
1

LANDLORD: Coordinating Dynamic Software
Environments to Reduce Container Sprawl

Tim Shaffer∗, Thanh Son Phung∗, Kyle Chard†, Douglas Thain∗
University of Notre Dame∗ and University of Chicago†

✦

Abstract—Containers provide customizable software environments that
are independent from the system on which they are deployed. Online
services for task execution must often generate containers on the fly to
meet user-generated requests. However, as the number of users grows
and container environments are changed and updated over time, there
is an explosion in the number of containers that must be managed,
despite the fact that there is significant overlap among many of the
containers in use. We analyze a trace of container launches on the
public Binder service and demonstrate the performance and resource
usage issues associated with container sprawl. We present LANDLORD,
an algorithm that coalesces related container environments, and show
that it can improve container reuse and reduce the number of container
builds required in the Binder trace by 40%. We perform a sensitivity
analysis of LANDLORD using randomized synthetic workloads on a high-
energy physics (HEP) software repository and demonstrate that LAND-
LORD shows benefits for container management across a wide range of
usage patterns. Finally, we compare LANDLORD to offline clustering, and
observe that the continuous churn in software necessitates an online
approach.

1 INTRODUCTION

Containers are becoming the solution of choice for describ-
ing and distributing customized software environments.
Technologies such as Docker [1] and Singularity [2] are in-
creasingly used to deploy complex applications at different
computing sites, without requiring that each software pack-
age be manually installed at each site. Container images be-
ing (by design) completely self-contained greatly simplifies
management and deployment, but also limits opportunities
for sharing common components. Much in the same way
that a statically linked executable contains a full copy of
each library used, container images necessarily include a
complete set of dependencies.

For complex and multi-tenant applications, on-demand
generation of containers is no longer a constant, static over-
head when setting up applications; it is rather a dynamically
varying and resource-intensive part of the application in-
frastructure, requiring management as a first-class activity.
Adding new users, updating applications, and executing in
different environments all require the creation, distribution,
and storage of containers with the necessary dependencies
for a set of tasks. Over time, these containers multiply: as
a user’s workload evolves, different tasks need different
software (with versions changing regularly as packages are
updated), and new containers are generated. Creation of a
specialized container environment for a given task (which
often takes minutes before task execution can begin) is one

of the biggest hurdles in providing responsive service to
users. In addition, related containers share many elements
so a significant amount of storage may be wasted due to
logical duplication resulting from container sprawl.

Most container-based services are implemented with an
architecture like Figure 1. Here a container service is respon-
sible for handling requests and constructing containers to
satisfy those requests. After creation, the container is stored
in a container cache and then transferred to local storage
on a compute node, for example on a cloud instance or a
High Performance Computing (HPC) node, for execution.
Containers are typically cached to service repeated requests.

We developed the LANDLORD algorithm to take ad-
vantage of high-level information about the functionality
of a container rather than the particular build steps or
container contents. The key insight for LANDLORD is that
a container may include a superset of a task’s dependency
requirements, which (with appropriate choice of packages)
would allow a single container to satisfy the requirements
of multiple tasks. LANDLORD merges compatible require-
ments from multiple tasks rather than building and main-
taining many task-specific containers. LANDLORD takes an
incremental approach, considering only the current service
request against the currently materialized containers, and
allocating the container with the closest similarity metric.
This makes LANDLORD effective in practice as an online
resource management tool.

Based on logs of container launches from the online
Binder service, we found that employing LANDLORD to
manage the set of cached containers resulted in a 20%
decrease in I/O activity along with increased re-use of pre-
viously built containers, with the total number of container
builds reduced by up to 40%. In addition, we prepared a
synthetic workload based on high energy physics (HEP) ap-
plications to examine LANDLORD’s sensitivity to workload
and application requirements. We demonstrate that LAND-
LORD can provide benefits over a wide range of operating
conditions. Finally, we examine the quality of containers
maintained by LANDLORD over time by comparing the
container hit rate of LANDLORD to an offline clustering
algorithm, which shows that LANDLORD is a more stable
and robust solution to the problem of container sprawl. This
work is an extension of a previous conference paper [3] that
analyzes an additional application workload and explores
LANDLORD’s use in large scale serverless applications.



2

4. Transfer

Compute 
Node

python=3.7
numpy>=1.16
pandas

Job

Container 
Service

(Landlord)

python
├3.9.6
├3.9.5
├3.9.4
├3.9.3
└...

numpy
├1.21.1
├1.21.0
├1.20.3
├1.20.2
└...

parsl
├1.1.0
├1.0.0
├0.9.0
├0.8.0
└...

...
Package Repo

python
3.5.1
parsl
1.1.0
coffea
0.7.5

1. Request

2. Download

3. Prepare container    
(build/match/merge)

Local 
Storage

python
2.6.2

pyyaml
3.04

boto3
1.8.6

python
3.7.0

numpy
1.21.1
pandas
1.1.5

python
3.5.1

parsl
1.1.0

coffea
0.7.5

Container Cache

Fig. 1: Container Service Architecture.
In an on-demand container-based application, user jobs include a
set of software requirements, given to a Container Service. The
service may download packages from a global software repository
to build a new container or identify an existing container that
satisfies the dependency requirements. Either the container service
or the compute system will then transfer the image to a compute
node in a cloud/cluster. LANDLORD is an algorithm that can be
used by a service to manage container images.

2 BACKGROUND

The container has become a widely deployed tool for cre-
ating isolated, portable execution environments for com-
plex applications. A container image is a filesystem image
constructed from a declarative specification that indicates
a sequence of actions necessary to construct the image.
Docker [1] is a widely used example of a container man-
agement system, consisting of a local server that manages
the container lifecycle, and a cloud service that permits pub-
lishing and sharing of container images. However, Docker
is not widely deployed in the HPC context because its
local service requires the use of node-local storage and
elevated privileges. Instead, several alternative technologies
have emerged, including Singularity [2], Shifter [4], and
CharlieCloud [5], which make use of shared distributed
filesystems for storage.

In these various forms, container technologies have be-
come an integral building block for various services, ap-
plications, and computing paradigms: •High Performance
Computing (HPC) and High Throughput Computing
(HTC) applications often use containers in place of eso-
teric module and filesystem-based methods for configur-
ing environments. Unlike persistent services, HPC/HTC
workloads are expressed as a stream of discrete jobs, where
each job may be associated with a pre-built container for
execution. Some systems provide optimized container de-
ployment mechanisms to avoid overloading the file sys-
tem. HPC/HTC systems are used by many users and thus
present opportunities for sharing containers to optimize
performance.
•Multi-tenant web services like Binder, JupyterHub, and
WholeTale [6] use containers to create customized execution
environments for their users. These services dynamically

create containers based on stated dependencies and in some
cases by capturing environment changes by users.
•Container orchestration systems such as Kubernetes [7]
allow users to declaratively define the high-level ser-
vices/components of applications, while the orchestration
layer manages the concrete resources (persistent storage,
container instances, etc.). To aid in managing software envi-
ronments in containers, Kubernetes package managers such
as Helm [8] can instantiate specific versions of each soft-
ware component and clean up outdated containers. These
systems are often shared by many users with overlapping
container definitions.
•Workflow systems, such as Parsl [9], and workflow lan-
guages, such as CWL [10], use containers to provide a
common execution environment for tasks. While workflows
typically operate on behalf of a single user, or small group
of users, they may be composed of calls to different tasks
with different environment requirements. This requirement
presents an opportunity for container sharing.
•Function as a Service (FaaS) systems depend on contain-
ers to establish the environment for function execution. FaaS
is an ideal use case for container sharing as environments
are intentionally opaque, services are shared by many users
with overlapping requirements, and FaaS providers aim to
serve requests rapidly. Systems like funcX [11] are designed
to use a container service to create containers on behalf of
users, and deploy containers to compute nodes on-demand
for function execution.

3 THE PROBLEM OF CONTAINER SPRAWL

We define container sprawl as follows: given a large (and
probably growing) number of tasks that require many
overlapping software dependencies, creating a container
to fulfill each task’s requirements will lead to a combi-
natorial explosion in the number of distinct containers in
use. As mentioned previously, container images do not
allow for sharing components as is possible with local
installations, site-wide modules, or copy-on-write filesys-
tems. Instead, each container carries complete copies of
all components. In the naı̈ve case, each variation in task
requirements results in the creation of a whole new con-
tainer. In this scenario many identical copies of common
base components and dependencies are stored across a
set of similar but non-identical container images. In our
container workload, for example, users wrote 505 distinct
version specifications for the popular Numpy package.
These specifications could be potentially complicated range
requirements (numpy<1.20.0,>=1.18.0), exact builds
(numpy==1.18.4=py37h8960a57_0), or they may lack
any version information at all (simply numpy). A single
version of Numpy could satisfy all three of the above ex-
amples, though a naı̈ve approach to container management
would prepare a different container for each of the three
requirements. Since each task-specific variation exists as a
completely separate container, coarse-grained caching does
little to alleviate this duplication. Only tasks with identical
sets of requirements can reuse existing containers. This pro-
liferation of container images to the point of management
difficulty is well known along with the related phenomenon
for VMs called “image sprawl” [12].



3

4 CONTAINER MANAGEMENT CHALLENGES

For any choice of container management scheme, there is
some non-trivial management cost. This could be in the
form of time and manual effort on the part of individual
users, or a portion of the system’s compute and storage
resources used to create, manage, or cache containers. We
briefly review several naı̈ve solutions and outline why they
fail to address requirements.

Imperfect Solution: Caching. The simplest approach is
to cache containers such that they can be redeployed quickly
without creation overheads. This approach has low per-task
overhead, and tasks and requirements may be updated as
frequently as desired. At large scale, however, the overall
system efficiency suffers. Due to duplication of packages
among images, the cache must store many identical copies
of common base packages. To support a given workload, it
becomes necessary to provision a cache much larger than
the size of any repository. With the software repositories
examined in this work consuming several terabytes of stor-
age, the amount of cache space required grows quickly. In
the case of an extremely well-provisioned system, it might
be possible to retain every image. For large-scale and high-
throughput computing the total size of applications and
data can often grow to consume any available resources, so
most effectively utilizing available resources is key. Thus
it is necessary to balance management costs against system
compute and storage constraints. When supporting multiple
users with a potentially large number of container images,
simply adding storage capacity to accommodate each user
or application is not a sustainable solution over the life of
a system [13]. Rather, it would be preferable to make better
use of what site storage is available by reducing unnecessary
duplication among container images.

Imperfect Solution: Full-repo Images. Rather than con-
sidering the precise requirements for each task, another way
to reduce the number of containers in use is to place an
entire software repository into a single image, which can
then support a large number of tasks. A complete copy
of the Python Package Index (PyPI) would be over 300,000
packages (with nearly 2.8 million released versions of those
packages) and consume approximately 8.8 TB (at the time
of writing). Unfortunately, this approach is likely to exceed
a number of practical limits on container size. Individual
worker nodes may have limited local disk space and be
unable to store large container images. Even if the large con-
tainer fits, it is likely that a given task does not need all of the
repository simultaneously, so it is wasteful to transfer un-
needed data. This concept is a driving influence on projects
like Slacker [14]. It also becomes prohibitively expensive
to update and transfer such large container images. The
US collaboration of the ATLAS, ALICE, and CMS projects
have experimented with CVMFS applications on computing
resources at various supercomputers in the United States
including Cori at NERSC [15]. When full-repo images were
built and scaled out onto a large number of nodes inside
the NERSC infrastructure, the entire process of generating
the image and distributing it to compute nodes took around
24 hours, making it difficult to deploy up-to-date versions
of the software on a regular basis. In addition, the process
requires the administrators’ manual involvement in image

creation, deployment, and cleanup. As additional projects
want to take advantage of the resources at NERSC, the
administrative burden of managing multiple CVMFS im-
ages on multiple software versions increases accordingly.
Taking this approach negates the flexibility and hands-off
administration that containers were intended to provide.

Imperfect Solution: Layering. Docker allows container
environments to be composed from reusable image lay-
ers. Docker can take advantage of modern filesystems like
BTRFS [16] that provide efficient snapshots and transparent
sharing of files and directories between different revisions.
As a practical matter, Docker is generally not available in
HPC environments for administrative and security reasons.
Likewise, guest users at large sites do not generally have
the ability to directly manipulate file system snapshots or
export/load local filesystem volumes. More conceptually,
layering images addresses a different problem than the issue
at hand. With Docker, base images can be extended and
refined over time by appending layers. When preparing to
run external computing tasks, however, we must compose
a set of largely independent pieces to fit specific task re-
quirements, without any particular ordering relationship to
previous images. It is therefore difficult to map this set of
semi-independent pieces into a linear sequence of refine-
ments that will fit future tasks. Furthermore, since layer-
based deduplication can only operate on identical layers,
any modification requires storing the complete contents of
the layer (and all subsequent layers, since the identity of
a layer depends on its parents). This leads to significant
duplication in practice, with 97% of files stored within layers
on the publicly accessible DockerHub being duplicates [17].
Content addressable storage has been proposed as a solution
to this issue [18], but requires substantial changes to the
container infrastructure and is not compatible with static
disk images required in HPC environments.

Imperfect Solution: Block Deduplication. Another po-
tential avenue to address container sprawl is data dedu-
plication for disk images. The virtualization community
has developed a number of solutions for efficiently dedu-
plicating disk images [19] and running virtual machines
with many incremental changes [20]. There has also been
extensive research on deduplication [21], [22] of filesystem
data [23], [24] and disk blocks [25], [26]. These techniques
can be quite effective for container deduplication at the
block level [27], as it is not difficult to identify duplicated
files or blocks within container images. However, we lack
the means to combine the extraneous copies; each container
image by design contains complete copies of all data, and
sharing of data across images is not possible for users of
the system. Container images are concretely stored as files
that may need to be frequently transferred between different
sites or uploaded to cloud computing environments. Block
deduplication only works with deep integration with the
low-level storage infrastructure at a single site, and therefore
places significant limitations on storage infrastructure.



4

Given: Cached container image collection I
Input : Container specification s, maximum

container size m, similarity cutoff α
Result: Suitable container image satisfying

specification s
// Conflicts have infinite distance
C ← {i ∈ I | s ⊆ i ∧ d(s, i) ∈ R} ;
if C ̸= ∅ then

// An existing image satisfies s
return argmini∈C d(s, i);

end
D ← {i ∈ I | d(s, i) < α ∧ size(Merge(s, i)) < m} ;
if D ̸= ∅ then

// Merge with closest image
m← argmini∈D d(s, i) ;
return Merge(s,m);

end
// Couldn’t re-use or merge
return Insert(s);

Algorithm 1: LANDLORD Algorithm

5 THE LANDLORD ALGORITHM

LANDLORD is an algorithm for managing a container store
which makes online decisions to efficiently satisfy the de-
pendency requirements for submitted requests. Rather than
viewing a container as a sequence of shell commands to
build layers or as a collection of arbitrary files, LANDLORD
treats a container simply as an artifact that satisfies a set of
requirements. It is therefore possible to check if an existing
container satisfies a different set of requirements, or to
combine sets of requirements to produce multi-functional
containers. LANDLORD’s main pseudocode and operations
are shown in and Algorithm 1 and Figure 2, respectively. As
each request to execute a task arrives, we consider whether
the request is compatible with any existing container. If so,
that is counted as a cache hit and the container is used to
execute the task. On a cache miss, the distances between
the request and all existing containers are measured using
distance metric d(a, b), where incompatible requirements
are represented as an infinite distance. The choice of metric
is discussed in section Section 5.3. If no container is within
a critical distance α, then a new container is inserted to
satisfy the current request. Otherwise, the request is merged
with the closest compatible container by adding the min-
imal packages needed to satisfy the request. If inserting
or merging a container would overflow the available con-
tainer cache space, then the least recently used container
is removed. The result is that each request is satisfied by
a sufficient container, and multiple requests may share a
common container.

5.1 Container Management as Clustering

The problem of container management can be viewed as
a variation on the general problem of clustering, shown in
Figure 3. Briefly, the system considers a set of requests, each
consisting of one or more constraints upon software pack-
ages. Multiple requests that are ”close” may be gathered
together into a cluster that can be described by the union
of the package constraints. These constraints are solved (if

r3

Hit Miss and Insert Miss and Merge

⍺1

⍺2⍺

Time

r1 r1 r1

r2 r2

Fig. 2: LANDLORD Fundamental Operations
Hit: A new request r1 (green circle) is satisfied by a cached

container (red square), so no further action is required. Miss and
Insert: A new request r2 is too far from all other containers
(distance > α) so a new container is created. Miss and Merge:
A new request r3 is close to an existing container so it is merged
into the closest container, taking the union of the requirements
from both.

possible) into a concrete list of packages that is then used to
materialize one container image. The goal of the container
management system is to find a suitable clustering, subject
to two opposing constraints: each individual container must
be small enough to deploy to an individual cluster node,
and the sum of the sizes of all containers must fit in the
shared cache space. However, there are several complicating
factors that prevent the straightforward application of a
conventional clustering algorithm:

1) The system must respond to requests in a timely
way as they arrive. This requires an online algorithm that
addresses both request similarity as well as cache resource
constraints. To provide an acceptable service to interactive
users, the total work for a single request must be bounded
and limited to resources relevant to that specific request. A
given user making a request should not ”pay” the cost of
operations that provide no benefit to that user.

2) The available operations that can be performed on
containers are limited and relatively expensive. The man-
ager may create a new container from a specification, merge
new packages into an existing container, or delete an unused
container. However, there is no fundamental capability to
”transfer” packages from one container to another, short
of deleting and recreating containers to effect the transfer.
These operations may move GBs of data and take minutes.

3) Both the stream of requests and the state of the pack-
age repository evolve over time, as new packages become
available and of interest to users. As a result, it is not gen-
erally possible to determine compatibility of specifications a
priori, because they may have incompatible implied depen-
dencies. Instead, it is necessary to evaluate the requests at a
given point in time to determine compatibility, consulting
the package repository to determine if packages actually
exist that satisfy logically compatible requirements. In prac-
tice, change in specifications and software repositories over
time is significant; our prior study of this dataset found that
due to changes in the software repository, containers became
out of date on average ten days after they were built [28].



5

A>5
B=2

A<=8
B=2

A
B

5<A<=8
B=2

A=6.22
B=2.0.1
C=17.0

A=6.22
B=2.0.1
C=17.0

Requests
Container

Specification Solution

RepoCluster

Fig. 3: Clustering Container Requests
Similar requests for packages may be clustered together, re-

sulting in a common specification. The available packages in the
software repository are used to generate a solution listing a set of
concrete packages. The packages from the software repository are
combined to build a usable container. The final container contents
will constrain future merges with new requests.

5.2 Package-Level Coordination

Rather than treating each container as a black box of arbi-
trary files, we can consider it as a set of packages drawn from
a package repository. While a build script gives a sequence
of steps to produce a final container image, it does not give
information about the desired properties of the resulting
image. If we were building images by layering, there would
be very limited options for optimizing storage or safely de-
termining whether an existing image can be reused. Rather
than trying to recover information from build scripts or
previously built images, the specifications used to construct
them offer higher-level information about their functional
characteristics and more opportunities for management and
optimization. Specifications provide minimal requirements
that an image must fulfill without specifying anything about
the exact image contents.

Specifications afford another opportunity to a container
management system: unlike build scripts or recipes, it is
possible to automatically manipulate or combine specifi-
cations. Since LANDLORD operates by composing sets of
requirements, it is possible to add to or adjust a specification
while guaranteeing that the requirements of a request are
satisfied. A composite specification can be formed by first
taking the union of all requirements from two or more
specifications, then taking the intersection of all sets of
versions for each repeated requirement name. For instance,
Figure 3 shows the outcome of composing three different
specifications into one. This kind of composite image could
be used in place of any of its constituent specifications, since
it meets the minimum requirements given in each. Note that
in some cases, incompatibilities among requirements (e.g.,
packages or versions) make combination impossible.

While caching and merging specifications give a mecha-
nism to reduce unnecessary duplication among stored con-
tainer images, we still do not know which specifications to
merge. Choosing randomly or by order of task submission,
for example, is liable to join specifications with little in
common. This would increase the sizes of images to be
transferred among worker nodes, while doing little for de-
duplication. Instead, we want to merge specifications with

many common components. We now introduce a simple
metric for similarity between specifications that LANDLORD
uses to automatically manage an image store, with a tunable
parameter controlling how aggressively to reduce duplica-
tion and increase storage utilization.

5.3 Similarity Metric
A key requirement in improving storage behavior for a col-
lection of container images is the ability to quickly identify
containers that are “similar” as candidates for optimization.
Rather than examining the containers themselves, we will
compare the specifications used to generate them. We chose
the weighted Jaccard distance under appropriate choice
of set elements as it has several desirable properties for
grouping sets of packages and is simple to compute. When
working with package repositories, each package is usually
assigned a name/version string that is defined to be unique
within the repo. Public package repositories generally sup-
port explicit version constraints, so two specifications may
include constraints that cannot be simultaneously satisfied.
For LHC applications this is a non-issue, since CVMFS is
append-only and all previous versions remain available. For
other sources of software (e.g., Python package repositories),
we represent conflicting requirements as an infinite distance
between specifications. As discussed in Section 5.1, we are
not concerned with the particular version strings (as long
as they are compatible, i.e. there exists a package version
satisfying all constraints). We therefore consider only the set
of package names and their storage sizes (weights) when
computing distances between compatible specifications.

For sets A and B, the weighted Jaccard distance dj is:

dj(A,B) = 1−
∑

i∈(A∩B) sizei∑
i∈(A∪B) sizei

When considering container sprawl as a clustering problem
as discussed in Section 5.1, the weighted Jaccard distance
serves as a metric on the collection of all finite sets of
packages. This metric captures several desirable properties
when dealing with specifications. First, the weighted Jaccard
distance considers specifications with significant storage
overlap to be close. This results in similar specifications
being grouped together. Second, the inclusion of unrelated
components increases the weighted Jaccard distance be-
tween two sets. In the case of a full-repo image for example,
there would be overlap with any given specification. The
large number of other packages included in the full-repo
image, however, would cause the weighted Jaccard distance
to become large for specifications that require only a few
small-sized packages. This naturally penalizes bloated con-
tainers which are expensive to create, update, and transfer.
In addition, a constant-time approximation of the Jaccard
metric (MinHash [29]) is available for making an efficient
first pass at selecting similar images when the number of
packages or components is large.

The fundamental operation for LANDLORD’s storage op-
timization strategy is merging container specifications that
are “close enough”. Using the weighted Jaccard distance
metric, we can quickly identify cached specifications that
are similar to a new request. To decide if two specifications
are “close enough” to optimize, we define the parameter α



6

as the maximal weighted Jaccard distance between closely
related specifications. Since weighted Jaccard distance is by
definition between 0 and 1, α must be in the same range.
This α parameter is something like the “globbiness” of the
system. Using the α parameter, we can define a simple
algorithm for managing and optimizing a central image
store.

Choosing α near zero requires that specifications are
extremely similar before considering them for merging. In
the extreme case with α = 0, only identical images will
be considered close, so no images will be merged. This
corresponds to a simple cache without LANDLORD’s opti-
mization. Choosing α to be larger makes it more likely for
images to be considered similar and merged. This results
in more augmented images that serve multiple tasks. In the
extreme case of α = 1, every pair of images is considered
close and merged if possible. This results in large container
images that accumulate many specifications. Using the α
parameter, it is possible to continuously vary between these
two extreme behaviors.

It is important to note that while specifications consist
of package names and version constraints, generating an
image from a specification requires selecting a concrete
version for each package requirement. Thus building the
same specification at a later time might result in a different
selection of concrete package versions. This does not present
a problem for LANDLORD, since we retain the original speci-
fications. Thus it is always possible to check whether a given
concrete image satisfies the requirements of a specification,
and to select concrete packages that satisfy the union of re-
quirements from merged specifications (or find that no such
package exists and the specifications are thus incompatible).
Our previous research [28] found that version specifications
are quite lax in practice, making it easy to find overlapping
and compatible selections of package versions.

A potential issue with this automatic merging strategy is
“bloated” images that accumulate infrequently used depen-
dencies and increase overhead indefinitely for future tasks.
The weighted Jaccard distance gives a natural way to cap-
ture and address this effect. As an image becomes bloated
due to repeated merges, its distance from any individual
request increases. After sufficient growth, the image will
become too far from any request to be considered. Without
regular use, the bloated image will eventually be evicted
from the cache. Choice of α therefore places an upper limit
on the amount of undesirable bloat in images. Later, we
examine the effect of the α parameter by simulating image
management over a large number of application requests.

Figure 4 shows as an example a single simulation of
LANDLORD with α = 0.75 and cache size of 1.4 TB process-
ing 250 HEP tasks. First, we note that most of the operations
are merges. This is to be expected, due to the high α value.
The total bytes written also closely tracks merges, indicating
that merging is the dominant source of I/O. We still see
inserts over the course of the simulation. At more extreme α
values, we expect to see one of these operations dominate.
As the data in cache continues to rise, the set of containers
eventually reaches the cache limit, after which the delete
count increases. Over the course of the simulation, inserts
and deletes are filling and emptying the cache such that
it remains close to its storage limit. We also observe the

 0

 20

 40

 60

 80

 100

 0  50  100  150  200  250
 0

 1

 2

 3

 4

 5

 6

 7

C
ou

nt

S
iz

e 
(T

B
)

Requests

Merges
Bytes Written (TB)

Inserts
Cached Data (TB)

Hits
Deletes

Fig. 4: Behavior of a single simulation.
The x axis shows the number of requests handled so far (the actual
time for container creation and application run is not available).
Here the cache is filling during the first ∼125 container launches,
then containers are deleted to meet the storage limit.

number of cache hits continue to rise despite deletions. As
we will see, merging allows for a greater proportion of hits
even if the amount of data remains constant, due to de-
duplication. The cache limit then ensures that infrequently
used parts are eventually removed.

5.4 Deployment of LANDLORD

We designed LANDLORD to allow for flexible deployment,
either as an end user or an infrastructure provider. Since
individual users may need to run tasks across many sites
and will need to work without special privileges, the most
straightforward way to employ LANDLORD is as an au-
tomated step during task submission. The first step is to
prepare a specification for each task. In the simplest case, the
user explicitly provides this information by annotating each
task or providing a specification file. Alternatively, a work-
flow system might automatically generate container envi-
ronments in order to portably execute tasks across remote
resources by inspecting the enclosing software environment.
Users then set up their particular task submissions to wrap
invoked tasks with LANDLORD. On task submission, LAND-
LORD first scans its configured cache for existing images that
are “close” to the task’s specification, creates/updates im-
ages in the cache as necessary, and finally launches the task
inside the prepared container. LANDLORD first observes or
infers the package dependencies of submitted applications,
then generates the execution environment needed by each
application. As required, it creates, merges, or deletes con-
tainer images in order to balance the total storage consumed
by containers against the size of individual containers.
LANDLORD allows for a limit on the total storage used, and
removes the least recently used images (an LRU eviction
policy) to free up space when necessary as a result of an
insert or merge. As a future extension, more sophisticated
caching policies [30] may be able to achieve better cache
performance, but LANDLORD’s design does not depend on
the particular policy.

While a user-level approach is a good fit for a sin-
gle unprivileged user, administrators may wish to employ



7

LANDLORD for site-wide container management such as a
Binder-like service or even a batch system. The same core
functionality of LANDLORD can easily be adapted into a
plugin for a site’s batch system, where the system carries out
the same per-task steps as above for each task submission.
In addition to batch systems, there are other situations
where LANDLORD’s approach is applicable. With a pilot
job system, for example, users are effectively operating a
“user-level scheduler”. Users could use this same approach
to connect LANDLORD to transparently optimize container
storage without requiring application changes. The Binder
service could also employ LANDLORD as a sub-component,
where the main service hands off each notebook launch to
LANDLORD to optimize via merging or reuse, if possible,
before performing the actual build. Other container-based
systems like WholeTale would likewise integrate LAND-
LORD in a straightforward manner as part of the container
build process without requiring architectural changes.

6 CONTAINER-BASED WORKLOADS

To evaluate LANDLORD, we simulated the operation of a
container service employing LANDLORD under two dif-
ferent workloads, 1) a large-scale, predominantly Python
Binder execution trace; and 2) a synthetic HEP workload
using software dependencies from a large mixed repository.

6.1 Binder Workload

Binder [31] is an online service that allows users to
launch interactive browser-based notebook applications.
Users specify a Git repository, DOI, or other supported
format which contains software specifications and/or static
data to be included in the notebook environment. On re-
ceiving a user request, the public Binder service prepares to
launch a container using JupyterHub [32] on one of several
cloud compute backends. The repo2docker [33] tool exam-
ines the specifications given in the source repository, then
carries out any necessary build steps to produce a Docker
container for the repository. Each computing backend caches
previously built Docker containers for a short period of
time, so that if another notebook is requested using the same
source repository the cached container can be used. After
the build, a container with Jupyter notebook is launched and
connected to the user’s browser. Individual sites also use the
BinderHub [34] software to provide interactive notebooks
using local compute resources, like a cluster.

Logs of notebook launches on the public Binder service
are periodically published [35], which include the time of
each launch and the specific repositories requested. In pre-
vious work [28], we downloaded the repositories referenced
in the logs to in order to collect the actual software specifica-
tions requested for each notebook launch. Using these soft-
ware specifications, we can replay the sequence of notebook
launches to examine usage patterns and caching on a real,
large-scale workload with 18 million container launches.
A cursory analysis of these Binder containers provides a
number of interesting insights. First, software environments
specified by users are generally not completely specified. A
large proportion of container environments (55%) include
one or more packages without any version constraints.

The contents of such environments thus depend on when
the container is prepared. This does, however, afford some
flexibility in selecting package versions.

Second, the usage patterns of containers observed on
Binder are far from uniform. The top 10 containers make
up 65% of observed launches. Most of these popular con-
tainers are demo or example notebooks featured on the
websites of projects or software tools, including IPython,
JupyterLab, and spaCy. The most popular container, a demo
notebook linked on the Jupyter website, accounted for 35%
of launches by itself. We also note a very long tail: while
some containers were only launched once, many of the
containers were launched occasionally over a long period
of time, indicating a large working set to be kept in cache.

Finally, we observed a large amount of duplication
among the Binder container environments. Popular pack-
ages like Numpy or Python itself appeared in the majority of
containers, with each container necessarily storing a distinct
copy of these packages. Further, some of the popular pack-
ages (especially machine learning frameworks like Tensor-
flow) actually consist of a large number of subcomponents
and bring with them a large set of dependencies. We thus
observed a high degree of duplication of the data in cache
during our simulations.

Our full analysis in [28] includes a more in-depth exam-
ination of the Binder workload and the software environ-
ments in use. In addition, the dataset we compiled based on
this workload is available at [36].

6.2 High Energy Physics Workload

The Worldwide LHC Computing Grid (WLCG) consists of
more than 170 computing centres in 42 countries, which
provide 1.5 exabytes of storage and around 1.4 million CPU
cores. During normal operation the WLCG runs over 2
million tasks per day, with global data transfer rates over
260 GB/s. [37]. The CernVM File System (CVMFS) [38]
filesystem is used to publish the software used by all of
the major LHC experiments at computing sites around the
world. Researchers at CERN use CVMFS as the primary
means of distributing the analysis and simulation software
they develop to the WLCG. Each experiment maintains a
repository of current and previous software versions, allow-
ing stable and uniform access to large software collections
that vary over time. For reproducibility and reliability of
results, it is important that the same applications run at
all sites across the globe, and that all previous versions of
application code be available and usable when needed.

The upcoming High Luminosity upgrade to the LHC
is expected to increase the amount of data generated by
a factor of thirty [39], so the WLCG is working to greatly
expand its computational capacity through algorithmic im-
provements, use of accelerators and specialized hardware,
and leveraging additional computing resources. HPC re-
sources are an appealing source of computing power to
supplement the WLCG, but HPC sites often impose re-
strictions on network activity and system configuration,
preventing WLCG tasks from running directly on HPC
resources. Containers offer a potential means for importing
software environments to HPC sites without the CVMFS
infrastructure available at WLCG sites. CVMFS retains all



8

Minimal Image Full-Repo Image
alice-gen-sim 6.0 GB 450 GB
atlas-gen 2.7 GB 4.8 TB
atlas-sim 7.6 GB 4.8 TB
cms-digi 8.4 GB 8.8 TB
cms-gen-sim 6.1 GB 8.8 TB
cms-reco 7.3 GB 8.8 TB
lhcb-gen-sim 3.7 GB 1.0 TB

Fig. 5: Benchmark applications for LHC experiments.

historical versions to ensure reproducibility and backwards
compatibility, making simple garbage collection impossible.
Since transferring the entire container repository for every
task is prohibitively expensive, it is necessary to create tai-
lored images based on a required subset of the full software
repository. There are a number of potential approaches to
work around the explosion in task-specific images but none
are satisfactory.

We consulted with the developers of CVMFS as well
as HEP researchers at our university collaborating with
CERN to determine how current users interact with CVMFS.
We expect significant variability in files accessed and total
size among different users and experiments. We nonethe-
less observed that certain core components are used near-
universally. While multiple versions and variations might
exist, these components have a very high likelihood of
appearing in every container image. These components
correspond to the base frameworks, setup scripts, calibra-
tion data, etc. needed for most tasks. Based on anecdotal
evidence from WLCG researchers, we expect to see these
components in a large proportion of tasks across all sim-
ulated tasks from different users and experiments. There is
also a large set of components that must be available and are
used in some applications, but which are very rarely used
overall. It is important to make these “long tail” components
available to researchers, but it would be wasteful to include
them universally when they are rarely used.

Figure 5 shows several container-based LHC benchmark
applications [40]. Here gen (generation), sim (simulation),
digi (digitization), and reco (reconstruction) are phases
of the experiment pipelines, with each phase running as
a separate workflow. Minimal Image indicates the size
of the container image that includes only the subset of
the repo needed to run that particular workflow, while
Full-Repo Image gives the size of the experiment’s entire
software repository, which falls in the range of terabytes.
Note that while these measurements give a rough idea of
task requirements, there is substantial variation in WLCG
jobs in production. The CMS experiment for example runs
more than 1,200 unique workflows carrying out the general
phases above, with many different software builds, versions,
and customization [41].

7 EVALUATION

Both workloads take the form of a stream of tasks to be
launched, with each task carrying some set of software
requirements. For our evaluation, the container service is

responsible for preparing a container environment satisfy-
ing each task’s software requirements. Software packages
directly required by tasks can themselves depend on ad-
ditional packages. Thus to prepare a complete container
environment, the container build process must assemble the
set of the direct and indirect dependencies. To determine
both the dependencies of software packages and metadata
such as the package sizes, we collected package metadata for
the repositories used in both workloads (PyPI and Conda
repositories for the Binder workload, and build metadata
from CVMFS packages for the HEP workload). To simulate
a workload, we processed each task launch in turn, recur-
sively collecting any software dependencies and passing the
complete dependency list to LANDLORD, which built a new
container, merged with an existing one, or identified an
existing container satisfying the requirements.

7.1 Binder Workload

Sweeping Over α. To evaluate the behavior of LANDLORD,
we simulated the results of optimizing the container cache
for a large, varied workload. Starting from an empty con-
tainer cache, we replayed the Binder dataset at varying
choices of α. This dataset gives a sequence of container
launches, along with the software environment required for
each container. We are therefore able to compare the cache
performance and I/O overhead as a result of LANDLORD’s
merging strategy. Our goal in this evaluation is therefore to
choose α so as to minimize the storage and compute costs
associated with maintaining a collection of images.

Sweeping over the range of α values (in steps of 0.05),
we can immediately see differences in the frequency of
simulated operations. Figure 6a shows the upper range of
α values where behavior differences appear. From the lower
α values on the left, the insert and delete counts are the
primary (or only) operations, with number of hits relatively
constant. This corresponds to a simple LRU-based cache.
The insert count is slightly higher due to cache filling, but
the two tend to move in lockstep (in the figures the two
nearly overlap). As α increases, image merges become more
frequent. The merge count steadily increases throughout
most of the upper range, while inserts and deletes decrease.
This suggests that at high α values, the cache space would
be more efficiently used, with some of the duplication
merged out. In the extreme case with α = 1, every request
is merged if possible, hence the reduced number of misses
and predominance of merges at the far right of Figure 6a.

Overhead of LANDLORD. Under LANDLORD’s ap-
proach, we use compute and I/O capacity during task
submission in order to improve utilization of storage space.
With excessive merging, however, this additional I/O cost
can become prohibitively expensive. To quantify this com-
putational and I/O overhead, we used package repository
metadata to estimate the cumulative amount of data writ-
ten over the course of simulated cache operation. We use
cumulative write size as a metric for overhead/latency
that is independent of specific hardware or disk perfor-
mance. Figure 6c shows the amount of data written during
simulations over a range of α values. “Required I/O” is
the total amount of data actually requested by each task
over the course of the simulations. Note that a cache hit



9

 0

 20

 40

 60

 80

 100

 120

 0  0.2  0.4  0.6  0.8  1

C
ou

nt
 (

th
ou

sa
nd

s)

Alpha

Inserts
Merges
Deletes
Misses

(a) Total Cache Operations

 0

 20

 40

 60

 80

 100

 0  0.2  0.4  0.6  0.8  1

G
B

Alpha

Unique Data
Total Data

(b) Estimated Duplication in Cache

 0
 5

 10
 15
 20
 25
 30
 35

 0  0.2  0.4  0.6  0.8  1

T
B

Alpha

Required Writes
Actual Writes

(c) Estimated I/O Overhead

Fig. 6: Binder workload over a range of α values
Note that in Figure 6a the number of deletes and inserts is too close to distinguish. Compared to the length of the Binder workload, the
time spent filling the container cache is negligible. The delete count therefore very closely tracks the insert count when presenting only
the total operations at the end of the workload.

would not require any I/O, so that even when replaying
the same workload, differing cache performance changes
the required I/O. “Actual I/O” is the total amount of data
written to cache over the course of simulations. The actual
I/O is greater than what was requested by the user because
LANDLORD includes additional packages in containers as
part of its merging behavior. This measurement is simply
the sum of the data written for each insert and merge. If, for
example, an image were evicted and then re-inserted later
in a simulation, then the cost of generating and writing the
image would be added again.

Without merging (low α), the actual I/O in the system
closely follows the required I/O. For a simple cache, these
two metrics would be identical. As α increases, the effects
of updating and merging images become apparent. We
first note that the required I/O falls as α increases. This
is because a greater proportion of task requests can be
fulfilled directly from the cache. Since more of the requests
can be satisfied by previously merged images in the cache
the system needs to handle fewer misses, which leads to
a corresponding decrease in the required I/O and latency
as a result of container builds. From the perspective of the
system, this is beneficial as a larger proportion of tasks can
be handled with no extra time or compute cost. For latency
sensitive applications like interactive notebooks, maximiz-
ing the hit rate may be desirable even at the cost of increased
compute. Figure 7 highlights this tradeoff: increasing α
initially leads to decreasing miss rate and I/O overhead.

At higher α, however, we see another trend. Each time
a merge occurs, the resulting image must be written out in
its entirety. Thus when merges are frequent at very high α,
some data will be written and re-written many times to sat-
isfy new task requests. Thus while extremely high α makes
better use of available storage space, LANDLORD introduces
a significant amount of overhead in the form of repeated
I/O operations. At the far right of Figure 7, the actual I/O
increases well above that of a naı̈ve cache configuration.
Despite the decreased number of container builds, the size
of each container grows large enough to result in a net
increase in I/O. Since a merge entails rebuilding a container
image in its entirety, frequently merging large containers
becomes prohibitively expensive.

Appropriate choice of α thus gives administrators a way
to improve utilization of available storage and reduce total
I/O using LANDLORD. Figure 7 suggests a wide range of α

 0

 20

 40

 60

 80

 100

 120

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
 0

 5

 10

 15

 20

 25

 30

 35

More Responsive
(Falling Miss Rate)

Increased IO Overhead
(Excessive Container Size)

C
ou

nt
 (

th
ou

sa
n
ds

)

T
B

Alpha

Misses
Bytes Written

Fig. 7: User responsiveness under LANDLORD

values that result in decreased I/O cost and reduced miss
rate over the course of the Binder workload. Even at high
α where the actual I/O increases, the frequency of cache
misses in Figure 6a continues to fall to its minimum at
α = 1. For situations where minimizing latency is important
(e.g., interactive computing), it is reasonable to pay this
additional overhead in order to minimize cache misses.

While LANDLORD achieves definite improvements in
responsiveness and storage utilization on the Binder dataset,
certain properties of that workload are particularly favor-
able to LANDLORD’s design. First, there is a very high de-
gree of reuse of certain individual Binder containers. In that
dataset, the median number of times a given container was
launched was only 2 times, but the most popular containers
were launched hundreds of thousands of times. There is
also a high degree of overlap among the the packages that
users requested in Binder containers. Common packages
like Numpy and Python itself occur in most container spec-
ifications, and despite the dataset containing approximately
150,000 unique container specifications, there were only a to-
tal of around 10,000 different packages requested (not count-
ing distinct version requirements). LANDLORD therefore
had ample opportunities to perform optimizations. Finally,
conflicting version constraints in the container specifications
meant that it is not possible to merge containers indefinitely.
If two container specifications request different versions of
the same package, there is no way to satisfy both require-
ments and therefore the specifications cannot be merged.
The user-provided specifications, therefore, naturally limit



10

 0

 500

 1000

 1500

 2000

 2500

 0  0.2  0.4  0.6  0.8  1

C
ou

nt

Alpha

Inserts
Deletes
Merges
Misses

(a) Total Cache Operations

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0  0.2  0.4  0.6  0.8  1

S
iz

e 
(G

B
)

Alpha

Unique Data
Total Data

(b) Duplication of Data in Cache

 0

 50

 100

 150

 200

 250

 0  0.2  0.4  0.6  0.8  1

S
iz

e 
(T

B
)

Alpha

Actual Writes
Requested Writes

(c) Cumulative I/O Overhead

Fig. 8: HEP workload over a range of α values

container bloat and prevent pathological behavior such as
repeatedly merging the entire workload into one massive
container (with enormous accompanying I/O overhead).

7.2 High Energy Physics Workload
We performed a sensitivity analysis using simulated high
energy physics (HEP) tasks to evaluate LANDLORD’s worst-
case behavior, and to demonstrate LANDLORD’s application
to a non-Python software repository with markedly differ-
ent organization than the Python repositories used in the
Binder workload. This simulated workload differs from the
Binder dataset in a number of key ways. First, tasks in the
simulated dataset had uniform launch frequency. This forces
LANDLORD to handle a very large “working set” of contain-
ers. Second, package selections for containers were selected
at random from the available CVMFS repositories. This
ensures that any overlap between containers is due entirely
to common dependencies inherent in the software collection
rather than bias in application or workload. Finally, CVMFS
software packages are organized such that containers can
include an arbitrary selection of packages without conflict.
We therefore have the possibility of merging all task require-
ments into one large container. While real workloads are
much closer to the Binder dataset discussed earlier, this anal-
ysis allows us to explore extremes in LANDLORD’s behavior
and shows that employing LANDLORD does not worsen
performance even under extremely unfavorable conditions.
Using randomly generated specifications also allows us to
demonstrate that LANDLORD is not suitable for compacting
arbitrary collections of data, but is specifically suited to
reducing duplication among software packages that share
overlapping dependencies.

Simulating HEP Tasks.
For each simulated request, we chose a random selection

of packages and then added any dependencies, repeating
until we collected the complete set of packages and depen-
dencies (i.e. the closure of the package dependencies). This
image simulation scheme captures the structure inherent
in the software collection, in that packages in addition to
those requested are automatically included so as to ensure a
functional image. The initial selection of packages, however,
is simply uniformly random. To evaluate the effects of
container contents, we also generated completely random-
ized images consisting of packages chosen in a uniform
random way without regard for dependency relationships.
To ensure that total size (or at least total number of pack-
ages) is comparable to images generated by the previous
method, for this approach we started with an image request

generated via the previous scheme (uniform random core
selection with dependencies added). We considered only the
total number of software packages in the resulting image,
and then chose the same number of packages uniformly
randomly from the entire repository, ignoring package de-
pendencies. While images generated in this way are very
unrealistic, they allow us to isolate the effect of dependency
relationships among packages. By comparing results with
random images to those with the previous image generation
scheme, we can compare the general case of containers as
collections of arbitrary data to the specific focus of this
work, i.e. containers with selections of software packages
with dependency relationships.

To generate an image for a simulated task request, we
randomly made an initial selection of up to 100 packages.
We then used one of the two schemes (dependency tree-
based or random) to expand the initial selection into a
full image. Repeating this procedure, we created streams
of container specifications for simulated tasks.

Since our simulation uses random simulated requests,
there is variability between individual simulations. Thus for
a given choice of cache size, task count, etc. we repeated the
simulation 20 times and reported the median behavior over
the runs. The bands in the plots of storage utilization show
the standard deviation over the runs. At each choice of α
(in steps of 0.05) we performed a set of 20 simulated runs,
allowing us to plot various measurements of the system
versus α. Figure 8 shows operational metrics for cache
management in the HEP workload.

Metrics for Cache Utilization. When sweeping over the
range of α values, there are a number of metrics available
to summarize each simulation run. Many, however, are
highly coupled with the particular workload and system
configuration, and difficult to compare as we vary the
parameters of the simulations. Simply comparing cache hit
rate with results for the Binder dataset, for example, would
not be meaningful due to the stark difference in degree of
container contents and reuse. In addition, storage use and
I/O overhead for the Binder workload are only estimates
based on package metadata for the Python repositories. The
repositories used in the HEP workload provide exact storage
and I/O information, allowing us to focus more strongly
on the cache and container contents. We therefore chose to
define two metrics, cache efficiency and container efficiency,
to indicate the effective utilization of the container storage
independent of system configuration.

We defined cache efficiency as the ratio of unique data to
total data in the cache. In our case, this is equivalent to the



11

 0

 20

 40

 60

 80

 100

 0  0.2  0.4  0.6  0.8  1

C
o

nt
ai

ne
r 

E
ffi

ci
en

cy

Alpha

1x Repo Size
2x Repo Size
5x Repo Size
10x Repo Size

(a) Container efficiency vs. cache size

 0

 20

 40

 60

 80

 100

 0  0.2  0.4  0.6  0.8  1

C
ac

he
 E

ffi
ci

en
cy

Alpha

1x Repo Size
2x Repo Size
5x Repo Size
10x Repo Size

(b) Cache efficiency vs. cache size

 0

 20

 40

 60

 80

 100

 0  0.2  0.4  0.6  0.8  1

C
on

ta
in

er
 E

ffi
ci

en
cy

Alpha

100 tasks
500 tasks
1000 tasks

(c) Container efficiency vs. unique task count

 0

 20

 40

 60

 80

 100

 0  0.2  0.4  0.6  0.8  1

C
ac

he
 E

ffi
ci

en
cy

Alpha

100 tasks
500 tasks
1000 tasks

(d) Cache efficiency vs. unique task count

Fig. 9: Effects of Simulation Parameters on System Efficiency

ratio of the size of the unique packages to the total cache size
taken from Figure 6b and Figure 8b. If many images contain
copies of the same packages, the cache efficiency decreases.
This metric captures duplication within the cache across all
images. With no merging there is a high degree of duplica-
tion, so the cache efficiency is low. On the other end of the
spectrum, maintaining a single, large image containing all
data results in cache efficiency of 100%, because nothing is
duplicated.

We defined container efficiency as the ratio of the size
of the requested container (a set of requested packages plus
all dependencies) to the size of the container the system
actually used for the task. In the absence of merging, these
two are equal so the container efficiency is 100%; tasks are
run with exactly what was requested. By merging to allow
for image reuse, we include additional, unrequested data
in container images. The container efficiency measures this
difference between requests and containers. In the extreme
case of α = 1 with a single large image, for example, the
container efficiency is poor because the entire repository is
used for every request, regardless of size. These two extreme
cases, no merging among many images and a single merged
image, can both be useful in some situations. Rather than
defining where these limits fall, we discuss choosing limits
and compare our two application workloads in Section 8.

Sensitivity Analysis. In Figure 9, we plot efficiency
curves for a range of simulation conditions. The left column
shows container efficiency, while the right column shows
cache efficiency. In the first row, the number of tasks and
the amount of repetition are constant while the cache size is
varied. In the second row, the number of unique requests is
varied with the other parameters constant.

The size of the cache has an inverse relationship with
both the container and cache efficiency. As seen in Figure 9a

and Figure 9b, a larger cache can of course hold a larger
number of images, but since each image contains significant
duplicated portions, increasing cache size tends to decrease
cache efficiency. Conversely, small caches more quickly evict
images so that ineffective merges tend not to remain in cache
too long. A larger cache also allows for more opportunities
to merge images, leading to decreased container efficiency.
When deciding how to handle a request, a large cache full
of images is much more likely to contain an image suitable
for merging. With a small cache, opportunities to merge are
much more dependent on the order of requests.

The effect of varying the number of unique tasks is less
pronounced than the effect of cache size. As seen in Fig-
ure 9c and Figure 9d, streams of 500 and 1000 unique tasks
show nearly indistinguishable behavior, indicating that by
500 tasks the system has reached a steady state. Continuing
with an arbitrarily long stream should not result in signifi-
cant performance changes. However, 100 unique tasks were
not sufficient to fill the cache and reach a steady state. In
this case the container efficiency is slightly decreased over
α, suggesting that some ineffective merges had not made
their way out of the cache. Cache efficiency in this case is
slightly increased. This would suggest that before reaching a
steady state, the cache contents are more assorted and some
unnecessary data remains cached.

Effects of Package Dependencies. Figure 10 shows a
representative simulation with both dependency-based and
random synthetic image types included. In the purely ran-
dom case, there is no correlation between different images.
Thus, it is much more difficult to find images similar enough
to merge until the α value is very lax. This would indicate
that our merging strategy is not applicable to arbitrary col-
lections of data. Random images show little to no effect for
most α values. Our merging strategy, which takes advantage



12

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0  0.2  0.4  0.6  0.8  1

E
ffi

ci
en

cy

Alpha

Deps. (Cache)
Random (Cache)

Deps. (Cont.)
Random (Cont.)

Fig. 10: Impact of dependencies on duplication.
The Cache and Container efficiencies of the two image types are
plotted together, showing how randomized image contents greatly
reduce the efficacy of LANDLORD.

 50

 60

 70

 80

 90

 100

 0  0.5  1  1.5  2  2.5  3  3.5  4

C
on

ta
in

er
 h

it
 r

at
e 

(%
)

Number of requests over time (in millions)

Landlord
AGNES

Fig. 11: LANDLORD vs. Periodic Offline Clustering
Because of the continuous variation in the workload, the quality of
the offline cluster is initially high but decays quickly. LANDLORD
used α = 0.7. Every 10% of the dataset the clusters were
recomputed based on the most recent 5%.

of duplicated content included as a result of dependencies
in software, would be ill advised for situations that are
not known to follow similar patterns of duplication. Even
with random task requests, the tree structure of package
dependencies is produces pronounced duplication in the
cache, leaving room for optimization.

7.3 Comparison with Offline Clustering

It is natural to consider whether better results could be ob-
tained by periodically performing a complete global cluster-
ing of requests using an offline algorithm. As a comparison
point, we choose AGNES [42], a classic approach to hierar-
chical clustering. AGNES first treats all points as singleton
clusters. Then at each subsequent iteration, it determines
the centroids of all clusters, computes all pairs of distances
between these centroids, and if possible groups two nearest
clusters into one. The eventual outcome is a tree structure
culminating in one cluster at the top. The algorithm can
terminate early if a desired number of clusters or other
global constraint is reached.

AGNES is a natural counterpart to LANDLORD, because
it makes use of the same fundamental operations on con-
tainers, which may be created, merged, or deleted, but not

arbitrarily changed. A few adjustments are needed to apply
AGNES to the container management problem. First, LAND-
LORD immediately resolves a request into a concrete con-
tainer. For example, it may resolve python=* to python=3.6
or python=3.7, depending on when each request arrives. In
contrast, AGNES considers many requests at once, clusters
them together, and then resolves the cluster into a concrete
container. Thus, more information is taken into account for
each container. Secondly, a full application of AGNES on
n nodes requires considering all O(n2) distances at each
step to find the closest pairs to merge, which is prohibitively
expensive. To reduce this cost we instead sample 10K dis-
tance pairs at each step, and select the closest. Third, naive
AGNES will result in at least n iterations corresponding to n
merges of clusters, as each merge removes two clusters and
adds a new one. This combining with the sampled pairs of
distances also introduces a high computational cost, thus we
cap the maximum number of iterations to 1,000 to avoid this.
(A parameter study shows increasing iterations to 2000 only
increases the average hit rate slightly from 94.6% to 94.9%)
Finally, since the container cache has a physical storage
limit, we need a way to detect and pick useful or popular
clusters (each of which eventually realizes to a container)
once the clustering process finishes. To do this, we define the
popularity of each cluster to be the sum of the frequencies
of the unique requests in that cluster and continually add
the containers materialized from those clusters having the
highest popularity until the cache is full.

Figure 11 compares the performance of LANDLORD
against periodic offline clustering with AGNES, on the
entire Binder dataset. Both algorithms warm their caches up
with the first 20% of the dataset. The LANDLORD algorithm
is run as normal, with each request being processed as
it arrives and incrementally updating the container cache.
AGNES, on the other hand, operates on statically generated
clusters and treats any request not satisfied by a cached
container as a miss (requiring the requested container to
be built and inserted). AGNES periodically clears its cache
every 10% of the dataset and reclusters using the most recent
5% (most recent 200K events). The percent hit rate is shown
over time. As can be seen, LANDLORD maintains a hit rate in
excess of 98%, while periodic offline clustering with AGNES
results in a briefly higher hit rate that falls off quickly as
the request mix evolves. The fall in AGNES’ container hit
rate is significantly steeper in the interval (2.5, 3) due to an
update to the Jupyter Lab package used in a popular demo
repository. This shows that a drastic change in package
specifications of popular requests could degrade the perfor-
mance of an offline algorithm, where as LANDLORD is more
robust to these frequent changes. From this, we conclude
that an offline clustering algorithm – even if superior to
AGNES– would not be suitable for this problem space
because of the rapid evolution of the requests and software
environment. Furthermore, each epoch of clustering would
require a very large expense to reconstruct (and cache) the
entire set of containers corresponding to the new clusters
discovered.



13

8 TUNING ALPHA

We close by discussing the considerations for a user or
infrastructure provider employing LANDLORD in practice.
Constraints at each site such as the amount of scratch
storage available for caching container images and upper
bounds on the computational cost to prepare each container
ultimately dictate the viability of any particular approach.
LANDLORD provides a good deal of flexibility to match the
properties of a given execution site and workload(s).

Across both the Binder trace and our simulations, we
found that the choice of α was not particularly important,
as long as it falls within a wide “operational zone” (0.65 to
0.95). Despite noticeable variation in efficiency for Binder
due to sampling from only one workload, trends in LAND-
LORD’s behavior are still visible. Figure 12 shows that choos-
ing extreme values of α results in a large number of overlap-
ping container images or excessive overhead creating and
updating massive images. These extremes correspond to
the naı̈ve approaches discussed previously, i.e. many single-
use containers or a single all-purpose container, respec-
tively. Choosing α anywhere within the operational zone
strikes a reasonable balance between storage utilization and
overhead. A new application employing LANDLORD should
choose a moderate α (e.g. 0.8) to start, with finer tuning
possible to meet specific application or site requirements. A
moderate choice of α allows LANDLORD to avoid extremely
poor behavior in either direction, without attempting to
attain “optimal” performance. LANDLORD thus offers a
lightweight mechanism to avoid cases of pathologically
poor performance.

The compute and transfer cost in the highly merged
case and the cache efficiency in the unmerged case, serve
as limits on the viable range of α values for a system and
its users/applications. Figure 12 highlights the operation of
LANDLORD at varying α, serving as a guideline we have
found to be applicable across a variety of applications.
Moving from the left side of the graphs, the miss rate of the
cache begins to fall significantly. Choosing α too low results
in higher job latency than necessary and makes poor use
of available storage. On the right, the likelihood of merging
increases. As shown in Figures 6c and 8c, the amount of I/O
and compute to update images becomes much larger if α is
set too high. Applications/workloads that prioritize latency
would be best served by setting α as high as possible,
though setting α = 1 may result in excessive overhead,
especially in the absence of other constraints (e.g. package
version conflicts) that limit merging. There is no general rule
for the placement of these limits, which depends strongly
on the performance characteristics of the execution envi-
ronment, as well as the priorities of the administrators in
optimizing the system.

9 CONCLUSIONS AND FUTURE WORK

Large-scale and multi-tenant applications based on con-
tainer technologies must increasingly treat on-demand gen-
eration of containers as a dynamically varying and resource
intensive part of application infrastructure, requiring man-
agement as a first-class activity. The mechanisms available
to dynamically create and manage containers, however,
lead to container sprawl without careful management and

 0

 20

 40

 60

 80

 100

 0  0.2  0.4  0.6  0.8  1

P
er

ce
n

t 
E

ffi
ci

en
cy

Alpha

Cache
Container

(a) Binder Workload

 0

 20

 40

 60

 80

 100

 0  0.2  0.4  0.6  0.8  1

P
er

ce
nt

 E
ffi

ci
en

cy

Alpha

Cache
Container

(b) HEP Workload

Fig. 12: Efficiency of LANDLORD.
Note that since CVMFS packages for the HEP workload cannot
have version conflicts, LANDLORD is able to produce one giant
container at very high α, hence the sharp jumps in efficiencies.
Version conflicts among packages prevent this effect in the Binder
workload.

monitoring, and alternatives like static clustering of depen-
dencies are not suited to varying application workloads. We
analyzed two large-scale container-based application work-
loads and demonstrated how LANDLORD, despite being a
simple algorithm with a single tunable parameter α, can
improve container reuse and application latency across a
range of conditions and application usage patterns. Our
analysis shows that LANDLORD’s behavior is not highly
sensitive to choice of α, and as future work it may be
possible to extend LANDLORD to automatically respond to
poor system utilization by tuning α appropriately.

ACKNOWLEDGEMENTS

This work was supported by NSF grant OAC-1931348 and
a DOE Graduate Computer Science Fellowship.



14

REFERENCES

[1] D. Merkel, “Docker: Lightweight Linux Containers for Consistent
Development and Deployment,” Linux J., vol. 2014, no. 239,
Mar. 2014. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2600239.2600241

[2] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity: Scientific
containers for mobility of compute,” PLOS ONE, vol. 12, no. 5, pp.
1–20, 05 2017.

[3] T. Shaffer, N. Hazekamp, J. Blomer, and D. Thain, “Solving the
Container Explosion Problem for Distributed High Throughput
Computing,” in International Parallel and Distributed Processing
Symposium, 2020, doi: 10.1109/IPDPS47924.2020.00048.

[4] D. M. Jacobsen and R. S. Canon, “Contain this, unleashing docker
for hpc,” Proceedings of the Cray User Group, 2015.

[5] R. Priedhorsky and T. Randles, “Charliecloud: Unprivileged
containers for user-defined software stacks in hpc,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’17. New
York, NY, USA: ACM, 2017, pp. 36:1–36:10. [Online]. Available:
http://doi.acm.org/10.1145/3126908.3126925

[6] A. Brinckman, K. Chard, N. Gaffney, M. Hategan, M. B.
Jones, K. Kowalik, S. Kulasekaran, B. Ludäscher, B. D. Mecum,
J. Nabrzyski, V. Stodden, I. J. Taylor, M. J. Turk, and K. Turner,
“Computing environments for reproducibility: Capturing the
“Whole Tale”,” Future Generation Computer Systems, vol. 94, pp.
854–867, 2019.

[7] “Kubernetes: Production-grade container orchestration,” https://
kubernetes.io/, 2021.

[8] “Helm: The package manager for Kubernetes,” https://helm.sh/,
2021.

[9] Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar,
L. Lacinski, R. Chard, J. M. Wozniak, I. Foster, M. Wilde, and
K. Chard, “Parsl: Pervasive Parallel Programming in Python,” in
28th ACM International Symposium on High-Performance Parallel and
Distributed Computing (HPDC), 2019.

[10] M. R. Crusoe, S. Abeln, A. Iosup, P. Amstutz, J. Chilton, N. Tijanic,
H. Ménager, S. Soiland-Reyes, and C. A. Goble, “Methods In-
cluded: Standardizing Computational Reuse and Portability with
the Common Workflow Language,” CoRR, vol. abs/2105.07028,
2021.

[11] R. Chard, Y. Babuji, Z. Li, T. Skluzacek, A. Woodard, B. Blaiszik,
I. Foster, and K. Chard, “funcX: A federated function serving fabric
for science,” in Proceedings of the 29th International Symposium on
High-Performance Parallel and Distributed Computing, Jun 2020, pp.
65––76.

[12] D. Reimer, A. Thomas, G. Ammons, T. Mummert, B. Alpern, and
V. Bala, “Opening black boxes: Using semantic information to
combat virtual machine image sprawl,” in Proceedings of the 4th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execu-
tion Environments, 2008, p. 111–120.

[13] J. Bent, G. Grider, B. Kettering, A. Manzanares, M. McClelland,
A. Torres, and A. Torrez, “Storage challenges at Los Alamos
National Lab,” in 28th IEEE Symposium on Mass Storage Systems
and Technologies (MSST), April 2012, pp. 1–5.

[14] T. Harter, B. Salmon, R. Liu, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “Slacker: Fast Distribution with Lazy Docker
Containers,” in 14th USENIX Conference on File and Storage Tech-
nologies (FAST 16), 2016, pp. 181–195.

[15] L. Gerhardt, W. Bhimji, S. Canon, M. Fasel, D. Jacobsen,
M. Mustafa, J. Porter, and V. Tsulaia, “Shifter: Containers for
HPC,” J. Phys. Conf. Ser., vol. 898, no. 8, p. 082021, 2017.

[16] O. Rodeh, J. Bacik, and C. Mason, “BTRFS: The Linux B-Tree
Filesystem,” ACM Trans. Storage, vol. 9, no. 3, Aug. 2013.

[17] N. Zhao, V. Tarasov, H. Albahar, A. Anwar, L. Rupprecht, D. Sk-
ourtis, A. K. Paul, K. Chen, and A. R. Butt, “Large-Scale Analysis
of Docker Images and Performance Implications for Container
Storage Systems,” IEEE Transactions on Parallel and Distributed
Systems, vol. 32, no. 4, pp. 918–930, 2021.

[18] H. Fan, S. Bian, S. Wu, S. Jiang, S. Ibrahim, and H. Jin, “Gear: En-
able efficient container storage and deployment with a new image
format,” in 2021 IEEE 41st International Conference on Distributed
Computing Systems (ICDCS), 2021, pp. 115–125.

[19] K. Jin and E. L. Miller, “The effectiveness of deduplication on vir-
tual machine disk images,” in Proceedings of the Israeli Experimental
Systems Conference, ser. SYSTOR ’09, 2009, pp. 7:1–7:12.

[20] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell, P. Patchin,
S. M. Rumble, E. de Lara, M. Brudno, and M. Satyanarayanan,
“Snowflock: Rapid virtual machine cloning for cloud computing,”
in Proceedings of the 4th ACM European Conference on Computer
Systems, ser. EuroSys ’09, 2009, pp. 1–12.

[21] N. Mandagere, P. Zhou, M. A. Smith, and S. Uttamchan-
dani, “Demystifying data deduplication,” in Proceedings of the
ACM/IFIP/USENIX Middleware’08 Conference Companion. ACM,
2008, pp. 12–17.

[22] P. Kulkarni, F. Douglis, J. D. LaVoie, and J. M. Tracey, “Redundancy
elimination within large collections of files.” in USENIX Annual
Technical Conference, General Track, 2004, pp. 59–72.

[23] B. Zhu, K. Li, and R. H. Patterson, “Avoiding the disk bottleneck
in the data domain deduplication file system.” in Fast, vol. 8, 2008,
pp. 1–14.

[24] C. Policroniades and I. Pratt, “Alternatives for detecting redun-
dancy in storage systems data.” in USENIX Annual Technical
Conference, General Track, 2004, pp. 73–86.

[25] P. Nath, M. A. Kozuch, D. R. O’hallaron, J. Harkes, M. Satya-
narayanan, N. Tolia, and M. Toups, “Design tradeoffs in applying
content addressable storage to enterprise-scale systems based on
virtual machines,” management, vol. 7, no. 5, p. 20, 2006.

[26] K. Jin and E. L. Miller, “The effectiveness of deduplication on
virtual machine disk images,” in Proceedings of SYSTOR 2009: The
Israeli Experimental Systems Conference. ACM, 2009, p. 7.

[27] Z. Cao, H. Wen, F. Wu, and D. H. Du, “ALACC: Accelerating
restore performance of data deduplication systems using adaptive
Look-Ahead window assisted chunk caching,” in 16th USENIX
Conference on File and Storage Technologies (FAST 18). Oakland, CA:
USENIX Association, Feb. 2018, pp. 309–324. [Online]. Available:
https://www.usenix.org/conference/fast18/presentation/cao

[28] T. Shaffer, K. Chard, and D. Thain, “An Empirical Study of Pack-
age Dependencies and Lifetimes in Binder Python Containers,” in
IEEE International Conference on e-Science, 2021.

[29] A. Z. Broder, “On the resemblance and containment of docu-
ments,” in Proceedings. Compression and Complexity of SEQUENCES
1997 (Cat. No.97TB100171), June 1997, pp. 21–29.

[30] S. Jin and A. Bestavros, “Popularity-aware greedy dual-size web
proxy caching algorithms,” in Proceedings 20th IEEE International
Conference on Distributed Computing Systems, 2000, pp. 254–261.

[31] Project Jupyter, Matthias Bussonnier, Jessica Forde, Jeremy Free-
man, Brian Granger, Tim Head, Chris Holdgraf, Kyle Kelley,
Gladys Nalvarte, Andrew Osheroff, M. Pacer, Yuvi Panda, Fer-
nando Perez, Benjamin Ragan Kelley, and Carol Willing, “Binder
2.0: Reproducible, interactive, sharable environments for science at
scale,” in Proceedings of the 17th Python in Science Conference, Fatih
Akici, David Lippa, Dillon Niederhut, and M. Pacer, Eds., 2018,
pp. 113 – 120.

[32] Project Jupyter, “JupyterHub,” https://jupyter.org/hub, 2021.
[33] ——, “repo2docker,” https://github.com/jupyterhub/

repo2docker, 2021.
[34] ——, “BinderHub,” https://github.com/jupyterhub/binderhub,

2021.
[35] Mybinder.org events archive. https://archive.analytics.mybinder.

org/. Accessed July 2021.
[36] T. Shaffer, K. Chard, and D. Thain, “Binder Software Environ-

ments,” 2021, doi: 10.5281/zenodo.4891790.
[37] https://home.cern/science/computing/grid.
[38] J. Blomer, P. Buncic, R. Meusel, G. Ganis, I. Sfiligoi, and D. Thain,

“The Evolution of Global Scale Filesystems for Scientific Soft-
ware Distribution,” IEEE/AIP Computing in Science and Engineering,
vol. 17, no. 6, pp. 61–71, 2015, doi: 10.1109/MCSE.2015.111.

[39] The HEP Software Foundation, J. Albrecht, A. A. Alves, G. Ama-
dio, and et al., “A Roadmap for HEP Software and Computing
R&D for the 2020s,” Computing and Software for Big Science, vol. 3,
no. 1, p. 7, Mar 2019.

[40] https://gitlab.cern.ch/hep-benchmarks/hep-workloads.
[41] https://indico.cern.ch/event/759388/contributions/3311664/

attachments/1814435/2964911/hpc production.pdf.
[42] Z.-H. Zhou, Machine Learning. Springer Singapore, 2021.



15

Tim Shaffer received the Ph.D. from Depart-
ment of Computer Science and Engineering at
the University of Notre Dame. He also holds a
master’s degree in computer science from Notre
Dame and bachelor’s degrees in mathematics
and chemistry from Youngstown State Univer-
sity. His research focuses on proactive manage-
ment of storage and software environments for
scientific workflows.

Thanh Son Phung is a Ph.D. student in the De-
partment of Computer Science and Engineering
at the University of Notre Dame. He received his
B.S. in Mathematics and Computer Science from
Trinity College-Hartford. His research focuses on
resource management and scheduling for large-
scale workflow systems.

Kyle Chard is a Research Associate Professor
in the Department of Computer Science at the
University of Chicago. He also holds a joint ap-
pointment at Argonne National Laboratory. He
received his Ph.D. in Computer Science from
Victoria University of Wellington in 2011. He co-
leads the Globus Labs research group which
focuses on a broad range of computer systems
research problems.

Douglas Thain is Professor and Associate
Chair in the Department of Computer Science
and Engineering at the University of Notre
Dame. He received the B.S. in Physics from
the University of Minnesota - Twin Cities and
the M.S. and Ph.D. in Computer Sciences from
the University of Wisconsin - Madison. At Notre
Dame, he studies and created distributed sys-
tems that enable large scale scientific computing
on clusters, clouds, and grids.


