shown were

run with Work Queue and managed through Makeflow, and contains a mix
of workflows run concurrently and alone. The difference between the graphs
comes from two sources. The first being the tiered nature of the workflows,
only allowing a portion of the total tasks being executed at any given point

due to dependencies. The second being that for BWA the amount of
concurrency was limited to 50 to prevent overloading the network. The last

is the potential for better task partitioning and handling in future
iterations as not every situation is perfectly matched with workers.

45



TABLE 3.1

DATASET SIZE AND TASK PER WORKER REFERENCE

Config Query Reference Tasks/Worker

Small 0.6 GB 36 MB 1

Medium 7.5 GB 36 MB 1

Large 32 GB 36 MB 1

Large-Shared 32 GB 36 MB 4

logical workflow. In the later graphs, only the BWA and GATK phases are shown.

On the largest dataset, the sequential version of BWA ran 19 hours, while the

expanded version completes in one hour, 3 minutes. This resulted in a speedup

of 18X on utilizing up to 50 workers. Figure 3.3 Row 4 Column 1 shows BWA,

with the bold line in front representing the splitting task, the jagged section running

BWA, and the end bold line joining the results. The sequential version of GATK

ran for days, while the expanded version completes in 43 minutes for a speedup of

402X utilizing up to 125 workers. (The super-linear speedup comes from keeping

the memory consumption of each task within physical memory.) Figure 3.3 Row 4

Column 2 shows splitting, GATK, and joining similar to BWA. The four-job logical

workflow is accelerated by 61.5X overall.

In each configuration, it can be noted that neither the available workers nor the

running tasks are ever constant. The workers vary due to competition from other

users of the shared Condor pool. The variance in running tasks is due to the structure

of the workload, and also due to the data transfer between the master and the workers.

That is, the master can only dispatch tasks when the bandwidth can support transfer

of necessary data to workers.

46



The main barrier to scaling up further is data transfer. For both BWA and GATK,

not only must the query and reference datasets be sent, but also the software tools

and dependencies such as the Java virtual machine. Each of these unique items is

cached at each worker node and reused for future tasks. As the workload progresses,

more workers have the necessary data cached, and parallelism can increase.

The first three configurations use worker processes that can execute one task at a

time. This turns out to be inefficient, because the physical machines are multi-core

and often end up running multiple workers simultaneously, each with its own distinct

cache that must be managed. To improve this situation, we reconfigured the workers

to consume four cores each, thus sharing a single local cache among four running

tasks. The result of this can be seen in the bottom graph of Figure 3.3, where the

running tasks grows more quickly and moves less data. In this configuration, we saw

an 24 percent reduction in outgoing data from the master to the workers, from 69 GB

to 52.1 GB. This is substantial, because as the number of concurrent tasks increases,

the scalability is limited by the systems bandwidth.

The ideal scenario shown helps to showcase the benefits of this system design. To

understand non-ideal situations, we looked at data gathered from the catalog server,

which matches workflows with workers, over the several month period of operation

to see actual behavior. Figure 3.4 shows a comparison of histograms grouped by the

number of tasks in each group, running and total. The disparity between the running

and total histograms shows that there are limitations in the current implementation.

This is the result of several design decisions. The first is the limited concurrency

through BWA. This only allows the running tasks to reach 50, despite the total

number of tasks. This was done to limit the load on the network. The second is

caused by general traffic on the machine that limited the ability to supply workers

with work. These area provide an opportunity to improve the performance and

further limit strain on the system. Figure 3.5 gives a full view of the system and the

47



comparative concurrency.

Overall, dynamic job expansion has a dramatic impact on the overall performance

of the workload, to the point where attention must be paid to improving the perfor-

mance of the intermediate sequential steps.

 0

 50

 100

 150

 200

 250

 0  500  1000  1500  2000

C
o

n
c
u
rr

e
n
c
y
 A

c
h

ie
v
e

d

Concurrency Expressed

Figure 3.5. Scatter-plot of BWA-GATK usage in Galaxy. The above image
shows a scatter-plot of the concurrency expressed, in terms of number of
tasks, opposite of the concurrency achieved, the number of running tasks.

As mentioned above, there are several reasons for disparity between
expressed and achieved, but it also showcases area for improvement in

workflow creation. This would benefit from modeling functions to better
partition the workflows.

3.8 Conclusion

I have illustrated a method through which scientific analysis can be dynamically

partitioned for concurrency with limited user knowledge or interaction. This allows

the user to utilize workflows for performance with only the small learning curve of

understanding the Workflow Management System; without needing to learn workflow

design to utilize them. Dynamic workflow expansion shifts the control and care of

48



resources to the resource provider, allowing to the correct usage and management to

be monitored and controlled.

Dynamic workflow expansion defines the static scientific intent, and allows the

data to be changed for each workflow. Workflows can now be quickly applied to

a number of datasets, with the scale updating to meet the computational demands

without intervention of the user. This is a first step toward creating abstractions that

allow scientific workflows to be used flexibly with many configurations.

With Dynamic workflow expansion, workflows can be quickly adapted to new data

and the likelihood that these will be used concurrently is inevitable. As workflows

are scaled up and more are run concurrently, the increased contention for resources

requires careful management to avoid failures. In the next chapter, I will be examining

how static workflows can be analyzed to estimate and manage the resource needs of

a workflow, specifically for storage.

49



CHAPTER 4

STATIC ANALYSIS AND DYNAMIC MANAGEMENT OF WORKFLOW

STORAGE

4.1 Introduction

Previously I evaluated ways to abstract the creation and partitioning of the work-

flow without user interaction being required utilizing dynamic workflow expansion.

As a result the ease of running several workflows concurrently is increased, which

leads to an increased need to manage and track workflows resources. Using these

methods, resource limitations can cause workflows to deadlock when the user at-

tempts to utilize more resources than are available, which can easily be seen by

hitting storage quotas. To allow for these dynamically expanded workflows to be uti-

lized concurrently methods are needed for calculating and managing these resources

more effectively.

Cores and memory, which are released on job completion, contrast sharply with

storage, which persists as files and logs through the entire execution. As storage

reaches its limit, the number of tasks that can run simultaneously is limited by

the available storage space. A large proportion of the storage consumed may lie

in intermediate files between tasks in a workflow. As a result, the order in which

tasks execute has a significant effect on the storage consumption of the workflow as

a whole. Additionally the life of an intermediate file may exist only long enough to

be consumed by the next task and then may be deleted, or may persist through the

entire workflow execution. Existing work [8] focused on basic reduction of storage

50



usage, using clean-up jobs to delete files which are no longer needed. This chapter

examines methods using the full view of the workflow, estimating and managing with

global limits in mind.

I will examine two coordinated techniques that allow users to manage storage

at runtime in user-level workflow-structured applications. First, I present how the

graph structure of workflow applications allow me to observe the minimum and max-

imum storage required by a workflow before execution enabling a scheduler to judge

whether a workflow will be able to run to completion with the available storage or

whether more resources must be obtained. Second, I demonstrate an online account-

ing method by which a workflow manager tracks not only the actual storage use, but

also the future storage needed to complete the current graph structure. This method

is necessary to avoid deadlock that would be caused by a naive approach. A third

technique which was explored in ’Combining Static and Dynamic Storage Manage-

ment for Data Intensive Scientific Workflows’ [60] demonstrates several techniques

by which individual tasks may be monitored and contained so they do not overflow

their expected storage consumption. A key challenge here was to identify storage

exhaustion so the workflow manager can stop the task and re-plan.

4.2 Definition of Files and Storage in Workflows

Files are divided into three categories: input files which exist before the workflow

begins, output files which are produced by the workflow and must be retained, and

intermediate files which are created within the workflow but may be removed once

they are no longer needed. The size of input files is known in advance, and estimates

of the size of intermediate and output files are stated in the workflow.

Figure 4.1 shows the relationship between a workflow, running tasks, and the

available storage. The workflow itself is fed into a workflow manager which dispatches

individual tasks to a batch system that selects an execution node for each task. Each

51



Figure 4.1. File relationship between workflow and task. In the DAG, files
are represented as squares and programs as circles. When a node is
submitted, the input files are sent to the task sandbox, where upon
completion the output files are retrieved. These files are held in the
workflow sandbox, which is managed by the Workflow Management

System.

task has a task sandbox in which it executes, which must be large enough to contain

the inputs, outputs, and auxiliary files needed for that single task. Likewise, the

workflow as a whole has a workflow sandbox which must be large enough to contain

the inputs, outputs, and intermediates files of the workflow.

Typically, the workflow sandbox is stored in a large parallel filesystem used for

user data and home directories, such as Panasas [120], Lustre [93], or Ceph [119].

We assume that this storage is large and fast, but of finite capacity. There are two

common configurations for the task sandbox. Some systems have storage local to

each node, so the task’s storage consumption is different from the workflow. Some

52



systems do not have storage local to each node, and so the task’s sandbox exists in

the global filesystem and must be accounted against the workflow’s storage. In either

case, each task’s consumption must be allocated and measured.

4.3 Storage Management Components

In the context of workflow storage management, I make two contributions:

1 - Static analysis of the storage footprint. I present an algorithm which

statically determines the storage footprint of a DAG before execution. The algorithm

uses a single-pass, bottom-up approach to determine the storage needs for the ex-

ecution of each task. As the algorithm traverses up the tree it accumulates values

that correspond to the storage needs of the task’s descendants in a global context.

Once the traversal is complete, the set of head nodes is used to determine the overall

needs of the DAG as well as inform concurrent branches on the loose ordering to

maintain limits. The algorithm makes a single pass through the graph, limiting the

cost of analysis. Utilizing this analysis to prevent deadlock, as opposed to a schedul-

ing algorithm, limits the runtime costs while still providing a precise minimum and

maximum data footprint.

2 - Online management of the storage footprint. The dynamic management

of the DAG is performed in two ways: storage allocation and task dispatch. The

storage allocation works as a transaction hierarchy. When a task is committed, space

is reserved for descendants as well. When a node is selected to run, the data footprint

from static analysis provides a limit and the length of that commitment. When a task

completes, the appropriate files are deleted, and the committed storage is updated.

The task dispatch component works in conjunction with the storage allocation, by

using the commitment hierarchy and the eligible node’s footprint to determine if

there is enough available space. If so, the node’s footprint is committed and the node

is submitted for execution.

53



Binary Tree Montage BWA-GATK

Figure 4.2. Diagram show three example workflows. Three example
workflows used to evaluate storage management strategies. Binary Tree is
a synthetic workflow which generates 1GB files in a tree structure, resulting

in a large amount of intermediate data. Montage is a widely used
workflow benchmark which produces image mosaics from raw astronomical

images. BWA-GATK is a bioinformatics workflow that performs
alignment and genotyping of sequences related to the oak tree. Each graph
shown is reduced in cardinality from the actual workflow in order to more

clearly show the general structure.

4.4 The Storage Footprint

I begin static analysis by defining the storage footprint of a workflow and com-

puting the footprint manually for several simple examples. This will serve as a basis

for the static algorithm in the next section.

For any given workflow, the absolute maximum storage it can consume occurs

when all files (input, intermediate, and output) exist simultaneously. If the target

storage system has enough space for the sum of all files mentioned in the workflow,

then it is not necessary to delete any files during execution, and there is no storage

management problem.

If storage space is limited, then I may delete intermediate files incrementally,

whenever they have been consumed and are no longer needed by any node in the

workflow. I define the storage footprint of the workflow to be the maximum amount

of storage consumed during execution with the policy that all files are deleted at the

54



first possible opportunity.

Footprint is affected by the concurrency used to execute the workflow. I define

two extreme values of the footprint:

• Maximum storage footprint is the largest possible footprint achieved when
tasks run with maximum possible concurrency, subject to the workflow ordering
constraints.

• Minimum storage footprint is the smallest possible footprint, achieved when
only one workflow branch is executed at a time, and possibly concurrent tasks
are executed in the order that minimizes the footprint.

By computing these values before executing the workflow, the algorithm can give

the user a realistic assessment of the likelihood of success. If the available storage is

less than the minimum footprint, the workflow cannot run to completion at all, so the

end user is advised to look for another system or acquire more storage. If the available

storage is between the minimum and maximum footprint, the workflow can complete

but concurrency must be limited dynamically. If the available storage is at or above

the maximum footprint, then the workflow can run at maximum concurrency if files

are deleted at the first opportunity.

Here are the footprints of a few simple workflows:

0 ZA

Example 1: A single task 0 reads an input file A and produces an output file

Z. The size of a file is defined as |X|, where X is the file. At some point during the

execution (however briefly) both A and Z must exist simultaneously, so the footprint

of the workflow is the sum of the size of the files |A| + |Z| which is abbreviated as

|AZ|. After the task completes, A may be deleted, but Z remains, so the residual

55



file of the workflow is Z.

1 Z0 MA

Example 2: Two tasks execute in sequence. Intermediate file M is then created

by executing task 0 with input A, after which file A is no longer needed and can be

deleted. Next, output file Z is created by executing task 1 with input M , at which

point file M can also be removed. This results in only output file Z remaining in the

end. A and M must exist simultaneously, and M and Z must exist simultaneously,

so the footprint is the max(|AM |, |MZ|), and the residual is the sole output Z.

2 Z

1 N

0 MA

B

Example 3: Two tasks combine outputs in a third. This workflow can execute

three different ways:

• Case 1: If tasks 0 and 1 can execute simultaneously, then files A, B, M , and
N must co-exist. Files A and B can be deleted, at which point M , N , and Z
must co-exist. The footprint is max(|ABMN |, |MNZ|).

• Case 2: If task 0 executes first, then files A, B, and M co-exist, after which file
A can be deleted. Then, task 1 executes, so files B, M , and N co-exist. File
B can now be deleted. Finally, task 2 executes, so M , N , and Z co-exist. The
footprint is the largest of the three steps: max(|ABM |, |BMN |, |MNZ|)

• Case 3: If task 1 executes first, the combinations are similar to Case 2:

56



max(|ABN |, |AMN |, |MNZ|)

As can be seen, the maximum storage footprint occurs in case 1, while the min-

imum storage footprint is the minimum between cases 2 and 3. This presents the

runtime manager of a workflow with a trade off – increased concurrency can result

in increased storage consumption. If this is not carefully quantified, storage may be

accidentally exhausted.

4.5 Example Workflows

Figure 4.2 shows three workflows that are used as running examples. Each of

these workflows can be generated at various scales; the figure shows a low-degree

example to make the macro-structure clear. Each presents a somewhat different

storage management challenge; I can give a qualitative sense of the footprint by

examining the workflow structure.

The Binary Tree workflow is a synthetic benchmark consisting of processes

that each consume and produce a single file of 1MB. Each file is consumed by two

children until the desired depth d, and then the data is reduced to a single file in a

similar manner. If all branches are executed concurrently, the maximum footprint is

2d + 2d−1, when two levels co-exist at once. The minimum footprint is d + 2, when a

single branch plus one task must exist simultaneously. Many values in between may

occur if the workflow proceeds unevenly. The footprint tends to peak in the middle

of execution.

The Montage [68] workflow computes mosaics of astronomical images, and is

widely used as a benchmark for evaluating workflows. It can be generated at a variety

of scales by varying the angle of sky (and thus number of images) to be processed.

Although Montage has been previously used to explore storage consumption [49], it

is an unusual workflow in that most intermediate files it creates are used by multiple

later stages, such that most files cannot be deleted until the final chain of individual

57



jobs. Thus, the footprint tends to increase slowly until reaching a peak near the end

of the workflow.

The BWA-GATK [58] workflow combines two common bioinformatics tools into

a large scale parallel application. A large genomic query file is split into task-sized

pieces, and the BWA alignment tool aligns the queries to a reference dataset. Then,

the GATK tool uses a Bayesian algorithm to compute the quality of successful align-

ments. The workflow size is increased by adding more data from multiple organisms.

This workflow has an irregular footprint over time: each stage of the workflow pro-

duces files which are used only once and then may be deleted. In some cases, single

files are consumed by single tasks in parallel, so the footprint changes in a fine-

grained manner. In other cases, multiple files must be consumed by all tasks in a

stage, creating a storage barrier in which nothing is deleted until all tasks complete.

These three workflows are not intended to present a complete profile of workflow

behavior, rather show common behaviors which may result in deadlock given certain

conditions. The static and dynamic algorithms I present are suitable for running these

workflows in most distributed computing environments. In this chapter I utilized a

centralized batch system due to its wide-spread use, but the work I present does not

rely on a batch system environment. Further, I do not make any assumptions about

typical file sizes, workflow behavior, or workflow needs. I do assume the user can

accurately estimate characteristics of their workflow to account for any special needs

or storage behavior it may experience during execution.

4.6 Static Analysis Algorithm

The algorithm used to analyze the abstract DAG utilizes a single pass bottom-

up approach for determining the estimated storage utilization. The algorithm is

presented in Algorithm 1. The goal of the algorithm is to determine the storage

using information gathered at each node and passed upward.

58



Algorithm 1 Algorithm to Measure Storage Footprint.

Term Definition

n Current node under examination

n.descendants Nodes that utilize a file produced by n

n.children Nodes related to n where no other descendant of n is parent,
subset of descendants

n.residual nodes List of nodes where all children are used

n.residual files Files held until nearest residual node

n.diff Difference in size between n.min footprint and n.residual files

n.run footprint Files used/created during n’s execution

n.diff order footprint Files forming largest footprint during diff order traversal

n.wgt order footprint Files forming largest footprint during wgt order traversal

n.min desc footprint Files forming minimal space needed to execute to next residual

n.min footprint Files forming minimal space needed to execute self and children

n.max desc footprint Files forming maximal space needed to execute to next residual

n.max footprint Files forming maximal space needed to execute self and children

procedure MeasureStorageFootprint( n )
for all c in n.children do

MeasureFootprint(c)
end for

n.residual nodes ← n + (
n.children⋂

c
c.residual nodes)

if |n.children| < 2 then
n.residual files ← n.outputs

else
n.residual files ← max(n.outputs,

n.children⋃
c

c.residual files)
end if
n.run footprint ← n.inputs + n.outputs
n.diff order footprint
tmp footprint ← n.outputs
for all c in n.children sorted by c.diff do

if |footprint|+ |c.min footprint| > n.diff order footprint then
n.diff order footprint ← footprint + c.min footprint

end if
tmp footprint ← footprint + c.residual files

end for

n.wgt order footprint ← maxn.children
c (c.min footprint) +

n.children - c∑
r

(r.residual)

n.min desc footprint ← min(n.diff order footprint,n.wgt order footprint)
n.min footprint ← max(n.parent footprint,n.min desc footprint)

n.max desc footprint ←
n.children⋃

c
(c.max footprint)

n.max footprint ← max(n.parent footprint,n.max desc footprint)
n.diff ← |n.min footprint| − |n.residual files|

59



A residual node is defined as any node that is the lone child of another node or

nodes. This is useful as it provides a limit on the look-ahead needed to accurately

determine storage needs of the parent node. If a node’s children culminate in a single

node the storage impact of these nodes is limited between the node and the residual

node where they culminate. The storage for the node’s children can be calculated

and saved at the node for future use. The value at the node now represents the space

needs to be committed for guaranteed execution.

Traversal begins from leaf nodes, where the residual nodes and files include itself

and its outputs. The only relevant footprint at this location is the run footprint,

which is also the minimum and maximum footprints. As I traverse up the DAG,

there are two states in which a node resides. A node in the first case has only a single

child node, at which point the residual nodes, files, and run footprint are equivalent

to the child’s residual nodes, files, and run footprint respectively. As there is only

one possible ordering for child execution, the minimum and maximum footprints are

defined as the minimum and maximum respectively, between the node and its child’s

footprint.

In the case where there are multiple nodes, the ordering can affect the overall

footprint. To evaluate the interplay between children I find the common subset of

residual nodes shared by each child. This becomes the residual node set for the

current node. Of the remaining uncommon residual nodes, the residual files and the

largest footprint are found for each child. The node’s residual file set is the union

of all children’s residual files. I evaluated two methods of traversal, each with its

own goal. The straightforward approach is to find the largest footprint among the

children and add the remaining children’s residual files. The other approach is to

order the children by the difference between their minimum footprint and residual

files. Traversing the nodes in this order favors nodes that consume and release space

instead of nodes that hold their consumed space. To pick between which is better the

60



minimum between the two is selected as they both account for executing all of the

nodes. The minimum footprint is determined by utilizing the largest of the current

nodes footprint and the footprints reported by its children. The maximum is the sum

of all the children nodes’ maximum footprints.

Figure 4.3 and Table 4.1 shows the algorithm applied to a simple workflow. As-

suming each file is of size 1, the minimum footprint (ACLMN) occurs if the bottom-

most branch of the workflow is executed first. Files LMN exist simultaneously, before

being reduced to W, allowing the rest of the workflow to proceed. The maximum

footprint (ACDLMNX) occurs when all three branches execute concurrently, so that

DLMNX all must exist at once, along with the input files (AC) to the tasks that

created them.

9

Z

8

Y 7

W

6

N

5

M

4

L

3

D

2

X

1

C

0

A

Figure 4.3. Worked Storage Example DAG

61



TABLE 4.1

WORKED STORAGE EXAMPLE VARIABLES

Node Min Max Residual Run

(Res Nodes) Footprint Files Footprint Footprint

9 4 4 1 4

{9} {WXYZ} {WXYZ} {Z} {WXYZ}

8 2 2 1 2

{9,8} {DY} {DY} {Y} {DY}

7 4 4 1 4

{9,7} {LMNW} {LMNW} {W} {LMNW}

6 2 2 1 2

{9,7,6} {CN} {CN} {N} {CN}

5 2 2 1 2

{9,7,5} {CM} {CM} {M} {CM}

4 2 2 1 2

{9,7,4} {CL} {CL} {L} {CL}

3 2 2 1 2

{9,8,3} {AD} {AD} {D} {AD}

2 2 2 1 2

{9,2} {AX} {AX} {X} {AX}

1 4 4 3 2

{9,7,1} {CLMN} {CLMN} {LMN} {AC}

0 4 7 3 1

{9,0} {AWXY} {ACDLMNX} {WXY} {A}

The variables in this table correspond to the worked example in Figure 4.3. This worked
example is further explored in Section 4.7.2.

62



TABLE 4.2

STATIC ANALYSIS RESULTS

Size Min Max Abs Tasks Analysis Time

(GB) (GB) (GB) (S)

Binary Tree

3 5 12 22 22 0.0015

5 7 48 94 94 0.0065

10 12 1536 3070 3070 0.2776

15 17 49152 98302 98302 10.631

Montage

0.01 0.07 0.12 0.13 35 0.0041

1 1.87 2.78 2.98 998 1.9558

1.99 4.01 6.49 9.33 2984 2.3500

BWA-GATK

1 2.69 2.69 3.614 53 0.0117

5 2.75 13.46 17.99 265 0.0439

10 2.82 26.93 35.94 530 0.0749

25 3.06 67.31 89.83 1325 0.1659

50 3.43 134.63 179.64 2650 0.3082

100 4.19 269.25 359.24 5300 0.4145

500 10.25 1346.26 1796.11 26500 2.8163

Each section of this table refers to one of the three workflows used in our analysis. The size
column refers to different attributes for each workflow. Size refers to the number of split levels
in Binary Tree, the degree of the sky being analyzed in Montage, and the number of individual
samples included in BWA-GATK. Min shows the estimated minimum footprint, Max the estimated
maximum footprint, and Abs the sum of all files in the workflow. Tasks are the number of tasks
created in Makeflow. Analysis Time shows the additional time needed to determine the footprint
for each case.

63



Table 4.2 shows the results of applying this algorithm to the three example work-

flows previously described, as implemented in Makeflow [2]. For various sizes of each

workflow, I compute the minimum footprint, maximum footprint, and absolute max-

imum. The size of the three workflows are given as the tree depth for Binary Tree,

the degrees of resolution for Montage, and the number of organisms for BWA-GATK.

The bold lines indicate the configurations actually run below. As discussed above,

the maximum footprint of Binary Tree grows exponentially, the maximum footprint

of Montage is close to the minimum footprint, and the maximum footprint of BWA-

GATK is roughly linear with the width of the workflow. With the exception of the

very large binary tree, the single-pass algorithm executes in a mater of seconds.

4.6.1 Limitations

This static analysis perform well in an organized consistent environment, but

there are several factors that affect execution. The first is untracked files. Often in

execution programs create log files or auxiliary status files. These files have limited

scientific worth outside of performance and error logs, but occupy no space. If they

are specified in the task then I account for them and remove them when no longer

needed. When they are not specified they clutter space and are never cleaned causing

more contention. Second when files vary significantly from expected size, such as log

files, the static algorithm does not recompute to account for this. Ideally, I recompute

and reallocate using the dynamic management, but if the limit is already close it may

be beyond the point where a change will help.

To combat these issues, I have additional mechanisms to help determine if the en-

vironment is prohibiting forward progress outside of the bounds of our management.

This comes up by actively cleaning old files and watching the working directory. If

the filesystem report almost full utilization of storage error messages are printed to

bring the users attention to the issue, though the static analysis does little to help

64



prevent this.

4.7 Dynamic Storage Management

In the previous section, the static allocation defines the storage bounds of the

workflow execution. The dynamic algorithm utilizes the static analysis results to

enforce the space reservations needed for future execution.

The dynamic storage allocator uses a data structure that tracks the current space

utilized by files and reservations of current and future nodes. The data structure

is initialized with a base size, called the base allocation, which is specified by the

end user with the help of the static analysis results. The base allocation defines the

upper limit of available space for this execution of the workflow. Within the base

allocation, reservations are created to hold space for a node and its ancestors. This

creates a hierarchy in the data structure of node reservations above their descendant

reservations. When a file is created it is accounted for in the current reservation and

tracked until deletion.

4.7.1 Dynamic Storage Algorithm

The dynamic algorithm consists of three stages for each node’s execution: verifi-

cation, allocation, and release.

When a node is logically ready for execution, the dynamic storage allocator checks

if there is sufficient space to run the selected node. The allocator utilizes the residual

node set to compare against the existing data structure. The allocator starts with the

lowest residual node (nodes later in the workflow) and compares the data structure

with the required space for the residual node. If the residual node reservation does

not exist in the data structure, the allocator checks for sufficient space in the base

allocation. If the reservation exists, but there is not sufficient space, the allocator

checks if the existing hierarchy can be enlarged to reserve the additional size. If there

65



is sufficient space in the reservation hierarchy, the allocator continues up the residual

list using the available space to check nodes. If there is not sufficient space, the node

is postponed for submission.

If the verification step is successful, the node is allocated and submitted. To

allocate a node, its residual nodes are passed to the allocator. The allocator creates

a reservation for each residual node that does not exist in the data structure and

grows smaller allocations to accommodate. This proceeds for all residual nodes until

a hierarchy exists above the base allocation. In this hierarchy, any lower node is at

least as large as the nodes above it. If multiple nodes share a common residual node,

the common node is at least as large as the sum of the higher nodes. In this way,

space is reserved for the widest part of the ancestors to guarantee space.

After execution, the allocator must release the completed reservations. During

this release stage, files that are no longer needed are deleted and their space is marked

as available in the data structure. The reservation for the completed node is released,

and files within the reservation are transferred to the containing reservation. These

files continue to exist until they are no longer needed. If output files are larger than

the existing reservation, the reservation attempts to grow and accommodate the

increased size. This can cause deadlock or failure from resource exhaustion. Due to

these changes, the static analysis is outdated and can no longer guarantee execution.

4.7.2 Worked Example

Figure 4.4 demonstrates the dynamic algorithm using the earlier worked example

(Figure 4.3 and Table 4.1).

Step 1: With Node 0 available to run, the algorithm checks the stack to ensure

there is enough space. Traversing the residual nodes of Node 0, Node 9 is added to

the stack with the size needed for the nodes between 0 and 9. Node 0 is then reserved

on top of Node 9. Once executed, File A moves from the space reserved by Node 0

66



2.

0

9

0

9

A

9

A 7

9

A 7

1

1

C

9

A 7

C 4 5 6

9

A 7

C 4 5 6

L M N

9

A 7

L M N

9

A 7

L M NW

9

A W 2

3

8

9

A W 2

3

8

X

D

9

W X 8

D

9

W X 8

D Y

9

W X Y

9

W X Y Z

Z

3.1.

8.

4.

6.5. 7.

Figure 4.4. Diagram showing dynamic allocation data structure. Shown is
the execution of the worked example from Figure 4.3. Numbered boxes

represent storage allocations for nodes. Lettered Boxes represent allocations
for specific files. Boxes with slashes through them are allocations which are
being removed because either the node is complete or the file is no longer

needed. Allocations are removed when no longer relevant.

to Node 9, and node 0’s reservation is removed.

Step 2: With File A existing, Nodes 1, 2, and 3 are available to run. The algorithm

will check Node 1. Traversing Node 1’s residual nodes, Node 9 is reserved. With the

remaining space in Node 9, the algorithm can fit Node 7 and Node 1. A reservation

is then added to 7 above 9, and a reservation for Node 1 is created on Node 7. After

completing Node 1, File C is created and Node 1’s reservation is removed.

Step 3: The available nodes to run are Nodes 2, 3, 4, 5, and 6. There is not enough

space for Node 2 and 3. However, in the reservation for Node 7, there is space for

Nodes 4, 5, and 6. Space for Nodes 4, 5, and 6 is reserved. Upon completion, files

L, M, and N are created and the node reservations are released. File C is no longer

67



needed and is removed.

Step 4: With Nodes 2, 3, and 7 available, again we check which nodes will fit.

The reservation for node 7 already exists, so Node 7 is executed. After outputting

file W, files L, M, and N are removed along with node 7’s reservation.

Step 5: Space now exists for Node 2 and 3, so reservations are created for Nodes

2, 3, and 8. After running, file A is removed, and reservations 2 and 3 are released.

Step 6: Reservation for Node 8 exists. File Y is created. File D is removed, and

Node 8’s reservation is released.

Step 7: Reservation for Node 9 exists. File Z is created. File W, X, and Y are

removed. Node 9’s reservation is released.

Step 8: Final output File Z exists. The workflow is complete.

4.7.3 Impact of Local Storage

Local storage can affect the dynamic storage management in several ways. First, if

the local storage that is utilized for execution is accounted for within the same quota,

then the dynamic management needs to adjust. In this case, I need to account for

both the active space utilized during execution and the space consumed in caches are

used for data movement. In the prior case, when a node is allocated the requisite

space needed for execution is added to the allocation, but removed after execution.

Caches are more difficult as they are essentially copies of the existing data and may

persist between execution increasing the complexity. One method for handling this

is to set a limit on individual size of a cache such that old files are removed and the

space is statically accounted for.

Second, in cases where temporary space is unaccounted for, such as in scratch

spaces or local temporary directories, I do not need to account for space. These

resources can still become contentious. In these cases I rely on the remote execution

to report on limited space to maintain limits. Unfortunately, system wide storage

68



contention on scratch storage is not in the purview of this chapter.

Currently, I do not consider either as our remote execution happens on local

temporary space outside of the quota, though inclusion of these factors may become

necessary in some execution environments.

Mode Binary Tree Montage BWA-GATK

No Limit
 0
 5

 10
 15
 20
 25
 30
 35

 0  50  100  150  200  250  300

S
to

ra
ge

 (
G

B
)

Time (s)

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0  100  200  300  400  500  600  700  800

S
to

ra
ge

 (
G

B
)

Time (s)

limit

min

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0  20  40  60  80  100 120 140 160 180

S
to

ra
ge

 (
G

B
)

Time (m)

limit

min

(overflow)

Naive
 0

 5

 10

 15

 20

 0  5  10  15  20  25

S
to

ra
ge

 (
G

B
)

Time (m)

limit

min

(deadlock)

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0  100  200  300  400  500  600  700  800

S
to

ra
ge

 (
G

B
)

Time (s)

limit

min

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0  20  40  60  80  100 120 140 160 180

S
to

ra
ge

 (
G

B
)

Time (m)

limit

min

(deadlock)

Dynamic
 0

 5

 10

 15

 20

 0  5  10  15  20  25

S
to

ra
ge

 (
G

B
)

Time (m)

limit

min

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0  100  200  300  400  500  600  700  800

S
to

ra
ge

 (
G

B
)

Time (s)

limit

min

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0  20  40  60  80  100 120 140 160 180

S
to

ra
ge

 (
G

B
)

Time (m)

limit

min

Min
 0

 5

 10

 15

 20

 0  5  10  15  20  25

S
to

ra
ge

 (
G

B
)

Time (m)

limit at min

 0
 1
 2
 3
 4
 5
 6

 0  100  200  300  400  500  600  700  800

S
to

ra
ge

 (
G

B
)

Time (s)

limit at min

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0  20  40  60  80  100 120 140 160 180
S

to
ra

ge
 (

G
B

)

Time (m)

limit at min

Figure 4.5. Storage limits applied to example workflows. Timeline of
storage consumption for each of the three example workflows, in different
configurations. The top row shows uncontrolled executions which exceed
the desired limit. The second row shows naive storage limits which can

result in deadlock. The third row shows a limit applied using the dynamic
algorithm. The fourth row shows the minimum storage footprint enforced.
In each graph, the dark area shows storage actually consumed, while the

light area indicates storage committed to future use.

69



4.8 Overall Evaluation

Figure 4.5 shows the behavior of the dynamic algorithm implemented in Makeflow.

The workflows are evaluated by submitting each task to Work Queue, with up to 100

tasks running simultaneously on remote nodes. For each, I chose a storage footprint

limit (dotted line) that is larger than the minimum footprint (solid line) but less

than the maximum footprint. The dark shaded area on each graph shows the storage

actually consumed, while the light shaded area shows the “committed” storage value.

4.8.1 Configuration

Each workflow was created and run using the emboldened configuration entry in

Table 4.2 for each corresponding tool. All three workflows executed using a shared

filesystem accessed by batch job workers. Each worker was allocated a single core and

at least 8GB of memory. The amount of storage allocated to the worker was based

on the the sizes from Table 4.2. The machines used to run the batch job workers

were part of a campus-scale cluster and thus varied in their hardware configurations

however the method used to acquire batch job workers ensured the worker had access

to the requested amount of resources in order to begin work.

Each workflow is run in four different configurations:

The No Limit row shows each workflow run with maximum concurrency and

no explicit storage limits. The ordering of tasks is solely due to logical constraints,

and the exact concurrency achieved depends upon the performance of the tasks in

the batch system. As can be seen, each workflow meets or exceeds the minimum

footprint, and in the absence of control, exceeds the desired limit or deadlocks.

The Naive row shows the workflow system attempting to enforce the desired

storage limit by simply examining each file as it is submitted. Storage is committed

for the immediate output files of a task when it is submitted. Tasks are only submitted

if the committed value can be kept below the limit. This can result in deadlock (as

70



shown) if the workflow manager commits too much space and is unable to execute

tasks to consume created files.

We note that both the binary workflow and BWA-GATK experience deadlock

using the naive strategy given the storage limit. The binary workflow’s rapid ex-

pansion behavior caused the naive approach to very quickly exhaust its storage. In

BWA-GATK, deadlock occurred when a group of the most data-intensive tasks in

the workflow were dispatched at the same time. Some of the data-intensive tasks

remained but could not be scheduled because there was not enough storage available.

The Dynamic row shows the workflow system using the dynamic algorithm de-

scribed in this section to limit submission of new tasks. We note that the committed

storage increases more rapidly than in the naive case because the footprint of each

task is committed before submission. The storage actually consumed does not always

rise to the level of the committed storage, which is an upper bound on all possible

executions following each node.

The Min row shows the workflow system using the dynamic algorithm, but the

limit is set to the minimum possible value. As previously mentioned, the Montage

Min graph utilizes the file list approach to allocation management.

Overall, we observe that the dynamic online algorithm is able to enforce the

desired constraints without falling into deadlock. As noted above, the committed

value is an upper bound on actual consumption. Noting this, there still exists room

for improvement in the upper bound. The difficulty in optimally utilizing an upper

bound is tied closely with the runtime behavior of the workflow. Improvements could

be made if the execution time of tasks is combined with the expected growth of

a branch in order to overlap branch executions more smoothly. The footprint is

currently defined as a means of preventing over-commitment. Optimal storage use

focuses more closely upon scheduling as a solution and relies on consistent execution

behavior while static footprint analysis relies only on file sizes.

71



During real execution, we expect the static analysis and dynamic storage algo-

rithms to have broad appeal. The static algorithm can help a user understand the

needs and behavior of their workflow better while the dynamic algorithm will help

keep the workflow constrained when necessary. The runtime task constraint using

loop devices is another way of guaranteeing the user’s storage requirements are not

exceeded. We believe all three tools have general appeal to scientific workflows re-

gardless of the workflow’s behavior or size. The limiting factor of our tools’ appeal

comes from the user’s storage needs.

4.9 Conclusions

I have illustrated two techniques for managing storage space in workflows: a static

algorithm for offline analysis of storage consumption; and, a dynamic algorithm which

enforces runtime limits while avoiding deadlock. The dynamic algorithm is an upper

bound on consumption and can overestimate in cases where the same file is used

in multiple places in the workflow. Utilising these methods we are able to see how

storage can be estimated and tracked from a full workflow context.

In the larger context, these methods provide a means of managing workflow re-

sources and preventing over use from workflows. Both of these methods can be used

to limit the effects of moving between sites and changing data configurations. More

importantly, these methods provide a means of abstracting knowledge and control of

workflow specific resources to a higher level, such that workflow management systems

or batch execution systems could leverage this information to prevent deadlock and

failures. Using these techniques with dynamic workflow expansion allows workflows

to safely expand and execute on new sites with mechanisms to analyze and manage

resources, further increasing the flexibility of the workflow.

Using the dynamic expansion and resource management methods, we can quickly

move to new sites with larger data. However, as we change the execution assumptions

72



it is unavoidable that we encounter a site with a different environment than was

originally tested. When these differences diverge more dramatically from the original

implementation, methods are needed to adapt workflows to new sites. I will next

describe an algebra to adapt workflows to different environments, further increasing

workflow flexibility and portability.

73



CHAPTER 5

AN ALGEBRA FOR ROBUST WORKFLOW TRANSFORMATIONS

5.1 Introduction

In the prior chapters I explored methods to dynamically creating and managing

workflows. These methods allow for workflows to be generated as needed for different

datasets on previously unused sites. These methods provide a robust and flexible so-

lution to creating workflows and managing their resource needs but relied on the site

to provide a compatible execution environment. Differences between execution sites

makes porting workflows difficult and debugging complex. It is common for work-

flows to assume: libraries and programs are available; use applications configured for

a single operating system; or, rely on unspecified configurations; all of which may

cause workflows to fail on different sites. Accommodating each site’s configuration

requires a number of unique transformations to properly execute a workflow. The

tasks themselves do not change, but the environment, error handling, and configura-

tion may.

A typical use case is the need to deploy the same operating system and software

stack on several available compute sites. Unfortunately, each site may have a unique

operating system or lack the necessary software requirements. Users need a way

to quickly switch between each site without rewriting the workflow for each site.

A possible solution is to use containers. But how does a user easily apply these

containers to tasks? This is further complicated when each site may use different

container technologies (i.e. Docker[89] and Singularity[74]).

74



The ability to combine available tools is required to handle unique configurations

and environments. As the number and variety of tools increases, the complexity of

combining them increases as well. For example, if Singularity and a custom script

are both applied to a simple task by prepending their commands, characteristics of

execution like exit status, provenance of files, and the final executed command become

opaque. Properly nesting the container inside of a script allows for differentiating

failures, debugging, and consistent execution. Each additional layer must become a

more nuanced transformation as nesting technologies, such as containers, resource

monitoring, and error handling, becomes necessary. Different combinations of tools

are required depending on the site’s unique configuration. The variable nature of

required tools indicates the importance of only applying tools to a workflow as needed,

rather than adding them to the workflow specification at each site.

To address this problem, I define an algebra for workflow transformations to ad-

dress the complexity of nesting different tools and technologies. Based on the sandbox

model of execution, this algebra formalizes the operations for applying transforma-

tions to tasks, producing new tasks. These transformations can then be applied in

series to produce a task that incorporates all applied transformations. Using formal-

ized task transformations, I are able to precisely apply multiple transformations to a

workflow and cleanly map to each task.

This algebra was expressed using JSON so that it is independent of (and therefore

portable to) a variety of systems. Using this JSON expression, a driver was written in

Makeflow[2] that allows us to apply transformations to a full workflow. I will discuss

the challenges in applying transformations and how these methods can be applied

incorrectly and incompletely. To show the efficacy of this solution I show several case

studies. The first uses a Singularity container to: provide consistent environments; a

resource monitor to give accurate usage stats; and, a sandbox to isolate the available

files and workspace. The second shows a failure handler that captures a core dump

75



and converts it into a stacktrace, streamlining analysis and lower data transfer. The

final case study executes the same workflow on several sites using an environment

builder that dynamically builds required software at each task.

5.2 Challenges in Transforming Workflows

A workflow primarily describes the researcher’s work to run a set of simulations, to

analyze a dataset, to produce a visualization, etc. However, like any kind of program,

there may be a number of secondary requirements that must be met to complete the

work: a particular software environment should to be constructed, resource controls

for the batch system will be selected, monitoring and debugging tools should be

applied to the task, and so forth. This might involve setting environment variables,

providing additional inputs, capturing additional outputs, invoking helper processes,

and more.

The first version of a workflow, constructed at a particular computing site, may

have all of these aspects intertwined with the definition of the tasks to be done.

The application may depend upon software environments installed in fixed paths

in a shared filesystem. Environment controls may be set within individual tasks.

Resources may be hard coded for a particular batch system The graph structure may

reflect the current set of debugging tools enabled. While this may work well at the

first site, it may become necessary to move the workflow to another site in order to

improve performance, increase scale, or to apply the workflow in a new context. All

these site-specific controls are unlikely to work in the new context, and the receiving

user is then stuck with the problem of disentangling the core code from the local

peculiarities.

An appealing approach to this problem is to define simple modifications that can

be individually applied to tasks (transformations) in order to achieve specific local

effects. For example, one might have a transformation to run a task in a container

76



In

On

In-1

On-1

I1

O1

I0

O0

T0 T1 Tn-1 Tn

P

I

R
O

Partition

Reduce

Evaluate

Single
Task

Figure 5.1. Diagram showing an example workflow. This basic workflow
shows standard split-join behavior. The first task partitions the work, the
next set of tasks analyze the individual partitions, and the last task joins
them all back together. Each task executes independently from each other

and are often run on batch execution systems.

environment, another transformation to perform monitoring and troubleshooting, and

a final transformation to configure a software environment for the local site. With

this approach, the scientific objective of the workflow can be expressed in a portable

way. A set of external transformations are used to modify the tasks as needed for

the local site. Porting a workflow from one site to another becomes the simple job of

adjusting a few transformations rather than rewriting the workflow from scratch. If

it is necessary to transform the workflow in a new way, a new transformation can be

written and shared with others so that it can be applied to many workflows.

However, our experience is that designing and using transformations is not so

easily done. What may seem like a simple and obvious transformation can end up

77



creating complex interactions and incorrect results. As a simple example, suppose

that I want to run each task inside a Singularity container named centos.img. At

first, this sounds as simple as prepending singularity run centos.img to each

command string then running the task. While this works in limited cases, the general

case for workflows with complex task definitions fails. There are several reasons for

this:

Substitution semantics. Using basic string substitution to embed one com-

mand inside another often complicates execution. Commands that use input/output

redirection, consume files, or change the environment collide using basic substitution.

Addressing this uncertainty with shell quoting only further complicates the matter,

and may change the execution.

Workflow modifications. Applying a transformation to a task not only changes

the individual task, but may also have an effect on the global structure of the work-

flow. A command transformed by a container now has an additional input (i.e.

centos.img) which must be accounted for as a dependency in the workflow. Con-

tainer images are large and affect the scheduling and resource management of the

workflow. In a similar way, the container produces additional outputs which must be

collected and managed by the workflow.

Namespace conflicts. Transformations can modify the local filesystem names-

pace. Log files with fixed names, temporary generated files, files based on task input

files, or modifications to the working directory all alter the task and the workflow.

These actions blindly modify files outside the workflow or cause race conditions with

other concurrent transformations. Since it is not always possible to alter these hard-

coded paths into unique filenames, collisions are inevitable.

Troubleshooting complications. The exit semantics of a transformed task

are complex as it is not sufficient for a transformation to simply return the task’s

integer exit status. Each exit status should be differentiated, as transformations

78



may fail separately. For example, preparing the environment may fail because a

necessary software dependency is not present, a container may fail when pulling the

container image over the network, or a resource monitor may exit when resources

are exhausted. In each of these cases, the user must have a means of distinguishing

between transformation failure and task failure. When multiple transformations are

applied, the result of the task looks more like a stack trace than a single integer.

To address these challenges, I need a more rigorous way of defining tasks and

the transformations on those tasks such that any valid transformation applied to any

valid task gives the expected result in a way that can be nested. In short, I need

an algebra of workflow transformations in order to make scientific workflows more

robust, portable, and usable.

5.3 An Algebra of Workflow Transformations

I designed a formal abstraction to accommodate the execution behavior of various

tools. This formalism isolates each transformation for consistent execution, allowing

for organized nesting. In particular, our abstraction describes how to define a trans-

formation for a given tool, as well as aspects of execution to consider. Transformations

are based on the sandbox model of execution, which describes all aspects of execution

for which a transformation is responsible.

5.3.1 Notation

For the purpose of expressing tasks and transformations in a precise way, I use

a notation that is based on JavaScript Object Notation (JSON). In addition to

the standard JSON elements of atomic values (true, 123, "hello"), dictionaries

{ name: value }, and lists [ 10, 20, ... ], I add:

• let X = Y is used to bind the name X to the value Y.

79



• define F(X) = Y defines a function F that will evaluate to the value Y using
the bound variable X.

• Simple expressions can be built up using standard arithmetic operators and
function calls on values and bound variables.

• eval X evaluates the expression X and returns its value.

Using this notation, a single task (T1) in a workflow is expressed in JSON like

this:

let T1 = {

"command": {

"pre":[ ],

"cmd": "sim.exe < in.txt > out.txt",

"post":[ ],

},

"inputs" : [ "sim.exe", "in.txt" ],

"outputs" : [ "out.txt" ],

"environment": {},

"resources" :

{"cores":1, "memory":1G, "disk":10G }

}

Figure 5.2. Basic task defined using JSON.

Note that the schema is fixed. Every task consists of a command with a pre,

cmd, and post component, a list of input files, a list of output files, a dictionary of

environment variables, and a dictionary of necessary resources. Also note that the

formal list of inputs and outputs is distinct from the command-line to be executed,

as guessing the precise set of files needed from an arbitrary command-line is difficult.

80



For example, a program might implicitly require a calibration file calib.dat and yet

not mention that on the command line. The base task’s list of inputs and outputs is

drawn from the structure of the DAG by the workflow manager.

5.3.2 Semantics

Makeflow allows for tasks in this form to be executed on a wide variety of execution

platforms, including traditional batch systems (such as SLURM[69], HTCondor[80],

and SGE[45]), cluster container managers, and cloud services. Because each of these

systems differ in considerable ways, it is necessary to define precise semantics about

the execution of the task and the namespace in which it lives. Once these semantics

are established, it becomes possible to write transformations that work correctly re-

gardless of the underlying system. To accommodate these varied systems, I introduce

the sandbox model of execution.

The sandbox model of execution isolates the environment and limits interac-

tions to only specified files. Isolating the task to run only the specified environment

allows for higher flexibility about where the task can run as well as increasing the

reproducibility of execution. Limiting the locally available files helps prevent undoc-

umented file usage, enforcing accuracy of the file lists.

Applying a sandbox to a task is a multi-step process for ensuring consistent en-

vironment creation:

1. Allocate/ensure appropriate space for execution, based on resources.

2. Create sandbox directory.

3. Link/copy inputs to ensure correct in-sandbox name, based on inputs.

4. Enumerate environment variables based on the specified environment.

5. Run task defined command, using pre, cmd, and post.

6. Move/copy outputs outside of sandbox with appropriate out-sandbox name,
based on outputs.

81



7. Exit and destroy sandbox.

In I

On O
CMD

Environment

1. Size 
(Resources)

3.

6.

2. Create Sandbox
4.

5.

7. Delete Sandbox

Figure 5.3. Diagram showing the sandbox model of task execution. This
shows the different steps needed to isolate the task from the underlying

workflow environment to prevent side-effect on the environment and
filesystem.

5.3.3 Transformations as Functions

A transformation is an abstraction of a task, and provides the information needed

to translate a raw program invocation into a properly defined task. A transformation

contains the same fields defined in a task: a command, inputs, outputs, resources,

and environment. However, it is an incomplete task with unbound variables that are

resolved when applied to a task as a function.

Figure 5.4 illustrates Singularity written as a transformation. As mentioned

above, the generic definition of the transformation contains unbound variables such

as T.cmd, T.inputs, and T.outputs. When the transformation is applied to a task,

those variables are bound from the task’s structure. Singularity requires additional

space (3G) to account for the Singularity image. Here, resources are not defined as a

static value, but in addition the to underlying resource. Additionally, the Singularity

82



define Singularity(T)

{

"command" : {

"cmd": "singularity run image " +

T.script + " > log." + T.ID

}

"inputs" : T.inputs +

["image", T.script],

"outputs" : T.outputs +

["log."+T.ID],

"resources" : {

"disk" : T.resources{disk} + 3G

}

}

Figure 5.4. JSON defining abstract Singularity transformation.
Describes the Singularity command, added files (such as image and output
log), and increases the required disk space. Note, several of the variable are
unbound, and will be resolved when applied to a task. Unaltered fields are

left undefined.

transformation does not define an environment, so it is left out.

The resulting task of evaluating Singularity(T1) can be seen in Figure 5.5.

The previously unbound variables have been resolved, such as T.inputs becoming

["sim.exe, "in.txt"]. The values that were not defined or extended by Singularity

were resolved from the underlying task, such as cores and memory. Importantly, to

create a valid task even empty fields like pre, post, and environment are still speci-

fied, allowing for evaluation and additional transformations to be applied.

If you look carefully at Figure 5.4 you will notice two variables not bound by

83



eval Singularity(T1) yields

{

"command": {

"pre":[ ],

"cmd": "singularity run image " +

"t_ID.sh > log.ID"

"post":[ ],

},

"inputs" : ["sim.exe", "in.txt",

"image", "t_ID.sh" ],

"outputs" : ["out.txt",

"log.ID"],

"environment" : {}

"resources" : {

"cores" : 1,

"memory" : 1G,

"disk" : 13G,

}

}

Figure 5.5. Resulting task of applying Singularity to T1. The
transformed task has all of the variables bound. The file lists have

combined the previously defined files with the files added by Singularity.
The resources are resolved and the required values account for the original

task and the transformation.

the underlying task directly, T.script and T.ID. As part of the abstraction, the

underlying task is emitted as a script that is called in place of the command, creating

T.script. The ability to treat transformations as functions is achieved by isolating

each transformation as a separate process. Isolating a transformation provides several

key benefits: clearly defined ordering of transformations, instantiated environments

persist only in that process and its children, and exit status can be attributed at each

level to track failures. In practice this is achieved by producing a script that defines

the task, as seen in Figure 5.6.

84



The second variable, T.ID, is key to this method’s success, as the ability to

uniquely identify each task provides a clear mapping to the workflow. A unique

identifier is created using the checksum of the current task, which incorporates the

command, input files’ names and contents, output files’ names, environment, and

resources. This identifier is used to identify the output script and can be used by

the transformation to uniquely identify files in the workflow. Additionally, as ap-

plying a transformation produces a new task, the identifier is updated after each

transformation.

#!\bin\sh

#ID TASK_CHECKSUM

# POST function

POST(){

# Store exit code for use in analysis.

EXIT=$?

# Run post commands.

# Exit with stored EXIT which may

# have been updated by post.

exit $EXIT

}

# Trap on exit and call POST.

trap POST EXIT INT TERM

# Export specified environment.

# Run pre commands.

# Run core command.

sim.exe < in.txt > out.txt

Figure 5.6. Script created when evaluating Singularity(T1).

85



5.3.4 Applying the Sandbox Model

This creation of a script from a task focuses on isolating just the transformation,

but relies on finalization of the task sandbox laid out in Section 5.3.2. To consistently

apply the sandbox model to a task I define a sandbox procedure to produce a script

that creates a sandbox, handles files, and runs the command. This procedure is

applied to a task prior to execution to isolate the task to a single sandbox directory.

This begins with creating a unique identifier, based on the task checksum. The

identifier is used to create the sandbox and script names used in execution. In the

script a POST function captures the exit status, executes post commands, and returns

the outputs. This function is set as a trap to also analyze failures. Next, the sandbox

is created and inputs are linked into it. The process changes directories, exports the

environment, and runs the pre commands. After this the environment is setup, the

task cmd can run.

5.4 Transformations in Practice

In applying the above algebra, there are design considerations to be made. To

maintain the ability to nest several transformations together, it is important to con-

sider the naming conflicts, the importance of differentiating pre, cmd, and post, file

management, resource specification, and how the environment of a task is extrapo-

lated.

5.4.1 Composability versus Commutability

An important aspect of this algebra is the ability to reason about how the com-

binations of different transformations interact and if they can be applied to created

a valid task. Using the previously defined application of transformations I find that

the set of transformations are composable, but not commutable. These transforma-

86



tion are not commutable because the ordering in which they are applied changes

the core evaluation of the task. This is by design, to allow for the differentiation of

transformation ordering.

Transformations, in general, are composable. Any transformation can be applied

to any task and produce a valid task, with the exception of static name collisions.

A static name collision can result when an application uses hard-coded or default

names for files, careless naming, or even randomly generated names. Running a

single transformation at a time may not cause a collision, but nested transformations

and concurrent tasks make collisions inevitable, as is often seen with output logs and

files sharing names between tasks.

Naming is resolved at the local level by detecting when applying a transforma-

tion creates overlapping names. If collisions are detected, the transformation is not

applied and a failure is returned. Though this restricts some combinations, this can

be overcome by better understanding the application and using options to produce

unique files.

However, if the same restrictions were applied to tasks across the workflow, trans-

formations with static names would be prohibited entirely. As this may be inevitable,

static files may be remapped to a unique name in the workflow. As each task is iso-

lated in a sandbox, static files can be renamed when moving to the global namespace

using the task identifiers. Remapping of the file relies on a more verbose file specifica-

tion as a JSON object instead of a string filename. JSON object specification enables

the wrapper to specify an inner name, specifying the name inside the sandbox, and

the outer name, specifying the name in the workflow context. An example of how

this would look with a statically named file can be seen in Figure 5.7 which defines

a resource monitor transformation.

87



define RMonitor(T) {

"command" : [

"cmd": "rmonitor -- " + T.script

]

"inputs" : T.inputs + ["rmonitor",

T.script]

"outputs" : T.outputs +

[{"outer_name="summary."+ID,

"inner_name"="summary"}]

}

Figure 5.7. Verbose JSON object file specification. In this example the
resource monitor uses a statically name default summary, ”summary”. In
this case, the the summary file is statically named, but will collide in the

global workflow context. To avert this collision the file is specified with its
static inner name, and a unique outer name using the task’s ID.

5.4.2 Command Description

Commands express the setup, execution, and post processing of a task. Com-

mands are broken up into three parts, pre, cmd, and post based on the command

structure outlined.

Pre is a set of commands that run prior task invocation and setup the task

sandbox. This includes setting environment variables, configuring dependencies, and

loading modules or software. For example, a Docker transformation would use pre

to load or pull images.

Post is a set of command that run after task invocation and is used to handle

failure by interpreting or masking them, create outputs to prevent batch system

failures from missing files, or validate correctness of outputs. Post can differentiate

docker failing to load an image from task execution failure, allowing more nuanced

debugging.

The cmd string outlines the context in which the underlying command is invoked.

88



DAG
Task

ES

ED

ET

a b c Expanded
Task

ET + 
E(a,b,c)

BATCH

c

Submit

Placecc bb a
c b a

T

EEEc

Ea Eb Ec

EbEaET

EB

Handle
Exit Status

Execute
Nested Task

Apply
Transformation a

Execute
Transformation c

Figure 5.8. General approach to Sandbox model of execution. The
environment that exists at task execution is the result of several sources.

The environment starts at the DAG where variable are resolved internally
and from the host machine. These values define the task’s initial

environment. Transformations are applied to this task which extend the
environment, but are only applied at execution. At the execution site, the

environment is defined by the execution node and batch system. As
execution starts, each transformation is applied and invokes its

environment, limiting their affect to that transformations execution.

Cmd outlines how the underlying task is called and isolates the effects of the calling

transformation.

A benefit of separating the command into these parts is that it allows us to

differentiate the failures or problems that result from each part. This is useful when

determining that the setup of your container failed so the task should not run or

to prevent the failure of post analysis from indicating a task failure falsely. This

separation also allows for each transformation to be clearly expressed in a script,

enabling simplified debugging.

89



5.4.3 File List Management

As transformations are applied, the list of inputs and outputs grows. It is key for

the correct organization of transformations that the set of required files is outlined

by the task structure allowing the submitting system to confirm required inputs and

verify expected outputs. It is possible for a transformation to rename or mask an

existing file in the list. By doing so, the transformation changes the context of the

task when evaluated. This can be done to allow for redirecting shared files or when

using installed reference material. Maintaining a correct set of files helps prevent

task collision. This information can also map a pre or post application onto the files,

estimate the space needed for execution, or log these files for later analysis.

5.4.4 Resource Provisioning

The resources define the necessary allocation for proper task execution. This value

is extended and augmented by transformations as the context and required resources

change. Commonly, as transformations are applied, additional disk space is needed

to store new files (like container images).

Resource provisioning may not only be additive as the transformations are applied,

but also maximal. This is typically the case used for cores. The number of cores does

not expand as transformations are added, but reflects the largest number of cores

needed by any transformation. For example MPI utilizes a static number of cores,

and to reflect that the resources specification uses the maximum of the provided value

and the previous resource specification. The value of the resources required for a task

tracks the largest set of each resource. After the transformations have been applied,

the final task contains a single specification reflecting the total expected usage.

90



5.4.5 Environment Elaboration

An important aspect of a task is the environment where the task is executed.

The environment defines a variety of values that control things such as available

executables, required libraries and values, or even available machines on a cluster

execution node. However, the environment is often overlooked or ignored by the

researcher, which can cause corruption, errors, and failures. This can be addressed

directly on a single site, but as more sites are utilized managing these environments

becomes unrealistic. Here I will discuss how the task environment is defined, when

transformations are applied, and how the final environment is resolved at execution.

The environment provided to a task varies between sites and evolves as a task is

transformed and evaluated. The workflow is executed in the context of the submitting

machine’s environment (ES). As the workflow is evaluated, the environment is defined

internally and from ES, resulting in ED. Tasks are created and the environment that

is specified by the task is derived from ED, resulting in ET . ES is not included as

variables would be incorrect or reference non-existent programs, libraries, and values

at execution.

After the task is produced, transformations are applied that may append, update,

or mask the provided variables. As a transformation is applied, ET is written out

to a script. The transformation can also use the values set in ET to evaluate its

environment. Applying these transformations produces a chain of environments ETr

(Ea, Eb, Ec in Figure 5.8) as a result.

Tasks are placed on an execution node. The environment on the execution site

varies from that of the submission site and is influenced by the batch system and

execution node. The batch system environment(EB) provides information about the

assigned machines, available cores, and location of software modules and may be

crucial for applications that use MPI or modules. The execution node environment

(EE) defines information such as local disks and available hardware.

91



The simple method of applying the environment is to apply all variables either

at the beginning of execution or just prior to the task invocation. If applied ini-

tially, there are likely uninstantiated or unbound dependencies. If just prior to task

execution, the context of each layer is evaluated using incorrect values or software.

Both ultimately lead to a disconnect between the intended and the actual environ-

ment. To prevent this, as tasks are invoked each transformation creates a process

that only applies the specified environment, limiting the environment’s scope. Some

transformations, such as containers, wipe or mask the provided environment. As

transformation environments are applied, this should be taken into account, as the

order and manner environments are instantiated may not carry through each trans-

formation.

5.5 Applications of Transformations

We will now look at several example applications of transformations and how they

can be used to improve the portability and robustness of workflows.

5.5.1 Sandbox Transform

A sandbox transform creates a directory, transfers files, and runs the command

of the task. This simple lightweight transformation isolates the execution namespace

from the workflow namespace, which allows for file renaming. The sandbox is removed

after successful execution, which eliminates local unspecified files from polluting the

workflow namespace and disk quota. If a task does fail, the sandbox can be captured

and analyzed.

5.5.2 Container Transform

A container transform utilizes the whole command structure. A container pre

command is used to pull down or unpack containers. This is done separately to

92



differentiate failure of initialization from the invocation. A container cmd invokes the

container with the nested command, which creates it own isolated process. Finally,

a container post command cleans up container images, reporting exit status.

Calling the nested command from the container isolates the container arguments

from the shell script invoked. This prevents issues with differentiating arguments,

isolating file redirects, and instantiating an environment inside the container. Con-

tainers can also mask the execution environment, which can prevent an environment

specified earlier from existing inside the container. Containers often increases the

required resources to account for additional files, like container images.

5.5.3 Resource Monitoring Transform

A resource monitor transform measures the utilized resources during task execu-

tion. If limits are specified, the monitor will stop the task and report if the resources

are exceeded. As the resource monitor relies on the expected resources, it can utilize

the adjusted specification to adapt as transformations add required resources. Other

functionality includes monitoring the files that are accessed and creating a time series

of the utilized resources. The resource monitor uses the cmd to track the process.

The resource monitor benefits from the sandbox directory as the isolation allows the

sandbox to be monitored for disk usage. This does not increase the resources but is

used to enforce them. In addition to the executable and usage summary, the resource

monitor creates additional outputs such as the list of accessed files and resource usage

time series, all of which are added as outputs.

5.5.4 Environment Transform

Regardless if a submit script, container, or virtual machine is used to run a task,

there is often a need for configuration just prior to task execution. This is necessary

in cases such as redirecting environment to reference data, configuring variables to

93



I

O
T

E
I

O

Initial Task

I

O
T

R

E

I

O

E

S

S

Pass-Through

Applying 
Resource Monitor

I

O
T

R

E

Si

I
S

O

I

E

E

O

S

S L

S L

Map

Pass-Through

Applying Singularity

I

O
T

R

E

Si

I
S

O

I

E

E

O

On

In Sin

MO

MI

S

S L

S L

Sn Ln

E

Link

Map

Pass-Through

Creating Sandbox

I

T

O

S

R

MI

SL

Sandbox

Process

Sandbox
+

Process

Si

I

E

File

Environment

Resource
Monitor

Singularity

Map
Inputs

MO
Map

Outputs

Task
Command

Legend Processes

Files

Task
Input

Task
Output

Singularity
Image

Singularity
Log

Resource
Summary

Figure 5.9. Evolution of task as transformations are applied. Starting from
the left, we have the initial task with a single input and output. Next, a

resource monitor is applied which passes through the original files, but also
creates a summary of the resources used. After the resources monitor, a
Singularity container is used to provide a consistent operating system,
requiring a image to run from and creating a log. Finally, a sandbox is

created to isolate execution, limiting file access when singularity maps the
current directory.

include new libraries (such as LD PRELOAD), or specifying a precise version of Java (by

setting Java home and library paths). These types of transformation rely on the pre

command to initialize the environment. This can also be done using the environment

dictionary, though these value are directly exported and do not allow for nuanced

initialization.

5.5.5 Failure Handling Transform

A transform that analyzes and handles errors at the task execution site allows for

evaluations of the environment where the error occurred. Running evaluations only

on failure limits the overhead on normal tasks and lessens the analysis burden of the

user. This is used in determining software configuration/version incompatibilities,

verifying if failure was due to limited resources, analyzing output files to prevent

94



corrupted output, or process core-dumps into stack traces. Regardless of workflow

size, automating error handling helps to handled errors allowing the user to analyze

and address problems quickly. The error handling generally relies on the post to

perform analysis based on the reported exit code or outputs.

5.6 Case Studies

5.6.1 Resource Usage in a Container

Resource monitoring helps to build an understanding of how a task behaves to ac-

curately assign resources. If the task requires a container for execution, the resources

utilized may be mischaracterized. As a result, it is useful to be able to separate

the resource utilization of the task and the container. To do this, I first applied a

resources monitor transformation to the task which will measure the resources used

only by the task. Second, I applied the container transformation that allows for the

application to run on different platforms.

The definitions of these transformations can be seen earlier in Figure 5.4 and

Figure 5.7 for Singularity and the resource monitor respectively. To visualize the

complexity that occurs when combining these Figure 5.9 illustrates each transforma-

tion.

makeflow bwa.mf –apply rmonitor.jx –apply singularity.jx

Using the above makeflow call, I executed a workflow that runs BWA[78]. This

workflow partitions a large query and runs each chunk concurrently. This workflow

was used as the basis to evaluate nesting the resource monitor and Singularity. This

workflow was run in four configuration, both Singularity and the resource monitor,

just Singularity, just the resource monitor, and the workflow with task sandboxes.

I can examine the distribution of task execution time under these different config-

95



uration in Figure 5.10 and see that there is minimal additional overhead for each

transformation. For these runs, Singularity utilized an image on a shared filesystem

to limit the sandbox creation time, which can also be accomplished using a link. In

situations with no shared filesystem the image is transferred and affects performance.

 0
 5

 10
 15

 0  10
 20

 30
 40

 50
 60

 70
 80

 90

Task Execution (Seconds)

Sandbox
 0
 5

 10
 15

N
um

be
r 

of
 T

as
ks

Resource Monitor
 0
 5

 10
 15 Singularity

 0
 5

 10
 15 Singularity-Resource Monitor

Figure 5.10. Histogram of task execution with nested transformations. The
distribution of task execution grouped by applied transformations. The
first configuration runs the resource monitor inside of a Singularity, the

second runs just Singularity, the third runs just the resource-monitor, and
the last runs the task inside of an application sandbox. We see that the

distribution of execution time is consistent between runs, and the amount
of transformation overhead is minimal.

5.6.2 Failure Analysis

When moving between sites or changing data it is possible that an application

can intermittently fail causing a core-dump. These core-dumps are unwieldy to move

96



around and provide limited insight into the cause of the failure and its environment.

To address this we wrote a transformation that analyzes a core-dump at the exe-

cution site, and sends back the resulting stack trace that is produced by GDB (GNU

Project Debugger). This transformation provides several keys benefits. The first is

that it allows for automated analysis of core-dump failures for the user. Performing

this in the execution sandbox provides early resolution about the app that failed and

which task created it. Also, core-dumps are bloated and contain all of the memory

and stack, which are consolidated considerably in a stack trace. This consolidation

limits the amount of data transferred back to the user.

Enabling the capture of core-dumps depends on your systems default settings. A

common default uses the ”core” prefix for core dumps, but also limits their size. To

accommodate this, we set the ulimit to unlimited. After execution, if a core-dump

was created we process it using GDB. This creates a stack trace that condenses the

program failure. We implemented this transformation as seen in Figure 5.11.

To evaluate this we wrote an application that allocates 1MB of memory and then

fails roughly 20 percent of the time, creating a core-dump. We scaled this experiment

to see the difference of sending the stack trace instead of the core-dump. As expected,

we say differences of several orders of magnitude of transfers, reducing as much as

2.4 GB down to 0.5MB. Table 5.1 shows a comparison of workflows from 10 tasks up

to 10000. Using this technique on larger memory intensive applications would yield

more significant reductions.

5.6.3 Complex Software Configuration

In scientific computing, researchers often construct and rely on a complex stack

of analysis tools which are constructed over months to years of work and configura-

tion. The resulting complexity often prevents researchers from scaling up or sharing

their configuration with collaborators. There are several tools and solutions that

97



define StackTrace(T) {

"command" : [

"pre" : ["ulimit -c unlimited"],

"cmd" : "./" + T.script,

"post": ["gdb " + T.command{cmd} +

"core* -ex bt > stack."+ T.ID ,

"touch stack." +T.ID]

]

"outputs" : T.outputs+ ["stack."+T.ID]

}

Figure 5.11. JSON showing stack trace transformation. The stack trace
transformation allows a user to capture a core-dump of a failed task and

convert it into a stack trace. This is done by setting the ulimit to allow the
full core-dump, running the script, and then analyzing the core-dump with

GDB. The step of touching the stack trace file prevents non-failed tasks
from missing output.

exist to address this such as containers and build management tools (like Nix[41] or

Spack[44]). This problem becomes more complex when the selected solution is not

supported on a different platform, such as different container support or required

installation permissions (super-user). For this reason we selected VC3-Builder[111],

which is a user-level environment specification and construction tool.

As an example of complex software we use MAKER[18], a bioinformatic analysis

pipeline which relies on 39 separate packages and a installed size of 4.2G. A MAKER

installation requires careful dependency management as several tools rely on hard-

coded, installation specific paths and installing by hand can take several hour. As a

result, MAKER is often limited to a single carefully configured site. This is addressed

with VC3-Builder and we want to leverage this to use MAKER on several sites for

one workflow.

The transformation for VC3-Builder often simply invokes vc3-builder, specifying

98



TABLE 5.1

COMPARISON OF CORE-DUMP AND STACK TRACE DATA.

Workflow Failed Total Core Total Stack

Tasks Tasks Dump Size Trace Size

10 4 3.7MB 0.8KB

100 24 28.6MB 6.4KB

1000 174 214.9MB 48.8KB

10000 1957 2.4GB 553.1 KB

the required dependencies, and passing the command. However, because of MAKER’s

complexity several required packages have restrictive licenses requiring the user pass

and unpack the libraries. In Figure 5.12, we can see a file, manual-distribution.tar.gz,

which contains the restricted packages. Using pre, we are able to set up the correct

directory structure, unpack the manual packages, and prepare for vc3-builder.

This workflow was executed using Makeflow and distributed with Work Queue[16],

a master-worker execution platform. Workers were created on each target site, and

tasks were distributed as worker were scheduled. To show the flexibility of transfor-

mations, workers were created on Stampede2, Jetstream, and HTCondor. Table 5.2

shows the task execution for each system, all of which were calculated using a single

workflow.

5.7 Conclusion

I have now outlined and implemented an algebra for task and workflow transfor-

mations. This algebra, based on the the sandbox model of execution, allows trans-

formations to be applied but stay distinct in execution, providing a crucial part of

99



define VC3-Builder(T) {

"inputs" : T.inputs + ["vc3-builer",

"manual-distibution.tar.gz"]

"command" : [

"pre" : [ "mkdir -p vc3-distfiles",

"cd vc3-distfiles",

"cp ../manual* ./",

"tar xzvf manual*",

"cd .."],

"cmd": "./vc3-builder --require maker"

+ T.script, ]

"resources":{

"cores" : 4,

"disk" : T.resources{"disk"} + 4G,

} }

Figure 5.12. JSON showing VC3-Builder transformation. VC3-Builder is
typically self-contained, and the specified cmd is sufficient for most

software. MAKER, however, relies on several libraries with restricted
licenses that must be provided by the user. As a result, the transformation
must create the install structure and extract these libraries to the correct
location prior to VC3-Builder. We specify cores for the make threads and

increase the disk for the installation.

abstracting the scientific intention from the specific implementation. Using trans-

formations, the core scientific analysis can be clearly defined with the specifics of

execution, such as a container or environment setup, being applied as needed. With

this technique, a user can take a workflow as is, move to new resources, and quickly

adapt to the specific needs and configurations of the site. It is now be possible for

site providers to create transformations that allow for more general changes in a way

that fits their site.

Workflow transformations allow static workflows to quickly adapt, providing in-

creased flexibility. When transformations are coupled with dynamic workflow expan-

sion and resource management, we can now see a clear path transforming scientific

100



TABLE 5.2

MAKER BUILD-TIMES USING VC3-BUILDER ON VARIOUS SITES.

Build Time Stampede2 Jetstream HTCondor

(HH:MM) 01:29 00:22 00:30

analysis into a workflow that can be adapted for new data, sites, and configurations.

This combination of techniques works well for static workflows using applications

with defined or modeled behavior, but as computational demands grow we also need

to consider more dynamic approaches to the workflow definition.

In the next chapter we will explore how the lessons learned about workflow man-

agement and transformations can be applied to dynamic workflows, and what other

considerations are needed.

101



CHAPTER 6

APPLYING STATIC TECHNIQUES TO DYNAMIC WORKFLOWS

6.1 Introduction

In the previous chapters I explored several techniques for dynamically expanding

static workflows and transforming the workflows to adapt to new sites and config-

urations. The challenges associated with relocating and transforming workflows are

not isolated to static instances, but also applies to dynamic workflows. Historically,

HPC applications and workflows are built in isolated environments supported by sys-

tem administrators. In order to extract the maximum possible performance from

specialized hardware, application creators rely on custom software stacks, hardware

optimized code, and I/O behavior tailored to exploit high performance filesystems.

As a result, these applications become dependent upon the specific environment in

which they were created. As was demonstrated in Chapter 5, getting an application

to run in a new environment is challenging and once running, may not be optimized

or configured similarly for the hardware.

To demonstrate how the previous methods can be adapted to dynamic workflows I

present a case study transforming the MAKER[17] bioinformatics pipeline. MAKER

is a powerful pipeline, that incorporates many common data processing steps for

genomes. MAKER simplifies genome analysis by managing a number of different

applications and their dependencies, but this makes migrating MAKER difficult.

MAKER has a large number of software dependencies that must be installed, limited

scalability in high latency environments, and can produce configuration and execution

102



errors that are difficult to diagnose. In this case study I show three methods for

adapting dynamic HPC workflows between platforms.

• Portable reproducible environment for HPC, Cloud, and user resources, target-
ing support with user permissions.

• Ability to leverage resources (threads/MPI) on local and remote resources (mul-
tiple non-contiguous machines).

• Provide feedback for scalable and dynamic system, to aid in configuration and
runtime decisions.

6.2 Jetstream

Jetstream [105, 112] is a NSF funded cloud service built on OpenStack. Operates

similarly to Amazon EC2 and has support for data transfer and storage. Allows

users created images to provide consistent platforms for review, comparison, and

verification of results. One of Jetstream’s goals is to provide a service that focuses on

usability and support. As a cloud service, Jetstream is able to create and host custom

images and environments that are more difficult to deliver on a more traditional HPC

service.

6.3 Portable Reproducible Environments

Creating and supporting a reproducible environment is a current research topic of

relevance with working being done at the platform level of OpenStack and Amazon,

the container level by Docker and Singularity, and the deployment level of Jenkins,

and Ansible. These three different levels each provide a different way of creating a

reproducible environment. As part of this work, we targeted Jetstream, but also our

Condor and SGE clusters, as well as user machines. A key consideration was the

user’s ability to verify a setup and configuration locally prior to moving to larger,

possibly costly, resources.

103



6.3.1 Machine Images

A machine image is a pre-built snapshot of a desired software stack. Machine

images can come in a variety of formats and are supported by a variable number

of platforms, such as OpenStack. Machine images are ideal when working on a

singleoperating system (OS) and platform as a base to provide consistent low level

integration. However, outside of the scope of a single operation system, images have

less portability. This reduced portability requires a developer to maintain machine

images for each supported platform. This also precludes using the image at HPC

facilities that lack user-level integration with machine images. The machine image

would be an ideal target were we not also targeting users without access to systems

like Jetstream.

6.3.2 Container Images

A container image is, similar to a machine image, a snapshot of a desired software

stack. Container technology allows for users to run a container image on a supporting

site using programs such as Docker, Singularity[74], and Charliecloud[95]. Container

images provide an portability at a higher level than machine images, by running on

any system that supports them. This allows for container images of variable OS to

run on any supporting resource. Containers are also now beginning to be supported

at HPC centers, such Singularity on a number of XSEDE resources.

However, in the case of both Docker and Singularity, super-user privileges are re-

quired for installing the software. Therefore leaving systems such as campus resources

and local clusters unavailable. Charliecloud, assuming unprivileged user name spaces

are enabled in the kernel, does provides a user-level container system. Unfortunately,

not all kernels have this enabled by default, and availability varies between resources.

104



6.3.3 Deployment Services

In contrast with images, a deployment services install and organizes independent

software packages into a single coherent package. This often includes finding either

source code or pre-compiled binaries that are compatible, installing them, and con-

figuring different software packages together. Examples of deployment services are

as simple as apt-get and make, up to automated systems such as Ansible, Spack,

Homebrew, and server-level orchestration tools such as Jenkins and Puppet.

In contrast with machine images, deployment services are often lightweight and

only require a small number of predetermined packages to be installed. This allows

for a high level of flexibility when deploying in a diverse set of environments and onto

different platforms. While some cloud platforms may offer interoperability due to

an underlying OpenStack framework, most platforms will require machine images to

be recreated. Using a deployment services alleviates this by adapting to the current

system and using generic build information from source where necessary. Deployment

services adapt well to changes in versions and allow a user to customize these on the

fly and test out different configurations.

Deployment services help to codify required build steps, and when written with

multiple OSes in mind can reduce the work of supporting different platforms. How-

ever, with this flexibility comes the cost of building the software at each site for each

use. Additionally, builds often rely on a remote data such as git repositories or the

software’s host site, as in the case of MAKER. The large variance in power and scope

of these tools results in a number of different situations where super-user privileges

may or not be needed.

6.3.4 VC3

As mentioned previously, several platforms were targeted including Jetstream, a

Condor pool, a SGE cluster, and individual machines. As a result, we targeted a

105



deployment services to allow for flexibility on both the OS and permissions. Some

sites, such as local clusters, neither had the required tools installed nor allowed user-

level installation. Targeting user-level permissions and OS agnostic features provides

flexibility to target users’ available resources.

VC3 [111] was used to install and configure MAKER. VC3 creates a sub-shell

with a self-contained environment, and organizes software in a consistent, predictable

manner. VC3 is based upon the idea of tool recipes, with inspiration taken from

NixOS[42]. Each tool description consists of a recipe, dependencies, version, and

environment variables.

VC3 has several features ideal for MAKER. The consistent file structure and

referencing is important as some MAKER dependencies rely on hard-coded paths

and strict relative locations. This allowed for resources to come from a number of

configurations with the same structure. VC3 also requires only user level permissions,

allowing the portability to any linux platform. VC3’s interface allowed invocation of

MAKER and organization of input data to be consistent between systems. Though

there are other tools that could perform similarly, VC3 was picked for it flexibility,

unprivileged operation, and familiarity. Similar solutions were written using Ansible,

though this method was only used on Jetstream.

6.3.5 Deploying MAKER

When deployed onto Jetstream, MAKER was installed using deployment services

to consistently handle the complex setup. VC3 and Ansible were both used for con-

sistent builds on more widely provided base images, such as Centos 7 Developement.

This process included installing several of MAKER’s required programs and libraries

that cannot be distributed in an automated manner due to developer licensing.

Though deployment services provide more flexibility when installing, a machine

image provides easier, faster start-up for the users. To accommodate this, a machine

106



image was built with the VC3 package installed, allowing execution to only verify

the MAKER install and not have to build it each time. Additionally, Work Queue

workers could be launched from the same machine image limiting traffic to only task

input and output, rely on required software to be installed. This differed on our

Condor cluster where there was no shared file system or container support. As a

result a compressed install of VC3 was sent, so MAKER was built for each OS only

once.

A build using deployment services provides a great deal of flexibility, but as users

primarily used this just for MAKER, the repeated build overhead limited benefits.

This was mitigated by using a machine image with MAKER installed using VC3 on

Jetstream, and compressed VC3 on Condor. Using VC3 made rebuilding images,

targeting new OS, and adding new features simple. By using a static image based

on the deployment services, regardless of machine or container image, we can update

software without the user needing to build every run.

6.4 Scalability

We define scalability as the number of cores that any one project was able to

harness at a time. In an HPC context, this translates to the number of cores

by the number of machines that were allocated to your job. MPI, being able to

work on distributed memory machines, could work across the boundaries of several

machines. In a cloud context, jobs are often limited by the size of selectable images.

Some cloud platforms allow for creating sub-networks of machines, but the typical

user (a researcher trying to run an analysis) will not have the time nor expertise to

configuring them.

Scalability was achieved at two levels in this work.

1. Local parallelism, such as MPI, GPUS, or threads.

2. Distributed concurrency, partitioning across machines.

107



Our scalability goal was to limit both involvement in the provided software and

work needed to target a different concurrency model. As such we decided on using

the provided concurrency model of MAKER, MPI, to execute on each worker, where

a worker is equivalent to a node. Using MPI allows us to scalably utilize resources,

but lacks dynamicity as new resources become available. By leveraging the existing

concurrency model we avoid the complexity of interfacing with MAKER’s internal ar-

chitecture. This also allows for smooth transitions between versions of MAKER and

any underlying programs. This, based on experience from our previous tightly inter-

faced work[109], makes transitioning between versions, configurations, and platforms

difficult, requiring repeated almost equal effort for each transition.

Relying on the underlying concurrency model for local parallelism lets Work Queue

reason about the scaling and distribution of work to all available resources. In con-

trast with concurrency models like MPI and threads, Work Queue does not rely on

having a statically determined set of resources. Orchestrating the work distribution

with Work Queue allows users to add workers to increase resource pool, use resources

from several allocations or sites, and provides fault tolerance to the application as

a whole. Relying on MPI for local scalability, WQ-MAKER uses Work Queue to

dynamically schedule on new resources.

6.4.1 MAKER’s MPI Behavior

MAKER utilizes MPI as the primary means for scalability. Concurrency in bioin-

formatics is often available at the sequence (contig/scaffold) level. This is a division

commonly used for partitioning data, as each sequence is a unique piece of data ana-

lyzed separately from the other sequences. MAKER then creates an additional level

of concurrency using each analysis tool as a sub-process in the pipeline. This allows

the burden of longer running sequences to be shared between multiple cores on the

same machine and allows load balancing with smaller computational chunks. How-

108



MAKER

Align
C1

Mask
C1

Ann.
C1

Align
C2

MAKER

Align
C1

Mask
C1

Ann.
C1

Align
C3

Mask
C3

Ann.
C3

Align
C2

Mask
C2

Ann.
C2

MPI
P1

MPI
P2

MPI
P3

MAKER Sequential
Execution

MAKER MPI
Execution w/

Load Balancing

File
Synch

Dist
MAKER

Worker
1

Worker
2

Worker
3

Alg
C1

M
C1

An
C1

Alg
C3

M
C3

An
C3

Alg
C2

M
C2

An
C2

MPI
P1

MPI
P2

MPI
P3

Alg
C7

M
C7

An
C7

Alg
C9

M
C9

An
C9

Alg
C8

M
C8

An
C8

MPI
P1

MPI
P2

MPI
P3

Dist MAKER
Execution

Partitio
n 1-3 Partition 7-9

Figure 6.1. Diagram showing MAKER, MPI MAKER, and WQ-MAKER
models. MAKER, without MPI, runs the sub-process analysis sequentially.
MPI MAKER executes by sharing work, with MPI processes going to the
pool of ready tasks and executing them. These processes are synchronized
using data-structures(in MAKER) and data files(in MAKER’s sub-tools)

passed between sub-process (see dotted lines). WQ-MAKER partitions the
data and sends it to separate workers. Each worker executes MAKER

locally using MPI MAKER.

ever, the secondary level of concurrency can rely on intermediate files, for locks and

tool specific data, to exist in shared space between tasks. This is not a requirement

of MPI, which discourages this, though some MAKER’s sub-processes rely on files

for information and state. As a result, execution must also be located in a shared

filesystem to allow for the outputs to be coordinated between all MPI processes.

6.4.2 WQ-MAKER

WQ-MAKER is built using the Work Queue API. The work is partitioned in

different sizes, anywhere from individual sequences to the entire query file. WQ-

MAKER does not split the work past the sequence level, as MAKER does with MPI,

109



to prevent communication overhead from sub-processes. Each partition is a self-

contained computational chunk that is distributed and organized after completion.

WQ-MAKER utilizes Work Queue’s resource interface to allocate resources based

on the partitions size and structure. Controlling at the task level allows for handling

based on structure, such that long scaffolds are handled differently than short contigs.

Using the resources allocated to a task by Work Queue, the worker can assign the

appropriate amount of cores for MPI. To do this accurately assign resources a model is

being developed as part of future work. Employing MPI on larger task, which occupy

the entire worker, limits the master’s management burden of monitoring workers.

6.4.3 Scaling Up vs Scaling Out

Scaling up helps to accelerate the annotation of genomes, but scaling up is not

always the best usage of resources. A common assumption is that it is best to scale up

using all of the available resources immediately. However, in practice this is seldom

the truth as distribution of shared data (i.e. references), connecting to multiple

resources, and spamming batch systems results in a gradual increase in resources, not

an immediate deluge. This more gradual availability of ready resources can cause

timeouts and under utilization of provided resources. This limitation leads users

to under-provision applications instead of gradually adding resources as applications

stabilizes. This was not addressed in this work other than to provide runtime feedback

to the users about usage, so they are better informed. Work Queue masters track

capacity of an application and inform users to add resources as the master can support

more.

Compared with scaling up, scaling out can better utilize those resources for con-

current analysis of genomes, allowing for the same pool of resources to be shared,

workers are kept busy with tasks from different masters. Work Queue allows for

workers to match to multiple masters, enabling WQ-MAKER to share workers be-

110



tween instances. This provides an additional level of load balancing, without relying

on additional underlying systems.

6.5 Exposing Execution Feedback

6.5.1 Clean Environment Builds

The first major obstacle was providing the users with clear feedback on the cre-

ation of the MAKER environment. Using deployment services to create, update, or

modify the instance can initially cause errors and warnings, but once codified offer

consistent builds. These build errors were typically only encountered by developers

and could be diagnosed quickly. To communicate this, VC3 and Ansible need to have

clear error handling and messages to identify errors. Build errors are mitigated when

using static images, but can still be relevant as users want different configurations.

Additionally, applications such as MAKER, where a variable number of the subsys-

tems may be used, cursory testing does not always reveal configuration errors. As

such new errors can occur when using different sets functionality, and must be clearly

differentiated from runtime errors.

When using static images, like machine or container images, build errors are

often self-explanatory, such as network errors, insufficient resources, or just bad luck.

Jetstream’s provided trouble-shooting gives possible solutions for users to attempt.

6.5.2 Deploying Workers

When deploying workers, users must log into each worker machine and manually

start the worker process. This requires users to manage multiple ssh sessions and

any changes to connection information (i.e. IP address or project name) must be

reflected to all workers. We use an Ansible-playbook that allows the user to launch

and manage workers from the host machine. For the user, this is as easy as creating

111



 1000

 10000

 100000

 0  20  40  60  80  100  120

E
xe

cu
te

 T
im

e
(s

)

Total Cores

MPI MAKER
WQ-MAKER

Figure 6.2. Graph showing comparison of methods on Fungal(41MB)
dataset. The Fungal dataset contains 231 contigs. With similarly runtimes,

we can see there was little or no overhead when using WQ-MAKER,
though little gained beyond 34 cores.

an ssh-key and saving it in Jetstream, allowing the master machine to propagate

commands using Ansible. On other systems, such as Condor and SGE, Work Queue

maintains a worker factory that can submit workers resources become available.

Part of deploying workers is monitoring how many are actively being used by the

Work Queue master. This is done using a status program that queries masters for

active workers. As previously mentioned, masters also track capacity and can allow

the factory to submit workers as masters are able to support more, as a result of

workers being initialized or varying task execution time.

6.5.3 Evaluate Performance

Following a successful run, WQ-MAKER verifies successful runs to ensure proper

execution. This is done by rectifying the final output files against the input data to

ensure that all contigs were analyzed. The produced statistics are examined by WQ-

MAKER to understand the behavior on this run’s data. Work Queue provides a suite

of graphing scripts for more in depth analysis. These graphs help understand the task

execution, worker utilization, and file transfer speeds. All Work Queue graphs used

in this chapter were created using these tools.

112



 1000

 10000

 100000

 0  20  40  60  80  100  120

E
xe

cu
te

 T
im

e
(s

)

Total Cores

MPI MAKER
WQ-MAKER

Figure 6.3. Graph showing comparison on partial Hummingbird(900MB)
dataset. This subset of Hummingbird contains 5000 contigs. In this image

we can see improvement of WQ-MAKER over the MPI run, likely as a
result of reduced contention for resources.

6.5.4 Diagnosing Errors

Unfortunately, WQ-MAKER does not always run perfectly and it is important to

help users diagnose errors and where they originated. After a run completes, WQ-

MAKER prints the successes and failure of contigs. WQ-MAKER will retry failed

contigs to ensure that it was not intermittent, possibly the result of network issues,

software bugs, or resource contention. On repeated failure tasks are logged, reported

to the user, and abandoned to avoid wasted effort retrying them further. The output

of failed tasks is stored by WQ-MAKER, allowing for users diagnose the issue later.

Work Queue provides a debugging log that can be turned on to diagnose network

errors, firewall issues, or file transfer failures. If an error happens while running

WQ-MAKER, the Work Queue framework will print the error along with additional

information in the debug log.

6.6 Evaluation

Though performance is important, this chapter did not directly measure the dif-

ferences in start time between machines images, container images, and deployment

113



services. Using deployment services we provide consistent builds, but leveraged ma-

chines images were available in Jetstream. The time needed to build the software is

relevant when redeploying using deployment services. VC3 allows for multi-threaded

deployment, which reduces a 1 hour build to roughly 10 minutes using between 16

and 24 cores. VC3 reuses existing builds allowing us to re-enter an existing build

consistently in under a minute. The consistent file structure of VC3 allows us to

build once and distributed to workers to install if needed.

WQ-MAKER was evaluated using several datasets. The MPI executions were

done using differently sized Jetstream instances, up to the largest of 44 cores. WQ-

MAKER used a master and a variable number of workers on medium instances, 6

cores. The fungal data set consists of 231 contigs. This data set is executed in roughly

4 hours using 2 cores locally. With increased cores, WQ-MAKER performance scales

with MPI. Considering that fungal dataset is small, there is limited improvement

after 40 cores, with a slight increase at 104 cores, as seen in Figure 6.2.

The hummingbird genome consisting of 5000 contigs, a medium sized genome

sample. The results of running this genome through MPI and WQ-MAKER can be

seen in Figure 6.3. For this larger sample we were able see improved performance

over the standard MPI deployment as a result of lessening the memory burden on

each partition using several workers. We were also able to see consistent reduction

of execution time as we increase resources.

The saguaro cactus dataset consists of 573771 contigs This dataset took 57 hours

to run using MPI MAKER on 24 cores. The raw CPU time spent during this job was

52 days of computation. Using WQ-MAKER, we ran this same dataset on our Condor

cluster. Using Work Queue factory a mix of workers were launched. Each task was

partitioned into 100 sequence, 8 core jobs to allow them to fit in the Condor instances.

Figure 6.4 shows the number of tasks running over time as the workflow executed.

The final execution time was 3 hours and 36 minutes, running 168 tasks concurrently

114



at its peak, which equates to 1344 cores. As workers were dynamically added and

removed the total CPU hours was only 1725.5, a result of WQ-MAKER’s dynamic

nature. Table 6.2 shows a comparison of performance using standard MAKER, MPI

MAKER, and WQ-MAKER.

In total this project has been used by a number of users for annotation. We are

actively developing and improving WQ-MAKER and working with users to better

understand their needs. Table 6.1 shows a subset of the genomes that have been

annotated using WQ-MAKER.

 0

 100

 200

 300

 400

 500

 600

 0  50  100  150  200  250
 0

 200

 400

 600

 800

 1000

 1200

 1400

T
a
sk
s

C
o
re
s

Master lifetime (min.)

Tasks instantaneous counts

Waiting
Running
Complete

Cores

Figure 6.4. Performance of Saguaro Cactus genome(1.6GB) annotation
using WQ-MAKER on Condor. The two lines of note are the running tasks

and cores. The running tasks indicate the number of actively running
MAKER tasks. The cores indicate the cores utilized by WQ-MAKER.
Condor’s volatility as a job scavenging systemcauses the variability in

available resources.

115



TABLE 6.1

GENOMES SEQUENCED WITH MAKER ON JETSTREAM

Genome Sequences Workers Runtime (hrs)

Sporobolus A 11,789 contigs 22-40 144

Sporobolus B 6,615 contigs 21-35 108

Brassica rapa 44,000 scaffolds 10 4

Zea mays W22 10 chromosomes 10 1440

Zea mays nc350 6460 scaffolds 22 72

Culex tarsalis 7478 scaffolds 40 120

MP29 5003 scaffolds 40 24

Pigweed 4126 scaffolds 20 120

Sclerotiana 231 contigs 10 6

homeocarpa iso 10

Sclerotiana 257 contigs 10 6

homeocarpa iso 11

Calypte anna 265 super-scaffolds 10 8

Kochia scoparia 19,671 scaffolds 21 72

116



TABLE 6.2

COMPARISON OF MAKER METHODS PERFORMANCE

Execution Time Cores Total CPU Hours Speedup

MAKER 52 days 1 — —

MPI MAKER 57 hrs 24 1368 —

WQ-MAKER 3.6 hrs 80-1344 1725.5 15.8

The MAKER execution time is an estimated time based on CPU time of MPI MAKER. The
results from MPI MAKER and WQ-MAKER are from actual runs of each. The speedup is calculated
with reference to base MAKER, but WQ-MAKER still had a ∼16x speedup over MPI MAKER.

6.7 Conclusion

I have showcased the flexibility of the methods described through out, primar-

ily the importance building abstraction into the underlying workflow. The workflow

developed for MAKER re-engineered the previous iterations by separating the under-

lying computation from the difficulties of distributing in cloud environments. Relying

on this abstracted design I illustrated how different methods for reconstructing the

complex environment could be employed. This abstraction also allows the concur-

rency to be leveraged at both the underlying application-level and the workflow-level,

allowing the dynamic nature of the workflow to be adjusted to the available resources.

The flexible nature of dynamic workflows allows partition sizes to be adjusted toward

more resources appropriate configurations.

Ideally, I would prefer to have the flexibility of dynamic responsive sizing in all

workflows but because dynamic workflows require a much higher level of effort and

knowledge to design, as compared to static workflows, they are out of technical reach

for many users. Even implementing dynamically expanded workflows is simple in

117



comparison, which can leverage the built-in features of the underlying static system,

but does not provide the performance needed in large complex applications. In

the next chapter I will explore a computational abstraction that leverages static

application definitions with job coordinators designed to adapt the sizing similar to

a dynamic workflow.

118



CHAPTER 7

CONTINUOUSLY DIVISIBLE JOBS

7.1 Introduction

Previously I evaluated the benefits of dynamic workflows and how the flexibility

of partitioning allows performance to be adjusted as needed. However, the difficulty

associated with writing dynamic workflows makes them an unfeasible solution for do-

main scientist looking to scale computation. In this chapter I propose an abstraction

for separating the computation definition from the concurrent control of the execu-

tion. The goal is to allow domain scientists to write application and format specific

job implementations that can be scaled with no additional expertise. In creating

a flexible system, I focused on bag-of-task applications for their prevalence and to

provide bounds on this solutions implementation.

For many of these applications, decomposition into a bag-of-tasks approach allows

for a variety of execution platforms. Examples are seen in areas of batch systems

(HTCondor, AWS Batch, SLURM), job execution frameworks such as MapReduce

(Hadoop, Spark), or more general workflow management systems (Makeflow, Pegasus,

Work Queue, Swift, etc.). These systems explore different ways to handle application

execution, data management, and scalability. Application developers chose from a

variety of concurrent systems based on needed features and then design an application

using their knowledge of the underlying scientific application and the chosen system.

However, having made a predetermined partition the bag-of-tasks approach often

limits how responsive these systems can be. Furthermore, the application designer

119



may not be an expert in either the underlying scientific application, scalable design,

or both, producing an application that makes naive design and partitioning decisions

which lead to sub-par performance and resource utilization.

I propose the Continuously Divisible Job abstraction, which introduces a dy-

namic sizing job interface for scientific applications. The Continuously Divisible Job

interface is used with an abstract job for portability and operation abstraction and

managed using a job coordinator that scales abstract jobs based on resources and

utilization. The Continuously Divisible Job abstraction relies on a user specified in-

terface to define the mechanism for how inputs are partitioned, jobs are executed,

and the output handled. This interface exploits the application developers domain

knowledge and allows for dynamic behavior via job abstractions. To further en-

hance data partitioning, we also propose virtual files which manage data indexing,

lightweight partitioning, and just-in-time file instantiation. Virtual files help to limit

the amount of redundant file reads and writes, exploit cached or shared files, and

allow lightweight partitioning.

7.2 Contributions

Our contributions in the chapter are:

1. I define the Continuously Divisible Job abstraction and how it can be used to
flexibly partition, distribute, and execute on large datasets.

2. I show how Continuously Divisible Jobs can be used to tune applications online
for better performance and to escape bad initial partition configurations.

3. I discuss how Continuously Divisible Job coordinators can be used to construct
a hierarchy of resources and coordinators that respond to performance and load
balance as needed.

4. I define a virtual file abstraction and how data partitioning and movement can
be minimized with indexing, lightweight partitioning, and just-in-time realiza-
tion of files.

120



7.3 Challenges

To address the limitations of bag-of-tasks style concurrency, the methods for con-

structing and executing them need to be explored. In the area of concurrent execu-

tion, batch systems form the basis of computational power. Batch systems provide

low-level mechanisms to describe and schedule work to a host of machines, provid-

ing large scale available resources. Batch systems are generally leveraged for high-

performance computing as with SLURM[69], PBS, and Torque, or high-throughput

computing such as HTCondor[108], Open Science Grid, and the WLCG. The general

submission approach used by batch systems requires static submissions. Users aiming

to harness more resources must partition, submit, and manage the work themselves.

As more general batch systems are limited in how dynamically work can be par-

titioned, more specific execution frameworks have been developed. This includes

approaches such as MapReduce[33], bulk synchronous parallel[116], and more gen-

eral data driven models such as workflows, all of which map cleanly with bag-of-tasks.

MapReduce for example, as implemented in Hadoop, relies on the inherently parallel

nature of the data analysis to scale smoothly. In the standard Hadoop setup, the

execution is scheduled to the node where the data resides, relying on HDFS[101] to

have created a sufficient number of data shards for high performance. This can lead

to the predetermined splits having disproportionate work and long tail execution.

Spark[126, 128] , which is built on Hadoop, can still fall prey to the same issues.

Though Spark is able to leverage more performance by enhancing HDFS with re-

silient distributed datasets (RDDs), the partitioning is still programmer and system

driven which can lead to poor configurations from imbalanced data and static sizing.

For more general data driven execution, scalable workflow systems offer high-level

task abstractions allowing for more easily controlled scaling. Solutions for scalable

workflow systems fall into two categories: static and dynamic. In a static approach

the user defines the size, partitioning, and scalability of the work and relies on the

121



workflow system for distribution and execution. This approach relies on the applica-

tion developer’s knowledge of the data to define and predetermine the partitioning.

After this point the workflow system directs and manages the concurrency, dealing

with resources, communication, and failure management. Example systems using this

approach include Makeflow[2] and Pegasus[38], or could be defined more generally us-

ing the Common Workflow Language[5] or the Workflow Description Language[117].

Again, the static nature of partition decisions limit the responsiveness of the underly-

ing workflow system. Once a workflow is defined, feedback cannot be used to adjust

the size or shape of tasks. This static sizing can lead to poor performance, often

lacking knowledge of number of resources, network performance, or even application

execution time. For example, in Figure 7.1 we show how the total runtime of BWA

is influenced by the task size on a fixed dataset.

Figure 7.1. Effect of partitioning on BWA execution. This is a sample
bioinformatics(BWA) workflow’s performance with the input partition size
varied. The number of partitions was varied from 10 to 100,000, using a

statically size query of 1,000,000 sequences.

122



The dynamic approach requires the application developer to devise and direct

the concurrency of the application. This involves a more nuanced understanding

of both the application (i.e. partitioning, performance, resource requirements) and

distributed design (i.e. task scheduling/ordering, failure management, resource ac-

quisition). Examples of the direct approach include Work Queue[16], Swift[129],

Parsl[9], and RADICAL Cybertools[90]. The challenge is that this approach requires

both knowledge of the application core behavior and an understanding of distributed

application behavior.

The existing solutions provide many options for defining and executing work, but

lack flexibility when running bag-of-tasks style work. In general, these approaches rely

on static partitions, either defined by the developer or the underlying system, which

constrain work similarly. Some of the common challenges that arise from static sizing

are high partition and execution overhead, long tail execution from imbalanced work,

and rigid mapping to resources. Additionally, when the execution system is unable to

further manipulate sizing it is difficult to model solutions for more complex execution

configurations, such as adapting to heterogeneous resources, nested resources for data

distribution, or identifying and isolating failures.

7.4 Continuously Divisible Jobs

Continuously Divisible Jobs are applications with defined minimum computa-

tional units, such as an events, sequences, or slices of input data that can be pro-

cessed in large batches. This structure is common and can be seen in high-energy

physics event processing for particle collisions, genome sequence alignment in large

queries, and large batch simulations for model observation and validation. Each com-

putational unit has a short execution time, often on the order of seconds to minutes.

However, the collection of these units are large, often processing thousands to millions

of events in a single batch, which greatly increases the execution time and resources

123



Data

Slice

Slice App

CDJ Interface

Job instance(s)

Abstract Job

Job 
Coordinator

Resource

SPLIT

JOIN

EXEC

Collect

Figure 7.2. Diagram of Continuously Divisible Job architecture. This
diagram outlines the relationships between the data slice, Continuously

Divisible Job interface, abstract jobs, and the job coordinator. An abstract
job consists of a data slice, the applications, and the interface wrapper.
Abstract jobs may map a single slice, or contain several independent.
These abstract jobs are managed by the job coordinator, which splits,

executes, and joins the work. The job coordinator decides how and when
jobs are placed on resources.

needed.

Continuously Divisible Job interfaces are implemented in terms of five functions:

SPLIT, JOIN, EXECUTE, TO DESC, and FROM DESC, that can be used to dynamically han-

dle and execute these large datasets, with each function operating on any amount

of data, from a single slice of data to the full dataset. Applications that have im-

plemented this interface can be started and managed using a job coordinator that

partitions and executes the data. These job coordinators can be designed for a num-

ber of execution platforms such as batch systems, execution managers, or run locally.

Using the abstract jobs, the job coordinators can be chained together to create flex-

ible hierarchical stacks of resources that can share work and load balance as needed.

These job coordinators can also be designed to tune the partitions to more efficient

sizes, but more importantly can be used to escape from bad initial configurations (i.e.

naive job partitions).

124



In this section we will define the design and capabilities of the Continuously Divis-

ible Job interface implemented by an application, abstract jobs, and job coordinators

that operate on abstract jobs to partition and execute the application. Dividing the

Continuously Divisible Job abstraction allows the mechanism of partitioning and ex-

ecuting to be defined by the application domain expert, and the policy of executing

these job with job coordinators is left to the distributed system expert or system

administrator of a site.

7.4.1 Operations

To achieve the dynamic sizing and resource utilization of the Continuously Di-

visible Job abstraction we define a set of operations and attributes that applications

need to implement. These definitions can be implemented directly by the application

designer or domain scientist, as decisions on how and where to partition data, what

parameters are needed for executions, and the expected environment can directly

impact the validity of the results. The Continuously Divisible Job interface instructs

the abstract job on the mechanism of job handling, and are the only components the

application designer needs to implement.

SPLIT(JOBs, COUNT, SIZE)::[JOBs1,..,JOBsn]

Given a number and the size of splits this creates a set of new jobs, containing the

number of created jobs at the specified size and an additional job containing any

remaining slices. Each new job should be able to reconcile its context in the origin

job and the dataset as a whole. If the split job does not contain enough slices for the

full count of partitions, split should return a set with as many as possible. Splitting

a job does not necessarily perform partitioning, but logically separates the slices for

execution. In a base approach this may partition data, but as will be explored later

in Section 7.5 there are other methods for late or just-in-time data partitioning.

JOIN(JOBa, JOBb)::[JOBjoin]||[JOBa, JOBb]

125



Join takes the specified job and joins it with the calling job returning a set of new

jobs. The implementing application should determine if the two jobs are joinable and

either return a single combined job or the passed-in jobs in sorted order. This allows

for application specific join behavior for either contiguous, ordered or unordered slice

combinations. The join operation may be called on jobs that have or have not been

executed, requiring the application developer to handle both cases. As provided

by abstract jobs, the application will not need to join executed and non-executed

jobs. If the application chooses to allow for more application level management, the

application can simply merge all jobs, and hold its own application level slices.

EXECUTE(JOB)::RESULT

The execute operation performs the application core computation. Application ex-

ecution could be in the form of spawning a process, running a shell command, or

simply calling a function. There are no parameters for the execute functions as all

application level variables should be specified in the jobs definition. This operation

may be executed remotely, additionally requiring the list of files, environment, and

resources used.

TO DESC(JOB)::DESCRIPTION

FROM DESC(DESCRIPTION)::JOB

The TO DESC and FROM DESC define the basics for serializing and deserializing the

application. As the location of execution is determined outside of the applications

control the serialization allows job instances to be consistently packaged, moved, and

reconstituted for execution, a core component used in both bootstrapping this initial

job and using remote execution job coordinators. There are many methods that

can be used for implementing the serialization and deserialization of an application

instance such as converting objects to JSON or language specific approaches (i.e.

Python pickle). System agnostic approaches such as JSON are preferred allowing

for a wide range of execution environments, possibly even mixed within a single

126



application.

In combination with the core operations implemented for an application, there is

also a set of attributes that allow the above operations to be called intelligently and

the overall performance tuned. These are not strictly necessary, but provide insight

that allows the jobs to be run on a variety of systems without assuming shared

filesystems, complete node use, or consistent environment for execution.

• Inputs files: Provides both the static files needed for all jobs and the data
specific to each job’s slices.

• Output files: The expected outputs of the job.

• Resources: The size of the resources needed for executions, such as cores, mem-
ory, and disk.

• Environment: The expected environment variables used by the underlying ap-
plication.

• Size: The total size of the application instance allowing precise splitting and
performance analysis.

• Result: An attribute that determines is the slice has be completed, and if so if
it was successful.

Having defined an application’s interface, an instance of the application can be

instantiated. This can be done either by directly creating an instance or by using

the FROM DESC to bootstrap. Each partition of the data is considered a slice, and the

combination of data slices with the application and its interface create an abstract

job. Abstract jobs, as will be defined below, can contain a number of slices, allowing

dynamic sizing. The relationship between data, applications, abstract jobs, and the

job coordinator can be seen in Figure 7.2

7.4.2 Abstract Jobs

The core bridge of the Continuously Divisible Job abstraction between applica-

tions and job coordinators are abstract jobs. Abstract jobs provide the management

127



of higher level applications. An abstract job allows a single large slice or multiple

slices to be grouped and managed without the application developer needing to han-

dle every possible case of splitting and merging partitions. Non-mergable partitions

can coexist in a single job, enabling more dynamic sizing. Executed and non-executed

partitions can be passed as one or separated with no additional application handling.

Application specific files and libraries can be captured with minimal user involvement,

such as for bootstrapping an application remotely.

To facilitate the flexible handling of slices without pushing the handling onto

the job coordinator, the abstract job layer needs to handle splitting mixed- and

multi-slice jobs, joining and sorting possibly non-contiguous jobs, and provide high

level mechanisms for reasoning about and classifying jobs. This provides additional

functionality for the job coordinators to take advantage of in the areas of defining

and tracking application results, grouping jobs based on the underlying state (un-

executed, failed, successful), and logically packing undersized slices together. This

layer’s consistent interface allows the job coordinator to organize and execute jobs

with no knowledge of application, and likewise the application designer does not

need to interact with job coordinators. On execution the application bootstraps an

instance with data, creates an abstract job, and submits to the coordinator.

7.4.3 Job Coordinators

A job coordinator is the execution and policy management of the Continuously

Divisible Job abstraction. Job coordinators are intended to be implemented by the

execution system developers and site administrators, and are the primary component

deciding on job sizing, execution, and collection. As such, the application developer

(e.g., the scientist) does not implement a coordinator, but selects from existing job

coordinators based on need. This could be in the form of a multicore executor, a

coordinators that submits to their execution system, or a mix of job coordinators

128



to achieve the desired configuration. Job coordinators work directly with abstract

jobs to distribute and execute the specified computation. At its most basic, a job

coordinator receives an abstract job and executes it, but more likely a job coordinator

partitions the work to utilize many core machines. Using the TO DESC and FROM DESC

functions in tandem allow job coordinators to adapt to a variety of resources and sites.

As job coordinators operate on abstract jobs, the job coordinator needs to rely

on its own feedback and metrics to inform partitioning size and performance. This

allows the job coordinator to tune for general performance, without being applica-

tion specific. Tracking the time to create slices, execution time per slice, or cost of

joining slices are just a few ways to measure performance. Designed properly, job

coordinators can avoid bad performance in several cases. Jobs with high overhead

can be scaled up as the increased size may mitigate execution overhead and improve

throughput. Data can be processed in batches with time limits to avoid losing en-

tire submissions if the resources time out or are lost, providing timed checkpoints.

The same structure of timed batches can be used to load balance between fast and

slow workers or highly variable slice execution. Partitions can be sized to support

any number of workers, while maintaining user responsiveness. The more flexible the

execution system, the more ways jobs can be tuned and resource utilization improved.

In addition to job performance tuning, job coordinators can be used to distribute

work in a number of ways. The recursive nature of partitioning and joining allows

several coordinators to be used in combinations to address the users needs. This can

be used to achieve multi- and mixed- tiered execution models as seen in Figure 7.3.

This model could be further extended to have hierarchical job coordinators that

submit to a tree of resources, but allow the resources to report results directly back to

the source. In cases with large input data but compact results, this model would allow

for parallel distribution but centralized result collation. An example of a hierarchical

model similar to what is shown in Figure 7.3.

129



Finally, job coordinators can be used to identify and isolate failing partitions. As

is often the case, data may be malformed or corrupted causing the application to fail.

In static approaches, it is left to the user to bisect the failing task and isolate the

culprit. However, the dynamic sizing and result tracking of abstract jobs allows the

job coordinator to automate isolation, minimizing analyzed slices.

Data 
1-9

SubData 
1-3

SD 1

App

App

App

App

Split

Execute

To/From Desc

From/To Desc SD 2

SD 3

SD 2

SD 3

SD 1

SubData 
4-6

SubData 
7-9

SubData 
1-3

SubData 
7-9 App

To/From Desc

From/To Desc

Join

Split

Join
Execute

Execute

Figure 7.3. Capabilities of Continuously Divisible Job abstraction. Using
the Continuously Divisible Job abstraction, jobs can be partitions and run
locally. Using the same design we can also distribute to multicore workers

or to other job coordinators that further distribute the work. This
highlights how the Continuously Divisible Job interface relates to overall

recursive design.

7.4.4 Design Considerations

In developing the application operation for Continuously Divisible Job interface,

there are several design considerations that should be taken into account. These

130



considerations include such topics as methods for file partitioning, how namespaces

and job sandbox should be handled, and how result ordering can affect performance.

Defined below are some of the larger considerations along with designs and methods

to resolve them.

7.4.4.1 File Partitioning

File partitioning is often a crucial part of Continuously Divisible Job applications,

as applications generally read in and analyze the full input dataset. As a result, each

split requires new data partitions to be create, but generates redundant data in naive

approaches. If each split directly partitioned the data, the remaining post-split data

is repeatedly written. This leads to a multiplicative effect on the necessary storage

for execution, not even accounting to the redundant file reads and writes. To prevent

this, methods for just-in-time or late file realization may be needed when using the

Continuously Divisible Job abstraction. Two examples of file partitioning are shown

in the analysis of this chapter, the first being a naive split-on-partition where files

are written when the SPLIT operation is called. This creates unnecessary files, but

allows the application to be executed without modification similar to more static

invocations. The second uses virtual files, defined in Section 7.5, to reference data

slices. The virtual file abstraction allows for flexible data handling, such as the just-

in-time file instantiation or direct data access.

7.4.4.2 Job Namespaces

A job’s namespace consists of all the files needed to complete the job. In the base

case this is simple as the namespace contains the uniquely named files used to execute.

Each job is invoked the same way, so it is often tempting to use consistent generic

names in the invocation, but this fails when scaling as each partition loses file name

uniqueness. This leads to the more general issue of clearly defining the namespace

131



such that any split and join results in uniquely identifiable files and names. There are

several approaches to resolving this, from the easiest and often most straight forward

of utilizing the partition name, generating and tracking unique identifiers for each

name, or creating names based on content derived hashes. Each of these methods

prevents collision within a single Continuously Divisible Job application, but with

the possibility of other executions and concurrently running instances, these methods

have varying success and should be considered carefully.

7.4.4.3 Execution Sandbox

Similar to job namespaces, many applications operate naively in an execution

environment. Naive environment usage is common where standard data is used or

when the applications relies on complex configurations of libraries and references.

Common examples of this could be using hardcoded paths and file names for inputs

or resolving reference databases from environment variables. In these cases and more,

it is likely the application will not operate correctly when run concurrently in the same

namespace, either file namespaces, process namespaces, or both. As a result it may

be necessary to run an application in a sandbox to isolate both the file and process

namespaces. The common nature of this problem has provides many solutions, such

as using containers[74, 89], sandboxes, and wrappers[56] to isolate each application

instance.

7.4.4.4 Job Ordering

Continuously Divisible Job applications require the implementation of the join

operation, which incorporates combining and consolidating application results. The

type and structure of this output data can have dramatic affects on the overall per-

formance of the applications. To illustrate this let us consider two different potential

applications, X and Y. X is large data parallel analysis, where future pipeline steps

132



require sorted result ordering. Joining X jobs together requires only combining con-

tiguous jobs. Further, for performance, the application only joins from the first job

upward, appending, to prevent repeatedly writing and re-writing data as out-of-order

jobs are joined. Y is a complex simulation with a small input and output datasets

consisting mainly of statistics. Joining Y jobs requires only combining the statistics

and can be done completely out-of-order. This allows Y to quickly join results are

they are completed and retrieved

7.5 Virtual File Abstraction

A virtual file defines a subset of a physical file, allowing large data files to be

logically partitioned quickly. A virtual file points to a source file, keep bounds on the

logical slices (logical offset and range), and can quickly resolve a slice’s actual location

in the large file (byte offset and range). virtual files offer a lightweight mechanism

for partitioning and sub-referencing larger datasets, without the need to copy out the

actual subset of data. To facilitate quick repeated resolution from a logical slice to

a physical position, an index should be be constructed. Using this quick translation,

a sub-set of the larger file can be realized as a physical file just prior to use. As

the physical offset is only needed prior to file realization, data can be partitioned,

re-partitioned, or joined with little actual computational cost. Using virtual files, an

application can adapt quickly to performance feedback, without making redundant

copies of data.

7.5.1 Operations on Virtual Files

Virtual files have several operations that allow for faster or more lightweight oper-

ation on data than standard files. Operations such as indexing, partitioning, location,

and instantiation can be done on standard data files, but introduce considerable over-

head in file system activity and redundant work. In addition to the core virtual file

133



operations, virtual file serialization is also key to allowing for recursive partitioning

expected of jobs.

7.5.1.1 Indexing

Indexing a virtual file, as with any index, parses the origin data file and tracks the

location of each logical slice in the data source. If the logical slices are uniform in size,

the indexing step is quick and only the size of slice needs to be tracked. If, however,

the data is non-uniform in size the byte offset for each slice needed for tracking. This

indexing step may be time intensive initially, but as more partitions are created the

cost is amortized over execution by avoiding file accesses and redundant data copies.

Though it is possible to store this information in memory, it is advisable to use a more

compact persistent representation that can be distributed and recovered. Due to the

speed provided by indices, many applications and formats have existing methods for

creating and accessing indexes, which can be leveraged for an application’s virtual

file.

7.5.1.2 Partitioning

Partitioning allows for quick logical splitting of data source to virtual files. This

partitioning can be done with no handling of underlying data, using only logical

slices. Partitioning at the virtual file level is much faster than partitioning physical

file because it handles logical slices that are resolved as needed. Resolving the byte

range can be done lazily when the range is actually needed to limit accesses to the

index. Operating on the virtual files allows for partitions to be merged or further split

with less concern for the overhead of reading and writing the actual data. Removing

the need to read and write for each partition allows job coordinators to group or

further split applications with less overhead.

134



7.5.1.3 Index Look-up

Index look-up provides the physical location of a logical slice. This is used by

partitioning and realization to find a slice location, but can also provide this infor-

mation to the underlying application. An example of this can be seen later, where

modifications were made to the BWA application to accept byte offsets for work. This

look-up allowed BWA to jump to the relevant location prior to analysis, eliminating

the need to create partition files entirely.

7.5.1.4 Instantiate

Instantiation writes a logical range of slices into a physical file. Applications that

do not accept offsets and ranges of a virtual file must be instantiated as a physical

file. In a local system, file instantiation simply uses index look-up on the first slice

and the last slice, writing the returned byte range to a new file. As more complex

job coordinators are used, there may be cases where the data source is not available,

such as remote execution, and the realization needs to carry context. A virtual file

instantiation not only copies the defined source data, but also creates a copy of the

index and its new data offset. This allows the new offset to be quickly computed

using the index look-up minus the sub-data file offset. This combination of the index

and sub-data files allows for virtual files to be used in the same recursive partitioning

and distribution as Continuously Divisible Job applications.

7.5.1.5 Serialization

Serialization of a virtual file allows data files to be partitioned remotely, even

when the source data is unavailable. This serialization is similar to the Continuously

Divisible Job operations, and should define how to reconcile the data partition within

the data source. As such, a more complex hierarchy of how the partition was created

is unnecessary, only the source data, index, and the partitions relative location. This

135



information can be used to resolve the correct data offset, as inform job coordinators

how to resolve the data remotely from the data source.

0
1
2
3
4
5
6
7
8
9
..

Data File

App

Access file

Read in 
order

Normal Usage Virtual File Usage

0
1
.
.
M

Data File

App

0
1
2
3
4
5
6
7
8
9
..

Data File

App

Creates index of
Physical File  

0
1
2
3
4
5
6
7
8
9
..

Data File

App

N
.
.
. App

Virtual
File

Redirect into 
Physical File

Virtual
File

App
Virtual

File

Lightweight logical 
partitioning  

Concurrent access with 
no physical partitions  

Sequential
Execution

Concurrent 
Execution Requires physical 

partitions

Access 
Virtual File

Figure 7.4. File usage of normal and virtual file implementations. In the
normal case, the application directly opens and navigates the file. In the

virtual file case, the reads are directed through the virtual file using either
an index or query to resolve and redirect to the read location. This

approach introducing overhead of creating the index and resolving the data.
However, as these application are partitioned for concurrent execution, the
normal usage requires expensive physical partitions, while partitioning of

virtual files is essentially free, allowing concurrent use of the data.

7.6 Implementation

This section discusses the abstract implementations of the example Continuously

Divisible Job applications. The implementations for all aspects of Continuously Di-

visible Job were done in Python, and the results below are based on this design.

136



 10

 100

 1000

 10000

 100000

 10  100  1000  10000  100000  1x106

Ti
m

e 
(S

ec
)

Partition Size

Dynamic Partition

Static Partition
Continuously Divisible

CDJ w/Virtual File

Figure 7.5. Performance of static partitions, Continuously Divisible Job,
and Continuously Divisible Job using virtual files. Jobs are partitioned as

previous work is finished allowing the size to dynamically find a stable
partition, and all of the cores remain busy. As a combination of lightweight

partitioning and direct data access, we can see the virtual file
implementation performs consistently better. The base Continuously

Divisible Job, however, see a bump in execution time from the added cost
of redundant file writes.

In addition to the application implementations, we also further discuss several ways

that virtual files could be implemented and used.

7.6.1 Example Continuously Divisible Job Application

For this chapter, two application implementations were written. The first is a

bioinformatics alignment tool, BWA, that is a common tool in genome annotation

pipelines. BWA was selected as it compares each query sequence against a reference

dataset, allowing the query dataset to be partitioned down to a single sequence. The

second is a high-energy physics event analysis for detecting dimuon event candidates.

This application serves as an investigation into using the complex ROOT format for

137



 1

 10

 100

 1000

 10000

 100000  1x106

Ti
m

e 
S

ec
on

ds

Partition Size

Comparison of Static and Dynamic Sizing in Dimuon Detection

SQL Static Sizing
ROOT Static Sizing

SQL Dynamic Sizing
ROOT Dynamic Sizing

Figure 7.6. Performance of ROOT and SQL Dimuon detection methods.
To evaluate both the benefit of the virtual file and dynamic sizing, each

implementation was run using static partitions and then dynamic
partitions. We can see in the static case, the SQL implementation provides
a consistent advantage over the ROOT file. However, in the dynamic case,
as the initial partitions get smaller the difference shrinks. This is due to

ROOT’s high overhead more quickly pushing to a better partition.

concurrent event analysis and compares with a SQL-based virtual file implementa-

tion. For both example applications this section will outline how the interface was

implemented, along with design challenges that needed to be addressed.

For the BWA interface two approaches were taken, a simple direct partitioning

approach and a indexed virtual file approach. For the simple direct approach, split

relies on the standard fastq format which is commonly partitioned. Each split results

in new jobs, each with a unique data file. When called to execute the job invokes

BWA, passing its unique data slice and the intended output as arguments. After

completing with results to join, the simple case checks that the joining jobs are in

the same state, returning if they differ. If the data hasn’t been processed the inputs

138



are combined. If the data has been processed, then the results are combined. To

increase efficiency, the outputs are combined in order from the first slice on, limiting

the number of redundant appends.

The second approach relies on an indexed virtual file. When this approach is

initialized, an index is created for the source data. After this, split is a lightweight

call that partitions logical ranges, without handling physical data. To further ex-

ploit the indexed data, modifications were made to BWA that utilized byte ranges

to quickly seek to the intended data. This implementation removed BWA’s require-

ment for physically partitioned data, allowing minimal file manipulation. The join

functionality remains the same, as the outputs created are identical.

We also use the Continuously Divisible Job abstraction to detect dimuons in a

High Energy Physics (HEP) analysis. In a typical HEP task, events from a detector

are analyzed one at a time collecting diverse statistics. Events are recorded in a tree-

like structure in which statistics are grouped into particles, which in turn are grouped

into events, luminosity sections, and so on, which are stored in ROOT files[15].

In our implementation, jobs are given a range of events to process. To feed data

to the jobs, we experimented with two different virtual files implementations. In the

first one, each job is submitted with the same ROOT file, and ranges of events are

read using uproot, a tool developed by the DianaHEP project[96] that converts the

tree-like structure of the ROOT file into ragged numpy arrays. For the second one,

we flatten the root file into a sqlite database, in which each row encodes a particle

in some event.

For each, serialization was trivial and relied on the converting dictionaries of class

information into JSON using Python.

139



7.6.2 Virtual Files

Virtual files can be implemented in several ways such as directly in the application

by physical offset and range resolved from slices (used in BWA), in an API that copies

when needed, or by the filesystem redirecting virtual files to sections of larger files.

An example of the first was implemented in BWA, which allows BWA to process a

section of the data without having to write out a sub-data, limiting both the space

needed to operate on a sub-data and the time needed to partition the data.

In the second case, a structure is needed to represent the data as partitions are

defined and moved around. Using Work Queue[16], a virtual file can be specified for

a job and realized at the worker without ever directly writing the copy at the master

process. As the file already needs to be read for transfer, the intermediate step of

writing out the sub-data is skipped.

The third case could be implemented in file system, where a new file type is

created similarly to a symbolic link. In addition to the link to the origin file, an

offset and range define the size. This implementation would interpose an EOF at the

range to support normal file usage. Additionally it would be prudent to force read-

only semantics on virtual files and their origin counterparts to prevent invalid offsets

and ranges, as well as changing the intended data.

7.7 Results

For the analysis of the Continuously Divisible Job abstraction, we compared

several of the design features discussed previously. The majority of these results

were gathered using the BWA implementation, for which we had a moderately sized

dataset. The results for this chapter were evaluated on a 250 MB subset of the

dataset. For the static partitioning results that are compared against the Contin-

uously Divisible Job implementations, a Makeflow BWA workflow was used. The

140



structure of this was a simple split-join workflow that is common in bioinformatics.

Makeflow was used as it supports similar execution platforms, has little overhead,

and provides native multi-core execution. The following results will show:

(a) Under good configurations, execution time is similar to static partitioning.

(b) Under bad configurations dynamic sizing can find better configurations.

(c) Virtual files provide better performance even with static partitioning.

(d) In tiered, but uncoordinated configurations, resources can be under-utilized.

7.7.1 Dynamic Sizing

The first test that we wanted to investigate was the effect of dynamic sizing using

Continuously Divisible Jobs. As can be seen in Figure 7.5, we are comparing static

batch partitioning and on-demand dynamic job partitioning. For each data point the

jobs were run concurrent on 8 cores. The value on the X axis is the initial partition

size. The dynamic sizing is based on a basic hill climb algorithm that attempts

to find the size with the highest throughput. As was briefly discussed earlier, the

static partition’s execution time is limited at the right by under-utilizing the available

cores, and that the left with increased overhead of file creation and job management.

For showing the Continuously Divisible Job implementations, we compare the base

implementation, with file creation on split, and the indexed virtual file approach that

directly accessed the data. In both cases, we see that the dynamic sizing allows

the initial bad configurations can be escaped, leading to better performance to the

left of the graph. For the virtual file implementation, we see consistently better

performance, as it benefits from less file access and increased flexibility. In the base

implementation, the middle section of the graph we see worse performance than static,

with the cost of partitioning and re-partitioning data combating with the benefit of

dynamic sizing, but when compared to the orders of magnitude worse behavior at

the left it may be a reasonable compromise.

141



For evaluating the dimuon detection implementation, we used a comparison of the

ROOT and SQL approaches, as well as comparing static and dynamic partitioning.

Similarly to the results we saw with BWA, when looking at Figure 7.6, we can see that

the dynamic sizing allows both implementations to perform consistently, avoiding the

increasing execution time of smaller static partitions. Interesting, the gap between

the SQL and ROOT implementation shrinks when using dynamic sizing. This is

likely the result ROOT’s higher overhead, causing the dynamic sizing to shift more

quickly.

7.7.2 Virtual File Effectiveness

 10

 100

 1000

 10000

 100  1000  10000  100000  1x106

Ti
m

e 
(S

ec
)

Partition Size

Bulk Static Partition

Static Partition
Continuously Divisible

CDJ w/Virtual File

Figure 7.7. Performance of virtual files with static partitions. This shows a
standard BWA bioinformatics workflows where only the size of each
partition is varied. This is compared with similarly static partitioned

Continuously Divisible Job implementations. We can see that lightweight
partitioning and dynamic joining help them out perform the fully static

case.

142



For the second test we wanted to isolate the effect of virtual files when using static

batch partitioning. The static batch partitioning eliminates the dynamic sizing and

just compares the benefits of virtual files. This test disadvantages the virtual file

implementation as the data is still accessed and indexed, but the limited partitions

do not allow the cost to be amortized. As can be seen in Figure 7.7, we compare

static batch partitioning between a static workflow, the base BWA implementation,

and the virtual file implementation. For each data point the jobs were run concurrent

on 8 cores. The value of on the X axis is the static partition size. It is important to

note that these results are shown in log scale. The static workflow approach shows

the same behavior as before, and we now see similar trends in both the base and

virtual file implementations. The interesting result that can be see is that for both

Continuously Divisible Job implementations the results were consistently below the

workflow approach, a result of the dynamic joining and lighter weight partitioning.

The gap between these approaches is consistent at log scale, showing the increased

benefit in poor configurations. Additionally, the performance of the virtual file ap-

proach was consistently better than the base approach, showing that by limiting the

file partitions we gain a consistent performance benefit. Similarly, when comparing

the dimuon implementations we can clearly see advantages to the SQL approach,

with consistently better performance (Figure 7.6).

7.7.3 Tiered Sizing

The last test we wanted to explore was the affect of tiered sizing, and how it can

be either beneficial or negative. In the previous dynamic sizing test, only a single

layer was sizing the results. For this test, we used a master-worker framework to

partition at the master level and for cores at the worker (Work Queue). The results

can be see in Figure 7.5. In this graph we are comparing again against the static

partitioning. Each of the subsequent lines is grouped by the initial master partition

143



 1

 10

 100

 1000

 10000

 100  1000  10000  100000

Ti
m

e 
(S

ec
)

Initial Worker Partition Size

Static Partition
Master 100000

Master 10000
Master 1000

Figure 7.8. Comparison of tiered performance for several configurations.
This compares static partitioning against several configurations of

Continuously Divisible Job using virtual files. Each line is grouped by the
initial master size and the X axis shows the initial worker size. As can be

seen across each case, at the right the limited worker partitioning
under-utilizes the cores. To the left, the small starting size suffers from

initial splitting overhead.

size and graphed along the worker initial size. Looking at these results, we can see

that though it was able to find reasonable configuration is many cases, at the edges

of the search space, the combined dynamic partitioning competed with itself slowing

any corrective movement. For example, to the right of the graph, performance was

limited by the worker’s partition being larger than the master’s. This forced only a

single core to be used, wasting resources. This approach shows that job coordinators

can be quickly combined, but more exploration is needed to understand how to avoid

negative feedback.

144



7.8 Conclusion

I have introduced the concept of Continuously Divisible Jobs and discussed how

dynamic sizing can be used to address limitations of static partitioning. I show how

implementing the Continuously Divisible Job interface allows applications to be dy-

namically partitioned, executed, and distributed to dynamic resources using abstract

jobs and job coordinators. To further leverage this approach, we introduced virtual

files, and explored how they can be leverage to provide lightweight partitioning, fast

data access, and eliminate redundant reads and writes.

Continuously Divisible Jobs builds on the ideas presented throughout this disser-

tation. Combining the lessons learned for in Chapter 3 and Chapter 6, the API was

defined allowing a static dataset to be partitioned dynamically and at will, which

provides flexible responsive sizing. The job coordinator, as well as the design consid-

erations, take into account the need for resource management as laid out in Chapter 4.

Finally, the complete design of Continuously Divisible Jobs relies on the underlying

sandbox model of execution, as described in Chapter 5. Further, because this is built

on the sandbox model of execution, jobs executed through a job coordinator can be

nested and transformed as needed for execution on a number of platforms.

145



CHAPTER 8

CONCLUSIONS AND BROADER IMPACT

8.1 Recapitulation

In the area of scientific computing, data is growing faster than any single ma-

chine can analyze in a reasonable time. As a result, scientists are looking for ways to

scale up their computation and accelerate research. Scientist have limited experience

with workflow computing and need options that are direct and straightforward to

implement, as opposed to more complex and nuanced solutions such as MPI. Work-

flows provide a clear path for domain scientists to increase their concurrency without

needing to completely re-engineer their current software.

I have argued that building abstractions into the underlying models allows for

highly flexible workflows that can be adapted to new data, sites, and configurations.

Workflow abstractions allow the pure scientific intent to be declared without the

nuance or clutter associated with run-time execution. Using this core workflow,

abstractions can be combined to provide a responsive and flexible execution. Relying

on the domain scientist to describe the pure scientific intent allows applications to

be used directly, without re-writing the analysis.

I first explored this using static workflows, where I described several methods

for abstracting workflow structure. I achieved flexibility for different data structures

(size, density, or configuration) with dynamic workflow expansion; which allows a

core workflow to quickly be molded and tuned for new data. These expanded work-

flows now use more dynamic resources, to control this, I show how workflows can be

146



statically analyzed for expected need and dynamically managed to execute within

expects bounds. Coupling both methods, a user can leverage a large number of re-

sources. The flexibility provided by the workflow expansion provides the use of new

resources and sites. To accommodate this movement, I illustrate an algebra that al-

lows workflows to be transformed as needed. This algebra breaks down the definition

of task and shows how transformations can be quickly applied. Mapping this process

across all tasks allows the workflow to be adapted as needed.

Having shown the flexibility gained with static workflows, I applied these methods

to dynamic workflows. Dynamic workflows, by their nature, provide responsive sizing,

but tightly couple the application to the workflow design. I showed how decoupling

(abstracting) the workflow from the application allows transformations to be applied

without losing the responsiveness. Taking this a step further, the decoupling allows

the application to use built-in parallelism alongside the workflow’s concurrency.

Though decoupling the dynamic workflow from the underlying application de-

creases the difficulty of implementation, the barrier to entry is still much higher than

static workflows. A middle ground is achieved using Continuously Divisible Jobs,

which provides an easier implementation alongside the responsive sizing of dynamic

workflows. I proposed and demonstrated how Continuously Divisible Jobs allow an

application to define five functions and execute in a dynamic and responsive manner.

A key benefit of this approach is that it abstracts the application definition from the

intricacies of execution, which are provided by a job coordinator. Ideally, this allows

users to define an application, couple it with data, and use the site’s provided job

coordinator without knowing the underlying configuration.

Through the methods and techniques I explored workflows are able to be designed

closer to the user’s technical knowledge without losing flexibility and performance.

Lowering the barrier to entry for users is the key to facilitating research in all fields,

and the goal to be attained.

147



Looking at scientific computing more broadly, data and the need for computation

will continue to grow as new and faster methods are discovered. Likewise, the scale of

computation being produced to meet this need is becoming more complex and varied.

Gone are the days that a single machine will be sufficient for a complete dataset or

analysis. It is unclear if the data production or available computational power will

be larger in the end, but what is becoming obvious is that as both grow the inter-

face between them becomes increasingly complex. This complexity has outstripped

the abilities of most domain scientist to have the time or experience to harness or

fully utilize these emerging technologies. These domain scientist turn to distributed

computing solutions, such as workflows, to bridge that gap, acting as a negotiator of

resources and computation.

Solutions like Continuously Divisible Jobs offer an avenue of communication be-

tween the specifics of an individuals research and the ever increasing landscape of

resources whether it be a campus cluster, a national scale supercomputer, or cor-

porate cloud infrastructure. The flexibility of Continuously Divisible Jobs crucially

provides a common interface that is powerful enough that an abstract job can be

migrated, scaled, and distributed to almost any resource. The clear expectations of a

job definition also make implementing a job coordinator easy, and the API provides

enough flexibility that the job coordinator can adapt to performance.

Overall, abstractions are becoming increasingly important as they allow research

at both ends of the spectrum, from domain scientists doing critical research to system

administrators scaling with new technologies, to communicate and scale. Providing

flexible interfaces that facilitates both ends, such as Continuously Divisible Jobs, is

crucial to the continued growth and success of scientific computing.

148



8.2 Future Work

8.2.1 Continuously Divisible Jobs

In this work, I introduced the idea of Continuously Divisible jobs. The imple-

mentation presented here looks at single applications, abstracting and distributing

their computation. This structure loosely translates to a simple split-join workflow,

with no considerations of future analysis with the data. Compute time is spent on

re-organizing and combining results, which may then be re-partitioned for future

computation. Eliminating this unnecessary computation would allow for an more

efficient and flexible pipeline, but a language is needed to address these relationships.

Extending the Continuously Divisible Jobs API to describe how a partition relates

to the larger data set would allow for more implicit concurrency. Some computation

is by its nature completely data-independent, while others look at the dataset holis-

tically. What does a specification look like to describe this in a meaningful way? The

current implementation implicitly defines the relationship between a data format and

an application. To allow for more flexible data and computation handling, a clear

characterization of the relationship of an applications interact with input and output

formats should be explored.

If applications have a definition that explicitly states the parity of inputs to com-

putation to outputs, applications can be combined dynamically and scalably with

little user interaction, relying on the characterization to determine if the partitions

are computationally valid. In its current state, much of the time developing and

testing workflows has been invested into checking the validity of data manipulations

which should ideally be defined by the application developer. If the Continuously

Divisible Jobs API was extended to more clearly define format-application parities,

abstract data-pipelines could be defined that scale to available resources and perfor-

mance.

149



8.2.2 Nested Workflows and Transformations

A major consideration during this work was how do we consistently and safely

apply transformations to workflows. I think the methods developed for applying

transformations to a workflow can be harnessed to provide hierarchy to workflows.

Hierarchy in workflows is intended in two ways, first by allowing for a more rich

definition of workflow structure and second by allowing nested workflows. Nested

workflows have been supported one way or another in Makeflow for several years,

with a loose definition of how to correctly communicate between layers of execution.

The workflows used and described throughout this dissertation are by definition

a flat set of rules that are translated into a DAG. However, the user writing the

workflow has an implicit set of expectations for the workflow’s structure, such as

analysis pipelines or resource groups. In Makeflow, categories allow for rules to be

grouped together by expected resource use, but any more nuanced groupings are

unavailable. Extending Makeflow to support hierarchical workflows would allow for

more structurally meaningful grouping and staging to be performed.

In well written JX Makeflows an analysis pipeline is mapped to all set data par-

titions. This hierarchical structure should be preserved and utilized to batch or

pre-stage tasks to workers with relevant data. This will cut down on time spent

pushing and pulling data with no computation underway. This mechanism exist in

Work Queue and Makeflow to over-stage jobs, but there is little considerations to

doing this based on pipelines.

If hierarchical structure can be studied and well supported within Makeflow, work-

flows themselves can be nested and reasoned about in the same way. Ideally, a nested

workflow behaves similarly to an analysis pipeline, but with a wider set of rules and

resource needs. In addition to this nested structure, a clear specification for communi-

cating between workflow levels would be beneficial. This is by no means a trivial task,

and requires careful thought of how to handle questions such as resource allocations,

150



environment specifications, and possibly deep nested workflows.

8.3 Impact: Software and Publications

The work throughout this dissertation was peer-reviewed and presented and sev-

eral different conferences and journals. The work outlined in Chapter 3 was presented

as a poster at CCGrid 2014[57] where it won best poster, and at the IEEE Interna-

tional Conference on eScience 2015[58]. The work outlined in Chapter 4 was pub-

lished in IEEE Transactions on Parallel and Distributed Computing[60]. The work

outlined in Chapter 5 was presented at the IEEE International Conference on eScience

2018[56]. The work outlined in Chapter 6 was presented at the IEEE International

Conference on Cloud Engineering[59]. Finally, the work outlined in Chapter 7 was

presented at the IEEE International Conference on eScience 2019[61].

The software developed through the work is supported by the Cooperative Com-

puting Lab, and distributed within the CCTools package. Additionally, example

workflows for both Makeflow[55] and Work Queue are preserved in separate reposi-

tories to allow for much of this research to be reproduced.

151



BIBLIOGRAPHY

1. E. Afgan, D. Baker, N. Coraor, B. Chapman, A. Nekrutenko, and J. Taylor.
Galaxy cloudman: delivering cloud compute clusters. BMC bioinformatics, 11
(Suppl 12):S4, 2010.

2. M. Albrecht, P. Donnelly, P. Bui, and D. Thain. Makeflow: A Portable Abstrac-
tion for Data Intensive Computing on Clusters, Clouds, and Grids. In Workshop
on Scalable Workflow Enactment Engines and Technologies (SWEET) at ACM
SIGMOD, 2012.

3. I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock. Ke-
pler: an extensible system for design and execution of scientific workflows. In
Scientific and Statistical Database Management, 2004. Proceedings. 16th Inter-
national Conference on, pages 423–424. IEEE, 2004.

4. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local
alignment search tool. J. Mol. Biol., 215(3):403–410, Oct 1990.

5. P. Amstutz, M. R. Crusoe, N. Tijani, B. Chapman, J. Chilton, M. Heuer,
A. Kartashov, D. Leehr, H. Mnager, M. Nedeljkovich, and et al. Common
workflow language, v1.0, Jul 2016. URL https://figshare.com/articles/

Common_Workflow_Language_draft_3/3115156/2.

6. P. Amstutz, M. R. Crusoe, N. Tijani, B. Chapman, J. Chilton, M. Heuer,
A. Kartashov, D. Leehr, H. Mnager, M. Nedeljkovich, M. Scales, S. Soiland-
Reyes, and L. Stojanovic. Common Workflow Language, v1.0, 7 2016.

7. T. G. Armstrong, J. M. Wozniak, M. Wilde, and I. T. Foster. Compiler
techniques for massively scalable implicit task parallelism. In Proceedings
of the International Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC ’14, pages 299–310, Piscataway, NJ, USA,
2014. IEEE Press. ISBN 978-1-4799-5500-8. doi: 10.1109/SC.2014.30. URL
https://doi.org/10.1109/SC.2014.30.

8. Arun Ramakrishnan, Gurmeet Singh, Henan Zhao, Ewa Deelman, Rizos Sakel-
lariou, Karan Vahi, Kent Blackburn, David Meyers and Michael Samidi.
Scheduling data-intensive workflows onto storage-constrained distributed re-
sources. Seventh IEEE International Symposium on Cluster Computing and
the Grid (CCGrid), 2007.

152

https://figshare.com/articles/Common_Workflow_Language_draft_3/ 3115156/2
https://figshare.com/articles/Common_Workflow_Language_draft_3/ 3115156/2
https://doi.org/10.1109/SC.2014.30


9. Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar, L. Lacinski,
R. Chard, J. M. Wozniak, I. Foster, M. Wilde, and K. Chard. Parsl: Perva-
sive parallel programming in python. In Proceedings of the 28th International
Symposium on High-Performance Parallel and Distributed Computing, HPDC
’19, pages 25–36, New York, NY, USA, 2019. ACM. ISBN 978-1-4503-6670-0.
doi: 10.1145/3307681.3325400. URL http://doi.acm.org/10.1145/3307681.

3325400.

10. Y. N. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar, L. Lacinski,
R. Chard, J. M. Wozniak, I. T. Foster, M. Wilde, and K. Chard. Parsl: Pervasive
parallel programming in python. CoRR, abs/1905.02158, 2019. URL http:

//arxiv.org/abs/1905.02158.

11. M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. Legion: Expressing local-
ity and independence with logical regions. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analy-
sis, SC ’12, pages 66:1–66:11, Los Alamitos, CA, USA, 2012. IEEE Computer
Society Press. ISBN 978-1-4673-0804-5. URL http://dl.acm.org/citation.

cfm?id=2388996.2389086.

12. D. Blankenberg, G. V. Kuster, N. Coraor, G. Ananda, R. Lazarus, M. Mangan,
A. Nekrutenko, and J. Taylor. Galaxy: A web-based genome analysis tool for
experimentalists. Current protocols in molecular biology, pages 19–10, 2010.

13. G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and J. J. Don-
garra. Parsec: Exploiting heterogeneity to enhance scalability. Computing in
Science Engineering, 15(6):36–45, Nov 2013. doi: 10.1109/MCSE.2013.98.

14. R. Brun and F. Rademakers. ROOT: An object oriented data analysis frame-
work. Nucl. Instrum. Meth., A389:81–86, 1997. doi: 10.1016/S0168-9002(97)
00048-X.

15. R. Brun and F. Rademakers. Root an object oriented data analysis framework.
Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 389:81–86, 04 1997. doi:
10.1016/S0168-9002(97)00048-X.

16. P. Bui, D. Rajan, B. Abdul-Wahid, J. Izaguirre, and D. Thain. Work Queue
+ Python: A Framework For Scalable Scientific Ensemble Applications. In
Workshop on Python for High Performance and Scientific Computing (PyHPC)
at the ACM/IEEE International Conference for High Performance Computing,
Networking, Storage, and Analysis (Supercomputing) , 2011.

17. M. S. Campbell, C. Holt, B. Moore, and M. Yandell. Genome Annotation and
Curation Using MAKER and MAKER-P. Curr Protoc Bioinformatics, 48:1–39,
Dec 2014.

153

http://doi.acm.org/10.1145/3307681.3325400
http://doi.acm.org/10.1145/3307681.3325400
http://arxiv.org/abs/1905.02158
http://arxiv.org/abs/1905.02158
http://dl.acm.org/citation.cfm?id=2388996.2389086
http://dl.acm.org/citation.cfm?id=2388996.2389086


18. B. L. Cantarel, I. Korf, S. M. Robb, G. Parra, E. Ross, B. Moore, C. Holt,
A. Sanchez Alvarado, and M. Yandell. MAKER: an easy-to-use annotation
pipeline designed for emerging model organism genomes. Genome Res., 18(1):
188–196, Jan 2008.

19. W. Chen and E. Deelman. Partitioning and scheduling workflows across mul-
tiple sites with storage constraints. In 9th International Conference on Par-
allel Processing and Applied Mathmatics, 2011. URL http://pegasus.isi.

edu/publications/2011/WChen-Partitioning_and_Scheduling.pdf. Fund-
ing Acknowledgements: NSF IIS-0905032.

20. W. Chen and E. Deelman. Workflow overhead analysis and optimizations. In
6th Workshop on Workflows in Support of Large-Scale Science (WORKS 11),
2011.

21. W. Chen and E. Deelman. Partitioning and Scheduling Workflows
across Multiple Sites with Storage Constraints, pages 11–20. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-31500-8.
doi: 10.1007/978-3-642-31500-8 2. URL http://dx.doi.org/10.1007/

978-3-642-31500-8_2.

22. W. Chen and E. Deelman. Integration of workflow partitioning and resource
provisioning. In The 12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid 2012), 2012.

23. W. Chen, R. Ferreira da Silva, E. Deelman, and R. Sakellariou. Bal-
anced task clustering in scientific workflows. In 9th IEEE International Con-
ference on e-Science (eScience 2013), 2013. URL http://pegasus.isi.

edu/publications/2013/chen-clustering-escience2013.pdf. Funding Ac-
knowledgements: NSF IIS-0905032 and NSF FutureGrid 0910812.

24. W. Chen, R. Ferreira da Silva, E. Deelman, and R. Sakellariou. Using imbal-
ance metrics to optimize task clustering in scientific workflow executions. Future
Generation Computer Systems, 46:69–84, 2015. doi: 10.1016/j.future.2014.09.
014. URL http://pegasus.isi.edu/publications/2014/2014-fgcs-chen.

pdf. Funding Acknowledgements: NSF IIS-0905032 and NSF FutureGrid
0910812.

25. W. Chen, R. Ferreira da Silva, E. Deelman, and T. Fahringer. Dynamic
and fault-tolerant clustering for scientific workflows. IEEE Transactions on
Cloud Computing, 4(1):49–62, 2016. doi: 10.1109/TCC.2015.2427200. URL
http://pegasus.isi.edu/publications/2015/chen-tcc-2015.pdf. Fund-
ing Acknowledgements: NSF IIS-0905032, NSF ACI SI2-SSI 1148515, and NSF
FutureGrid 0910812.

26. A. Chervenak, E. Deelman, M. Livny, M. Su, R. Schuler, S. Bharathi, G. Mehta,
and K. Vahi. Data placement for scientific applications in distributed environ-

154

http://pegasus.isi.edu/publications/2011/WChen-Partitioning_and_Scheduling.pdf
http://pegasus.isi.edu/publications/2011/WChen-Partitioning_and_Scheduling.pdf
http://dx.doi.org/10.1007/978-3-642-31500-8_2
http://dx.doi.org/10.1007/978-3-642-31500-8_2
http://pegasus.isi.edu/publications/2013/chen-clustering-escience2013.pdf
http://pegasus.isi.edu/publications/2013/chen-clustering-escience2013.pdf
http://pegasus.isi.edu/publications/2014/2014-fgcs-chen.pdf
http://pegasus.isi.edu/publications/2014/2014-fgcs-chen.pdf
http://pegasus.isi.edu/publications/2015/chen-tcc-2015.pdf


ments. In 2007 8th IEEE/ACM International Conference on Grid Computing,
pages 267–274, Sep. 2007. doi: 10.1109/GRID.2007.4354142.

27. O. Choudhury, N. Hazekamp, D. Thain, and S. Emrich. Accelerating com-
parative genomics workflows in a distributed environment with optimized data
partitioning. In C4Bio Workshop at CCGrid, 2014.

28. O. Choudhury, D. Rajan, N. Hazekamp, S. Gesing, D. Thain, and S. Emrich.
Balancing Thread-level and Task-level Parallelism for Data-Intensive Workloads
on Clusters and Clouds. In IEEE Conference on Cluster Computing, 2015.

29. O. Choudhury, D. Rajan, N. Hazekamp, S. Gesing, D. Thain, and S. Emrich.
Balancing thread-level and task-level parallelism for data-intensive workloads
on clusters and clouds. In IEEE Cluster, 2015.

30. P. J. Cock, C. J. Fields, N. Goto, M. L. Heuer, and P. M. Rice. The sanger
fastq file format for sequences with quality scores, and the solexa/illumina fastq
variants. Nucleic acids research, 38(6):1767–1771, 2010.

31. P. Couvares, T. Kosar, A. Roy, J. Weber, and K. Wenger. Workflow Man-
agement in Condor, pages 357–375. Springer London, London, 2007. ISBN
978-1-84628-757-2. doi: 10.1007/978-1-84628-757-2 22. URL https://doi.

org/10.1007/978-1-84628-757-2_22.

32. J. D. de St. Germain, J. McCorquodale, S. G. Parker, and C. R. Johnson.
Uintah: a massively parallel problem solving environment. In Proceedings the
Ninth International Symposium on High-Performance Distributed Computing,
pages 33–41, 2000. doi: 10.1109/HPDC.2000.868632.

33. J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large
clusters. In Proceedings of the 6th Conference on Symposium on Operating
Systems Design & Implementation - Volume 6, OSDI’04, pages 10–10, Berkeley,
CA, USA, 2004. USENIX Association. URL http://dl.acm.org/citation.

cfm?id=1251254.1251264.

34. E. Deelman and A. Chervenak. Data management challenges of data-intensive
scientific workflows. In 2008 Eighth IEEE International Symposium on Cluster
Computing and the Grid (CCGRID), pages 687–692, May 2008. doi: 10.1109/
CCGRID.2008.24.

35. E. Deelman, J. Blythe, Y. Gil, C. Kesselman, S. Koranda, A. Lazzarini,
G. Mehta, M. A. Papa, and K. Vahi. Pegasus and the pulsar search: From
metadata to execution on the grid. In R. Wyrzykowski, J. Dongarra, M. Pa-
przycki, and J. Waśniewski, editors, Parallel Processing and Applied Mathemat-
ics, pages 821–830, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg. ISBN
978-3-540-24669-5.

155

https://doi.org/10.1007/978-1-84628-757-2_22
https://doi.org/10.1007/978-1-84628-757-2_22
http://dl.acm.org/citation.cfm?id=1251254.1251264
http://dl.acm.org/citation.cfm?id=1251254.1251264


36. E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.-H. Su,
K. Vahi, and M. Livny. Pegasus: Mapping scientific workflows onto the grid.
In M. D. Dikaiakos, editor, Grid Computing, pages 11–20, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg. ISBN 978-3-540-28642-4.

37. E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.-H. Su,
K. Vahi, and M. Livny. Pegasus: Mapping Scientific Workflows onto the Grid,
pages 11–20. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. ISBN 978-
3-540-28642-4. doi: 10.1007/978-3-540-28642-4 2. URL http://dx.doi.org/

10.1007/978-3-540-28642-4_2.

38. E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
K. Vahi, B. Berriman, J. Good, A. Laity, J. Jacob, and D. Katz. Pegasus: A
framework for mapping complex scientific workflows onto distributed systems.
Scientific Programming Journal, 13(3), 2005.

39. E. Deelman, S. Callaghan, E. Field, H. Francoeur, R. Graves, N. Gupta,
V. Gupta, T. H. Jordan, C. Kesselman, P. Maechling, J. Mehringer, G. Mehta,
D. Okaya, K. Vahi, and L. Zhao. Managing large-scale workflow execution
from resource provisioning to provenance tracking: The cybershake example. In
2006 Second IEEE International Conference on e-Science and Grid Computing
(e-Science’06), pages 14–14, Dec 2006. doi: 10.1109/E-SCIENCE.2006.261098.

40. E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. Maechling,
R. Mayani, W. Chen, R. F. da Silva, M. Livny, et al. Pegasus, a workflow
management system for science automation. submitted to Future Generation
Computer Systems, 2014.

41. E. Dolstra, M. de Jonge, and E. Visser. Nix: A safe and policy-free system for
software deployment. In Proceedings of the 18th USENIX Conference on System
Administration, LISA ’04, pages 79–92, Berkeley, CA, USA, 2004. USENIX
Association. URL http://dl.acm.org/citation.cfm?id=1052676.1052686.

42. E. Dolstra, A. LÖh, and N. Pierron. Nixos: A purely functional linux
distribution. J. Funct. Program., 20(5-6):577–615, Nov. 2010. ISSN 0956-
7968. doi: 10.1017/S0956796810000195. URL http://dx.doi.org/10.1017/

S0956796810000195.

43. M. M. Eshaghian and Y.-C. Wu. Mapping heterogeneous task graphs
onto heterogeneous system graphs. In Heterogeneous Computing Workshop,
1997.(HCW’97) Proceedings., Sixth, pages 147–160. IEEE, 1997.

44. T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee, A. Moody, B. R. de Supin-
ski, and S. Futral. The spack package manager: Bringing order to hpc software
chaos. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’15, pages 40:1–40:12, New
York, NY, USA, 2015. ACM. ISBN 978-1-4503-3723-6. doi: 10.1145/2807591.
2807623. URL http://doi.acm.org/10.1145/2807591.2807623.

156

http://dx.doi.org/10.1007/978-3-540-28642-4_2
http://dx.doi.org/10.1007/978-3-540-28642-4_2
http://dl.acm.org/citation.cfm?id=1052676.1052686
http://dx.doi.org/10.1017/S0956796810000195
http://dx.doi.org/10.1017/S0956796810000195
http://doi.acm.org/10.1145/2807591.2807623


45. W. Gentzsch. Sun grid engine: Towards creating a compute power grid. In
Proceedings of the 1st International Symposium on Cluster Computing and the
Grid, CCGRID ’01, pages 35–, Washington, DC, USA, 2001. IEEE Computer
Society. ISBN 0-7695-1010-8. URL http://dl.acm.org/citation.cfm?id=

560889.792378.

46. L. Gerhardt, W. Bhimji, S. Canon, M. Fasel, D. Jacobsen, M. Mustafa, J. Porter,
and V. Tsulaia. Shifter: Containers for HPC. Journal of Physics: Conference
Series, 898:082021, oct 2017. doi: 10.1088/1742-6596/898/8/082021. URL
https://doi.org/10.1088%2F1742-6596%2F898%2F8%2F082021.

47. W. Gerlach, W. Tang, A. Wilke, D. Olson, and F. Meyer. Container orchestra-
tion for scientific workflows. In 2015 IEEE International Conference on Cloud
Engineering, pages 377–378, March 2015. doi: 10.1109/IC2E.2015.87.

48. B. Giardine, C. Riemer, R. C. Hardison, R. Burhans, L. Elnitski, P. Shah,
Y. Zhang, D. Blankenberg, I. Albert, J. Taylor, W. C. Miller, W. J. Kent, and
A. Nekrutenko. Galaxy: a platform for interactive large-scale genome analysis.
Genome research, 15(10):1451–1455, 2005.

49. Gideon Juve, Benjamin Tovar, Rafael Ferreira da Silva, Dariusz Krol, Douglas
Thain, Ewa Deelman, William Allcock and Miron Livny. Practical resource
monitoring for robust high throughput computing. Workshop on Monitoring
and Analysis for High Performance Computing Systems Plus Applications, 2015.

50. J. Goecks, A. Nekrutenko, J. Taylor, and T. G. Team. Galaxy: a comprehen-
sive approach for supporting accessible, reproducible, and transparent compu-
tational research in the life sciences. Genome Biol, 11(8):R86, 2010.

51. T. Goodale, S. Jha, H. Kaiser, T. Kielmann, P. Kleijer, G. von Laszewski,
C. Lee, A. Merzky, H. Rajic, and J. Shalf. Saga: A simple api for grid
applications. high-level application programming on the grid. COMPUTA-
TIONAL METHODS IN SCIENCE AND TECHNOLOGY, 12:7–20, 01 2006.
doi: 10.12921/cmst.2006.12.01.07-20.

52. C. K. Gurmeet Singh and E. Deelman. Optimizing grid-based workflow execu-
tion. Journal of Grid Computing, 3(3-4):201–219, December 2005.

53. O. Harismendy, P. C. Ng, R. L. Strausberg, X. Wang, T. B. Stockwell, K. Y.
Beeson, N. J. Schork, S. S. Murray, E. J. Topol, S. Levy, et al. Evaluation of
next generation sequencing platforms for population targeted sequencing stud-
ies. Genome Biol, 10(3):R32, 2009.

54. T. Harter, B. Salmon, R. Liu, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Slacker: Fast distribution with lazy docker containers. In 14th
USENIX Conference on File and Storage Technologies (FAST 16), pages 181–
195, Santa Clara, CA, 2016. USENIX Association. ISBN 978-1-931971-28-7.

157

http://dl.acm.org/citation.cfm?id=560889.792378
http://dl.acm.org/citation.cfm?id=560889.792378
https://doi.org/10.1088%2F1742-6596%2F898%2F8%2F082021


URL https://www.usenix.org/conference/fast16/technical-sessions/

presentation/harter.

55. N. Hazekamp and D. Thain. Makeflow examples repository, 2017. URL http:

//github.com/cooperative-computing-lab/makeflow-examples.

56. N. Hazekamp and D. Thain. An Algebra for Robust Workflow Transformations.
In IEEE International Conference on e-Science, page 12, 2018.

57. N. Hazekamp, O. Choudhury, S. Gesing, S. Emrich, and D. Thain. Poster: Ex-
panding Tasks of Logical Workflows into Independent Workflows for Improved
Scalability. In IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, pages 548–549, 2014.

58. N. Hazekamp, J. Sarro, O. Choudhury, S. Gesing, S. Emrich, and D. Thain.
Scaling Up Bioinformatics Workflows with Dynamic Job Expansion. In IEEE
International Conference on e-Science, 2015.

59. N. Hazekamp, U. K. Devisetty, N. Merchant, and D. Thain. MAKER as a
Service: Moving HPC applications to Jetstream Cloud. In IEEE International
Conference on Cloud Engineering, page 6, 2018.

60. N. Hazekamp, N. Kremer-Herman, B. Tovar, H. Meng, O. Choudhury, S. Em-
rich, and D. Thain. Combining Static and Dynamic Storage Management for
Data Intensive Scientific Workflows. IEEE Transactions on Parallel and Dis-
tributed Systems, 29(2):338–350, 2018.

61. N. Hazekamp, B. Tovar, and D. Thain. Dynamic Sizing of Continuously Di-
visible Jobs forHeterogeneous Resources. In IEEE International Conference on
e-Science, 2019.

62. L. He, S. A. Jarvis, D. P. Spooner, and G. R. Nudd. Dynamic, capability-driven
scheduling of dag-based real-time jobs in heterogeneous clusters, 2004.

63. R. L. Henderson. Job scheduling under the portable batch system. In Pro-
ceedings of the Workshop on Job Scheduling Strategies for Parallel Processing,
IPPS ’95, pages 279–294, London, UK, UK, 1995. Springer-Verlag. ISBN 3-540-
60153-8. URL http://dl.acm.org/citation.cfm?id=646376.689372.

64. B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz,
S. Shenker, and I. Stoica. Mesos: A platform for fine-grained resource sharing
in the data center. In Proceedings of the 8th USENIX Conference on Networked
Systems Design and Implementation, NSDI’11, pages 295–308, Berkeley, CA,
USA, 2011. USENIX Association. URL http://dl.acm.org/citation.cfm?

id=1972457.1972488.

65. R. Hoque, T. Herault, G. Bosilca, and J. Dongarra. Dynamic task discovery
in parsec: A data-flow task-based runtime. In Proceedings of the 8th Workshop

158

https://www.usenix.org/conference/fast16/technical-sessions/presentation/harter
https://www.usenix.org/conference/fast16/technical-sessions/presentation/harter
http://github.com/cooperative-computing-lab/makeflow-examples
http://github.com/cooperative-computing-lab/makeflow-examples
http://dl.acm.org/citation.cfm?id=646376.689372
http://dl.acm.org/citation.cfm?id=1972457.1972488
http://dl.acm.org/citation.cfm?id=1972457.1972488


on Latest Advances in Scalable Algorithms for Large-Scale Systems, ScalA ’17,
pages 6:1–6:8, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-5125-6.
doi: 10.1145/3148226.3148233. URL http://doi.acm.org/10.1145/3148226.

3148233.

66. M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed
data-parallel programs from sequential building blocks. In Proceedings of the
2Nd ACM SIGOPS/EuroSys European Conference on Computer Systems 2007,
EuroSys ’07, pages 59–72, New York, NY, USA, 2007. ACM. ISBN 978-1-
59593-636-3. doi: 10.1145/1272996.1273005. URL http://doi.acm.org/10.

1145/1272996.1273005.

67. P. Ivie and D. Thain. PRUNE: A Preserving Run Environment for Reproducible
Computing. In IEEE Conference on e-Science, 2016.

68. J. C. Jacob, D. S. Katz, G. B. Berriman, J. C. Good, A. C. Laity, E. Deelman,
C. Kesselman, G. Singh, M. Su, T. A. Prince, and R. Williams. Montage&#58;
a grid portal and software toolkit for science&#45;grade astronomical image
mosaicking. Int. J. Comput. Sci. Eng., 4(2):73–87, July 2009. ISSN 1742-7185.
doi: 10.1504/IJCSE.2009.026999. URL http://dx.doi.org/10.1504/IJCSE.

2009.026999.

69. M. A. Jette, A. B. Yoo, and M. Grondona. Slurm: Simple linux utility for
resource management. In In Lecture Notes in Computer Science: Proceedings
of Job Scheduling Strategies for Parallel Processing (JSSPP) 2003, pages 44–60.
Springer-Verlag, 2002.

70. G. Juve and E. Deelman. Resource provisioning options for large-scale scientific
workflows. In Proceedings of the 2008 Fourth IEEE International Conference on
eScience, ESCIENCE ’08, pages 608–613, Washington, DC, USA, 2008. IEEE
Computer Society. ISBN 978-0-7695-3535-7. doi: 10.1109/eScience.2008.160.
URL http://dx.doi.org/10.1109/eScience.2008.160.

71. L. Kalé and S. Krishnan. CHARM++: A Portable Concurrent Object Oriented
System Based on C++. In A. Paepcke, editor, Proceedings of OOPSLA’93,
pages 91–108. ACM Press, September 1993.

72. Q. Ke, V. Prabhakaran, Y. Xie, Y. Yu, J. Wu, and J. Yang. Optimizing data par-
titioning for data-parallel computing. In Proceedings of the 13th USENIX Con-
ference on Hot Topics in Operating Systems, HotOS’13, pages 13–13, Berkeley,
CA, USA, 2011. USENIX Association. URL http://dl.acm.org/citation.

cfm?id=1991596.1991614.

73. G. M. Kurtzer. Singularity 2.1.2 - Linux application and environment containers
for science, Aug. 2016. URL https://doi.org/10.5281/zenodo.60736.

159

http://doi.acm.org/10.1145/3148226.3148233
http://doi.acm.org/10.1145/3148226.3148233
http://doi.acm.org/10.1145/1272996.1273005
http://doi.acm.org/10.1145/1272996.1273005
http://dx.doi.org/10.1504/IJCSE.2009.026999
http://dx.doi.org/10.1504/IJCSE.2009.026999
http://dx.doi.org/10.1109/eScience.2008.160
http://dl.acm.org/citation.cfm?id=1991596.1991614
http://dl.acm.org/citation.cfm?id=1991596.1991614
https://doi.org/10.5281/zenodo.60736


74. B. M. Kurtzer GM, Sochat V. Singularity: Scientific containers for mobility of
compute. PLoS ONE, May 2017. URL https://doi.org/10.1371/journal.

pone.0177459.

75. Y.-K. Kwok and I. Ahmad. Static scheduling algorithms for allocating directed
task graphs to multiprocessors. ACM Comput. Surv., 31(4):406–471, Dec. 1999.
ISSN 0360-0300. doi: 10.1145/344588.344618. URL http://doi.acm.org/10.

1145/344588.344618.

76. J. Kster and S. Rahmann. Snakemakea scalable bioinformatics workflow engine.
Bioinformatics, 28(19):2520–2522, 08 2012. ISSN 1367-4803. doi: 10.1093/
bioinformatics/bts480. URL https://doi.org/10.1093/bioinformatics/

bts480.

77. H. Li and R. Durbin. Fast and accurate short read alignment with burrows–
wheeler transform. Bioinformatics, 25(14):1754–1760, 2009.

78. H. Li and R. Durbin. Fast and accurate long-read alignment with Burrows-
Wheeler transform. Bioinformatics, 26(5):589–595, Mar 2010.

79. H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth,
G. Abecasis, R. Durbin, et al. The sequence alignment/map format and SAM-
tools. Bioinformatics, 25(16):2078–2079, 2009.

80. M. Litzkow, M. Livny, and M. Mutka. Condor - a hunter of idle workstations. In
Eighth International Conference of Distributed Computing Systems, June 1988.

81. F. Liu and J. B. Weissman. Elastic job bundling: An adaptive resource re-
quest strategy for large-scale parallel applications. In Proceedings of the In-
ternational Conference for High Performance Computing, Networking, Stor-
age and Analysis, SC ’15, pages 33:1–33:12, New York, NY, USA, 2015.
ACM. ISBN 978-1-4503-3723-6. doi: 10.1145/2807591.2807610. URL http:

//doi.acm.org/10.1145/2807591.2807610.

82. K. Liu, K. Aida, S. Yokoyama, and Y. Masatani. Flexible container-based
computing platform on cloud for scientific workflows. In 2016 International
Conference on Cloud Computing Research and Innovations (ICCCRI), pages
56–63, May 2016. doi: 10.1109/ICCCRI.2016.17.

83. T. Maeno, K. De, T. Wenaus, P. Nilsson, G. Stewart, R. Walker, A. Stradling,
J. Caballero, M. Potekhin, and D. Smith. Overview of atlas panda workload
management. Journal of Physics: Conference Series, 331, 02 2011. doi: 10.
1088/1742-6596/331/7/072024.

84. T. Maeno, K. De, A. Klimentov, P. Nilsson, D. Oleynik, S. Panitkin, A. Pet-
rosyan, J. Schovancova, A. Vaniachine, T. Wenaus, and D. Y. and. Evolu-
tion of the ATLAS PanDA workload management system for exascale compu-
tational science. Journal of Physics: Conference Series, 513(3):032062, jun

160

https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1371/journal.pone.0177459
http://doi.acm.org/10.1145/344588.344618
http://doi.acm.org/10.1145/344588.344618
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1093/bioinformatics/bts480
http://doi.acm.org/10.1145/2807591.2807610
http://doi.acm.org/10.1145/2807591.2807610


2014. doi: 10.1088/1742-6596/513/3/032062. URL https://doi.org/10.

1088%2F1742-6596%2F513%2F3%2F032062.

85. K. Maheshwari, A. Rodriguez, D. Kelly, R. Madduri, J. Wozniak, M. Wilde,
and I. Foster. Enabling multi-task computation on galaxy-based gateways using
swift. In Cluster Computing (CLUSTER), 2013 IEEE International Conference
on, pages 1–3, Sept 2013. doi: 10.1109/CLUSTER.2013.6702701.

86. M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski. Algorithms for cost-
and deadline-constrained provisioning for scientific workflow ensembles in iaas
clouds. Future Gener. Comput. Syst., 48(C):1–18, July 2015. ISSN 0167-
739X. doi: 10.1016/j.future.2015.01.004. URL http://dx.doi.org/10.1016/

j.future.2015.01.004.

87. H. Meng, R. Kommineni, Q. Pham, R. Gardner, T. Malik, and D. Thain. An
invariant framework for conducting reproducible computational science. Journal
of Computational Science, 9(0):137 – 142, 2015. ISSN 1877-7503. doi: http://
dx.doi.org/10.1016/j.jocs.2015.04.012. URL http://www.sciencedirect.com/

science/article/pii/S1877750315000502.

88. H. Meng, D. Thain, A. Vyushkov, M. Wolf, and A. Woodard. Conducting
Reproducible Research with Umbrella: Tracking, Creating, and Preserving Ex-
ecution Environments. In IEEE Conference on e-Science, 2016.

89. D. Merkel. Docker: Lightweight linux containers for consistent development
and deployment. Linux J., 2014(239), Mar. 2014. ISSN 1075-3583. URL http:

//dl.acm.org/citation.cfm?id=2600239.2600241.

90. A. Merzky, M. Santcroos, M. Turilli, and S. Jha. Radical-pilot: Scalable ex-
ecution of heterogeneous and dynamic workloads on supercomputers. CoRR,
abs/1512.08194, 2015. URL http://arxiv.org/abs/1512.08194.

91. C. L. Monma, A. Schrijver, M. J. Todd, and V. K. Wei. Convex resource allo-
cation problems on directed acyclic graphs: Duality, complexity, special cases,
and extensions. Mathematics of Operations Research, 15(4):736–748, 1990. doi:
10.1287/moor.15.4.736. URL https://doi.org/10.1287/moor.15.4.736.

92. S. C. Müller, G. Alonso, A. Amara, and A. Csillaghy. Pydron: Semi-automatic
parallelization for multi-core and the cloud. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14), pages 645–659,
Broomfield, CO, Oct. 2014. USENIX Association. ISBN 978-1-931971-16-4.
URL https://www.usenix.org/conference/osdi14/technical-sessions/

presentation/muller.

93. H. Packard. Lustre: A scalable, high-performance file system. Technical report,
Cluster File Systems, Inc., Novemeber 2002. URL http://www.cse.buffalo.

edu/faculty/tkosar/cse710/papers/lustre-whitepaper.pdf.

161

https://doi.org/10.1088%2F1742-6596%2F513%2F3%2F032062
https://doi.org/10.1088%2F1742-6596%2F513%2F3%2F032062
http://dx.doi.org/10.1016/j.future.2015.01.004
http://dx.doi.org/10.1016/j.future.2015.01.004
http://www.sciencedirect.com/science/article/pii/S1877750315000502
http://www.sciencedirect.com/science/article/pii/S1877750315000502
http://dl.acm.org/citation.cfm?id=2600239.2600241
http://dl.acm.org/citation.cfm?id=2600239.2600241
http://arxiv.org/abs/1512.08194
https://doi.org/10.1287/moor.15.4.736
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/muller
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/muller
http://www.cse.buffalo.edu/faculty/tkosar/cse710/papers/lustre-whitepaper.pdf
http://www.cse.buffalo.edu/faculty/tkosar/cse710/papers/lustre-whitepaper.pdf


94. R. Poplin, V. Ruano-Rubio, M. A. DePristo, T. J. Fennell, M. O. Carneiro, G. A.
Van der Auwera, D. E. Kling, L. D. Gauthier, A. Levy-Moonshine, D. Roazen,
K. Shakir, J. Thibault, S. Chandran, C. Whelan, M. Lek, S. Gabriel, M. J. Daly,
B. Neale, D. G. MacArthur, and E. Banks. Scaling accurate genetic variant
discovery to tens of thousands of samples. bioRxiv, 2018. doi: 10.1101/201178.
URL https://www.biorxiv.org/content/early/2018/07/24/201178.

95. R. Priedhorsky and T. Randles. Charliecloud: Unprivileged containers for user-
defined software stacks in hpc. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, SC ’17,
pages 36:1–36:10, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-5114-0.
doi: 10.1145/3126908.3126925. URL http://doi.acm.org/10.1145/3126908.

3126925.

96. U. Project. uproot. https://github.com/scikit-hep/uproot, 2018.

97. R. Raman, M. Livny, and M. Solomon. Matchmaking: distributed resource
management for high throughput computing. In Proceedings. The Seventh
International Symposium on High Performance Distributed Computing (Cat.
No.98TB100244), pages 140–146, Jul 1998. doi: 10.1109/HPDC.1998.709966.

98. I. Redhat. Ansible, 2012. URL https://www.ansible.com/.

99. R. Sakellariou and H. Zhao. A hybrid heuristic for dag scheduling on het-
erogeneous systems. In Parallel and Distributed Processing Symposium, 2004.
Proceedings. 18th International, pages 111–, April 2004. doi: 10.1109/IPDPS.
2004.1303065.

100. T. Shaffer, N. Kremer-Herman, and D. Thain. Flexible Partitioning of Scientific
Workflows Using the JX Workflow Language. In Practice and Experience in
Advanced Research Computing (PEARC), 2019.

101. K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop distributed file
system. In Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Sys-
tems and Technologies (MSST), MSST ’10, pages 1–10, Washington, DC, USA,
2010. IEEE Computer Society. ISBN 978-1-4244-7152-2. doi: 10.1109/MSST.
2010.5496972. URL http://dx.doi.org/10.1109/MSST.2010.5496972.

102. G. Singh, C. Kesselman, and E. Deelman. Application-level resource provi-
sioning on the grid. In 2006 Second IEEE International Conference on e-
Science and Grid Computing (e-Science’06), pages 83–83, Dec 2006. doi:
10.1109/E-SCIENCE.2006.261167.

103. E. Slaughter, W. Lee, S. Treichler, M. Bauer, and A. Aiken. Regent: A high-
productivity programming language for hpc with logical regions. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’15, pages 81:1–81:12, New York, NY, USA, 2015.

162

https://www.biorxiv.org/content/early/2018/07/24/201178
http://doi.acm.org/10.1145/3126908.3126925
http://doi.acm.org/10.1145/3126908.3126925
https://github.com/scikit-hep/uproot
https://www.ansible.com/
http://dx.doi.org/10.1109/MSST.2010.5496972


ACM. ISBN 978-1-4503-3723-6. doi: 10.1145/2807591.2807629. URL http:

//doi.acm.org/10.1145/2807591.2807629.

104. S. Srinivasan, G. Juve, R. F. da Silva, K. Vahi, and E. Deelman. A cleanup
algorithm for implementing storage constraints in scientific workflow executions.
9th Workshop on Workflows in Support of Large-Scale Science (WORKS), 2014.

105. C. A. Stewart, T. M. Cockerill, I. Foster, D. Hancock, N. Merchant, E. Skidmore,
D. Stanzione, J. Taylor, S. Tuecke, G. Turner, M. Vaughn, and N. I. Gaffney. Jet-
stream: A self-provisioned, scalable science and engineering cloud environment.
In Proceedings of the 2015 XSEDE Conference: Scientific Advancements En-
abled by Enhanced Cyberinfrastructure, XSEDE ’15, pages 29:1–29:8, New York,
NY, USA, 2015. ACM. ISBN 978-1-4503-3720-5. doi: 10.1145/2792745.2792774.
URL http://doi.acm.org/10.1145/2792745.2792774.

106. K. Sweeney and D. Thain. Efficient Integration of Containers into Scientific
Workflows. In Science Cloud Workshop at HPDC, 2018.

107. D. Thain, T. Tannenbaum, and M. Livny. Condor and the grid. In F. Berman,
G. Fox, and T. Hey, editors, Grid Computing: Making the Global Infrastructure
a Reality. John Wiley, 2003.

108. D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice:
the condor experience. Concurrency - Practice and Experience, 17(2-4):323–356,
2005.

109. A. Thrasher, Z. Musgrave, B. Kachmark, D. Thain, and S. Emrich. Scaling Up
Genome Annotation with MAKER and Work Queue. International Journal of
Bioinformatics Research and Applications, 10(4-5):447–460, 2014.

110. H. Topcuouglu, S. Hariri, and M.-y. Wu. Performance-effective and low-
complexity task scheduling for heterogeneous computing. IEEE Trans. Parallel
Distrib. Syst., 13(3):260–274, Mar. 2002. ISSN 1045-9219. doi: 10.1109/71.
993206. URL http://dx.doi.org/10.1109/71.993206.

111. B. Tovar, N. Hazekamp, N. Kremer-Herman, and D. Thain. Automatic Depen-
dency Management for Scientific Applications on Clusters. In IEEE Interna-
tional Conference on Cloud Engineering (IC2E) , 2018.

112. J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Ha-
zlewood, S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott,
and N. Wilkins-Diehr. Xsede: Accelerating scientific discovery. Comput-
ing in Science Engineering, 16(5):62–74, Sept 2014. ISSN 1521-9615. doi:
10.1109/MCSE.2014.80.

113. R. Tudoran, A. Costan, and G. Antoniu. Overflow: Multi-site aware big data
management for scientific workflows on clouds. IEEE Transactions on Cloud
Computing, 4(1):76–89, Jan 2016. doi: 10.1109/TCC.2015.2440254.

163

http://doi.acm.org/10.1145/2807591.2807629
http://doi.acm.org/10.1145/2807591.2807629
http://doi.acm.org/10.1145/2792745.2792774
http://dx.doi.org/10.1109/71.993206


114. D. Turi, P. Missier, C. Goble, D. D. Roure, and T. Oinn. Taverna workflows:
Syntax and semantics. In Third IEEE International Conference on e-Science
and Grid Computing (e-Science 2007), pages 441–448, Dec 2007. doi: 10.1109/
E-SCIENCE.2007.71.

115. K. Vahi, M. Rynge, G. Juve, R. Mayani, and E. Deelman. Rethinking data man-
agement for big data scientific workflows. In 2013 IEEE International Confer-
ence on Big Data, pages 27–35, Oct 2013. doi: 10.1109/BigData.2013.6691724.

116. L. G. Valiant. A bridging model for parallel computation. Commun. ACM,
33(8):103–111, Aug. 1990. ISSN 0001-0782. doi: 10.1145/79173.79181. URL
http://doi.acm.org/10.1145/79173.79181.

117. G. J. Voss K and V. der Auwera G. Full-stack genomics pipelining with gatk4
+ wdl + cromwell, 2017. URL https://doi.org/10.7490/f1000research.

1114631.1.

118. J. Wang, D. Crawl, I. Altintas, and W. Li. Big data applications using workflows
for data parallel computing. Computing in Science Engineering, 16(4):11–21,
July 2014. ISSN 1521-9615. doi: 10.1109/MCSE.2014.50.

119. S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn. Ceph:
A scalable, high-performance distributed file system. In Proceedings of the 7th
Symposium on Operating Systems Design and Implementation, OSDI ’06, pages
307–320, Berkeley, CA, USA, 2006. USENIX Association. ISBN 1-931971-47-1.
URL http://dl.acm.org/citation.cfm?id=1298455.1298485.

120. B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small, J. Zelenka,
and B. Zhou. Scalable performance of the panasas parallel file system. In
Proceedings of the 6th USENIX Conference on File and Storage Technologies,
FAST’08, pages 2:1–2:17, Berkeley, CA, USA, 2008. USENIX Association. URL
http://dl.acm.org/citation.cfm?id=1364813.1364815.

121. M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and I. Foster.
Swift: A language for distributed parallel scripting. Parallel Computing, 37(9):
633–652, 2011.

122. K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S. Owen,
S. Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher, J. Bhagat, K. Belhajjame,
F. Bacall, A. Hardisty, A. Nieva de la Hidalga, M. P. Balcazar Vargas, S. Sufi,
and C. Goble. The taverna workflow suite: designing and executing workflows
of web services on the desktop, web or in the cloud. Nucleic Acids Research, 41
(W1):W557, 2013. doi: 10.1093/nar/gkt328. URL +http://dx.doi.org/10.

1093/nar/gkt328.

123. K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S. Owen,
S. Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher, J. Bhagat, K. Belhaj-

164

http://doi.acm.org/10.1145/79173.79181
https://doi.org/10.7490/f1000research.1114631.1
https://doi.org/10.7490/f1000research.1114631.1
http://dl.acm.org/citation.cfm?id=1298455.1298485
http://dl.acm.org/citation.cfm?id=1364813.1364815
+ http://dx.doi.org/10.1093/nar/gkt328
+ http://dx.doi.org/10.1093/nar/gkt328


jame, F. Bacall, A. Hardisty, A. Nieva de la Hidalga, M. P. Balcazar Var-
gas, S. Sufi, and C. Goble. The taverna workflow suite: designing and exe-
cuting workflows of web services on the desktop, web or in the cloud. Nucleic
Acids Research, 41(W1):W557–W561, 2013. doi: 10.1093/nar/gkt328. URL
http://nar.oxfordjournals.org/content/41/W1/W557.abstract.

124. A. Woodard, M. Wolf, C. Mueller, N. Valls, B. Tovar, P. Donnelly, P. Ivie,
K. H. Anampa, P. Brenner, D. Thain, K. Lannon, and M. Hildreth. Scaling
Data Intensive Physics Applications to 10k Cores on Non-Dedicated Clusters
with Lobster. In IEEE Conference on Cluster Computing, 2015.

125. W. Wu, A. Bouteiller, G. Bosilca, M. Faverge, and J. Dongarra. Hierarchical
dag scheduling for hybrid distributed systems. In 2015 IEEE International
Parallel and Distributed Processing Symposium, pages 156–165, May 2015. doi:
10.1109/IPDPS.2015.56.

126. M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark:
Cluster computing with working sets. In Proceedings of the 2Nd USENIX Con-
ference on Hot Topics in Cloud Computing, HotCloud’10, pages 10–10, Berkeley,
CA, USA, 2010. USENIX Association. URL http://dl.acm.org/citation.

cfm?id=1863103.1863113.

127. M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing. In Proceedings of the 9th
USENIX conference on Networked Systems Design and Implementation, pages
2–2. USENIX Association, 2012.

128. M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng,
J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker,
and I. Stoica. Apache spark: A unified engine for big data processing. Commun.
ACM, 59(11):56–65, Oct. 2016. ISSN 0001-0782. doi: 10.1145/2934664. URL
http://doi.acm.org/10.1145/2934664.

129. Y. Zhao, J. Dobson, L. Moreau, I. Foster, and M. Wilde. A notation and system
for expressing and executing cleanly typed workflows on messy scientific data.
In SIGMOD, 2005.

130. C. C. Zheng and D. Thain. Integrating Containers into Workflows: A Case Study
Using Makeflow, Work Queue, and Docker. In Workshop on Virtualization
Technologies in Distributed Computing (VTDC), 2015.

This document was prepared & typeset with pdfLATEX, and formatted with
NDdiss2ε classfile (v3.2017.2[2017/05/09])

165

http://nar.oxfordjournals.org/content/41/W1/W557.abstract
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://doi.acm.org/10.1145/2934664

	Abstract
	Contents
	Figures
	Tables
	Acknowledgments
	Chapter 1: Introduction
	1.1 Scientific Workflows
	1.2 Methods for Improving Workflow Flexibility
	1.3 Overview of this Dissertation
	1.4 Example Applications

	Chapter 2: Related Work
	2.1 Static Workflow Systems
	2.1.1 Workflow Specification Languages

	2.2 Dynamic Workflow Systems
	2.3 Batch Computing Systems
	2.4 Resource Provisioning and Management
	2.4.1 Storage Management

	2.5 Environment Re-Creation
	2.6 Makeflow and Work Queue

	Chapter 3: Dynamic Workflow Expansion
	3.1 Introduction
	3.2 Galaxy
	3.3 Dynamic Job Expansion
	3.4 Example Application
	3.5 Design Considerations
	3.5.1 Dependency Management
	3.5.2 Remote Execution
	3.5.3 Garbage Collection

	3.6 Opportunities
	3.6.1 Expression of Job Status
	3.6.2 Checkpoints and Partial Failure

	3.7 Evaluation
	3.8 Conclusion

	Chapter 4: Static Analysis and Dynamic Management of Workflow Storage
	4.1 Introduction
	4.2 Definition of Files and Storage in Workflows
	4.3 Storage Management Components
	4.4 The Storage Footprint
	4.5 Example Workflows
	4.6 Static Analysis Algorithm
	4.6.1 Limitations

	4.7 Dynamic Storage Management
	4.7.1 Dynamic Storage Algorithm
	4.7.2 Worked Example
	4.7.3 Impact of Local Storage

	4.8 Overall Evaluation
	4.8.1 Configuration

	4.9 Conclusions

	Chapter 5: An Algebra for Robust Workflow Transformations
	5.1 Introduction
	5.2 Challenges in Transforming Workflows
	5.3 An Algebra of Workflow Transformations
	5.3.1 Notation
	5.3.2 Semantics
	5.3.3 Transformations as Functions
	5.3.4 Applying the Sandbox Model

	5.4 Transformations in Practice
	5.4.1  Composability versus Commutability 
	5.4.2 Command Description
	5.4.3 File List Management
	5.4.4 Resource Provisioning
	5.4.5 Environment Elaboration

	5.5 Applications of Transformations
	5.5.1 Sandbox Transform
	5.5.2 Container Transform
	5.5.3 Resource Monitoring Transform
	5.5.4 Environment Transform
	5.5.5 Failure Handling Transform

	5.6 Case Studies
	5.6.1 Resource Usage in a Container
	5.6.2 Failure Analysis
	5.6.3 Complex Software Configuration

	5.7 Conclusion

	Chapter 6: Applying Static Techniques to Dynamic Workflows
	6.1 Introduction
	6.2 Jetstream
	6.3 Portable Reproducible Environments
	6.3.1 Machine Images
	6.3.2 Container Images
	6.3.3 Deployment Services
	6.3.4 VC3
	6.3.5 Deploying MAKER

	6.4 Scalability
	6.4.1 MAKER's MPI Behavior
	6.4.2 WQ-MAKER
	6.4.3 Scaling Up vs Scaling Out

	6.5 Exposing Execution Feedback
	6.5.1 Clean Environment Builds
	6.5.2 Deploying Workers
	6.5.3 Evaluate Performance
	6.5.4 Diagnosing Errors

	6.6 Evaluation
	6.7 Conclusion

	Chapter 7: Continuously Divisible Jobs
	7.1 Introduction
	7.2 Contributions
	7.3 Challenges
	7.4 Continuously Divisible Jobs
	7.4.1 Operations
	7.4.2 Abstract Jobs
	7.4.3 Job Coordinators
	7.4.4 Design Considerations
	7.4.4.1 File Partitioning
	7.4.4.2 Job Namespaces
	7.4.4.3 Execution Sandbox
	7.4.4.4 Job Ordering


	7.5 Virtual File Abstraction
	7.5.1 Operations on Virtual Files
	7.5.1.1 Indexing
	7.5.1.2 Partitioning
	7.5.1.3 Index Look-up
	7.5.1.4 Instantiate
	7.5.1.5 Serialization


	7.6 Implementation
	7.6.1 Example Continuously Divisible Job Application
	7.6.2 Virtual Files

	7.7 Results
	7.7.1 Dynamic Sizing
	7.7.2 Virtual File Effectiveness
	7.7.3 Tiered Sizing

	7.8 Conclusion

	Chapter 8: Conclusions and Broader Impact
	8.1 Recapitulation
	8.2 Future Work
	8.2.1 Continuously Divisible Jobs
	8.2.2 Nested Workflows and Transformations

	8.3 Impact: Software and Publications

	Bibliography

