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ABSTRACT
Scientific workflows are typically expressed as a graph of logical
tasks, each one representing a single program along with its input
and output files. A conventional workflow manager transforms
each logical task into a discrete batch job and submits it to an
underlying execution system. However, converting every logical
task into one batch job is not necessarily the most efficient parti-
tioning of a workflow. By grouping multiple logical tasks into a
single batch job, we may decrease data transfer, increase system
utilization, and reduce the execution time of a workflow. This pa-
per presents JX (JSON eXtended), a declarative language that can
express complex workloads as an assembly of sub-graphs that can
be partitioned in flexible ways. We present a case study of using
JX to represent complex workflows for the Lifemapper biodiver-
sity project. We evaluate partitioning approaches across several
computing environments, including HTCondor at the University
of Notre Dame, TACC Stampede2, and SDSC Comet, and show that
a coarse partitioning results in faster turnaround times, reduced
data transfer, and lower master utilization across all three systems.

CCS CONCEPTS
• Software and its engineering→ Specialized application lan-
guages; Distributed systems organizing principles; • Applied com-
puting → Computational biology; • Computer systems organi-
zation→ Cloud computing;
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1 INTRODUCTION
Workflows are a widely-used abstraction for representing simula-
tions, data analyses, and other scientific computations. A workflow
is commonly represented as a directed acyclic graph (DAG) which
provides a static description of a complex pipeline of interdepen-
dent steps called tasks. A workflow management system is used to
parse this complex DAG to submit each task to an execution engine
once that task’s dependencies are met.

The tasks that make up the logical structure of the workflow,
however, do not necessarily align with the requirements of the phys-
ical infrastructure where the workflow executes. A straightforward
approach to structuring a workflow can lead to unexpectedly poor
performance and wasted resources. Grouping tasks into partitions
with coarser granularity can improve the data transfer, overhead,
and other performance characteristics of the workflow, independent
of the results of the computation. Explicitly partitioning the tasks
of the workflow allows for precise control over data movement,
execution, and error handling in each logical part of the workflow.

We developed JX (JSON eXtended) as a language for expressing
workflows that allows for easy manipulations to the structure and
partitioning of a workflow. JX extends a JSON representation of
the workflow by supporting a Python-like syntax for expressions,
allowing for a concise intermediate representation that expands
to a normal JSON document. Using JX, it is easy to treat a subset
of the workflow as if it were an atomic job that can be dispatched
as part of a higher-level application. Templates in JX can expand
to complicated nested workflow structures based on parameters,
allowing flexible changes to a workflow’s partitioning scheme.

We explored schemes for partitioning Lifemapper, a distributed
biodiversity modelling application. As a high-throughput applica-
tion, Lifemapper offers significant freedom in organizing computa-
tion beyond simply following data dependency relationships. We
observed that the granularity at which we distribute pieces of the
workflow has a significant impact on its overall behavior.

We measured the behavior of Lifemapper under two different
partition schemes and ran the application on the TACC Stam-
pede2 [11], HTCondor at the University of Notre Dame [10], and
SDSC Comet [12] execution sites. We observed substantial differ-
ences in performance in terms of execution time and data transfer
between configurations when running on the same execution site.
Across all three computing sites, there were similar trends in re-
duced data transfer and execution time with coarser workflow
partitioning. There is no single rule for partitioning every work-
load, but expressing Lifemapper in JX provided enough flexibility
to quickly match the partitioning scheme to each environment.

Our contributions are twofold: first, we demonstrate how poor
choice of organization for a scientific workflow can result in poor
performance on different execution sites. Second, we introduce
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Figure 1: Fine and coarse partitions of a workflow.
On the left, a fine-grained scheme assigns each task to its own partition.
On the right, coarser partitions group multiple tasks together.

JX as a language for flexibly expressing workflows and illustrate
how we used JX to fit the partitioning of a scientific workflow
to improve performance across several execution sites. Since the
choice of partitioning scheme depends strongly on the particular
application and execution site, JX offers researchers a way to easily
make broad structural changes based on knowledge of the applica-
tion. We demonstrate that effective partitioning can significantly
reduce the amount of data transfer and wasted resources without
negatively impacting the correctness or run time of the application.

2 WORKFLOW PARTITIONING
Workflow partitioning is the process of splitting a workflow graph
into sub-graphs, such that each sub-graph will become a discrete
batch job in the target execution system. The workflow manager
must dispatch each of these jobs to a batch system in a way that
respects the data and control dependencies in the original workflow
graph. The most appropriate partitioning depends on many proper-
ties of the workflow graph, such as the size of data objects and the
execution time of tasks, as well as the performance properties of
the execution system. Partitioning workflow graphs in the general
case is an active area of research [15]. Without defining an “optimal”
strategy, we can approach the problem pragmatically by making
some general observations about the granularity of partitioning.

In principle, a workflow system could partition the graph au-
tomatically. However, such an approach would require accurate
advance information about task runtimes, file sizes, network per-
formance, and other system details. In most production situations,
these details are neither static nor known in advance, so a fully
automatic approach is not practical. Moreover, graph partitioning
is an NP-hard problem [3, 7], so the time costs of determining an
optimal schedule might outweigh the cost of the work to be done.

Further, the problem of workflow partitioning also intersects
with the problems of job placement and scheduling. As workflow
partitions become more coarse, the jobs they generate require more
resources, which reduces the set of execution nodes available to
satisfy the job, which increases queuing time to run the job. In a
similar way, performance may be affected by global system issues
such as peak network capacity, utilization of the master node by
other users, and batch system scheduling efficiency.

For these reasons, we do not seek to find an optimal partitioning
scheme for arbitrary workflows. Instead, we propose a semi-manual
approach in which the workflow writer indicates natural partitions
in the graph by grouping related tasks together. The workflow
manager can then be configured at runtime to treat each partition
as an atomic job or decompose it further into individual jobs. In our
experience, the end user does not often know numerical values for
file sizes and job runtimes but does have some sense of which items
are big vs small or long vs short, which is sufficient to perform a
usable partitioning. This is often robust to changes in workflow
performance with changing job parameters and new datasets. In
Section 4, we give a case study of a specific application, Lifemapper,
in which this semi-manual partitioning is an effective approach.

This method maps well to a hierarchical workflow implementa-
tion. A top-level workflow manager maintains the entire workflow
description with the user-indicated partitions. As the workflow
executes, the top-level manager dispatches either single jobs or sub-
graphs as jobs to the underlying batch system. If a job contains a
single task, then it is executed in the ordinary way. If a job contains
a complex sub-graph, then it is submitted as an invocation of a
workflow manager, given only the relevant sub-graph to execute.
The job is sent to the execution node, where the workflow manager
is invoked to execute the sub-graph using only its local resources. If
the sub-graph expresses concurrency, then it can be used to exploit
the available resources on the execution node. When complete,
only the final results of the sub-graph are returned to the top-level
manager. From the batch system’s perspective, the sub-graph is a
single node job with internal parallelism.

To accomplish this, we must have a workflow representation
that can easily express a partitionable workload and a workflow
management system which is easily invoked in a hierarchical man-
ner. When dealing with an application partitioned in this way, we
expect to repeatedly run workflows that are variations on the same
pattern. Thus we would like a way to express a workflow template
with parameters, e.g. the number of times to split a reference file or
a list of input files to process. We can then use a small set of tem-
plates to define complex workflows and quickly adapt to changes.
The next section describes JX, a workflow language designed to
meet this need that works with the Makeflow [1] workflow system.

3 JX: JSON EXTENDED
JX is a workflow description language based on JSON that supports
variable substitution, basic operators, and list comprehensions. JX
also supports structured parameters, making it easy to pass in
more complicated data such as lists or rule specifications. JX is not
a general purpose programming language, but rather a compact
representation of nested data structures. When all input parameters
are provided and structures evaluated, the result is a static JSON
document representing a set of jobs describing a workflow. JX is
inspired by Python syntax with the intention of making it easily
accessible to a wide variety of programmers.

A motivating use case in designing JX was expressing workflow
specifications in Makeflow, a workflow system for executing large,
complex workflows on clusters, clouds, and grids. Makeflow was
designed to use a Make-like [6] syntax to describe the rules in
a workflow. This format is well-known, compact, and easy for
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novices to write, but it has some limitations. Traditional Make is
very particular about the layout of each rule, requiring specific
whitespace characters to delimit the fields. Filenames containing
whitespace or unusual characters are partially supported at best.
It is also difficult to add additional data or fields to a rule in a
programmatic way, which is needed to handle partitioning and
other workflow transformations.

We designed JX as an alternate workflow representation to be
used in parallel with the traditional Make syntax. Users can write
in either language, or ask Makeflow to automatically convert from
traditional Make into JX. We have found that rather than rewrit-
ing their applications to use a new workflow manager or runtime
library, users often prefer to start with an existing application in
Make syntax and incrementally change to JX as they add param-
eters and factor out repeated patterns. JSON is used as the basis
for JX because it is widely supported and has straightforward rules
regarding quoting and character encoding. JSON can also easily
express complex and nested structures and allows new fields be
added as needed. A single task expressed in JSON looks like this:

{
"inputs": ["japonica.csv"],
"outputs": ["out/japonica.asc"],
"command": "./project japonica.csv"

}

An entire workflow could be expressed as a sequence of plain
JSON records like the above. This might be done if an external script
is used to generate and emit complete workflows. To facilitate hand-
written workflows, we defined several language features that could
be used to express a single compact JX program that can be evalu-
ated into plain JSON. First, JX supports variable substitutions when
expanding a document. Whereas the traditional Make format uses
shell-style string substitution, JX additionally supports structured
values such as numbers and lists. Several common types of oper-
ators, such as arithmetic, comparison, and Boolean, are available.
These operators function the same as in Python. When writing
workflow rules, this allows for simple transformations based on
arguments provided to the workflow specification. We can write
rule patterns that are used with a set of input variables:

{
"inputs": [SAMPLE + ".csv"],
"outputs": ["out/" + SAMPLE + ".asc"],
"command": "./project " + SAMPLE + ".csv",

}

If the value "japonica" is bound to the variable SAMPLE, this
template expands to the previous JSON rule. It is also possible to
pass in an entire list of inputs, for example, so that an external
program can easily modify the connections in the workflow. This
program could be a script passing JSON arguments into the work-
flow, or in the case of nested workflows in Lifemapper it could
be a higher-level workflow communicating the details of a parti-
tion. JX parameters give a flexible way to customize a workflow

specification so that the high-level workflow uses a common tem-
plate for each partition. The concrete sub-workflows only need to
be elaborated at runtime according to the chosen partition. If the
higher-level workflow is also expressed in JX, it becomes possible
to use the same values to both define the high-level workflow and
to pass into each partition. This eliminates the possibility of the
partitions falling out of sync with the rest of the workflow.

For some commonly encountered workflow patterns it is nec-
essary to create a rule for each input file or to produce a range
of outputs like file.1 . . .file.n. To quickly generate a list of
items, JX supports Python-style list comprehensions. Assuming
that the variable SAMPLES contains the list of strings ["japonica",
"arboreum"], we can produce a pair of rules, one for each sample:

[{
"inputs": [s + ".csv"],
"outputs": ["out/" + s + ".asc"],
"command": "./project " + s + ".csv",

} for s in SAMPLES]

Since the connections between tasks in a workflow (inputs and
outputs) are specified as lists, this gives substantial freedom in
programmatically defining the structure of a workflow. In addition,
the workflow itself is primarily a list of rules, making it possible
to expand a large number of rules from a single template. Rather
than passing only numbers or strings, structures such as the list of
inputs of a partition can be passed as arguments, with the workflow
template expanding to create matching rules. As a simple example
of a map-reduce task, consider a workflow that takes a set of N
input files, INPUT.0, INPUT.1, . . . , processes each, and combines
the results into INPUT.out. For any value of INPUT and N:

{"define": {
"TMP": ["out/" + INPUT + "." + i

for i in range(N)],
}, "rules": [{

"outputs": t,
"inputs": basename(t),
"command": "./proj " + basename(t),

} for t in TMP] + [{
"outputs": [INPUT + ".out"],
"inputs": TMP,
"command": "./merge " + join(TMP),

}]}

Here range(), basename(), and join() are built-in functions:
range() returns a list of numbers up to its argument (just as in
Python), basename() strips leading directory components (just as
the shell utility), and join() takes a list of strings and concatenates
them (by default separated by spaces). The first part of this template
defines the list of N intermediate files for the workflow as TMP. Then
for each file in TMP, we add a rule to run ./proj to create the file.
We finally take the entire list TMP as the inputs for the reduce step,
and use that same list to build the command line. This ensures that
the inputs to ./merge always match the outputs of the map rules.
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Combining these features, JX allows us to treat a sub-workflow
as a job. A JX template serves to define the structure of the sub-
workflow subject to some parameters. We can reuse the same defini-
tion to programmatically produce a large number of rules that fit the
concrete arguments to each invocation. For a two-level workflow
scheme as with Lifemapper, we need only two templates: one for
the low-level workflow rules within each partition and one for the
high-level workflow that connects the partitions. We can pass the
chosen partition into the high-level workflow which can expand a
list of pieces into a potentially complicated graph of sub-workflows.
The high-level workflow can then repeatedly expand the partition
template and produce each sub-workflow as it is executed. If the
previous JX template for an example map-reduce workflow is stored
in the file sub.jx, then we can use a higher-level workflow to take
a list of input files, split each into 100 pieces, and process each
group as a sub-workflow. The number 100 is hard-coded here, but
the number of splits could also be a variable to allow for changes.

{"rules": [{
"inputs": [d],
"outputs": [d + "." + i

for i in range(100)],
"command": "./split " + d,

} for d in DATA] + [{
"inputs": [d + "." + i

for i in range(100)],
"outputs": [d + ".out"],
command: "makeflow --jx-define N=100"

+ " --jx-define INPUT=" + d
+ " sub.jx",

} for d in DATA]}

The list of data files to be processed, DATA, could be determined
based on the contents of a directory, or it could be passed in from a
tool or workflow layered above this one. The first pattern defines
a rule for each piece of input data that runs ./split. A recursive
invocation of Makeflow then expands sub.jx to fit each group of
inputs. A more complete application might submit each group of
input files to a batch system to carry out bulk processing on remote
workers. We chose features for JX such as variable substitution and
list comprehensions that, based on our experience working with
scientific applications in Makeflow, capture commonly encountered
features of workflows and allow for flexibility in partitioning and
recursive subdivisions. Lifemapper is an example of a scientific
workload where the features of JX can be put to effective use.

4 LIFEMAPPER
Lifemapper is a biodiversity modelling project based at the Uni-
versity of Kansas. Lifemapper collects geographic and temporal
occurrence data for a large number of species to map biodiversity
across the world. Using climate, terrain, and landcover data, the
project can search for regions where a species is likely to thrive.
Lifemapper also projects future species distributions under different
environmental models. The Lifemapper project offers infrastruc-
ture for biodiversity researchers for running models and organizing
parameters and results. Researchers can use the publicly available

species occurrence data or upload their own. Researchers then
choose a climate model and projected environmental conditions
for the model and submit the requested task via a web interface.

The first part of Lifemapper’s pipeline provides several funda-
mental algorithms for building species niche models. Other parts
of the pipeline use these modelling plugins by calling into an in-
ternal REST API. This portion of the infrastructure uses the open-
Modeller [4] platform for processing museum data to generate a
geospatial data archive of predicted species distributions across the
globe. Running a complete modelling experiment through Lifemap-
per’s pipeline consists of assembling niche modeling experiments,
dispatching them to the openModeller web service, retrieving the
results, and cataloging them so that clients can later retrieve them.
The infrastructure also includes a number of Python components
for handling data formats and connecting components.

Lifemapper offers ample opportunity to parallelize work. Each
modelling experiment is independent, so it is possible to run each
computation pipeline in parallel. Shared reference data is required
at the start of the computation, but there is no communication
among instances during analysis. A modelling experiment consists
of processing a single taxon based on some set of reference data.
The structure of the pipeline for individual taxa is shown in Figure 2.
Since researchers can provide their own queries and occurrence
data, the web frontend needs to be able to generate workflows dy-
namically and trigger their execution. A single workflow would
not be sufficient since the scale of the workflow varies based on
user-provided queries. A simple query might require only a few
tasks, while larger datasets and queries can easily produce tens
of thousands of tasks. Aside from the commands to be executed,
many of the workflow tasks depend on shared reference data. The
Lifemapper project provides a set of reference layers to use, but re-
searchers can also upload their own. Large queries can use gigabytes
of common reference data, though an individual task might require
only a subset consisting of tens to hundreds of megabytes. Thus
the computational pipeline for Lifemapper must be flexible enough
to handle dynamically generated workflows and must efficiently
transfer significant amounts of data among workers.

Lifemapper’s existing infrastructure uses Makeflow as a work-
flow execution engine. Eachworkflow iswritten out as aMakefile by
a Python script connected to the frontend. At first, these generated
scripts were finely partitioned, i.e. they included all the individual
tasks associated with each query. The administrators encountered
difficulty with error handling in this configuration. Some portion
of the tasks in Lifemapper’s pipeline can fail due to mismatched
input data or intermittent problems with the query. Simply retrying
the failed tasks themselves, however, only wastes execution time.
With one large, finely partitioned workflow, it was difficult for the
administrators to identify failing pieces of the workflow. Removing
these pieces and continuing required manual intervention from
the administrators. This implementation nonetheless worked for
processing queries on their local compute resources.

When moving a portion of the computation to another execution
site to take advantage of an XSEDE resource allocation, however, the
administrators noticed poor performance and limited utilization of
the worker pool. Larger queries were causing resource exhaustion
on the master node, while making poor use of the available compute
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Figure 2: Lifemapper queries at three different scales.
Here boxes represent files with arrows connecting to programs, repre-
sented as ovals. Q denotes query data, T denotes tools such as Python
scripts and Java JAR files, R denotes common reference data, and
D denotes output data. The lower workflow (c) shows a small query
against a single data layer for the Heuchera dataset. The next work-
flow (b) shows a larger query against the Saxifragales dataset with
three data layers. At the top (a), we duplicated layers to create a
twelve-layered query against Saxifragales.

nodes. Thus the administrators had to restructure their Lifemap-
per implementation to work with this new computing site. This
involved modifying the setup script to partition the workflow into
multiple pieces and generate a large number of workflow definition
files. The administrators observed marked improved performance
with the coarser partitions. This also aided in error recovery, since
a failing partition could be removed and retried a a whole.

In adapting to multiple execution sites and varying the structure
of the workflow, however, the disadvantages of using generator
scripts became apparent. Either a custom generator script is re-
quired for each site (and these scripts must be kept in sync), or a
single, more complex script can generate workflows for multiple
sites. Adding customizable partitioning and sub-workflows further
adds to the complexity of the script(s). For large-scale scientific
workloads, the size of generated workflows is often too large to
manually read and validate. Thus debugging tends to start with run-
ning the workflow and observing failures. With a growing number
of features and variations to generate, it becomes more difficult to
pinpoint the source of such failures and how they were produced
by the script. The contents of a generator script often bear little re-
semblance to the generated workflows, so debugging or modifying
them requires a significant investment of time to trace potentially
complex logical flows. By expressing workflows in JX, however,

we have templates that directly parallel the structure of the elabo-
rated workflows. It is straightforward to identify how a particular
generated workflow aligns with its template and arguments.

5 LIFEMAPPER IN JX
As one of our goals in designing JX was to allow very flexible
control over partitioning strategy, the first step in implementing
Lifemapper in JX is to consider the range of possible strategies. The
most fine-grained partitioning approach is to break every single
node of the workflow into its own sub-graph and submit that as
a single batch job, as depicted on the left of Figure 1. This is a
conservative configuration and is the normal mode of operating
for most production workflow managers, such as Makeflow [1],
Pegasus [5], and Swift [14], which must seek to correctly execute
arbitrary workflows, often without detailed advance information
about each job. This approach has several advantages: it maximizes
the concurrency of jobs submitted to the target batch system, and it
minimizes the cost of failure, should a single job fail and roll back to
the beginning. On the other hand, it maximizes the amount of data
transfer necessary, because each job must have its data transferred
in and out of the execution node.

A slightly more coarse approach would be to group a small num-
ber of related tasks into one sub-graph, as shown on the right of
Figure 1. Viewing this partition itself as a single batch job, the work-
flow manager only needs to manage the inputs and outputs of the
sub-graph, with the tasks and intermediate files comprising this
sub-workflow handled locally on a worker. This approach would
reduce the concurrency of jobs submitted to the target batch sys-
tem, however each job would effectively become a mini-workflow
with its own internal concurrency that could be exploited on the
execution node. The total amount of data transfer could be reduced
if tasks in the sub-graph shared common input files or if some files
internal to the sub-graph were not needed outside of it.

Taking this idea to its limiting case, we might consider a single
large partition containing the entire workflow in one batch job. A
single large partition results in the absolute minimum amount of
data transfer, while minimizing the concurrency of jobs (in this
case only a single job) submitted to the batch system. Of course,
the single job would be very large, highly concurrent, and very
sensitive to node failures. While this may sound extreme, it may
in fact be a viable strategy for a workflow with large amounts of
internal data transfer if it were assigned to a single large multi-core
machine that is expected to be available for the entire workflow.

For a given workflow run, some partitioning strategy must be
chosen, either manually by the end user or automatically by the
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workflow system. Most production workflow systems take the con-
servative approach of fine-grained partitioning, assuming that it is
better to ensure forward progress rather than seeking better per-
formance via coarser jobs that may fail to run at all. In a manual
approach, the end user could provide grouping information within
or alongside the workflow description, allowing the workflow man-
ager to make partitions without changes to the task definitions.

We chose to compare two partitioning strategies for Lifemapper:
a fine-grained strategy following the original implementation with
each task submitted as a distinct batch job, and a coarse-grained
strategy with multiple taxa processed together. Rather than using
the setup script to write out multiple workflow definitions, we used
two JX templates for all configurations. One specifies the structure
for processing an individual taxon. Figure 2 shows several possible
structures for a single taxon workflow. The number of tasks in
each depends on the query, with more complicated queries produc-
ing additional intermediate tasks and data. The partitions of the
workflow consist of one or more taxon grouped together. The other
template defines the high-level structure of the workflow. Each
partition in the workflow has a number of input and output files
to be transferred to and from the worker. The high-level template
defines the per-partition tasks and passes the list of taxa to the
low-level template to generate the workflows on the workers.

Using JX to express both levels of the workflow allows us to avoid
the large number of intermediate Makefiles produced by scripts.
Instead, we pass structured parameters (a list of taxa) to the high-
level workflow template and then expand the low-level template to
fit each partition. These JX templates were initially written to work
with the Coarse-Grained workflow configuration with multiple
partitions, but also support the original Fine-Grained configuration
consisting of unpartitioned individual tasks. In this case, we simply
place each task of the workflow into its own partition.

Figure 3 compares these workflow configurations. For the low-
level workflow definition, we define a pattern for each phase of
the per-taxon workflow, e.g. pre-processing, maximum entropy
model construction, occurrence projection. The query information
(passed in from the high-level workflow) determines the structure
of the per-taxon workflow and the connections between phases.
The template for the high-level workflow is simpler as it only trans-
forms a list of partitions into sub-workflow invocations. The query
details do not affect the high-level structure of the workflow, so this
template passes the query down to the taxon template. Using these
workflow templates, we can freely adjust the partitioning scheme
without modifying the workflow definition. Using JX templates
helps to disentangle the design of the pipeline from details of the
execution site. We were able to use the same workflow templates
to take advantage of several different compute environments by
simply adjusting the partitioning parameters. The templates used
here do not support every conceivable partitioning scheme. For
example, they do not break individual taxa into fragments split
across partitions. Choice of partitions would depend on the struc-
ture of the particular application. When working with Lifemapper’s
computational pipeline, the partitioning options we implemented
are sufficient to demonstrate the decisions and trade-offs between
partitioning schemes. Nonetheless, JX provides enough flexibility
to perform more complicated partitions. For our evaluation, we
consider only Lifemapper partitioned at the granularity of taxa.
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Figure 3: Partitioning Schemes for Lifemapper.
The labels here have the same meaning as in Figure 2. With the Fine-
Grained configuration in (a), there is no additional structure within
the workflow beyond data dependencies. With the Coarse-Grained
configuration in (b), the taxa are arranged into two partitions. Each
partition becomes a task in the high level workflow.

In addition to limitations that would prevent the workflow from
running, researchers may need to take other factors into consid-
erations when structuring a workflow. Specific sites often require
varying resource or queue specifications to work with the batch
scheduler or local resources. When moving between the sites evalu-
ated here, JX gave us a way to easily patch these localized changes
into a common workflow template shared across all sites. In the
case of Lifemapper, it is also important to recover from failures due
to invalid input data. This was one of Lifemapper’s researchers’
initial motivations for breaking a workflow into sub-components.
In the Fine-Grained configuration, it is difficult to isolate failed
tasks and recover. While the amount of lost work in each failure
was smaller in the Fine-Grained configuration, grouping taxa in the
Coarse-Grained configuration made it more convenient to repair or
discard only the failing pieces. For the particular case of Lifemap-
per, where failures are an infrequent but regular occurrence that
may require manual intervention, researchers preferred to waste
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Execution Batch Per-node
Site Scheduler Cores Clock Speed RAM

Comet SLURM 24 2.5 GHz 128 GB
Notre Dame HTCondor Varies Varies Varies
Stampede2 SLURM 68 1.4 GHz 96 GB

Figure 4: Comparison of Execution Sites.
Note that Stampede2 compute nodes are equipped with Intel Xeon
Phi 7250 (“Knights Landing”) CPUs, with 4 hardware threads per
core for a total of 272 hardware threads. Also note HTCondor is a
cycle-scavenging batch system, relying on unused compute cycles on
commodity hardware in addition to dedicated compute nodes.

somewhat more computational resources so that the majority of
sub-workflows completing successfully could finish quickly and re-
turn results to end users. Different applications and infrastructures
might benefit from other strategies, so it is valuable to give users
flexibility in defining workflow structure.

6 EVALUATION
For our evaluation, the Lifemapper project provided us with two
sample data sets. Figure 2 shows the structure of a workflow to
process a single taxon from these data sets. The smaller dataset,
consisting of samples related to the genus Heuchera, consists of 51
taxa and generates projections for a single data layer. This dataset
is small enough to run on a single computer. The larger dataset
consists of samples from the order Saxifragales and contains 838
taxa with queries against three data layers. This bigger dataset is
better suited to running on multiple workers in parallel. Larger
production queries may include more data layers to be processed
for each taxon, shown at the top of Figure 2.

Using the larger of the two data sets, we measured the runtime
characteristics of the two workflow configurations on the execution
sites listed in Figure 4. Between sites, there are significant differ-
ences in types of worker nodes, communication speeds, and system
organization. Using Makeflow’s logs, we collected detailed data
about the total workflow runtime and amount of data transferred
over the course of the workflow. The Fine-Grained configuration
is the normal mode of operation for workflow managers such as
Makeflow, so we initially supposed that this configuration would
perform the best overall. The original implementation of Lifemap-
per also used a Fine-Grained configuration. We wanted to compare
this straightforward structure to a Coarse-Grained configuration
that partitions the workflow into multiple sub-workflows to run on
worker nodes. We suspected that this configuration would result in
less data transfer compared to the Fine-Grained configuration.

Figure 5 shows the amount of data transferred by HTCondor
versus the number of individual tasks completed over the course of
the workflow execution. For each distinct worker node, the Make-
flow requests the transfer a number of necessary components such
as scripts, Java programs, and reference data. The other execution
sites assume a shared file system, which hides this process of data
transfer from the user. In the Coarse-Grained case, many tasks run
at once on the same node, sharing input data and only transferring
the finished outputs back to the master. In the Fine-Grained case,
however, each task is handled independently, so all input data and
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Figure 5: Data Transferred by HTCondor.
Above, the data transfer in the Fine-Grained configuration is far
greater than in Coarse configuration; Coarse-Grained is difficult to
distinguish from the x-axis. Below, the same graph is zoomed in
to show the Coarse-Grained configuration more clearly. Note the
difference in y-axis scales between the two.

Execution Fine-Grained Coarse-Grained
Site Configuration Configuration

Comet 162 min. 116 min.
Notre Dame 86 min. 9.8 min.
Stampede2 171 min. 8.7 min.

Figure 6: Lifemapper Runtime Differences.

intermediate files must be transferred to and from the master. As
Figure 5 shows, reorganizing the workflow into a Coarse-Grained
configuration substantially decreases the amount of data transfer
required to compute the same results.

Figure 6 gives the running time for the workflow under both
configurations at each site. Across all sites, the Coarse-Grained
configuration showed better performance, Notre Dame and Stam-
pede2 showed a more than tenfold increase in performance due to
reorganizing the workflow. On Comet, the improvement was more
modest, but still significant. We attribute this to variations in system
utilization and queue scheduling when running the workflows. We
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do not present these results as a comprehensive performance anal-
ysis; instead, they serve to illustrate that straightforward workflow
transformations based on intuitive big and small pieces can achieve
significant improvements in data transfer and performance.

7 RELATEDWORK
An important consideration for researchers is whether JX or another
workflow language is a good fit for a particular application. There
is a large number of existing workflow languages, which vary in
expressivity, ease of use, and adoption by the research community.
While we cannot hope to discuss every alternative, we can draw
comparisons to several popular languages and systems.

Galaxy [8] operates on static workflow “templates” with the run-
time generating concrete steps during execution. Galaxy provides
users with a graphical interface for combining command line tools
to build workflows, which is helpful for researchers with little pro-
gramming experience. The CommonWorkflow Language (CWL) [2]
is a workflow specification standard for describing command line
tools andworkflows in a portable manner. It supports similar uses to
Galaxy, but is specified as a textual language rather than through a
graphical interface. With both Galaxy and CWL, administrators can
provide pre-configured tools to use in workflows. Thus researchers
may be encouraged to use the workflow tool adopted by their site.
Another alternative is Cromwell [13] workflow manager, which
operates on the Workflow Description Language (WDL) and CWL.
WDL is a more complete imperative language than expression-
oriented JX, and is popular in the genomics and bioinformatics
communities. WDL and Cromwell have strong support for running
genomics workloads in the cloud. Snakemake [9] also supports a
Make-like style, but is much more tightly integrated with Python.
Thus for applications already written in Python, it may be easier to
use Snakemake.

8 CONCLUSIONS
Based on our evaluation with Lifemapper, we demonstrated how
the organization of a scientific workflow can affect runtime perfor-
mance. Despite computing the same results, poor choice of interme-
diate workflow structure can result in degraded performance. We
introduced JX as a language for flexibly expressing workflows that
allowed us to fit the partitioning of a scientific workflow to sev-
eral execution sites. Using JX, it is possible to quickly make broad
structural changes to a workflow based on common templates. Our
implementation of JX is distributed under the GPLv2 as part of
CCTools1, which also includes Makeflow. A summary of the syntax
and workflow representations for JX is also available2.

While JX can aid in generating workflows according to a parti-
tioning scheme, it does not address the issue of choosing parameters
to fit an execution site and workflow. This kind of decision requires
the researcher to have some knowledge of the application struc-
ture. In general, it is also necessary to run the application on a
given site and measure the performance to get an estimate of the
best partitioning parameters. We do not make an effort to find
optimal partitioning schemes for arbitrary applications. JX offers
researchers a way to quickly and flexibly adjust the parameters

1https://github.com/cooperative-computing-lab/cctools
2http://ccl.cse.nd.edu/software/manuals/jx-quick.html

of a workflow partitioning to fit a site based on knowledge of the
application structure and performance measurements.
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