RIGHT-SIZING RESOURCE ALLOCATIONS FOR SCIENTIFIC
APPLICATIONS IN CLUSTERS, GRIDS, AND CLOUDS

A Dissertation

Submitted to the Graduate School
of the University of Notre Dame
in Partial Ful Iment of the Requirements

for the Degree of

Doctor of Philosophy

Li Yu

Dr. Douglas Thain, Director

Graduate Program in Computer Science and Engineering
Notre Dame, Indiana

July 2013

RIGHT-SIZING RESOURCE ALLOCATIONS FOR SCIENTIFIC
APPLICATIONS IN CLUSTERS, GRIDS, AND CLOUDS

Abstract

by
Li Yu

Clouds have joined clusters and grids as powerful environments farge scale
scienti c computing. While these platforms provide virtually unlimited computing
resources, using more resources for an application does not akvagsult in supe-
rior performance. The extra amount that does not contribute taany performance
increase is a waste. This dissertation seeks to answer the quest@nhow many
computing resources should be allocated for a given workload. Twategories of
workloads { static and dynamic, are identi ed where viable solutionsra found for
this problem. For static workloads, we show that distributed abstctions allow for
accurate performance modeling on distributed, multicore, and disbuted multicore
systems and thus can automatically make better resource allocatiaecisions. For
dynamic workloads, we present dynamic capacity management asausion to avoid
resource waste without compromising on the application performee. We evaluate
the e ectiveness of this technique on a selection of workload pattes, ranging from
highly homogeneous to completely random, and observe that thessym is able to
signi cantly reduce wasted resources with minimal impact on perfarance. Finally,
we show that both solutions have been successfully applied in realridoscienti c

applications in areas such as bioinformatics, economics, and molecutedeling.

CONTENTS

FIGURES e iV
TABLES e Vi
CHAPTER 1: INTRODUCTION e e e 1
CHAPTER 2: RELATED WORK 10
2.1 Batch Systems. e 10
2.2 Work ow Management Systems 12
2.3 Distributed Computing Abstractions 15
2.4 Auto-Scaling Techniques 16
CHAPTER 3: STATIC WORKLOADS oo 20
3.1 Abstractions 21
3.2 Architecture 24
3.3 BuildingBlocks 28
3.3.1 Threads and Processes 28
3.3.2 Concurrency and Data in All-Pairs 29
3.3.3 Control Flow in Wavefront 32
3.3.4 Greater Generality with Makeow 35
3.4 Performance Modeling L. 36
3.5 Make ow vs Specic Abstractions L. 39
CHAPTER 4: DYNAMIC WORKLOADS oo 42
4.1 Architecture e 42
4.2 The Problem of Capacity 45
4.3 Measuring Capacity 49
4.3.1 A Simple Equation 0oL 49
4.3.2 Sample Selection 50
4.3.3 Final Equation 52
4.3.4 Dynamic Behaviors o o 53
4.4 Worker Distribution L 56
4.4.1 Master Advertisement oL 56
4.4.2 Basic Distribution Decision 57
4.4.3 Worker Pool Policy 64

4.4.4 Policy Adjusted Distribution Decision

4.5 Decision Enforcement 71
451 Master e e e e e 71

452 Worker. e 72

453 WorkerPool 73

4.6 System Stability 74
4.7 Evaluation e e 76
4.7.1 ExperimentSetup. 76

47.2 Results. e 78
CHAPTER 5: APPLICATIONS e 85
5.1 Bioinformatics 85
5.1.1 StaticWorkloads 85

5.1.2 Dynamic Workloads 88

5.2 ECONOMICS o o e e e e e e e e e e e e 91
5.3 Molecular Modeling 93
CHAPTER 6: CONCLUSION e e e 96
BIBLIOGRAPHY e 99

FIGURES

1.1 Two Categories of Workloads 5
3.1 Three Examples of Abstractions 21
3.2 Distributed Multicore Implementation 25
3.3 Linear Method vs Blocked Method. 30
3.4 Threads, Processes, and I/O Techniques. 31
3.5 Multicore vs Sub-Problems., 32
3.6 The E ect of Latency on Wavefront 33
3.7 The E ect of Fast Abort on Wavefront 34
3.8 Asynchronous Progress in Wavefront 53
3.9 Make ow on Multicore and Cluster 36
3.10 Accuracy of the All-Pairs Model on Multicore and Cluster 39
3.11 Accuracy of the Wavefront Model on Multicore and Cluster 39
3.12 Accuracy of the Make ow Model on Multicore and Cluster 40
3.13 Selecting An Implementation Based on the Model 04
3.14 Solving All-Pairs with Make ow and All-Pairs 41
4.1 Work Queue Architecture L 43
4.2 Detall of Master-Worker Interaction 43
4.3 Performance vs Parallel Eciency 46
4.4 Capacity in Various Systems {Results 48
4.5 Capacity without Think Time 52
4.6 Settle Time on an Overloaded Master 54
4.7 Cache Bounce on an Underloaded Master 55
4.8 Settle Time and Cache Bounce in a Shared-Input Application 55
4.9 Runtime Pool Decision, Tasks Running, and Estimated Capacity 1fo
Workload Pattern 1,2, and 3. 82
4.10 Runtime Pool Decision, Tasks Running, and Estimated Capacitpif
Workload Pattern 4 and 5. o 83
5.1 100<100 Wavefront in Bioinformatics 86
5.2 Make ow without Fast Abort 87
5.3 Make ow with Fast Abort oL 88
5.4 Biocompute Web Portal 89
5.5 Biocompute Worker Pool Activity in 2013 90
5.6 500<500 Wavefront in Economics 92
5.7 Fip35 Folding Pathways found from the AWE Network 94

iv

5.8 Multiple Worker Pools Providing Workers to Three AWE Applications %

3.1

4.1
4.2

TABLES

TIME TO DISPATCH A TASK o oo

CAPACITY IN VARIOUS SYSTEMS { EXPERIMENT SETUP

TURNAROUND TIME, TOTAL WORKER TIME, AND BILLING
CYCLES CONSUMED FOR EACH EXPERIMENT

Vi

CHAPTER 1

INTRODUCTION

Computer systems have become an integral part of the modernoeomy. More
and more research and operations in science, engineering, andiress are now be-
ing powered by computers 24/7 around the globe. As the complexisief computer-
provided services and the di culty of cutting-edge science questis keep increasing,
the demand for greater computing power has never ceased to \gro Continuous
advancements in the chip fabrication process have been bringingegter power to
individual computers. However, according to the Moore's law, thargjle chip perfor-
mance can only be doubled approximately every two years. Even inelearly days,
such pace of performance increase is not su cient to accommodathe increase in
computer program complexities.

To further improve computer execution performance, various thniques have been
created to exploit the parallelism in computer programs. Symmetric aitiprocessing[43],
which emerged in the 1960s, is a technique that allows two or more pessors to
share the same main memory and peripherals. The multiple processaman then
simultaneously execute computer programs on the same operatisygstem which re-
duces the total programs execution time. In the 1970s and 198@speline[82] and
superscalar[51] architectures were built into some commercial pessors to exploit
the instruction-level parallelism. Concurrent executions of multiplecomputer in-
structions became possible with these architectures and the thtise overall CPU
throughputs were improved. As the chip temperature became irdctable when the

CPU frequency is pushed beyond 4 GHz, multi-core processorsritd to dominated

1

the processor market in the late 2000s. In the same period, GPUngouting[76]
technology emerged and further accelerated certain scienti c drengineering appli-
cations with thousands of small but e cient cores on the GPU chip. A the above
techniques aim to improve the performance of an individual computinnode and
have been successfully applied in the construction of supercomgrst.

The advent of computer networks lead to the idea of connecting rtple comput-
ers to execute a single computer program or application. The contptional work
that needs to be performed in an application is referred to as a wdokd. To lever-
age multiple computers, a workload is divided into multiple tasks and tlse tasks are
dispatched to those computers for simultaneous executions. Cpuater clusters[12],
which is a group of computers connected by a local area networkitered the world
of parallel computing in the 1970s. They usually rely on centralized magement
where a head computing node manages the computing nodes and dlispes tasks to
them. With the widespread of the Internet, CPU scavenging compimg and volun-
teer computing[8][94] systems started to gain popularity in the 1990 These systems
allow idle or donated computing resources around the world to join éhcomputation
of a single problem. In the 2000s, Grid computing[35] emerged withettgoal of al-
lowing computing resources from multiple administrative domains to beombined to
solve a single computational problem as needed. In the late 20003vances in virtu-
alization technologies[73] lead to the birth of cloud computing[11]. Acading to Mell
and Grance [64]: "Cloud computing is a model for enabling ubiquitouspvenient,
on-demand network access to a shared pool of con gurable canmipg resources (e.g.,
networks, servers, storage, applications, and services) thatrcbe rapidly provisioned
and released with minimal management e ort or service provider intaction".

While modern distributed systems, such as clusters, clouds, anddy, have been
allowing users to orchestrate tasks on thousands of computing des and achieve

superior performance, it is challenging to use these computing rasces properly

and e ciently. (Hereafter, we refer to all of these systems aslusters.) A user that

wishes to execute a large workload with some inherent parallelism is fromted with

a dizzying array of choices. How should the workload be broken upansmaller jobs?
How should the data be distributed to each computing node? How mamodes or
CPU cores should be used? Should the computing nodes be allocatkciaonce or
according to a set schedule? What actions should be taken when sogomputing
resources fail during tasks execution? Will the network present lzottleneck? Last
but not least, would leveraging remote computing nodes even resuft improved

performance given that the transfer of jobs over the networkdals overhead? Often,
the answers to these questions depend heavily on the propertidstee system and
workload in use. Changing one parameter, such as the size of a letbe runtime of

a job, may require a completely di erent strategy.

This dissertation focuses on the question dfow many computing resources
should be allocated for a given application in a certain computing environ-
ment? Modern clusters provide e ectively unlimited computing power at maginal
cost with minimal barriers to entry for the end user. With little e ort , a single user
can submit jobs to a campus cluster, schedule time on national contfmg infrastruc-
ture, or purchase computing time from a commercial cloud providdror perhaps all
three at once! However, the user of an application is presented wia problem { ex-
actly how many resources should be allocated for the application?|&#ing too few
will result in less than maximum performance. Too many can result in sl@owns,
but can also result in contention, crashes, and excess chargesrégcal resources like
the network are overloaded. Further, the ideal selection will chge over time as the
infrastructure evolves, or the user selects new input data or p@meters. In our expe-
rience, end users are much too optimistic about the scalability of threapplications,
and generally err on the side of too many resources.

Finding the optimal resource allocation for a given workload could bei dult.

If the workload's computational structure (the graph formed byits task dependen-
cies) and task properties (input/output data sizes and computabnal complexity)
are unknown, the problem is essentially intractable. This is analogots the halting
problem[17] in the general case. Without knowing the tasks progass, it is im-
possible to evaluate the performance of any resource allocation.itiéut knowing
the workload structure, it is impossible to estimate the global impacof a resource
allocation directly because a suitable resource allocation for the kmo part of the
workload might be inappropriate for the incoming (unknown) part othe workload.

Knowing the structure and tasks properties alone does not nesaslly make the
problem tractable. For example, for a workload of independent tks and known task
execution times, calculating the optimal number of computing nodegkat maximizes
the workload execution performance could be NP-hard[65]. In omd® compare the
superiority of di erent amount of resource allocations, one mustrst determine the
optimal task scheduling strategy that maximizes the workload pesfmance for a
given number of computing nodes. Classic multiprocess schedulinglplem[38] and
job shop scheduling[39] problem are examples of such schedulingofgms have been
proven as NP-hard. Because a sub-step in the resource allocatmocess is already
NP-hard, the entire problem is at least NP-hard.

However, if there are regularities in a workload's task properties dfor struc-
ture, the complexity of the problem could be reduced to a more tréable level. For
example, in the multiprocess scheduling problem, if we know that all éhtasks are
of the same size (task regularity), the optimal scheduling stratggoecomes obvious,
which is to dispatch tasks among the processors evenly. Also in thisaenple, the fact
that all tasks are independent can be considered as a workloadustiure regularity.
In general, the regularities in a workload allow workload population chacteristics
to be estimated with sample characteristics, which could greatly rade the solution

space, and thus simpli es the problem. The more regularity is known iadvance

Workload

TN

Static Dynamic

[Abstractions j [Capacity Management]

Figure 1.1: Two Categories of Workloads
For static workloads, if the computational structures and tasks properties are regu-
lar, abstractions can be used to help make resource allocation decisions. For dynamic
workloads, the capacity management method can e Leckively avoid resource waste with-
out compromising on the application performance.
about the workload, the more tractable the resource allocation pblem is.

In this dissertation, we identify two categories of workloads with dierent degrees
of regularities and present the resource allocation strategies fgich of them respec-
tively. We de ne a workload as astatic workload when its structure is set and known
prior to execution. If the structure can not be determined in advace, the workload
is referred to as adynamic workload. For example, when tasks in a workload are
submitted to a batch system when ready, the batch system woulesider the work-
load as dynamic because it never knows what tasks may be submitteelxt after as
ones currently in the queue are nishing. If the resource allocatas not the batch
system, but a program that has the speci cation of the workload'entire structure,
then the workload is static to the resource allocator. For static wiloads whose com-
putational structures and task properties are regular, we shothat abstractions can
help make better resource allocation decisions. For dynamic workésa we present
dynamic capacity management as a solution to avoid resource wast@hout com-
promising on the application performance. The workload categorizan is shown in
Figure 1.1.

For regular static workloads, abstractions can e ectively modeheir performances

for a given set of resources and thus are able to assist making tese allocation
decisions. Anabstraction is a declarative structure that joins simple data structures
and small sequential programs into parallel graphs that can be ded to very large
sizes. Each abstraction is used to execute workloads that followetlsame execution
pattern. Because static workloads have known structures, thecould be executed
with abstractions their structure is recognized by existing absti@ions. We argue
that abstractions are an e ective way of enabling non-expert usgto harness clusters,
multicore computers, and clusters of multicore computers. Becsal an abstraction
is specialized to a restricted class of workloads, it is possible to creatn e cient,
robust, scalable, and fault tolerant implementation.

In this dissertation, we focus on three speci ¢ abstractions: All-&rs, Wavefront,
and Make ow abstractions. The All-Pairs and Wavefront abstracions are intended
for two type of regularly structured workloads { each abstractin assumes a specic
execution pattern. The regularity in the workload structure is a pior knowledge in
both abstractions. As we will show later in the dissertation, this wddoad struc-
ture regularity, combined with the task regularity, allows for perfomance modeling
on multicore systems, and clusters of multicore systems. The All-Pa performance
modeling has been previously studied in distributed environments witkingle-core
computing nodes. | extended the research in environments with thitcore comput-
ing nodes. And the modeling result is su ciently accurate to assist mdang useful
resource allocation decisions such as whether to run the workload¢hn8 local CPU
cores or with 4 remote dual-core computing nodes. The Make ow sipaction is
designed for arbitrary DAG (Directed Acyclic Graph) structured vorkloads. It is
useful for workloads whose execution pattern is not capture bya existing abstrac-
tions (which are usually designed for regularly structured workloa). Although the
workloads that can be run with the All-Pairs or the Wavefront abstactions can be

also described by the Make ow abstraction, the performance wittihe former could be

much greater as the known regularity in the workload structure alles for optimized
task scheduling.

All-Pairs and Wavefront abstractions have both been used to adeeate real world
applications. For example, in biometrics, the evaluation of identi cabn algorithm
ts the All-Pairs pattern. An identi cation algorithm compares two h uman charac-
teristics (e.g. iris image) and outputs their similarity. The evaluation @plication
takes two known sets of characteristics and compares every @aeristic in one set
with every element in the other using the target algorithm. The redting similarity
matrix will then be used to determine the e ectiveness of the identication algo-
rithm. The evaluation of classi ers in data mining also follows the similar wrkload.
Another example is the rst step in genome assembly { comparing daeneasured
gene sequence to every other sequences (sequenced fromaime ODNA). Wavefront
represents a number of simulation problems in economics and gamedty, where the
initial states represent ending states of a game, and the recunce is used to work
backwards in order to discover the e ect of decisions at each seat Wavefront also
represents the problem of sequence alignment via dynamic programg in genomics.

For dynamic workloads, it is impossible to make global performance wuheling
in advance because the workload structure is unknown. In a resea context, one
might run the exact same workload at multiple scales in order to gerade a parallel
speedup curve, and then choose the best value. However, in adarction computing
context, the end user gains no value from running the same worktbanore than
once. Instead, amcceptable decision must be made on the rst attempt. For static
workloads like All-Pairs and Wavefront abstractions, this can be adbved by working
with declared knowledge of the entire workload. For dynamic workloa, information
must be gained incrementally. We argue the problem should be addsed through
two combined techniques. First, a workload must have some degreeintrospection

into its own performance to understand and report critical propsies such as parallel

e ciency and network capacity. Second, an external resourcellacator should use
this information to allocate and manage the resources consumed rantime. The
resource allocator should be external to the workloads to isolateraputer program
bugs (in the workloads) from the credit card bill, particularly if the erd user is not
the bill-payer.

The solution for dynamic workloads is referred to asapacity management. It
relies on three basic assumptions: (a) workloads are composedasks that have a
relatively stable computation-to-data ratio (this is task regularity), (b) task proper-
ties are not known in advance, and (c) there are more tasks tharovkers available, so
that there is an opportunity to measure and adjust over time. Theystem will adapt
to changes in computation-to-data ratio, as long as the task mix igable for a su -
cient period for the system to adjust. For example, 1000 tasks type A followed by
1000 tasks of type B can be handled, with some period of adjustmes the B tasks
begin. If the tasks have no commonality and nothing is known of thejproperties
in advance, then the resource allocation problem is essentially inttable. However,
we will show that even with random workloads, our solution does an eduate job of
preventing resource waste.

There are many real world applications that can satisfy the abovesaumptions
required by the capacity management method. As an example, we nkowith a
bioinformatics group at Notre Dame that runs production workload consisting of
thousands of tasks through this system. For example, a BLAST[Workload contains
tasks that compare query DNA sequences with reference DNA seqces. For a single
BLAST workload, the reference sequences are the same acrdighatasks. The query
sequences are di erent in each task but are of similar sizes (we splitaage query
into smaller equal-size pieces). Although there could be variances hetBLAST job
execution times even if the query sequence sizes are the samethferworkloads our

users run, such variances exist but only on the few tasks that dam the actual

matches to the database, so that over 90% of the tasks have simiéxecution times.
Similar application properties apply to the workloads that use other gne sequence
comparison applications, such as BWA[55], SSAHA[74], and SHRIMP[90].

We have developed a range of resource allocation policies in the céfyananage-
ment with increasing re nements, taking into account the compution and network
loads of the master process and the tasks in the workload. To evale these poli-
cies, we test them against a range of ve synthetic applications, mging from a
single burst of identical tasks to continuous random bursts of ralom tasks. We
demonstrate that these techniques signi cantly reduce wastedesources with mini-
mal impact upon performance. Additionally, although these techniges assume some
degree of homogeneity in the individual tasks, they are still reasably e ective on
random workloads. And this is why we did not distinguish irregular and egular
workloads under the dynamic workload category in Figure 1.1.

We have implemented the concepts of abstractions and capacity nagement in
CCTools { a distributed computing tools software package develogéy the Cooper-
ative Computing Lab at Notre Dame. The All-Pairs, Wavefront, and Make ow are
standalone applications. The dynamic capacity management is implented within
the context of the Work Queue application framework, but the corepts are easily

applied to other similar distributed computing frameworks.

CHAPTER 2

RELATED WORK

2.1 Batch Systems

A batch system manages the execution of computer jobs on a sétcomputing
resources. It manages the resource allocation at the task levelhigh is di erent
from the workload level that this dissertation focuses on. Howewnethe basic ideas
in resource management is applicable in both levels and the two levelsre$ource
management can complement each other. A job that gets submitteto a batch
system usually consists of a computer program and some input datsat needs to
be processed by the program. Multiple users can submit multiple jobs the system
simultaneously. A batch system usually puts submitted jobs into seval queues
such as queues for serial or parallel jobs, and queues for long bors jobs. It
constantly monitors the status of its managed resources and d&phes queued jobs
to them when desired resources (the ones that match the job'sgrerements on CPU,
memory, disk space, software licenses, and etc.) become availalBe&cause batch
systems have centralized control over the shared computing oesces, it is possible
to optimize the job scheduling to improve the overall resource utilizen and system
throughput. Also, the jobs can be treated accordingly with respé to their priorities.
The following is an overview of some popular batch systems.

SGE [41] (Sun Grid Engine), LSF [108] (Load Sharing Facility), and PB#6]
(Portable Batch System) are popular established batch systemsamtained by dif-
ferent companies. They are all used to manage job executions oeditated com-

puting resources. A typical computer cluster that deploys suchabch system would

10

consist of a master host and multiple execution hosts (the terminalees may di er
in di erent systems). The batch system software provides a staard interface for
users to submit, delete, and monitor their jobs from the master Isb. The jobs are
immediately queued when submitted to the master host and will be diafched to
execution hosts for actual execution when appropriate. In genaé, the job schedul-
ing is based on the following criteria: the cluster's current load, theop's impor-
tance, the execution host's performance, and job's resourcequ&rements. These
systems support a range of customizable job scheduling policies;tsas FCFS (First
Come First Serve), fairshare scheduling[33], back lling[69], deadlineheduling[23],
exclusive scheduling, preemptive scheduling[106], and SLA (Serviea&l Agreement)
driven scheduling[59]. These policies allow the allocated resources &xvely match
the needs of the job submitters.

Condor [99] is an open-source high-throughput batch system fmympute-intensive
jobs developed at the University of Wisconsin-Madison. Although @alor has been
renamed to HTCondor in 2012, we will refer to it as Condor in the restf the dis-
sertation. Like with other batch system, Condor provides job quesing, scheduling,
monitoring, and resource management functionalities. But in additio to manag-
ing clusters of dedicated computing resources, Condor is capabfarbegrating the
power of heterogeneous, non-dedicate workstations (a concegferred to as cycle
scavenging). Jobs can be farmed out to desktop workstations &rhthey are idle.
Condor uses a ClassAd[83] mechanism to match jobs with quali ed mesces (e.g.:
Operating System = Linux, Memory>1 GB). Condor job queues implement priority
queueing. The amount of resources that a job can get is based e user's dynamic
priority. The fairshare algorithm ensures that each user gets theame amount of
resources over a specied period of time and lower-priority user'sks will not be
starved. Condor is also one of the supported scheduler in GRAM[A8rid Resource

Allocation Manager, a component of the Globus Toolkit) and has bedhe resource

11

management backend for many Grid applications.

2.2 Work ow Management Systems

A work ow is a collection of jobs with dependencies among them. A jolm a
work ow can be dispatched for execution only after all the jobs tat it is dependent
on have been completed successfully. To execute a work ow on astér managed by
an batch system, the jobs must be submitted to the cluster increantally as the job
dependencies are resolved. Of course, the users do not wantatod most of the times
can not a ord to, monitor the job status constantly and manually sibmit more jobs
when the submitted ones are nished. Thus, work ow systems ameated to manage
the automatic executions of whole work ows. The work ow systemm usually accept a
description of the entire work ow, including job descriptions and deendencies, and
submit individual jobs to the batch systems when prerequisite jobare done. The
following is an overview of some popular production work ow managesnt systems.

DAGMan [98] is a scheduler for DAG (Directed Acyclic Graph) structeed work-
ows built for Condor. A DAG structured work ow would form a DAG if we draw
each job as a vertex and each dependency (between two jobshaasedge connecting
the two corresponding vertices. Because Condor does not salledjobs based on
dependencies (jobs are considered independent to each othereosubmitted to Con-
dor), DAGMan is a necessary layer of software for managing thetamatic execution
of DAG work ows. If a job fails, DAGMan can be con gured to retry failed jobs
for a certain mount of times without interrupting the execution of he rest of the
work ow. If an entire work ow fails, only un nished jobs will be dispatched upon
recovery. DAGMan also supports advanced features such as allogvjobs within a
work ow to have di erent priorities and limiting the total amount of r esources can
be acquired by the work ow at any given time.

Pegasus [29] is a work ow management system for mapping and exi@wty work-

12

ows on various computing environments including Condor, Grid infratructures such
as Open Science Grid and TeraGrid, and cloud computing platforms@uas Amazon
EC2[1] and Nimbus[3], and many campus clusters. The same work oarcrun in any
of these systems or leverage resource across multiple platform@ven an abstract,
high-level description of the work ow, Pegasus is able to automatdly locate the
necessary software, required data, and quali ed computing rasaes for execution.
The tasks in a work ow may be automatically reordered, grouped,rae-prioritized to
optimize the performace of the entire work ow execution. The preessed, or restruc-
tured work ow description will be passed to DAGMan, its execution egine, for actual
execution. Pegasus has been accelerating many real world appimas$ in di erent
domains such as bioinformatics, chemistry, neuroscience, and climmaimulation.

Taverna [48] is an open-source suite of tools to build and executéesti ¢ work-
ows at a higher level of work ow abstraction. Instead of asking sers to construct
work ows from les and computer programs, Taverna exposes tiand operations to
the users in an integrated work ow design environment. The opetian in a Taverna
work ow can be any WSDL-style web service, which allows work owsaot be con-
structed from commonly accessible web services. Users can se&oc services from
service catalogs (e.g. BioCatalogue) to include in their work ows withut knowing
how to invoke them. Once data ows have been de ned across idéed services, the
work ow is ready to be executed. Taverna work ows can be exeted on grids and
clouds infrastructures as well. EGEE[54], caGrid[91], KnowARC][70], dnNGS[40]
are examples of running Taverna work ows on grids. Next Genelian Sequencing,
SCAPE, and e-Science Central are examples for the clouds.

Kepler [6] is a work ow management system that faciliates the creigig, execut-
ing, and sharing of scienti ¢ work ows across multiple disciplines. Lik&vith Taverna,
Kepler provides direct access to commonly used data archives arlbwas construct-

ing work ows from web services. Unlike many other work ow systes) Kepler allows

13

common models of computation to be applied to the construction of &work ow.

Examples of such common models are Synchronous Data Flow, Contaos Time,
Process Network, and Dynamic Data Flow. Thus, complex work owsan be build
with simpler components. Kepler work ows can be exported and shed via web
services and thus users can conveniently search and integratbest’ analysis work-
ows into their own work ows. In addition to invoking web services directly, Kepler
supports job execution on grids and grid-based data access.

Galaxy [6] is a scienti ¢ work ow management system that allows comygational
biology scientists to leverage distributed computing power without noor computer
programming experience. It is originally developed for genomics applion, but
now supports a wide range of bioinformatics applications. Galaxy praes a web-
based graphic user interface for domain scientists to construchalysis work ows
and manage scienti ¢ data. The input data and computational tas& can be selected
from dynamically generated graphic menus and the results are disya in intuitive
plots. Galaxy's high level of accessibility greatly bene ts the end use who are
not trained for computer programming. And more importantly, as afull- edged
work ow management system, it records all the tools, parametsy and data that
have been used in the work ows and thus ensures that any resulbtained from the
system can be reproduced and reviewed later. Galaxy's is now a leappiatform in
computational analysis of DNA sequence data.

As summarized in [105], some of these systems use static scheduli@§dbd some
of them use dynamic scheduling [79] or both. The scheduling straieg used in these
systems are all performance driven. Our work does not seek a teetscheduling
scheme to improve performance. Instead, we focus on identi ean of potential
resource waste and make the system be able to avoid such wastéomatically at

runtime.

14

2.3 Distributed Computing Abstractions

A distributed computing abstraction is a common and abstract comgational
model extracted from a range of applications. As a software toat,allows users to
construct parallel applications that have the same computationahodel with minimal
e orts. Usually the users only need to supply the input data and theerial programs.
The users do not even need to master the techniques for using disited computing
resources. The distributed computing abstractions would plug thaser inputs into
the computational models and conduct the parallel computations ia suitable and
e cient way in the actual distributed computing environment.

Bag-of-Tasks[24] is a simple but powerful abstraction of many alpgations across
a broad range of disciplines. It represents the computational meldof independent
tasks. Many real world applications fall into this model, such as panaeter sweeps,
massive search, image processing, and computational biology. &ese the model is so
general, many parallel/distributed computing research are basedh ¢his model. The
aforementioned classic multiprocess scheduling and job shop schied) are based on
this model. Many scheduling algorithms[18], such as FCFS (First Comer§t Serve),
Min-Min, Max-Min, and Su erage, have been studied for BoT applicabns based on
how much prior knowledge is known about the tasks and the goal diié computa-
tion, such as to minimize cost or to maximize performance. Becaudeete are no
inter-task communications, BoT applications are especially suitablerf Grid com-
puting platforms (Condor, BOINC[8], and OurGrid[10]) where netwadk bandwidth
is precious. Projects such as SETI@Home[9] and Folding@Home[%Z8khsuccess-
fully demonstrated that BoT applications can achieve great scalabijitover widely
distributed grids.

The All-Pairs abstraction [66] computes the Cartesian product ofno sets, gen-
erating a matrix where each cell M[i,j] contains the output of the fuction F on

objects A[i] and BJ[j]. This computational model is found in many di erat elds. In

15

bioinformatics, one might compute All-Pairs on a set of gene sequescas the rst
step of building a phylogenetic tree. In biometrics, one might competAll-Pairs to
determine the accuracy of a matching algorithm on a collection of fes. In data
mining applications, one might compute All-Pairs on a set of documents gener-
ate a graph of relationships. The All-Pairs abstraction allows largezale pair-wise
comparisons to be created by specifying only a few command-line @amgents. And
more importantly, the abstraction automatically optimizes the parédel execution of
the tasks on the target computing environment and tends to be me e cient than
a naive implementation of the same computational pattern.

Map-Reduce [28] is a distributed computing abstraction popularizedy Google
for using it to index the enormous amount of contents on the Inteeet. Map-Reduce
allows users to invoke large-scale parallel processing by de ning tainple functions
{ the mapper and the reducer. The mapper de nes how data shoulde processed,
or more speci cally, be transformed to intermediate name-value pa. The reducer
de nes how the intermediate name-value pairs should be combined anthe nal re-
sult. When executing a Map-Reduce application, the original input da is usually
divided into pieces and the pieces are spread (and often replicateatjross multiple
computing nodes. The mapper and reducer functions are then neal/to the comput-
ing nodes, which have the data pieces, for actual execution. Basa the computation
is moved to where the data is, Map-Reduce is well-suited for data-emisive appli-
cations. Popular implementations of Map-Reduce include Hadoop [1&phere [44],

and Twister [32].

2.4 Auto-Scaling Techniques

Batch systems such as Condor, SGE, and PBS Pro provide interéscfor mul-
tiple users to request abstract, dynamic, and managed computimgsources. These

systems handle scheduling, load-balancing, and fault-tolerancethe task level. Our

16

Work Queue application framework, as an implementation of the Pilolob concept,
adds the possibility of workload-level scheduling and data cachingil®-Job is essen-
tially an abstraction that allows computing resources to be acquiredy a workload
such that the workload's tasks can be scheduled to the resouraiieectly instead of
going through a job scheduler (e.g. waiting in a batch system's job gue). Condor-
Glidein [36] is one of the ealiest implementations of the Pilot-Job idea. Alidein
is a computing node that can automatically join a speci ed Condor pdand be-
come dedicated resource to that pool. The worker in the Work Queuramework is
analogous to a glidein, which is the pilot job.

There are many successful Pilot-Job frameworks with di erent gialties. SAGA
BigJob [58] interfaces with various computing infrastructures (Gds and Clouds) and
natively supports MPI[95] applications. In order for an application ¢ utilize this
framework, the application needs to specify the number of resaas (i.e. pilot jobs)
needed prior to submitting individual tasks. Falkon [80] is optimized foe ciently
dispatching many small tasks. Its resource provisioner dynamicalijnatches the
number of executors (the pilot job) to the number of queue tasksithout surpassing
a user-de ned upper-bound. Coaster [45] uses a centralized pess { called Coaster
Service, to queue user jobs and submit pilot jobs based on the cheteristics of
the queued user jobs. The Coaster Service determines the amoahpilot jobs by
matching the total acquired resource time to the total job time, Wwich necessitates
prior knowledge of job execution times. GlideinWMS [93] is a Glidein basaarkload
management system. Its front-end polls the user's local Condopegl to see if the
number of glideins (worker nodes) is greater than the number ofersjobs. If not, it
submits requests to the glidein factory to create more glideins toijothe user's local
Condor pool. DIRAC [103] and PanDA [60] are another two examples Bilot-Job
based workload management systems which submit additional pilotgs to match

each newly queued job. Most of these systems equate the numbéuser jobs with

17

the number of pilot jobs needed. However, this might lead to signi c¢a resource
waste due to limited network bandwidth and job characteristics as Wbe shown in
section 4.2. The capacity management technique described in thiss#igation can be
used to reduce such resource wastes. Itis implemented in our W&keue framework,
but the idea can be applied to any of the aforementioned Pilot-Jobdmeworks.

As clouds provides the illusion of unlimited costly resources, technigsl that dy-
namically scale resources according to application needs have gaagpopularity in
both industry and academia. AWS|[2][15], RightScale[4], and Elastack]lallow users
to scale resources based on system metrics such as CPU utilizatiowl &ime sched-
ule. Elastic VM[27] scales resources vertically (single-CPU instance multi-CPU
instance) based on CPU utilization history and has been shown to neck response
time in both the web-tier and the database-tier. Our approach st&s resources hor-
izontally based on the application resource needs, in contrast to rdavare metrics.
Another way of approaching the dynamic resource scaling problemtcs rst predict
the workload and then use certain function to determine the apppoiate resource
amount for the incoming workload. Caron et al.[21] introduces a strgnmatching
based algorithm to predict future workload based on where the rexat workload pat-
tern stands in the historical workload pattern. Instead of tryingto obtain more
accurate estimate of future workload, Lin et al.[56] describes howehd analysis {
predicting the direction of workload change can help making betteru#o-scaling de-
cisions. Roy et al.[89] uses a second order autoregressive movirgyaye method to
predict the incoming workload and minimizes the scaling cost based oovh far the
estimated response time is from the SLA bounds, cost of leasing #mohal resources,
and the cost of re-con guration. Qiu et al.[78] uses a non-linear amtegressive neural
network method to predict future workload and uses a function @t minimizes re-
source provision without violating SLA (e.g. percentage of unsatied user requests)

to determine the amount of resources.

18

Nephele [104] uses a pro ling subsystem to monitor the time resoes spent
on user code and waiting for data. The feedback data is not curtgn used to
dynamically adjust the amount of resources but it is in their future wrk. Marshall
et al.[63] proposes a elastic site architecture that extends local star capacity with
cloud resources and examines three dynamic resource allocatioigqies. Similar
to the capacity estimation assumption, Nagavaram et al.[71] assuméhe workloads
include tasks of equal sizes and predicts the number of cores rezbdhased on the
execution times of the rst N tasks (N is equal to the number of c@s in the cluster).
Mao and Humphrey[62] introduces methods to scale cloud resowwtased on deadline
and budget constraints. And their recent work in [61] presents rtteods to minimize
cloud computing resource cost given user assigned soft deadlinegobs (each job can
have multiple tasks). Their solution takes advantage of the di erencost-e ciencies
in on-demand VM instances and uses heuristics to obtain an optimizéaksk-resource
mapping. Our work di ers in that we use dynamic con guration wherewe rely on
the continuously changing properties reported by the applicationnstead of requiring

information in advance.

19

CHAPTER 3

STATIC WORKLOADS

A static workload is a workload whose computational structure is lkawn prior
to execution. A user that wishes to execute a static workload in a diguted en-
vironment is confronted with a dizzying array of choices. How shoulidhe workload
be broken up into jobs? How should the data be distributed to eachode? How
many nodes should be used? Will the network be a bottleneck? Ofteghe answers
to these questions depend heavily on the properties of the systemd workload in
use. Changing one parameter, such as the size of a le or the rungnof a job, may
require a completely di erent strategy.

Multicore systems present many of the same challenges. The oslef magnitude
change, but the questions are similar. How should work be divided anwpthreads?
Should we use message passing or shared memory? How many CPUOsldibe used?
Will memory access present a bottleneck? When we consider clustef multicore
computers, then the problems become more complex.

We argue that abstractions are an e ective way of enabling non-expert users
to harness clusters, multicore computers, and clusters of multi@computers. An
abstraction is a declarative structure that joins simple data strutires and small se-
quential programs into parallel graphs that can be scaled to veryrige sizes. Because
an abstraction is specialized to a restricted class of workloads, it isgsible to create
an e cient, robust, scalable, and fault tolerant implementation.

In previous work, we introduced the All-Pairs [66] and Classify [67] abractions,

and described how they can be used to solve data intensive problemghe elds

20

o]0 b
o1 i o [o7
52| 2 o] [id [od

AllPairs(A[i], B[j], F(a,b)) Wavefront(R[x,y], F(x,y,d)) Makeflow(D[n])

Figure 3.1: Three Examples of Abstractions
All-Pairs, Wavefront and Makeflow are examples of abstractions. All-Pairs
computes the Cartesian product of two sets A and B using a custom function F.
Wavefront computes a two-dimensional recurrence relation using boundary
conditions and a custom function F as an input. Makeflow takes an array of
dependencies, which could be visualized as a directed acyclic graph structured
workload, computes according to the workflow and produces a target file. Using
di Cerknt techniques, each can be executed e [ciehtly on multicore clusters.
of biometrics, bioinformatics, and data mining. Our implementations low non-
experts to harness hundreds of processors on problems thahror hours or days
using the Condor [100] distributed batch system. In this chapterwe extend the
concept of abstractions to multicore computers and clusters ofutticore computers.
We demonstrate that it is feasible to accurately model the perforamce of large scale
abstractions across a wide range of con gurations, allowing for ¢hrational selection

of appropriate resources.

3.1 Abstractions

An abstraction is a declarative framework that joins together sequential procsss
and data structures into a regularly structured parallel graph. A abstraction en-
gine is a particular implementation that materializes that abstraction on asystem,
whether it be a sequential computer, a multicore computer, or a difouted system.

Figure 3.1 shows three examples of abstractions: All-Pairs, Wavefit and Make ow.

21

All-Pairs(A[i], B[j], F(x,y))

returns matrix M

where M[i,j] = F(A[i],B[j])

The All-Pairs abstraction computes the Cartesian product of twoeds, generating a
matrix where each cell MJi,j] contains the output of the function F onobjects A[i]

and B[j]. This sort of problem is found in many di erent elds. In bioinformatics,

one might compute All-Pairs on a set of gene sequences as the r&sof building

a phylogenetic tree. In biometrics, one might compute All-Pairs to dermine the

accuracy of a matching algorithm on a collection of faces. In data ming applica-
tions, one might compute All-Pairs on a set of documents to geneemt graph of
relationships.

Wavefront(R[i,j], F(x,y,d))

returns matrix R

where R[i,j] = F(R[i-1,j], R[i,j-1], R[i-1,j-1])

The Wavefront abstraction computes a recurrence relationship itwo dimensions.
Each cell in the output matrix is generated by a function F where thearguments
are the values in the cells immediately to the left, below, and diagonallyfteand

below. Once a value has been computed at position (1,1), then valusspositions

(2,1) and (1,2) may be computed, and so forth, until the entire maix is complete.

The problem can be generalized to an arbitrary number of dimensian¥Vavefront

represents a number of simulation problems in economics and gamedty, where the
initial states represent ending states of a game, and the recunee is used to work
backwards in order to discover the e ect of decisions at each seat Wavefront also

represents the problem of sequence alignment via dynamic programg in genomics.

Makeflow(R[n])
where each rule R[i] is (input files, output files, command)

returns output files from all R{i]

22

The Make ow abstraction expresses any arbitrary directed aclic graph (DAG).
Whereas All-Pairs and Wavefront are problems that can be decomgexd into thou-
sands or millions of instances of the same function to be run with nemfentical
requirements, a DAG workload may be structurally heterogeneoasd consist of pro-
grams and les of highly variable runtime and size. Many such problemare found
in bioinformatics, where users chain together multiple independenbols to solve a
larger problem. Below, we will show Make ow applied to a genomics prhm.

On very small problems, these abstractions are easy to implemeior example,
a small All-Pairs can be achieved by just iterating over the output maix. How-
ever, many users haveery large examples of these problems, which are not easy to
implement. For example, a common All-Pairs problem in biometrics compas 4000
images of 1MB to each other using a function that runs for one sewh requiring 185
CPU-days of sequential computation. A sample Wavefront problerm economics
requires evaluating a 500 by 500 matrix, where each function reqgesr 7 seconds of
computation, requiring 22 CPU-days of sequential computation. a'solve these prob-
lems in reasonable time, we must harness hundreds of CPUs. Howesealing up to

hundreds of CPUs forces us to confront these challenges:

e Data Bottlenecks. Often, I/O patterns that can be overlooked on one proces-
sor may be disastrous in a scalable system. One process loading agabyte
from a local disk will be measured in seconds. But, hundreds of pesses load-
ing a gigabyte from a single disk over a shared network will encountseveral
di erent kinds of contention that do not scale linearly. An abstracton must
take appropriate steps to carefully manage data transfer withinhie workload.

e Latency vs Concurrency. Dispatching sub-problems to a remote CPU can
have a signi cant cost in a large distributed system. To overcome i cost, the
system may increase the granularity of the sub-problems, but thiecreases the
available concurrency. To tune the system appropriately, the impheentation
must acquire knowledge of all the relevant factors.

e Fault Tolerance. The larger a system becomes, the higher the probability
the user will encounter hardware failures, network partitions, agrse policy
decisions, or unexpected slowdowns. To run robustly on hundred$ CPUs,
our model must accept failures as a normal operating condition.

23

e Ease of Use. Most importantly, each of these problems must be addressed
without placing additional burden on the end user. The system musiperate
robustly on problems ranging across several orders of magnitulole exploring,
measuring, and adapting without assistance from the end user.

Examples of abstractions beyond the three mentioned above inckidBag-of-
Tasks [13, 26], Bulk Synchronous Parallel [22], and Map-Reduce [28ré of these
models is a universal programming language, but each is capable giresenting a cer-
tain class of computations very e ciently. In that sense, programming abstractions
are similar to the idea of systolic arrays [52], which are machines spéizied for very
speci ¢, highly parallel tasks. Abstractions like All-Pairs and Wavefont are obviously
less expensive than general purpose work ow languages such a&Man [100], Pega-
sus [29], Swift [107], and Dryad [49]. But, precisely because abstians are regularly
structured and less expressive, it is more tractable to provide rabt and predictable
implementations of large workloads. Once experience has been gaingh speci c

abstractions, future work may evaluate whether more generalriguages can apply

the same techniques.

3.2 Architecture

Figure 3.2 shows a general strategy for implementing abstractions distributed
multicore systems. The user invokes the abstraction by passingethnput data and
function to a distributed master. This process examines the size of the input data,
the runtime of the function, consults aresource catalog to determine the available
machines, and models the expected runtime of the workload in var®aon gurations.
After choosing a parallelization strategy, the distributed masterigomits sub-problems
to the localbatch system, which dispatches them to available CPUs. Each job consists
of amulticore master which examines the executing machine, chooses a parallelization
strategy, executes the sub-problem, and returns a partial nal$ to the distributed

master. As results are returned, the distributed master may diggich more jobs and

24

4 Evaluate Machine

G 5. Execute
Sub-Problems

1. Invoke Abstraction

: 3. Dispatch Sub—Problems

Complete

P

Input Distribute Batch »
Master System

Complete

Output

6. Assemble Output ("Resource Mhljlggtzl;e
Catalog

2. Query and Model System

Partial
Input
Partial
Output
Partial
Input
Partial
Output

Multicore
Master

-

Multicore
Master

Figure 3.2: Distributed Multicore Implementation
All-Pairs, Wavefront, and other abstractions can be executed on multicore clusters
with a hierarchical technique. The user first invokes the abstraction, stating the
input data sets and the desired function. The distributed master process measures
the inputs, models the system, and submits sub-jobs to the distributed system. Each
sub-job is executed by a multicore master, which dispatches functions, and returns
results to the distributed master, which collects them in final form for the user.
assembles the output into a compact nal form.
For ease of use and implementation, both the distributed and multice masters
are contained in a single executable and invoked in the same way. Boili-Pairs
and Wavefront are invoked by stating directories containing the ingt data and the

name of the executable that implements the function:

allpairs function.exe Adir Bdir

wavefront function.exe Rdir

Without arguments, the distributed master will automatically choog how to partition
the problem. When dispatching a sub-problem to a CPU, the distribitd master
simply invokes the same executable with options to select multicore th®on a given

sub-problem, for example:
wavefront -M -X 15 -Y 20 -W 5 -H 5 function.exe Rdir

Of course, this assumes that the necessary les are available oe #axecuting machine.
The distributed master is responsible for setting this up via direct letransfer, or

speci cation through the batch system. Note that this architectire allows for more

25

than two levels of hierarchy { a global master could invoke distributg masters on
multiple clusters { but we have not explored this idea yet.

The user may specify thefunction in several dierent ways. The function is
usually a single executable program, in which case the input data is gas through
les named on the command line, and the output is written to the stadard output.
This allows the end user to choose whatever programming languagel &nvironment
they are most comfortable with, or even use an existing commercibinary. For

example, the All-Pairs and Wavefront functions are invoked like this:

allpairs_func.exe Aitem Bitem > Output

wavefront_func.exe Xitem Yitem Ditem > Output

Invoking an external program might have unacceptable overheat the execution
time is relatively short. To overcome this, the user may also compile ¢éhfunction

into a threaded shared library with interfaces like this:

void * allpairs_function(
const void *a, int alength,

const void *b, int blength);

void * wavefront_function(
const void *x, int xlength,
const void *y, int ylength,

const void *d, int dlength);

Regardless of how the code is provided, we use the tefumction in the logical sense:
a discrete, self-contained piece of code with no side e ects. Thisoperty is critical
to achieving a robust, usable system. The distributed master relies its knowledge
of the function inputs to provide the necessary data to each noddf the function

were to read or write unexpected data, the system would not futian.

26

As the results are returned from each multicore master, the dishuted master
assembles them into a suitable external form. In the case of Wanaatt, it is not
realistic to leave each output in a separate le (although the batchystem may
deposit them that way), because the result would be millions of smalles. Instead,
the distributed master stores the results in an external sparseatrix. This provides
e cient storage as well as checkpointing: after a crash, the mast reads the matrix
and continues where it left o ..

The distributed master does not depend on the features of any pigular batch
system, apart from the ability to submit, track, and remove jobs.Our current imple-
mentation interfaces with both Condor [100] and Sun Grid Engine (S8 [41], and
expanding to other systems is straightforward. The distributed m@ster also interfaces
with a custom distributed system called Work Queue, which we will motate and
describe later.

To use Make ow, a user needs to create a Make ow script that desbes the
work ow of his workload. This language is very similar to traditional M&e [34]:
each rule states a program to run, along with the input les neededna the output

les produced. Here is a very simple example:

partl part2: input.data split.py

./split_py input.data

outl: partl mysim.exe

./mysim.exe partl >outl

out2: part2 mysim.exe

./mysim.exe part2 >out2

Like All-Pairs and Wavefront, Make ow can run an entire workload ona local

multicore machine, or submit jobs to Condor, SGE, or Work Queue. divever, it

27

does not have a hierarchical implementation: only single jobs are dedphed to re-
mote machines. This is because graph partitioning is algorithmically cqiex, and
impractical for heterogeneous workloads where runtime predictias unreliable. Put
simply, Make ow has greater generality, but this comes at the cosif implementation

e ciency, as we will emphasize below.

3.3 Building Blocks

Our overall argument is that highly restricted abstractions are are ective way
of constructing very large problems that are easily composed, ngily executed,
and highly scalable. To evaluate this argument, we will begin by examirgnseveral
guestions about each abstraction at the level of microbenchmatkthen evaluate the

system has a whole.

3.3.1 Threads and Processes

It is often assumed that multicore machines should be programmedavmulti-
threaded libraries or compilers. Our technique instead employsocesses, because
they are more easily adapted to distributed systems. How does thdecision a ect
performance at the level of a single machine?

As a starting point, we constructed simple benchmarks to measutke time to
dispatch a null task using various techniques. Each measurementrepeated one
thousand times, and the average is shown. (Unless otherwise mhtehe benchmark
machine is a 1GHz dual core AMD Opteron model 1210 with 2GB RAM ruming
Linux 2.6.9.) Table 3.1 shows the results.pthread creates and joins a standard
POSIX thread on an empty function, fork creates and works for a process which
simply calls exit, exec forks and executes an external program, angopen and

system create new sub-processes invoked through the shell.

28

TABLE 3.1

TIME TO DISPATCH A TASK

Method Time

pthread 6.3 US
fork 253 US
exec 830 V]
popen 2500+ us
system 2500+ us

It is no surprise that creating a thread is several orders of magnide faster than
creating a process. However, it is not so obvious thabpen and system are con-
siderably more expensive thamxec, and often vary in cost from user to user. This
Is because these methods invoke the user's shell along with their @bex startup
scripts, which can have unbounded execution time and create tigleshooting prob-
lems. If we are careful to avoid these methods, then executing arternal program
can be made reasonably fast. Moreover, it is only necessary foe texecution time to
dominate the invocation time: a task in an abstraction running for aecond or more

iS su cient.

3.3.2 Concurrency and Data in All-Pairs

Of course, within a real program, we must weigh invocation time agatmore
complex issues such as synchronization, caching, and access t@a.dalo explore
the boundaries of these issues, we studied the All-Pairs multicore ster running
in sequential mode on a single machine, comparing 1MB randomly gested les.
A simple comparison function counts the number of bytes di erent ireach object.

From a systems perspective, this is similar to a biometrics problem, @rmprovides a

29

Linear Method

— N —

— | — | ——

Blocked Method :

 S— S e
’:::‘4”::: T 4’
—_— —_— —_—

Figure 3.3: Linear Method vs Blocked Method.
The linear method evaluates cells in the matrix line by line. The blocked method
evaluates cells block by block with a width chosen to fit in the file system bu [erl cache.
high ratio of data to computation. Any realistic comparison functiorwould be more
CPU intensive, so these tests explore the worst case.

In this scenario, we vary several factors. First, we vary the inaation method of
the function: create a thread to run an internal function thread) or create a process
to execute an external programgrocess). The author of a function is free to choose
their own I/O technique, so we also compare bu ered 1/O byte-bybyte (fgetc), block-
by-block (fread), and memory-mapped I/O (mmap). A naive implementation would
simply iterate over the output matrix in order, causing cache misseat all levels on
every access. A more e ective method, as shown in Figure 3.3, is ttoose a smaller
block of cells and iterate over those completely before proceedirggthe next block.
The width of the block is referred to as theblock size. (This technique is su cient
for our purposes, but see Frigo et al [37] for more clever methods

Figure 3.4 shows the relative weight of all these issues. Each curf®ws the
runtime of a 1000<10 comparison over various block sizes. The two slowest curves
are thread and process, both using fgetc. The two middle curves areprocess using
fread and mmap, and the fastest isthread with mmap. All curves show signi cant
slowdown when the block size exceeds physical memory.

Clearly, threads with mmap execute twice as fast as the next best con guration.

30

1800
1600 [
1400
1200
1000 [

800 [
) P e

600 proces’é"«;get(?"'—"iL Y

400 ! # thread - fgetc B |
process - fread —6—

200 e ormengenenny PrOCESS - MMap —&—
0 thread - mmap -

0 1 2
Block Width (Multiple of RAM)

Elapsed Time (seconds)

Figure 3.4: Threads, Processes, and I/O Techniques.

The performance of a data intensive 1000x10 All-Pairs in sequential mode using
threads and processes with various 1/0 techniques. While threads provide the best
performance, processes are a reasonable method even on this worst case.
If the user is willing to write a thread-safe function for use with the lastraction, they
should do so. However, the use of processes is only twice as stothis artificial worst
case and will not fare as poorly with a more CPU-intensive function. Moreeer, the
appropriate use of virtual memory by the abstraction and the I/Otechnique chosen
by the function aremuch more significant factors than the di erence between threads
and processes. We conclude that using processes to exploit palighe is a reasonable
tradeo if it improves the usability of the system.

We re-emphasize that each abstraction can accept either an external program or
a threaded internal function. So far, none of our users has chosen to use threads.

Next we consider how to carry out All-Pairs on a multicore machine. Alftough
there are many possible ways, we may consider two basic strategi@se is to generate
N contiguous sub-problems, and allow each core to run independgnt The other
is to write an explicit multicore master that proceeds through the dire problem
coherently, dispatching individual functions to each core. Figure.8 compares both
of these against a simple sequential approach. As can be seen, she-problem
approach performs far worse, because it does not coordinatecess to data, and

caches at all levels are quickly overwhelmed. Thus, we have shown inescessary

31

100000

Two Sub Problems —e—
Single Core —»—
Dual Core —8—

10000 ¢ 1]

Elapsed Time (seconds)

—

1000 - e—és o =
0 1 2
Block Width (Multiple of RAM)

Figure 3.5: Multicore vs Sub-Problems.
The performance of an 100010 All-Pairs in sequential mode, in dual-core mode, and
as two independent sequential sub-problems, using various block sizes. This demon-
strates the importance of an explicit multicore strategy.
to have a deliberate multicore implementation, rather than treatingeach core as a

separate node.

3.3.3 Control Flow in Wavefront

As we have shown, the primary problem in e cient All-Pairs is managing dta
access. However, in Wavefront the problem is almost entirely cootr ow. The rst
task of the problem is sequential. Once completed, two tasks maynrin parallel,
then three, and so forth. If there is any delay in dispatching or copteting a task,
this will have a cascading e ect on dependent adjacent tasks. Wellconsider two
control ow problems: dispatch latency and run-time variance.

Figure 3.6 models the e ect of latency on a Wavefront problem. Thisiraple
model assumes a 1086000 problem where each task takes one second to complete.
On the X axis, block size indicates the size of sub problem dispatched to a processor.
Each curve shows the runtime achieved for a system with dispatchtéacy ranging
from zero (e.g. a multicore machine) to 30 seconds (e.g. a wide aremputing grid).

As block size increases, the sub-problem runtime increases relativéhe dispatch

latency, but less parallelism is available because the distributed mastaust wait for

32

100000

10000

Turnaround Time (s)

1000

Block Size

Figure 3.6: The E ect of Latency on Wavefront

The modeled runtime of a 10001000 Wavefront where each function takes one second
to complete, with varying block size and dispatch latency. As dispatch time increases,
the system must increase block size to overcome the idle time.

an entire sub-problem to complete before dispatching its neighbordhe result is
that for very high dispatch times, a modest block size improves perimance, but
cannot compete with a system that has lower dispatch latency. Sthe key to the
problem is to minimize dispatch latency.

Although Wavefront can submit jobs to Condor and SGE batch sysims directly,
the dispatch latency of these systems when idle is anywhere from t® sixty seconds,
depending on the local con guration. For short-running functios, this will not result
in acceptable performance, even if we choose a large block size. igTiB not an
implementation error in either system, rather it is a natural result 6 the need to
service many di erent users within complex policy constraints.)

To address this, we borrowed the idea of fast dispatch execution system as in
Falkon [80]. We built a simple framework called Work Queue that uses ligheight
worker processes that can be submitted to a batch system. Eachntacts the dis-
tributed master, and provides the ability to upload and execute lesThis allows for
task dispatch times measured in milliseconds instead of seconds. Wrs may be
added or removed from the system at any time, and the master wilbmpensate by

assigning new tasks, or reassigning failed tasks.

33

120

100 r With
Fast Abort
80

60

40 + Without
Fast Abort

Tasks Running

20

100 200 300 400 500 600 700 800 900 1000
Elapsed Time (seconds)

Figure 3.7: The E ect of Fast Abort on Wavefront
The startup behavior of a 500500 Wavefront with and without Fast Abort. Without
Fast Abort, every delayed result impedes the increase in parallelism, which stabilizes
around 20. With Fast Abort, delays are avoided and parallelism increases steadily.

However, even if we solve the problem of xed dispatch latency, weust still deal
with the unexpected delays that occur in distributed systems. WheWork Queue
runs on a Condor pool, a running task may still be arbitrarily delayed irexecution.
It may be evicted by system policy, stalled due to competition for lo¢aesources,
or simply caught on a very slow machine. To address these problentise Work
Queue scheduler keeps statistics on the average execution timesotcessful jobs
and the success rate of individual workers. It makes assignmemgeferentially to
machines with the fastest history, and proactively aborts and rassigns tasks that
have run longer than three standard deviations past the averagdhese techniques
are collectively called Fast Abort.

Figure 3.7 shows the impact of Fast Abort on starting up a 10661000 Wavefront
on 180 CPUs. Without Fast Abort, stuck jobs cause the workloadothowever around
twenty tasks running at once. With Fast Abort, the stragglers ag systematically
resolved and the concurrency increases linearly until all CPUs arelise. Figure 3.8
shows this behavior from another perspective. The distributed rster periodically
produces a bitmap showing the progress of the run. Colors indicatike state of

each cell: red is incomplete, green is running, and blue is complete. Dwethe

34

Figure 3.8: Asynchronous Progress in Wavefront

A progress display from a Wavefront problem. Each cell shows the current state
of a portion of the computation: the darkest gray in the lower left corner indicates
incomplete, the lighter gray in the upper right indicates complete, and the light cells
in between are currently running. The irregular progress is due to heterogeneity and
asynchrony in the system.

heterogeneity of the underlying machines, the wave proceeds guéarly. Although
an NxN problem should use N CPUs at maximum, this perfect diagonal is rdye

seen.

3.3.4 Greater Generality with Make ow

Make ow provides a di erent type of building block for large multicorework ows
with abstractions. Make ow combines many functions together (istead of many
instances of the same function) to express more complex seriegppérations.

Make ow uses a syntax very similar to traditional Make, but it diers in one
critical way: each rule of a Make ow must exactly stateall of the files consumed or
created by the rule. (In traditional Make, one can often omit les,or add dummy
rules as needed to a ect the control ow.) Make ow is more strict,but this allows
it to accurately generate batch jobs, exploit common patterns afiork, and schedule

jobs to where their data is located. This allows Make ow to run corretly on both

35

cluster —»—
4000 multicore —8— -

Time (second)

0 5 10 15 20 25
Number of Cores

Figure 3.9: Make ow on Multicore and Cluster
The performance of a genomics application run through Makeflow, using 1-24 cores
on both a multicore machine and a cluster using Work Queue.
local multicore machines as well as a distributed system.

The Make ow abstraction can be con gured to use di erent numbes of cores.
Figure 3.9 shows the turnaround times varying the number of coresed with two
di erent options for executing a genomics workload on 1-24 cored he top curve
(\cluster”) presents Make ow using Work Queue, with workers sbmitted to re-
mote machines as Condor jobs. The bottom curve (\multicore") eecutes all work
as Make ow-controlled local processes, in which Make ow automiagally takes ad-
vantage of multiple cores on the submitting machine. Make ow jobsunning locally
outperform jobs tasked to remote workers and scale well up toegmumber of available

cores.

3.4 Performance Modeling

In a well-de ned dedicated environment in which the distributed mastr knows
exactly which resources will be used, a model can partition work ttvé¢ resources in
such a way as to optimize the workload [101]. This applies to multicore\eronments

as well { the distributed master could build multicore assumptions intahe model

36

to optimize a workload. However, this nely-tuned partitioning doesnot adapt well
to heterogeneous environments or resource unavailability. Preu® work derived a
more realistic solution for modeling the turnaround time of an All-Pairsvorkload in
a cluster [66]. Is it possible to use the multicore version of the All-Paibstraction
transparently beneath the cluster abstraction?

If the abstraction is to use the multicore master transparently, ten it must con-
tinue to exclude considerations of the number of cores per noderfr the model . If
the workload is benchmarked on a single-core system or with a singeeaded execu-
tor, then the model will choose appropriate resources to run theorkload e ciently
assuming single-threaded operation. Adding multicore execution this workload,
then, will only serve to make the batch jobs complete faster on theaulticore re-
sources. It does not change the overall workload any more thaauing benchmarked
on a slow node would: the success of the model in avoiding disastreases is main-
tained, the faster resources (in this case multicore nodes) will @cmt for a greater
portion of the batch jobs than their \fair share”, and any long-tal from slow nodes
would extend out at most to the same duration as without any multicee nodes.

So it is possible, but this is little solace if there is a clearly better solutiofor mod-
eling a distributed All-Pairs workload using multicore resources. Anbger option is to
integrate the multicore master (instead of the original single-thiided executor) into
the benchmarking process for the model. If the function runtime isenchmarked us-
ing the multicore master, then the function execution time (compued as the average
time per function over a small set of executions) will be comparable the expected
execution of batch jobs on the same number of cores. This is a goaygproach for
submitting to homogeneous clusters of resources in which the samanber of cores
are available for every batch job. In a heterogeneous environmehowever, this only
serves to exacerbate the model's assumption that the benchmamnkde re ects the

cluster's resources. Whereas the original model conceded thadlindual resources

37

might be perhaps a generation newer (faster) or older (slower)ah the benchmark
node, the inclusion of multicore uncertainty into the benchmarking icreases the po-
tential range of resource capabilities and thus the potential for hy-tail e ects in a
workload.

Another option would be to include a coe cient of the average numbreof cores
within the model. Because the model includes a component for the #nto complete
a single batch job, an adjustment for the number of cores could Imeade by dividing
the batch job execution time in the model by this average. This retas the same
prerequisite measurements (plus the calculation of the averagenmoer of cores),
however it has several limitations. First, the pool of resources rsube well-de ned
so that the average number of cores may be determined; but basa the model is
used to select the appropriate number of resources, the exaet sf hosts is not known
a priori. Thus, the average number of cores available for each host is a pawerage
rather than one speci c to the actual resources used. Furthecontention for resources
means that not all hosts will be utilized equally or predictably, which pesents the
same problem in trying to include a factor of the number of cores in ¢hturnaround
time model. This is especially problematic as we move beyond workstatsowith
at most a few cores: unavailability of a machine with dozens of coregrs cantly
changes the average number of cores of the available machines.

With that said, can we accurately model the performance of our abractions?
Figure 3.10 shows the modeled performance of All-Pairs workloadsvafying sizes
running on an 8-core machine and a 64-core cluster. Figure 3.11whdhe modeled
performance of Wavefront workloads running on a 32-core mackirand a 180-core
cluster. In both cases, the multicore model is highly accurate, due a lack of
competing users and other complications of distributed systems. o models are
su ciently accurate that we may use them to choose the approprig implementation

at runtime based on the properties given to the abstraction. Figer3.12 shows the

38

4500

4000
3500 [
3000 +
2500 +
2000 r
1500
1000 r
500 |

Runtime (seconds)

O L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000

8CoreReal ®w W

8-Core Model

Problem Size

Runtime (seconds)

16000

14000 r
12000 r
10000 r
8000 r
6000
4000
2000

0
0

" 64-Core Cluster Real ®
64-Core Cluster Model

500 1000 1500 2000 2500 3000 3500 4000
Problem Size

Figure 3.10: Accuracy of the All-Pairs Model on Multicore and Cluster
The real and modeled performance of an All-Pairs benchmark of varying sizes on a
8-core machine (left) and an 64-core cluster (right).

40000

35000 r

€ 30000

§ 25000 |

£ 20000 -
[}

E 15000 |

S 10000 |
24

5000 -

0
0

"32-Core Real ® ‘ ‘ ‘ ‘ l
32-Core Model

50 100 150 200 250 300 350 400 450 500
Problem Size

Runtime (seconds)

12000

10000 r
8000
6000
4000
2000

0
0

180-Core Cluster Real ®
180-Core Cluster Model

50 100 150 200 250 300 350 400 450 500
Problem Size

Figure 3.11: Accuracy of the Wavefront Model on Multicore and Clusr
The real and modeled performance of a Wavefront benchmark of varying sizes on a
32-core machine (left) and an 180-core cluster (right).

modeled performance of Make ow workloads running on a 24-coreanhine and a 60-

core cluster. Figure 3.13 compares the multicore and cluster mod#ds the previous

All-Pairs and Wavefront examples, and demonstrates the actuabpformance achieved

when selecting the implementation at runtime.

3.5 Make ow vs Speci c Abstractions

With the Make ow abstraction for arbitrary DAG work ows, could w e choose

to use it as a general tool instead of implementations of the speciabstractions

mentioned above? In our experience, the answer is that we couldytbn doing so

39

Time (second)

60

50 |-
40 +
30 -
20
10 |

24-Core Real m
24-Core Model

50 100 150 200

Size (unit of workload)

250

Time (second)

60

50
40
30
20
10 +

" 60-Core Cluster Real ®m
60-Core Cluster Model

50 100 150
Size (unit of workload)

Figure 3.12: Accuracy of the Make ow Model on Multicore and Cluste
The real and modeled performance of a Makeflow benchmark of varying sizes on a
24-core machine(left) and a 60-core cluster(right).

500

5000

200

250

T 400 @ 4000 | 1
=} = [| e}
c g c
S “'m 3
g 300 S 3000 | L
& M « S -
£ 200 g 20t /7
E : S ,
100 Automatic = 1000 + Automatic]
« Cluster Model - & Cluster Mode| --swese-r
o ‘ ‘ chal Modej 0 ‘ ‘ Loca[Model ,
100 200 300 400 500 50 100 150 200 250
Problem Size Problem Size

300

Figure 3.13: Selecting An Implementation Based on the Model

These graphs overlay the modeled multicore and cluster performance on problems of
various sizes for All-Pairs (left) and Wavefront (right). The dots indicate actual
performance for the selected problem size. As can be seen, the modeled performance
is not perfect, but it is su [cieht to choose the right implementation.
we lose many of the problem-speci ¢ advantages given by the less\gel abstrac-
tions. We carry out All-Pairs on a 24-core machine using both the allgirs multicore
abstraction and the Make ow abstraction.

We vary the size of the workloads from creating a 2010 matrix to creating a
1000< 1000 matrix. Each matrix cell is computed by comparing two 20KB lesWith
the Make ow abstraction, each cell value depends on a comparisand the cell value

is stored in a le after it is computed. And we have to write an additionaprogram,

which depends on all the cell value les, to extract all cell values fno generated

40

100000

" Makeflow ——

10000 L Allpairs —8— |

1000 ¢
100 ¢

10

Time (second)

1

0.1F

0.01

0 200 400 600 800 1000
Size (width)

Figure 3.14: Solving All-Pairs with Make ow and All-Pairs

This figure shows the time to complete an All-Pairs problem of various sizes using
the general Makeflow tool and the specific All-Pairs tool. The more general tool is
considerably more expensive, because it uses files for output storage, and is unable to
dispatch sub-problems to multicore processors.
les and put them into the target matrix. The running time of both abstractions
on di erent workloads are shown in Figure 3.14. It is easy to see tha#lhe All-Pairs
multicore abstraction scales almost linearly as the workload increaseHowever, the
Make ow abstraction is several orders of magnitude slower at thigroblem, because
it uses les for output storage, and is unable to manage work in orgezed blocks.

The increased generality of Make ow has a signi cant price, so we rolude that
there is a great bene t to retaining speci ¢ abstractions such as IAPairs and Wave-

front for specialized problems.

41

CHAPTER 4

DYNAMIC WORKLOADS

A dynamic workload is a workload whose computational structure isnknown
prior to execution. Because the workload structure is unknown,hé abstraction
modeling method we used for static workloads is impossible to be appliedhe
resource allocation problem on general dynamic workloads is di cultThe dynamic
capacity management method described in this chapter relies on tfalowing three
assumptions that reduces the problem complexity to a solvable levéa) applications
are composed of tasks that have a relatively stable computation-tata ratio, (b)
task properties are not known in advance, and (c) there are motasks than workers
available, so that there is an opportunity to measure and adjust ev time. The
system will adapt to changes in computation-to-data ratio, as longs the task mix

is stable for a su cient period for the system to adjust.

4.1 Architecture

This work is done in the context of the Work Queue [19] elastic applican frame-
work as shown in Figure 4.1, but the lessons apply to any system whehe provisions
of the computing resources must be right-sized to the applicationdn this frame-
work, a master process represents a particular application, generating tasks tviare
sent o to multiple workers. Any workload that runs as a Work Queue master is
automatically elastic as it can adapt to di erent computing resourceavailabilities and

progress through resource loss. The master advertises its lagatand other details

42

Catalog

Advertise Master
Location and Status

Query for Master
Location and Status

Cloud, Cluster, or Grid
Computing Service

Worker
Pool

Start/Stop
Workers

Connect
to Master

Cloud of Workers

Figure 4.1: Work Queue Architecture

Queue
1:Put input data

-l

2:Command to execute /
Master \ Worker

5:Receive output data

Return
Submit finished
tasks
Input

Data

3:Execute commanc

New Task (cached)

4:Generate

Application

Output
Data

Figure 4.2: Detail of Master-Worker Interaction

to a catalog server, which makes it known to thevorker pool, which is responsible
for setting up and maintaining an appropriate number of workers fathe master.

A master program is constructed by creating a custom application and linking
it with the Work Queue master library. The library provides an API in multiple
languages, allowing the caller to de ne a new task, submit it to the que, and
wait for a task to complete. Each task consists of an arbitrary comand line to be
executed, along with the executables and les necessary to caityout. In pseudo-

code a program written to the Work Queue API looks like this:

43

while(not_done) {
for(each _new task) {
task = work_queue_task create(details);
// add more details to the task

work_queue_task_submit(task);

}
task = work_queue_task wait(timeout);
if(task) {
process_result(task);
work_queue_task delete(task);
}

A standard worker program is common to all Work Queue applications. The
worker is a lightweight executable that can be deployed to any kind ecbmputational
infrastructure and connects back to the desired master progra The master and
worker then work together to move the necessary les and exdables to the worker,
and the run the task's command line. Together the master and waegk are robust to
a variety of network and system failures, so that when somethinggs wrong, a task
can be re-assigned to another worker.

In the most basic form, a number of workers can be started by hdrand given the
exact address and port of a known master to work with. Howevemanaging addresses
and ports becomes tiresome at large scale, soatalog is used for discovery instead.
The master may optionally advertise its name, location, and other tals to the
catalog server. When this is done, workers may be started by simplydicating the
logical name of the master { each worker queries the catalog forethocation of the
desired master. The catalog is also the point of contact for a numbef status tools

that can quickly list the running applications, number of workers, pogress toward

44

completion, etc.

For clarity, we will con ne our discussion to the Work Queue softwas. However,
the principles are general and could easily apply to any system with fitiple worker
nodes and the dynamic generation of work, including but not limited té&\zure [47],

SAGA [58], Falkon [80], Swift [107], and Condor-MW [57], to name a few.

4.2 The Problem of Capacity

The framework this far { master, workers, and catalog { has beeto construct a
variety of large scale scienti ¢ applications, including scalable genorassembly [68],
genome analysis tools [102], and advanced molecular dynamics ensesnfb]. As
mentioned in Chapter 3, Work Queue is also used as the driver undenyg higher
level computing abstractions, such as All-Pairs, Wavefront, and &ke ow. Typical
applications manage thousands to millions of tasks running on hundi®to thousands
of workers.

However, a common problem across these applications is that maimagthe set
of workers becomes a burden on the end user as scale increasebmiiting a large
number of workers to a batch system or to a public cloud may take sigcant time
and be interrupted by network failures. System outages or oth@roblems may cause
workers to be returned to the user, as if complete. Further, thend user must judge
the proper number of workers that the application could use, and amage them them
manually at runtime. In our experience, the necessary informatiowas completely
opague to the end user, so that often 1000 workers would be rumg when only 10
were necessary, or vice versa.

To address this problem, we introduce a new component into the freework. The
worker pool serves to deploy and maintain the proper number of workers needen
a resource for the bene t of the elastic application. The user starthe single process

once with basic instructions (e.g.Don’t run more than 500 workers or spend more

45

—~ 2000 — | 100
8 time ——
5 *\‘ efficiency % | 80 g
® 1500 F| capagcity X 1 >
\(P/) (8]
£ 60 O
(8]
= 1000 o
g 40
5 500 %
g 20 S
5 o
>
|_ 0 I 1 L |) ‘ 0

0 20 40 60 80 100 120
Number of Workers

Figure 4.3: Performance vs Parallel E ciency

than $100.) and then is relieved of further details. The worker pool is built with
drivers that allow it to submit and remove jobs from traditional batd systems like
Condor and SGE as well as public clouds like Amazon EC2 and Microsofzuére[84].

This chapter focuses on the key design question of the worker paghich is simply
this:

How many workers should be running at once?

Put simply, if too few workers are run at once, the master will be lefinderutilized,
missing on opportunities to execute tasks. If too many workers arun at once, the
master will not have enough bandwidth (or other resources) to &p them busy, and
workers will be left idle, wasting those allocated resources and pibbg decreasing
overall performance.

To demonstrate this problem, we constructed a simple benchmarlpplication,
generating 1000 uniform tasks where each task uses 1 MB of inpudtal takes 5
seconds to execute, and generates 1 MB of output data, and thiean it on a varying
number of dedicated workers from 1 to 120. Figure 4.3 shows thertaround time
and parallel e ciency of running the benchmark application with a vaying number
of workers. Equation 4.1 shows how the estimated parallel e ciencig calculated at

runtime. T; is the execution time of theiy, task and N is the number of tasks that

46

are already completed. Equation 4.2 shows how the observed paladieciency is
computed. In this equation, Tsq is the turnaround time of executing the application
tasks sequentially. In both equationsTya—ciock IS the turnaround time of execut-
ing the application tasks in parallel. As can be seen, the application toaround
time rst decreases as more workers are provided. The parallel eiency, however,
keeps decreasing because more workers adds more communicati@nheads. When
the number of workers reaches 20, adding more workers no longeproves the per-
formance because the master is unable to keep all the workers alsvaloing useful
work.

X
calculated = (Ti)/(N CDyan—clock) (4.1)

i=1

observed = Tseq/(N [Chyai—clock) (4.2)

For the application in Figure 4.3, 20 is close to the optimal number of wkers to
provide if the goal is to maximize the performance. When the numbef workers
are less than 20, the master experiences idle times as it would speimdet waiting
for tasks to nish, which means that the master has additional remrce to take on
more workers and reduce the turnaround time through increasqghrallelism. When
the workers number is over 20, while the master's idle times are grateduced, the
workers start to experience idle periods. During a worker's life cyclidere are several
stages in which it could be idle { not doing useful work, such as waitingifthe master
to accept its connection, waiting for a new task from the master,ravaiting for the
master to receive its computing results. When a master is too busg handle all the
workers in time, such idle times emerge and lead to resource waste.

This is all easy enough to state on paper, but in a production settingt is very
challenging to determine whether an application is running e ciently. Moreover, the
user who wishes to accomplish real work has no interest in runningettapplication

many times to determine the optimal con guration { it is much more important to

47

TABLE 4.1

CAPACITY IN VARIOUS SYSTEMS { EXPERIMENT SETUP

Master Location Worker Location
A Campus Workstation Campus Condor
B | Campus SGE Head Node Campus SGE
C Campus Workstation FutureGrid
D | FutureGrid Head Node FutureGrid
E Campus Workstation Amazon EC2
F Amazon EC2 Amazon EC2

Capacity

Figure 4.4: Capacity in Various Systems { Results

make a good choice the rst time. Further, the scale achievable magry considerably

as the same application is moved between systems.

Figure 4.4 demonstrates this by showing the optimal number of waegks for the
same benchmark application moved between multiple computing envinments as
shown in Table 4.1: (A) Master on a workstation, workers on a camguCondor pool.
(B) Master and workers on a dedicated campus cluster. (C) Masten a workstation,

workers on FutureGrid. (D) Master and workers on FutureGrid. E) Master on a

48

workstation, workers on Amazon EC2. (F) Master and workers oAmazon EC2.
As can be seen, the optimal number of workers varies from 9 to 1@&epending on
the bandwidth available to the master. Thus, an ideal resource magement system
must be exible such that the amount of resources for a workload idetermined

dynamically according to the runtime environment.

4.3 Measuring Capacity

We de ne the master's capacity as the maximum number of workershese average
I/O bandwidth needs add up to the available 1/0 bandwidth at the mager. The
optimal numbers of workers we show in Figure 4.3 and 4.4 are the mastapacities.
Since our goal is to avoid wasting computing resources, we want tmember of workers
provided to a master to be no greater than the master's capacityAs stated earlier,
users have no interests in running an application multiple times to detaine the
capacity for a given setting. Thus, we introduce a method to dynaically estimate

master capacity at application runtime.

4.3.1 A Simple Equation

We consider applications that contain independent tasks of similar €z. That is,
for each task, the sizes of its input and output data, as well as thask execution time
are similar its peers. Many bioinformatics and biometrics applications amly contain
tasks of similar sizes. Thus, such simpli cation is of practical value nlthis simpli ed
model, the number of su cient workers to keep a master busy eqisthe number of
tasks that the master can dispatch before the rst handled tasks complete.

A simple equation to estimate a master's capacity is shown in equation34 In
this equation, Tyan IS the time to transfer a task, which includes the transfer time
of both the input and output data. Te IS the time to execute a task on a worker.

Equation 4.3 shows that a master's capacity is dominated by the valu® Teye/Tiran,

49

which will be referred to as the computation/data ratio later in this mper. The
intuition behind the capacity estimation is that a masters capacity is pproximately
the very number of workers that reduces the master idle time to ghminimal level.
Of course, a master can never be 100% busy due to queueing eseddut when the
amount of workers provided is equal to capacity, the master will bjest busy enough
sending out tasks. Note that the capacity value could be less than ih which case

there is no advantage to run on remote workers.

capacity = Texe/ Ttran (4.3)

Equation 4.3 makes several assumptions that are unlikely to be true a real dis-
tributed environment, namely that the network bandwidths betwen the master and
di erent workers are the same, and that each worker spends tlsame amount of time
to execute the tasks of the same size. Thus, we can not rely on agdintask's data
transfer time and execution time to calculate the master's capacityTo incorporate
the heterogeneity of distributed systems into the capacity calcuian, we replace the

items in equation 4.3 with their corresponding average values and gejuation 4.4.

capacity = Tayg_exe/ Tavg._tran (4.4)

4.3.2 Sample Selection

An implicit parameter of equation 4.4 is the task samples on which the erages
are computed. To make more accurate estimates on the capacitiye selected task
samples should re ect the up-to-date capacity of the master. Amentioned earlier, a
master's capacity is dominated by the computation/data ratio of tle tasks. If the this
ratio does not change throughout the execution, choosing thetea set of already

nished tasks as the sample is desirable because having the largessgible sample

50

size best o sets the e ects of outliers such as a extremely slow Wer.

However, there are cases where the computation/data ratio majpange over the
course of an execution. For example, in the Work Queue frameworthe workers
are able to cache input les. Whenever a task is dispatched to a wank any of its
input data that is already cached on the worker will not be transfeed. To give an
example of the computation/data ratio's changing e ect, we conskr an application
with tasks that all share the same input data. At the beginning of te execution, no
input data is cached on any workers, so the master has to transfthe shared input
le to every worker. If the number of tasks is large enough, evemally all the workers
would have the shared input le cached on them. Further tasks wad then have less
input data to transfer, which changes the computation/data raibo.

Another example would be applications that contain di erent types btasks. Con-
sider a slightly more complex application that contains two sequentiateps where
each step contains tasks of the same type, that is, the compuia/data ratios of
the tasks are the same. The computation/data ratios in the two sips, however,
are di erent. Assume that the number of tasks in both steps are tge enough, the
master's capacity at the beginning when all step-one tasks are bgiaxecuted will be
di erent from that when step-two tasks occupy the workers.

In either case, the entire set of nished tasks might contain taskthat do not
re ect the up-to-date mater's capacity. Computing averages othese tasks might
lead to greater inaccuracy. Thus, we limit the task samples to the mbrecently
nished N tasks whereN is the number of busy workers. Although tasks of di erent
computation/data ratios may be executed at the same time, as longs the number
of the same type tasks is large enough, eventually the workers wilé blled with
the same type tasks and the estimated capacity will move toward ¢hmater's actual

capacity.

51

100

" turnaround runtime —+—

800 t estimated capacity ---%-- -
1 80
600 1
1 60

400

Capacity

1 a0

200 f 120

Turnaround Time (seconds)

0 L L L L L L L L L L O
0 10 20 30 40 50 60 70 80 90 100110
Number of Workers

Figure 4.5: Capacity without Think Time

4.3.3 Final Equation

When we rst tried using equation 4.4 to estimate the master's capiéty, we
observed some discrepancies between the estimated master'sacéyp and the actual
master's capacity.

To obtain a close estimate of a master's actual capacity, we exeeuthe same
application multiple times with di erent numbers of workers. When theturnaround
time does not improve as the number of workers increases, we recthe number of
workers at that point as the actual master's capacity for that aplication. Figure 4.5
shows the results of running a same benchmark application with di ent amount of
workers. The synthetic application contains 800 independent taskvhere each task
has 5 MB input data, 10 seconds execution time, and generates 5 MBtput data.
The master estimates its capacity whenever a task nishes. Thetesated capacity
shown in Figure 4.5 is the dominating capacity value among all the capgcestimates
computed during a single execution.

We then discovered that the actual capacity of the application is aund 40 as
the performance no longer improves after the number of workegoes beyond 40.
However, the estimated capacities of the application are around G@gardless of

the number of workers provided. The reason for the deviation in & estimated

52

capacity was the master spending extra time communicating with thepper-level
application. When a task nishes, the master returns the task redt to the upper-
level application so that the upper-level application can take apppoiate actions
according to the task result. During this communication, the mastecan not serve
any workers which may increase the idle times on the workers. The #nthat a
master spends in communicating with the upper-level application is fiezred to as

think time.

CapaCity = Tavg_exe/(Tavg_tran + Tavg_think) (4-5)

After incorporating the think time{ Tayg wink iNto the capacity estimation leads to
equation 4.5. The new estimated capacities of the same application &ws have
shown in Figure 4.5 became mostly around 40, which is more accuratenpared to
the previous estimates of around 60. Further experiments with derent numbers of
workers and types of tasks have also yielded improved accuracyaapacity estimates.
When more than the capacity amount of workers are provided, thmaster be-
comes overloaded and greater resource waste emerge at nogoerance bene ts. In
Figure 4.3, thecapacity curve shows the capacity estimates at the end of each en-
tire run. No matter how many workers are provided to the master, the
estimated capacity (18) is close to the optimal number of workers that

achieves the maximum performance.

4.3.4 Dynamic Behaviors

The capacity estimates we have shown in Figure 4.3 are static estiratobtained
at the end of the entire runs. In this subsection, we show two exme cases of
dynamic behaviors in capacity estimation that are worth observingsettle time and
cache bounce.

Figure 4.6 shows the settle time behavior in dynamic capacity estimaavhen

53

100

‘ buéy workers
estimated capacity -

807-]

P
60 ifi %

40 | R S

Count

20

0 20 40 60 80 100 120 140 160
Time (seconds)

Figure 4.6: Settle Time on an Overloaded Master

80 workers are provided to a benchmark application of 600 indepemd, uniform
tasks. Each task in this workload has unique 5 MB of input, takes 1G2sonds to
execute, and returns 5MB of output. The estimated capacity p&a (around 70) at
the beginning of the execution because the tasks execution statis are only available
from the rst few incidental faster workers. As more workers jm the master, that is
the sample size for calculating the capacity becomes larger, theissited capacity
drops down and become stable at around 40 throughout the rest the execution.
We have repeated the same experiment multiple times only varying tremount of
workers, and we have observed that adding more workers beyoad does little to
none improvement to the application turnaround time. We refer toliis initial period
when the capacity estimates are unstable and inaccurate as thdtksetime.

Figure 4.7 shows the cache bounce behavior in a di erent workload 590 inde-
pendent, uniform tasks. Unlike the workload shown in Figure 4.6, alhe tasks in this
workload share the same 1 GB of input. Each task takes 5 secondsexecute and
generates 1 MB of output. Initially, only 1 worker is provided to the master. The
rst task transfer involves the transfer of the 1 GB input. Becase the worker is able
to cache input data, later task transfers incurs no input transfe which changes the

C/C ratio of the tasks. Because we con gured the low-bound forasnple tasks size to

54

160

140 | Workers
120
100 r
80
60
40
20

Count

0 100 200 300 400 500 600
Time (seconds)

Figure 4.7: Cache Bounce on an Underloaded Master

100

buéy workers
estimated capacity -

Count

0 20 40 60 80 100 120
Time (seconds)

Figure 4.8: Settle Time and Cache Bounce in a Shared-Input Applicatio

be 10, the rst task's execution statistics stayed as an outlier in gacity estimation
until the 11th task is returned. 10 more workers are added to theaster when the
estimate capacities become relatively stable. Because the new vepskhad to repeat
the 1 GB input transfer, the capacity declines rst and then retuns to the previous
level as more workers have the shared-input data cached. Weeteto the resulted
U-shaped capacity curve as the cache bounce.

Figure 4.8 shows the combined e ects of settle time and cache boern a bench-
mark application that contains a total of 600 tasks. All the tasks Isare the same
50 MB input data. Each task takes 10 seconds to execute and geates 5 MB of
output. The estimated capacity starts out relatively low (quickly séled at around

20) because every task transfer includes the transfer of theasad 50 MB of input. As

55

the workers begin to have that input data cached on themselves,put data transfer
time is shortened and the capacity estimate starts to increase. €ltache bounces can
be seen at the 40 and 80 second points. After the bounces, théneated capacity
becomes stable at around 60. Because we take task samples ordynfthe most re-
cently nished tasks, the estimated capacity would eventually beeoe in accordance
with the true computation/data ratio of the tasks being executedas long as there

are enough tasks for the estimation to adjust to.

4.4 \Norker Distribution

The capacity estimation allows individual masters to report their intospects on
how many workers they need. The worker pool utilize these estinest as well as
other metrics of the master's status, to allocate a proper amourtf workers to the

masters at runtime.

4.4.1 Master Advertisement

A master, when runs in the catalog mode, advertises its status imfoation to a
catalog server periodically. The following list shows some of the itemisat are sent

to the catalog server from a master:

« hostname { the hostname of the machine that the master is running on.

e port { the port number that the master is listening on for worker conneins.

» project { the name of the project that this master represents.

 tasks_waiting { the number of tasks currently waiting in the master queue.

e tasks_running { the number of tasks running on the workers.

 total workers { the number of connected workers.

e capacity { the estimated capacity of this master.

« workers_by_pool { the number of workers this master gets from each worker

pool.

56

The "project” eld allows a worker to identify a master by a name sting and
the "hostname" and "port" elds tells the end point that a worker should connect
to. The "tasks_waiting", "tasks _running", "total _workers", and "capacity" elds help
the worker pool to make proper worker distribution decisions andra also served for
display purposes (the user can query the status of their mastgrs

The "workers_by_pool" eld is useful when a master is served by multiple worker
pools and non-pool-controlled workers. With this eld, a worker poddknows exactly
how many workers a master has received from itself. This preverdasworker pool
from allocating too many workers to a master when a part of the mes's worker
needs has been satis ed by other worker providers. For exampsmme of a master's
workers may come from the worker submit utilities provided by Work Qeue, such as
condor_submit_workers and sge_submit_workers, some other workers may come from
individually started worker processes (by running thevorker program directly), and
some other workers may come from other worker pools.

An example of a "workersby_pool" eld is as follows:

workers_by pool: wsl.nd.edu-100:300,ws2.nd.edu-101:500,unmanaged:50

4.4.2 Basic Distribution Decision

The goal of the worker distribution decision is to provide each mastavith as
many workers as they need without violating the worker pool policyThe decision
speci es the number of workers this worker pool would like to provato each master.
The following line is an example of a worker distribution decision made & on the

previous worker pool policy example:
distribution: proj1:500,proj2-A:500,proj2-B:1000

For the simplicity of discussion, we refer to a master with its projeatame in the rest

of the paper. The above distribution decision line states that the wker pool should

57

provide 500 workers to projl, 500 workers to proj2-A, and 10@@rkers to proj2-B.
Note that any of the project name appeared in the decision line carebmatched to
a project name regular expression listed in the worker pool policy.

The number of workers that a worker pool would decide to provideota master
is derived from two pieces of information: the user de ned policy aneivery matched
master's runtime status. The decision making process starts withalculating the
maximum number of workers each master would need from it by usingjeation
4.6. In this equation, Wnax needed represents the maximum number of workers that
this master would need from this worker pool.Wagtiii_needed 1S the extra number of
workers the master needs an®V, eciveq IS the number of workers the master has
already received from the worker pool that is making this decision. HE value of
Wieceived Can be directly extracted from the workerdy_pool eld in the master's
status advertisement. TheWsgtiii_need, hOWeVver, involves more complicated calculation

on multiple elds in the master's status.

Wmax_needed = Wstill_needed + Wreceived (46)

When a master's capacity is not reported, the extra number of wkers this master
still needs Witin_needea) Can be calculated with equation 4.7. In this equationT yaiting

is the number of waiting tasks on the master and this number represts the maximum
possible number of more workers that the master would need besaua single task

is the minimal task scheduling unit.

Wisstill_needed = Twaiting (4.7)

When the master capacity is reported, because a master does need more workers
than its own capacity, Watil needed 2N be computed using equation 4.8. In this equa-

tion, capacity is the master's reported capacity andW onnected iS the number of work-

58

ers that the master has already received, regardless the sourcapacity — Weonnected
is the extra number of workers that the master needs to Il its cagcity. The MIN
function is used becausg,iting Might be less than the value otapacity —Weonnected
during the execution (e.g. at the end of the master's execution), imhich case adding
more workers thanTyaiting Would de nitely result in resource waste. Also note that
Witill needed 1S NeVer less than zero. This guarantees that the decision on a neswill
not be reduced solely due to the decline in its capacity, which helps peat system

oscillation as will be discussed in section 4.6.

Wstill_needed = min(max(O , CapaCity - Wconnected), Twaiting) (48)

Once theW hax needed 1S determined for a master, the worker pool compares this value
with the master's Wyefauit max value to determine whether theW nax needeq Value can
be used as the nal decision for this master. Before proceeding ttte nal decision
making process, we illustrate how th&V4efauit max Value is computed for each master.
The Wgerauit max Value of a master represents the default maximum number of
workers that the worker policy allows to provide to this master. It an be calcu-
lated using equation 4.9. Wefauit.max_in_policy 1S the value on the right side of an
assignment whose left side (a regular expression) matches the tags project name.
Nmatched_masters 1S the total number of masters that match the assignment's proge
name regular expression. AndRs.e Can be computed from equation 4.10 where
Wiotal_max COrresponds to the maxworker eld in the worker pool policy. We use
the previous worker pool policy as an example to illustrate how th®/gefauit max IS
computed for assignment proj2.*=1500. With the given policy, thdRs,e Value is 1,
which is result of (500 + 1500) / 2000. If there are three mastersgroj2-A, proj2-B,

and proj2-C. Then for any of these masters, the correspondindgefauit.max Value

59

would be 500, which is the result of 1500 divided by 3.

Rscale I]Vdefault max_in i
— _ _in_policy
Wdefault_max - (49)

Nmatchedm asters

Wtotal_max

Rscatle = P (4.10)
Wdefault_max_in_pol icy

As can be inferred, the relation between th&Verauirt max Values for each master and
the policy de ned maxworkers value can be summarized in equation 4.11. Because
of this auto-scaling property, the user is free to assign any numb® the default
maximum worker elds in the policy and does not need to guarantee & the sum of

the assigned numbers equates the value of the mawrkers eld.

X
Wiotal_max = Wefault_max (4.11)

Now that the Wax needed @aNd the Wyerauir max Values are obtained for each master, we
continue to the nal decision making process. For any master, if itd/\nax_needed Value
is less than itSWyefauit max vValue, then the W ax needed b€COMes the nal decision for
this master. If not, which means this master can take advantagd anore workers
than its Wyetauitmax, then the worker pool may give more workers than this master's
Weerauit.max If some other masters need less than their oWl gefaurt max Values.

The previous process calculates a potential deciSioWfax_needed) fOr every matched
masters, and some of those decisions can be already determinechak We refer to
those masters whose decisions are not nal as hungry masterslahe other masters
as full masters. The goal of the remaining process is to nalize thedsions for those
hungry masters.

The remaining process runs in a loop until the decisions for all the nass are
nalized. In each iteration, the maximum number of workers neededby all the

hungry workers is computed with equation 4.12 and the number of dacided workers

60

is computed with equation 4.13. In equation 4.13W4ecided IS the sum of decisions
of those full masters. fWigtal_max.needed 1S 1€SS than Wyndecided, Which means the
worker pool is able to satisfy all the remaining hungry masters' nds, then for each

remaining hungry master, set its nal decision to itSWyax needed @Nd mark it as a full

master.
X
Wtotal_max_needed = Wmax_needed (4-12)
hungry
Wondecided = Whotal_max — Woecided (4-13)

If Wiotal_max_needed IS greater thanWnqecided, then a potential decision for each hungry
master with equation 4.14.R.ight represents the general proportion of workers that
the user wishes to allocate for this master as de ned in the policy, wdl can be
computed with equation 4.15. If a master's potential decision is grea than its
Wax_needed Value, then theWnax needed 1S USed as the nal decision for this master. If
none of the master's potential decision is greater than its correspding Wmax_needed
in this iteration, then all the remaining hungry masters are marked s full masters

and their nal decisions are set to theirWotential_decison-

Wpotential_decision = Wundecide I:Bweight (4-14)

Wdefault_max (4 15)

Rweight: ¥ W
hungry VVdefault_-max

Now we examine a concrete example of what distribution decision will Ineade in a
certain situation to consolidate the understanding of the calculatits. Let the name
of the worker pool be wsl.nd.edu-100. The worker pool policy is tkame as in the

previous examples, which is:

max_workers: 2000

distribution: proj1=500, proj2.*=1500

61

Assume there are three masters: projl, proj2-A, and proj2-Bhe masters' status

that is relevant to the worker distribution decision is listed as below:

name: projl

tasks_waiting: 2000

total workers: 200

capacity: 1100

workers_by pool: wsl.nd.edu-100:100,unmanaged:100

name: proj2-A
tasks_waiting: 1000
total_workers: 0
capacity: 0

workers_by pool: N/A

name: proj2-B

tasks_waiting: 300

total workers: 100

capacity: 700

workers_by pool: ws2.nd.edu-101:100

First, the Wpax needed 1S Calculated for each master, and the results are 1000 for
projl, 1000 for proj2-A, and 200 for proj2-B. For projl, the raster capacity is 1100,
Weonnected 1S 200, Wil needed 1S 900 (1100 - 200). And because th& eceives (from
worker pool wsl.nd.edu-100) value is 100, thWnax needed IS 1000, which is the result
of 900 + 100. For proj2-A, since the capacity is not reported andanother workers
are connected to the master, th&Vax needed Value equals itSWiasks waiting Value. For
proj2-B, because there are only 300 tasks left and one other Wwer pool has already

provided 100 workers to this master, th&V ax needed IS the value of 300 less 100.

62

For Wyefauit.max Values, projl's is 500, proj2-A's is 750, and proj2-B is also
750. Note that the Ry Value in this example is 1, which is the result of (500
+ 1500)/2000. Thus the Wgefauit max for the proj2.* masters is derived from 1500
divided by 2 (the number of matched masters). For proj2-B, becae itsWnax needed
is less than 750, 100 becomes the nal decision for proj2-B. Thectgons for projl
and proj2-A, however, are not nalized in yet because they can esmore workers
than their Wyefaurt max-

Then the worker pool enters the iterative process to nalize theetisions for the
remaining two hungry masters. TheWigtai_max_needed 1S the sum of the two hungry
masters' Wax_needed» Which is 2000. TheW ngecided IS 1800 because only 200 work-
ers are in the nal decision and the worker pool can allocate at mo&2000 workers.
BecauseWotal max_needed 1S greater than Wyngecided, the worker pool computes a po-
tential decision, using equation 4.14, for each master based onitheeights (Ryeignt)

as de ned in the worker pool policy, and the results are:

pI'Ole Wpotential_decision:7207 W nax_needed=1000
proj2-A: Wpotential_decision:10801 Wax_needed=1000

As can be seen, proj2-A'$Notential_decison 1S greater than its Wmax needed, Which
means the worker pool could provide 1080 workers to proj2-A eson the user de-
ned policy but the master does not need that many. Thus 1000 bemes the nal
decision for proj2-A and proj2-A is marked as a full master. This @s the current
iteration and the worker pool proceeds to the next iteration. Thé&V ngecides NOW be-
comes 800 because 200 + 1000 workers has already been deciad®iW&ota1 max needed
becomes 1000, which is th®/ax needed Of the only left master { proj1l. This time,
Wiotal_max_needed 1S Still greater than Wyngecided, Thus, a new potential decision com-

puter is for projl and the result is 800. Note thatRyeigh: Value for projl has been

63

changed to 1. The new potential decision made in this iteration with # correspond-

iNg Whax_needed Value are listed below:

proj 1: Wpotential_decision :8001 Wmax_needed:]-OOO

Since theWnax needed fOr projl is still 1000, none of the hungry master's potential
decision is greater than its correspondingVmax needed- 1hus the worker pool mark
projl as full masters and 800 (th&Vpotential_decision Of Proj1) becomes the nal decision
for projl. At this point, no hungry master exists and the decision @king process
ends. A new distribution decision needs to be sent to the catalog ger so that the
relevant masters and workers can obtain it. The decision update tbe catalog server
is the name-value pair format. The following elds would be sent to theatalog server

as in the :

name: wsl.nd.edu-100

decision: projl1:800, proj2-A:1000, proj2-B:200

The name eld contains a unigue name for the worker pool, which casts of the
machine's hostname and the worker pool process's process id. Teeision eld is
a string that includes the decision for every matched master. Theorker distribu-
tion decision a ects the behavior of the participating masters and arkers, the next
section introduce how these components worker together to enfe a certain worker

distribution.

4.4.3 Worker Pool Policy

A worker pool manages the worker resources on behalf of the usBy starting
a worker pool, the user authorize the worker pool to request gces from the
underlying resource management system with his or her credentialsd run workers

the allocated resources. Because the users own the requestesburces, the users

64

can de ne rules on how the worker pool should manage their resgas, such as the
maximum amount of workers that the worker pool is allowed to reqsé and the
number of workers should be assigned to each of user's applicatioitie collection
of these user de ned rules forms the worker pool policy.

The worker pool policy is speci ed in the form of name-value pairs in de. The
location of the policy le needs to be speci ed when starting a workgoool. It is also
possible for a user to modify the policy le while a worker pool is runningA worker
pool can be instructed to adopt an updated worker pool policy le taruntime. The

following list shows the basic and required elds in a worker pool policyle:

e max_workers: the maximum number of workers that the worker pool can allo-
cate.

 distribution: a list of projects and the default maximum amount of workers
that can be assigned to each of them.
The max_workers eld limits the maximum amount of resources that the worker
pool can request for. At any time, the number of workers that te worker pool
IS maintaining should be no more the value omax workers. We illustrate the

distribution eld with the following fragment from a sample worker pool policy le:

max_workers: 2000

distribution: proj1=500, proj2.*=1500

The distribution eld contains a series of assignments separated by commas. Inteac
assignment, the left side of the assignment sign is a regular expressfor project
name matching and the right side is the default maximum number of wkers that
can be assigned to the matched projects. Assignmeptoj1 = 500 de nes that the
master of projl can get at most 500 workers from the pool by @deflt. Assignment
proj2.F 1500 de nes that, for all the masters whose project name mdies the
regular expressiorproj2.[(e.g. proj2-A, proj2-B), the sum of workers that they can

receive from the worker pool should be no greater than 1500 byfalelt.

65

The default maximum worker limit for a master is not an absolute uppelimit.
The actual number of workers received by a master could excedktprede ned de-
fault maximum under certain circumstances. However, the defauthaximum worker
limits do imply the di erent proportions of workers that the user wishes to distribute
to di erent projects. In the above policy excerpt, when 2000 wéers are allocated
(this happens when all the masters together needs more than BO@orkers), the user
would want 25% of them goes to the projl master and the remainind% goes to
the masters whose project names match the regular expressmmj2. 1

The distribution eld is the basis for providing fairness (of resource provisioning)
among multiple projects when the resources are limited comparedtte needs. When
the total amount of workers needed by all the masters are lessath the value of
max_workers, the worker pool can simply satisfy every master's needs. But in¢h
reverse case, the worker pool complies with the user desired prdpn for each
master based on thalistribution eld. Note that a particular master's worker needs
might be less than the user's allowed proportion. In this case, the tex amount of
workers not needed by that master can be assigned to other maxst that needs more
than their allowed proportions.

The following list shows the optional elds that can be de ned in the wdker pool

policy to further constrain the behavior the worker pool.

e max_change (per minute): maximum decision change per minute.

e default_capacity: assume a default capacity for a master when its capacity is
unknown.

« billing_cycle: the time period that each resource unit is billed upon.

After a pool decision is made, the worker pool knows how many werts it should
maintain, which is the sum of workers that it has decided to assign taaeh master.
We refer to this sum as the pool decision. When themax_change eld is speci ed,

that change speed of the pool decision would be no greater tharethalue of the

66

max_change eld. When the default_capacity eld is specied, the worker pool
would use the value oflefault_capacity as the capacity for those masters that have
not reported their capacities yet.

The billing_cycle eld is designed to accommodate the billing model of the com-
mercial clouds where computing resources are charged per timeige. For example,
the Amazon EC2 platform charges their resource usage based oare-hour bound-
ary. By default, if a worker has not been able to nd any masters t@erve within a
certain period of time, it will time out and terminate itself. But if the billing_cycle
option is speci ed, the worker might not terminate itself after the mrmal timeout
period as long as there is time left until the next billing boundary. For xample,
assuming the default timeout for a worker is 2 minutes and thilling_cycle is 20
minutes, if a worker has worked for a master for 5 minutes and has more work to
do, normally, the worker would automatically terminate itself at the 7minute point.
But with the billing_cycle speci ed, the worker would keep nding masters to serve

until it is close to the 20 minute point.

4.4.4 Policy Adjusted Distribution Decision

In this subsection, we rst show how the pool decision is made with derent
policies. Then introduce decision enforcement mechanism in the cexi of our elastic
application framework, which involves the coordinations among maests, workers, and
worker pools through a catalog server. Finally, we show the evaluaihs of the worker
pool resource management performance with di erent prede mepolicies. For each
policy, we show the worker pool performance on di erent patteshof workloads.

The goal of the worker distribution decision is to provide each mastavith as
many workers as they need without violating the worker pool policyThe decision
speci es the number of workers this worker pool would like to provedto each master.

It is derived from two pieces of information: the worker pool policyrad every matched

67

master's runtime status. We refer to the total number of workes that a worker pool
decides to maintain as a decision. Now we look at the general critertzat the worker
pool use to make a decision and how we can combine them to form distipolicies.
The distinct policies are the basis for evaluating the e ects of di enat criteria on the
resource allocation performance.

The most basic decision is the sum of the remaining tasks, as shown quation
4.16. In this equation, Tyaiting IS the total number of tasks that are waiting to be
executed andT rynning IS the total number of tasks that are currently being executed.
The sum of Tyaiting @nd Trunning represents the total number of tasks that have been
submitted but have not run to completion. Because the goal is to omplete all the
un nished tasks and each task can only be run on one worker at a temproviding

more workers than the sum is obviously unnecessary.

D, = Twaiting + Trunning (4.16)

To avoid allocating too many resources too quickly, we can limit the deston change
speed as shown in equation 4.1 Dyrevious IS the value of the previously made decision.
And is the production of the elapsed time since the previous decisiowas made and
the value of themax_change eld in the policy. Limiting the decision change speed
results in a more conservative worker allocation behavior. This is espally useful
when newly started masters have not been able to report their cagties yet (the
capacity estimation requires a certain number of tasks being comiad). If newly
started master's actual capacity is less than its un nished tasksa policy without
limiting the decision change might make the worker pool allocate moreovkers to a
master than it needed, which would result in resource waste as theaster can not
use them e ciently.

D2 = mln(Dl, Dprevious +) (4.17)

68

To respect the number of workers that the master can consumeiently, the decision
should be no greater than the master's reported capacity, as stio in equation 4.18.
Here C stands for the reported master's capacity. If a master has noeported
its capacity, co would be used as the value of. As described in section 4.3, the
reported capacity represents the master's estimate of how mawprkers it can handle
e ciently. Adding more workers to a master beyond its capacity wold not result
in performance gain. By taking the reported capacity into considation, the worker

pool can avoid the allocation of those workers that do not bring in e ts.

D3 =min(D4, C),C = oo if unknown (4.18)

With decision D3, the sum of Tyyaiting @nd Trunning Would dominate the decision when
the capacity has not been reported. This could be undesirable besa the worker
pool would allocate as many workers to match the sum but the sumwd be actually
much greater than the capacity. One approach to reduce the stap waste is to assign
a default capacity value to the masters that have not reported #ir capacities. As
shown in equation 4.19C,, which is the value of thedefault_capacity eld in the
policy, would be used as the default capacity for those masters thdo not know

their capacities yet.

D4 =min(D4, C),C = Cq if unknown (4.19)

The max_change option can help reduce the startup waste as well because it pre-
vents the worker pool from suddenly allocating too many workershen new work-
loads join with many un nished tasks. To observe the startup wast reduction e ect
of the max_change option when capacity consideration is turned on, we add the
max_change option to the D3 policy and get a new policy setup {Ds, as shown in

equation 4.20. With Ds, in addition to the advantage of startup waste reduction, it

69

also protects the worker pool from making drastically di erent deisions in a short

period of time when the estimated capacities are not stable.

Ds = min(D3, Dyrevious +) , C = oo if unknown (4.20)

Considering master's reported capacity, assuming a default cajtgdor newly started

masters, and limiting the change speed of the decisions all make tleswurce allo-
cation process more conservative and, in many cases, more reabte. But each of
these options are contributing to the conservativeness from a @rent perspective.
To evaluate the behavior of the resource allocation when all thesptmns are stacked

together, we use policyDg, as shown in equation 4.21.

Dg = min(D3, Dprevious +) ,C = Coq if unknown (4.21)

The nal policy con guration { D7 in equation 4.22, makes the worker pool behave
the same as undeDg when calculating the decision for each master. However,
in addition to Dg, D7 has the billing_cycle option turned on, which enforces the
workers to terminate themselves only when their lifetimes are close the multiples
of billing_cycle. D; makes the workers last for longer time without additional cost
on computing resource platforms that are billed upon time periods. his allows a
master to connect new workers faster when it appears during seworkers' extended
lifetime period as the worker pool does not need to request newaasces to run those
worker on.

D; = Dg, enforces worker termination boundary (4.22)

70

4.5 Decision Enforcement

The decision enforcement mechanism is decentralized. Every papgting com-
ponent, namely the masters, the workers, and the worker poolshmmunicates with
the catalog server independently. No central process is coording the actions of
the participants. The interactions between the participants andie catalog server are
shown in Figure 4.1. The worker pool queries the masters' statuoin the catalog
server periodically and sends a decision back when matched mastaes found. The
worker pool is allocates new workers when the current decision isgter than the
previous one. The master's interactions with the catalog server ilncles sending its
own status and retrieving distribution decision, both periodically. Tle worker queries
the catalog server for distribution decision as well, but only at when ieeds to nd
a new master to worker for. The remaining subsections specify thehaviors of each

participant in details.

451 Master

In addition to advertising its own status to the catalog server peridically, the
master queries the catalog server periodically to obtain the latestonker distribution
decisions. If a worker pool is responsible for supplying workers tonaaster, that
worker pool's decision would specify how many workers it has decidea firovide to
this master. The master is responsible for guaranteeing the numbef workers it
receives from that worker pool does not exceed the decision. Base a worker would
notify the master which worker pool it is from upon connection, thenaster is able
to keep track of the number of workers it has received from eachoiker pool. If
the number of workers from a worker pool exceeds the decisiohi& could happen
because of the randomized master selection algorithm on the warkade, which will
be introduced soon), the master releases the exceeded amounivorkers from that

pool and rejects future worker connection requests from thatorker pool. Thus the

71

worker pool's decision is enforced. Those released workers would ediately start

searching for a new master to work for.

45.2 \Worker

Whenever a worker needs to nd a master to work for, it queries thcatalog server
to obtain a list of running masters as well as its worker pool's workeristribution
decision. The worker then knows how many workers are already cacted to each
master from its worker pool and how many workers its worker podkecides to provide
to each master. Based on these information, the worker calculatbow many extra
workers each master can still receive from its worker pool. The vker then applies
a randomized algorithm to select a master to serve.

The randomized algorithm strives to make the probability of selecting master
equal to the proportion of that master's worker needs among alhé masters. For
example, if a worker pool is serving workers to two masters { projnd proj2, and
the worker pool has decided that 100 workers should go to projhd 300 workers
should go to proj2. If 50 workers from that worker pool are alrely connected to
projl and 150 to proj2, a worker's probability of choosing projl tevork for would
be approximately 25%, which is the result of (100 - 50)/(300 - 150)Similarly, the
probability of selecting proj2 would be approximately 75%. When a wker has
nished serving a master, either because the master has comptetl its tasks or the
master decides to release that worker for decision enforcementrposes, the worker
would repeat the above process to nd a new master.

The worker's randomized master selection is the system's initial attgt to achieve
a decided distribution of workers among the masters. In practicéhe randomized
algorithm may not deliver an accurate distribution in the rst attempt, that is, more
workers from a worker pool might choose to connect to a mastehan the worker

pool has decided. In this case, the masters would actively releabe extra amount

72

of workers and those workers would each reselect a master to kvéwr based on the
latest masters' status. Eventually, the desired worker distribubn will be accordant

with the worker pool's decision.

4.5.3 Worker Pool

The worker pool has two main responsibilities: making the worker digbution
decision and allocating workers when needed. As discussed in thevies sections,
a worker distribution decision is made based on the user de ned werkpool policy
and the runtime status of the masters. While the worker pool is ruring, it queries
the catalog server periodically to obtain the runtime status of the masters. Whenever
matched masters are found, the worker pool would examine the stars' status and
make a new worker distribution decision. The decision is sent to thetatog server
immediately after it is made.

The other responsibility of the worker pool is to allocate and maintaim num-
ber of workers as its decision species. After a decision is made, thwerker pool
compares the new decision with the number of workers it is maintaininglf more
workers are needed, the worker pool would request the extra aumt of workers from
the underlying resource management system. The worker poohstantly check with
the resource management system to see if any of its workers hasinated (either
because of resource failures or normal completion). Wheneveethumber of main-
tained workers falls below the decision amount, new workers will be atkted to I
the gap.

If the number of workers a worker pool is maintaining is greater thrathe decision
amount, then when a worker terminates, the worker pool does e to do anything
else. This happens when the masters' worker needs are decreadior example, when
some of the masters are reaching completion or have already cortgale or some of

the masters are entering a lower capacity stage. When a master'srker needs is

73

decreasing, it will disconnect some or all of its workers, either bessse the distribution
decision requires or there is no more tasks to do. A disconnectedrkes will time out
and terminate itself if it cannot nd a master to work for within a certain amount of
time. In this case, the worker pool would notice the worker's termation, however,
because the amount of maintained workers is still greater than thetal needs, the
worker pool does not perform any extra actions.

To summarize, the worker pool is capable of scaling up the numberrofintained
workers when new masters begin to execute or existing masters take advantage of
more workers, as well as scaling down the maintained workers whée ttotal worker

needs from the masters are decreasing.

4.6 System Stability

The capacity management architecture can be viewed as a feedbaontrol loop
system[31]: the master measures the workers and tells the worl@yol how many
workers it wants; the worker pool submits the exact number of wkers (i.e. controls
the number of workers in the system); the submitted workers (@e start running) are
then measured by the master, which leads to updated worker denthof the master.
The master is the plant as in the control theory feedback loop. Theorker pool is the
controller. And the masters' declared demand of workers is the stgm input. The
stability in this system refers to the ability that the number of workes can converge
to a stable amount under changes and does not oscillate around ttable state.

The capacity management system forms a negative feedback cohioop by de-
sign, which produces stability. If the number of submitted workerss less than the
masters' declared demand, the worker pool would add more workento the system
to match the demand. If the number of submitted workers is great than the de-
mand, however, the worker pool would never remove any workeoiin the system by

itself. Instead, the extra workers would be disconnected by theasters whose new

74

distribution decisions do not allow them to hold that many workers frm the worker
pool. And these disconnected extra workers would exit the systeonly if they could
not nd any suitable master to work for within a certain timeout. As such, the sys-
tem always applies a negative feedback signal to regulate the numimé workers to
the declared demand, which forms the negative feedback loop.

Although negative feedback loops tend to reduce uctuations in geral, false
negative feedback signals may cause the system to oscillate, if nantled carefully.
The cache bounce e ect introduced in section 4.3.4 may cause th@oeted capacity
to uctuate in an opposite direction to the actually trend of the woiker demand,
which creates a false feedback signal. Recall that in Figure 4.7 and,4l8& estimated
capacity rst drops when new workers are added and then retusnto the stable level
as the new workers have the shared input data cached. Thus, inetlsystem the
estimated capacity could decline, though temporarily, while the actl capacity does
not, or even increase (e.g. newly added workers are faster).

If the system removes workers immediately in response to the cadiounce capac-
ity decline , then the system might fall into oscillations. The reason fdhe oscillation
is that the removed workers would be added back into the systemaig when the ca-
pacity increases after the drop and the added workers would cauthe cache bounce
e ect again, which triggers a new round of removing workers and dohg back work-
ers. As mentioned in section 4.4.2, the decision on a master is nevetueed due to a
decline in the capacity. Thus, the system will not remove already coected workers
(or the master will not disconnect workers) in the case of a capagitlecline. So, we
can conclude that the false feedback, which signals a capacity deeliwhile it is not,
would not cause the system to oscillate.

The capacity management system is also capable of avoiding disaggaesource
waste that could be caused by a bad software con guration. Wherunning tasks

remotely, the remote execution environment may not be con guckeas the task would

75

expect. For example, a task may require the Python version to béave 3.0 while
the remote machines only have Python 2.7 installed. Or, a user maycaentally
forget to include a required le when describing the remote tasks. Wiout capacity
management, a user may allocate hundreds or thousands of cormpg nodes and
none of them could do useful work. And automatically retrying thaos failed tasks on
them, as many of the work ow management systems would do, onlxacerbates the
waste. Bad con gurations usually cause the task to fail very quitk which leads to
a very low capacity (very short execution time). Thus with capacitymanagement,
the system would have the opportunity to cut the resources acahbng to the low

capacity, which prevents great waste.

4.7 Evaluation

All the experiments described below are conducted on the Condarq@ maintained
at Notre Dame. To request a worker from the Condor pool, the wker pool submit
the worker program as a Condor job. Because there is a delay in between when a
Condor job is submitted and when a Condor job is executed, the ntass will not see
worker connections until a certain amount of time has elapsed aftthe workers has

been requested for. We will see these e ects in the evaluation résu

4.7.1 Experiment Setup

In order to evaluate the worker pool performance, we identify geral distinct
workload patterns and worker pool con gurations and run expéments on all the
combinations of them. The selected patterns of workloads are stoin the following

list:

e P1: single uniform batch
e P2: multiple uniform batches

e P3: multiple non-uniform batches

76

e P4: random uniform batches

e P5: random non-uniform batches

Workload pattern P1 contains a single batch of 500 uniform tasks. dh task has 2
MB input, takes 15 seconds to execute, and generates 2 MB of put. Pattern P2
contains 5 batches of the same tasks as in P1 and one batch of tagk submitted
after every 400 seconds. Pattern P3 has 5 batches of tasks mitted at the same
intervals as in P2, but the tasks between dierent batches are neaniform. The
input data sizes of the tasks in the 5 batches are 3 MB, 1 MB, 5 MB, 1 Bland
10 MB respectively and the output data sizes are 2 MB, 1 MB, 3 MB, 1 Bl and
2 MB. The execution times on these tasks are all 15 seconds. Nobattthe tasks
within the same batch are still uniform in P3, which should result in morestable
capacity estimates. Pattern P4 contains the same uniform tasks an P1 but they
are randomly put into 50 batches. Each batch contains from 1 to 0Gasks and the
time between when two adjacent batches are submitted rangesrin 1 to 50 seconds.
Pattern P5 is similar to P4 except that the tasks are non-uniform aoss di erent
batches. The P5 tasks, both the input and output data sizes raegfrom 1 MB to 5
MB, and the task execution times range from 5 to 15 seconds.

We create di erent pool policies by adding or replacing constraints ithe policy
le in order to observe how the constraints a ect the worker pootecisions over time.
All the policies as themax_workers eld set to 200. The following list shows the 7

distinct policy con gurations used in our experiments:

e D1= Trunning + Twaiting

D2 = D1+ max_change

D3 = D1 + capacity

D4 = D3 + default_capacity

D5 = D3+ max_change

D6 = D3 + default_capacity + max_change

77

e D7 = D6 + billing_cycle

Con guration D1 determines the worker needs by adding th&,ynning and Twaiting
reported by that master. Under D1, the worker pool would ignoreany master's
capacity that is reported. D2 adds more constraints to D1 by limitinghe change
speed of pool decisions to 60 per minute. D3 forces the worker ptwoconsider the
reported capacities while making decisions. The next four con gutians all have the
capacity consideration turned on. In addition to D3, D4 requires th worker pool to
assume a default capacity for the masters that have not repodeheir capacities. D5
limits the change speed of pool decisions to 60 per minute in addition B8. D6 has
all the constraints: it has the capacity consideration turned on,he "max_change”
set to 60 per minute, and the "defaulicapacity” set to 20. Finally, we add the

"billing _cycle" constraint to D6 and get D7.

4.7.2 Results

Figure 4.9 and Figure 4.10 shows the runtime worker pool decisionsdathe
number of running tasks over time for each experiment. Each columshows the
results of the same workload with di erent pool policies and each rowhows the
impacts of the same work pool policy under di erent patterns of wiloads. For each
individual graph in two gures, the x-axis is time in seconds startingrbm 0, at which
the worker pool and the workload are started. The y-axis is the wker counts. The
"pool decision" curve shows the number of workers that the podkcides to maintain
over time, which comes from the log of the worker pool. The "tasksinning” curve
shows the number of tasks that are being executed on the workeand this curves is
generated from the log of the workload master.

For the row of pool con guration D1, the estimated capacities of icerent work-

loads over time are shown in the individual graphs. For the remainingrgphs, the

78

estimated capacity curves are omitted as they would be similar to tse shown in
the corresponding rst-row graphs. For workload P1, we can sdbat capacity rst
increases as more tasks are being completed. This is because tiskgall share
the same input data. This e ect is the same as that in Figure 4.8. Wotkad P2's
tasks also share the same input, and its estimated capacities aratgistable after is
has reached its peak at around the 150 second point. For workloB®, we can see
that estimated capacities have noticeable di erences when di erétatches of tasks
are being executed. This is as expected because the tasks beatwdieerent batches
are non-uniform. For workload P4 and P5, the capacity curves siwomuch more
uctuations as the tasks are non-uniform.

We also summarize the sum of task execution times, the applicationrharound
times, the sum of the times spent on workers, and the consumed bigirtycles in
Table 4.2. The sum of task execution time does not include the dataainsfer time
for each task, but it provides a lower bound for the amount of timehat needs to be
consumed on the resources. The sum of the worker time is the tbtane that we
have spent on the resources for each experiment. The billing cycéae calculated as
if the resources on billed upon a unit period of time and the unit periodsed in our
experiments is 20 minutes. That is, even if a resource has been orllp@ated for 5
minutes, it would add 1 full cycle to the billing cycles.

Now we discuss the results of the homogeneous workload { P1 undierent
worker pool policies. This workload contains a total of 500 tasks. rider policy
D1, the worker pool would allocated as many workers as the numbef un nished
tasks without surpassing the policy de nedmax_workers. Thus when the worker
pool discovered the new master from the catalog server, it deaileo allocated 200
(the minimum value of max_workers and the number of un nished tasks) workers
to the master. 200 workers are requested from the underlyingsmirce management

system (in our case it is Condor) immediately, but we only start to sethe numbers

79

of running tasks after approximately a minute. This is because of ¢hdelay between
when the resource is requested and when the resources is actuallgcated and is
ready for use. As can be seen, under D1, the worker pool allocht®ore workers
than the application was able to use during its lifetime, which obviouslyesulted in
a waste.

Under D2, the worker pool requests for workers gradually, asrche seen from the
"pool decision” curve in Graph(D1, P1), however, it ended up allo¢img more than
the master needed as the runtime number of un nished tasks keptaying beyond the
number of workers that the master actually needs. For policy D3Jtaough the capac-
ity is taken into consideration, it did not take e ect until it has been reported. And
before the capacity was reported, the worker pool has alreadgquested for too many
workers. Policy P4 adds thalefault_capacity into P3. It avoided the great waste at
the beginning, but with some sacri ce on the application performarec(as can be seen
from the turnaround times in Table 4.2) because thdefault_capacity in our case is
lower than the application's actual capacity. However, if a user hgsior knowledge
to the capacity of an application, he or she could set thdefault_max accordingly
to minimize the sacri ce on performance. Policy D5 took away thdefault_capacity
constraint and adds the limit on decision change to D5. Compared tooficy D3,
the waste at the beginning is also greatly reduced, although not asuoh as with
D4. But the application performance on D5 is improved over D4 as D%lds workers
more aggressively than D4. Policy D6 uses all the options { the capigcconsider-
ation, the maximum decision change limit, and the default capacity. Its the most
conservative resource allocation policy of all and shows the minimumasource waste,
as can be seem from Graph(D7, P1). Policy D7 is the same as D6 exciat it
enforces the termination boundary on the workers. The runtimegool decision" and
"tasks running"” curves do not show much di erence from those inhie D6 graph, but

the consumed cycles would be reduced with policy D7 when the workdisarun over

80

a single billing cycle. The reduced billing cycle e ect more noticeable on vidoad
P2 and P3 in Table 4.2 when you compare the billing cycles of policy D6 and/D
For workload patterns other than P1, we can observe the similar pb policy
e ects as those seen in the workload P1 results. In general, the rea@onservative the
policy is, the more resources waste is avoided. Conservatively alltiog resources
does sometimes result in sacri ce of performance. For example, ironkoad P1,
the turnaround time on D4 is much greater than that on D1. This is beause the
workers that the master needs are not provided in the earliest pgble time with
a conservative resource allocation policy. However, when the cajta is taken into
account, the sacri ce of performance is minimized and even eliminate As can
be seen from the turnaround times on the workloads other than Pihe application
performances are actually better on D6 (more conservative) thd1. This is because
the overheads that come from the master communicating with too amy workers
shadows the performance gain from providing enough workers et earliest times.
Another interesting observation is that, although the capacity @snation is not
speci cally designed for workloads with non-uniform tasks, policy Dévas able to
achieve the similar application performances on workload P4 and P5tag aggressive
allocation policy D1. And the total time consumed on the allocated resirces and

the billing cycles used are greatly reduced with policy D6 and D7.

81

workers running workers running workers running
250 tasks running —— 250 tasks running —— 250 tasks running ——
200 master capacity - 200 master capacity - 200 master capacit
150 150 150
100 100 100
50 50 bt 50
o 0 0
4 & % ¥ o <X
D1 0 D Yl Y D Y B D %, %, %,
250 - 250 - 250 -
workers running workers running workers running
200 tasks running —— 200 tasks running —— 200 tasks running ——
150 150 150
100 100 100
50 50 n 50
0 0 0 L
14 > N7 Y4 <z A% O & Y Yo p. o o O
D2 O D Y9l Y Y Y R D 9, % % %, % %, %, %, %, %, %,
250 n 250 n 250 -
workers running workers running workers running
200 tasks running —— 200 tasks running —— 200 tasks running ——
150 150 150
100 100 100
50 50 50
o 0 0
O Y % G S Yo Y Yy Yo Yo <y (2 R X K SR RER R RARY,
D3 0 B Y Y B X %% %% o 0 03%0 0 %, % %% 003500 %,
250 n 250 n 250 -
workers running workers running workers running
200 tasks running —— 200 tasks running —— 200 tasks running ——
150 150 150
100 100 100
50 50 50 J\
o 0 0
[R X K SR RER R RARY, [R X K SRR ER R RARY,
[@ Qe T T [N N X NN XD [N N X NN XD
D4 0 X0 %% 08 % %, % %%, 0% %0 %% %% % % 2% % "% %0 % %% % %,
250 - 250 - 250 -
workers running workers running workers running
200 tasks running —— 200 tasks running —— 200 tasks running ——
150 150 150
100 100 100
50 50 A 50
0 0 0
O Y % G S . Yo Yy Yo Yo <% O Y % G S . Yo Yy Yo Yo <%
D 5 o 6\0 \700 \76\0 v"oo v"so 6’00 &6\0 DD DY 000\-"00 700 6‘00 6’00000 DD DY 000\-"00 700 6‘00 6’00000
250 n 250 n 250 -
workers running workers running workers running
200 tasks running —— 200 tasks running —— 200 tasks running ——
150 150 150
100 100 100
50 50 50
o 0 0
O Y % G S Yo Y Yy Yo e <y (2 R X K SR RER R RARY,
D6 0 D % %0 Y % Y D% %% %0 % %% % D% % % %00, % %%,
250 - 250 - 250 -
workers running workers running workers running
200 tasks running —— 200 tasks running —— 200 tasks running ——
150 150 150
100 100 100
50 50 ﬂ 50
0
O Y % G S . Yo Yy Yo Yo <2 O Y % G S . Yo Yy Yo Yo <%
D? o 6b \700 {90 900 9\5\0 o"oo %b 700 DD DY 000\-"00 700 6‘00 6’00000 DD DY 000\-"00 700 6‘00 6’00000

Figure 4.9: Runtime Pool Decision, Tasks Running, and Estimated Capity for
Workload Pattern 1, 2, and 3.
82

Pattern 4 Pattern 5

S S
200 master capagity 200 master capagcity
150
100
Flﬁ 50
. 0
0 2 w G & ¥ o
D1 LD D D D %, Y
250 - 250 -
workers running workers running
200 tasks running —— 200 tasks running ——
150 150
100 100
50 h l 50
o i 0 Hl) L
O Y Y G K b b Y O < B G G Y s
D2 D D D D %, %, L P % % % %,
250 n 250 -
workers running workers running
200 tasks running —— 200 tasks running ——
150 150
100 100
50 h l 50
o L o LU JYA
O QP G & Y o % O Y Y G Y b Y %
D3 LD D D D %Y %, P % Y %%
250 n 250 -
workers running workers running
200 tasks running —— 200 tasks running ——
150 150
100 100
50 50 \ %
o I o l }
O QP G & Yy ¥y % O B G & ¥y ¥ Y
D4 LD D D D %, %, P P % Y %%
250 - 250 -
workers running workers running
200 tasks running —— 200 tasks running ——
150 150
100 100
50 50 L
0 L o UCULA
O Y Y G K Y b Y O < B G G b o
D 5 D D D D %, %, L P % % % %,
250 n 250 -
workers running workers running
200 tasks running —— 200 tasks running ——
150 150
100 100
50 50
o | 0 M h
O Y P G & Y o % O Y Y G K Y Y %
D6 LD D D D %Y %, P % Y %%
250 - 250 -
workers running workers running
200 tasks running —— 200 tasks running ——
150 150
100 100
50 50
L o L LI
O Y Y G K b b Y O < B G G Y s
0 Y D © Y 9 % 0 D O © Y 9 %
D? % 9 9 9 Ooeo 2 % % %9 % ooeo 2

Figure 4.10: Runtime Pool Decision, Tasks Running, and Estimated @acity for
Workload Pattern 4 and 5.
83

TABLE 4.2

TURNAROUND TIME, TOTAL WORKER TIME, AND BILLING

CYCLES CONSUMED FOR EACH EXPERIMENT

P1 P2 P3 P4 P5

Sum Exe Time (sec) 7500| 15000 15000| 41985| 20505
Turnaround Time (sec) 209 2264| 2336 1219 1276

D1 | Sum Worker Time (sec)| 57024 | 361214| 398229| 174295| 183987
Billing Cycles (count) 232 1075 1120 448 422
Turnaround Time (sec) 213| 2236| 2891| 1217| 1276

D2 | Sum Worker Time (sec)| 39396| 342048| 502700| 167661| 179125
Billing Cycles (count) 183 1079 1325 317 417
Turnaround Time (sec) 208 1742 1856| 1217 1261

D3 | Sum Worker Time (sec)| 55665| 150326| 145712 139886, 73050
Billing Cycles (count) 200 827 837 253 117
Turnaround Time (sec) 294 1787 1814 1218 1262

D4 | Sum Worker Time (sec)| 21053 98295| 109239| 78412| 74304
Billing Cycles (count) 73 368 577 108 155
Turnaround Time (sec) 212 1817| 1778| 1218| 1265

D5 | Sum Worker Time (sec)| 27315| 114680| 103298| 78875 67349
Billing Cycles (count) 117 680 554 131 123
Turnaround Time (sec) 255 1795 1816| 1217 1259

D6 | Sum Worker Time (sec)| 19595| 111012| 113029| 73397| 69411
Billing Cycles (count) 71 567 619 98 108
Turnaround Time (sec) 260 1836 1845| 1218| 1260

D7 | Sum Worker Time (sec)| 19651| 103682| 136270 79553 66189
Billing Cycles (count) 71 264 405 111 124

84

CHAPTER 5

APPLICATIONS

The tools described in this dissertation have been used to harnesstibuted
computing resources for real world scienti ¢ applications. The absctions devel-
oped for static workloads have been applied in applications from biogrmatics and
economics. The capacity management architecture is implementediire Work Queue
framework. We show two production systems, one from bioinforrties and one from
molecular modeling, that have used the capacity management featun Work Queue

to manage resources for their dynamic workloads.

5.1 Bioinformatics

5.1.1 Static Workloads

The abstractions introduce in Chapter 3 have been applied in sevédaioinfor-
matics applications. Sequence alignment is one of the most importaasks in bioin-
formatics and is used in a variety of applications. Common variants gfairwise
sequence alignment can be solved using dynamic programming [72] aadh requires
time proportional to the product of the two sequences considaetePrior parallel im-
plementations have been motivated by either the need to comparesagle pair of
large sequences [81] or the need to compare many small sequejr&gddor tasks such
as phylogenetic inference and genome assembly. Previous algorghhave imple-
mented the wavefront problem on dedicated clusters and parallefcaitectures such
as the Cell [92]. Our implementation achieves similar speedups, but vags only

sequential coding, and can execute on unreliable, loosely coupledchmaes.

85

90 T T T T T T 90
80 [Tasks 1 80
70 + Ruﬂnlng 1 70
60 41 60
50 Speedup 1 50
40 1 40
30 (38x) 1 30
20 1 20
10 + 1 10

O L L L L L 0
0 5000 10000 15000 20000 25000 30000 35000
Elapsed Time (seconds)

Figure 5.1: 106<100 Wavefront in Bioinformatics
A timeline of a 100=<100 Wavefront problem implementing sequence alignment run-
ning on non-dedicated multicore Condor pool. 80 cores were available at the peak of
the execution. An overall speedup of 38X is achieved, the maximum possible is 50X.

In less than a day, we wrote a single process function in 156 lines of €that
performed alignment on a substring and propagated the requirecta for later steps.
Distributed sequence alignment was then tested on two large bagte genomes us-
ing wavefront: a non-virulent lab strain of Anthrax (Bacillus anthrecis str. Ames;
Genbank NC003997) and its virulent ancestor strain (Bacillus anthracis str. 'Ares
Ancestor'; Genbank NC007530). Each genome is approximately 5.3 million charac-
ters long, and the score of an optimal su x-pre x alignment was cenputed using only
linear-space. An actual alignment (i.e., the path through the dynam programming
matrix) is also attainable based on the divide-and-conquer Hirschigetechnique [92],
which requires twice as much computation and a more complicated ategy.

Figure 5.1 shows a timeline of this alignment running using a 180200 partition
of the problem. Each task takes about 117 seconds to run on a 1&KEPU. On
the Condor pool, a maximum of 80 tasks running simultaneously washaeved. The
overall runtime was reduced from 13 days sequential to 8.3 hour#tlwa speedup of
38X out of the maximum possible 50X.

We also explored the application of a heuristic for bioinformatics prdéms sim-

ilar to sequence alignment. SSAHA (Sequence Search and Alignment Bashing

86

120

120

Tasks Running
100 1 100
80 | 1 80
60 | 1 60
| Speedup |
40 (51%) 40
20 1 20

. . . 0
0 10 20 30 40 50 60 70

Elapsed Time (hours)

Figure 5.2: Make ow without Fast Abort
A timeline of SSAHA execution on 100 simultaneous workers without Fast Abort. As
can be seen, the long tail is almost as long as the peak computation period.
Algorithm) [74] is a bioinformatics tool designed to map one set of getic data
onto another set of data. SSAHA is very similar to the popular bioinfonatics tool
BLAST [7] because it creates a hash table for a set of subject seqaes to speed
up the search of query sequences for matches. Unlike BLAST, S8 computes the
complete mapping and therefore can be used to discover detailedetiences between
sequences and individuals. SSAHA is a publicly available sequential apation.
Our implementation involves running the sequential application manyimes in par-
allel using the Make ow and Work Queue abstractions. This allows u®tharness the
Condor pool to complete our computation in a reasonable time.

Our implementation mapped 11.5 million sequences consisting of 11 billioases
onto the genomeSorghum bicolor [77] (738.5 million bases). This is a large bioin-
formatics workload with the majority of execution time for each jobdedicated to
mapping the queries and a small portion dedicated to generating lagables. The
abstraction split a large sequential execution into nearly 2300 smalksequential com-
putations that were run in parallel on workers submitted to our Codor pool. Fig-
ure 5.2 shows the execution of this job on a maximum of 100 simultamsoworkers
without Fast Abort. There is an extremely prominent long-tail e ed that nearly

doubles the total execution time. Figure 5.3 shows the same worktbeun with fast

87

120

. . . . 120
Tasks Running

100 . 100
80 Speedup (92x)] 80
60 1 60
40 1 40

20 K 1 20
O L L L L L O

0 2 4 6 8 10 12 14 16 18
Elapsed Time (hours)

Figure 5.3: Make ow with Fast Abort
A timeline of SSAHA execution on 100 simultaneous workers with Fast Abort. Com-
pared to the above figure, the tail is mostly eliminated.
abort enabled, which nearly eliminated the long-tail e ect and moreftan halved our

total run time. The implementation using Fast Abort required 16 hows of runtime

compared to the sequential runtime of 65 days with a total speeduwf 92X.

5.1.2 Dynamic Workloads

The capacity management architecture has been implemented in tBeocompute
system [20] { a production system that facilitates biology researers to run select
bioinformatics applications on campus distributed computing resoaes. Running a
bioinformatics workload is as easy as selecting a desired bioinformatepplication
such as BLAST [7], answering a few application speci ¢ questions, attten clicking
a submit button. The web user interface of the Biocompute systens shown in
Figure 5.4. The web portal then generates a Make ow script whichescribes a
work ow according to the user's answers and the Make ow script i€xecuted by
the Make ow engine using the Work Queue framework. Upon job cqgptetion, the
users are able to view and share their data, job information, and alytical results
within the web portal. As application speci ¢ code is con ned to the wbe portal, the
backend is completely generic and its improvements are broadly applide.

Demand for the computing resources provided by Biocompute is prarly met

88

BioCompute
TOSSCI TR

Iyu2 -Home| tome | Daa | ac

Figure 5.4: Biocompute Web Portal

through the Condor batch system. This resource has contribude62.8 CPU years
since early 2010 with the majority of cycles shared among the top 88ers spanning
the departments of biology, biochemistry, and computer scienc&he largest job on
Biocompute{requiring 9.3 CPU years and involving more than a million indeendent
tasks{completed in just 16 days.

The Biocompute system was originally con gured to execute the gerated Make-
ow scripts directly with the Condor batch system. That is, all tasks in the Make ow
scripts are submitted as individual Condor jobs. However, this sab su ers from slow
startup overhead inherent in the Condor system. And, the benéof vast o -campus
resources (e.g. thousands of computing nodes from Wisconsineiéan and Purdue)
is usually spoiled by the low transfer rate. Furthermore, it is di cult to adjust the
resource allocation for submitted work ows at runtime. Last but mt least, submit-
ting each task as a Condor job is equivalent of matching the numbef cesources
to the number of tasks, which might cause resource waste as show the previous
capacity management chapter. These problems inspired the swittdn Work Queue,
which has the superior resource management capability.

In the current Biocompute system, each Make ow script is invokeds a Work
Queue master. That is, any work ow constructed by the web podl runs a Work

Queue master in the system. An external worker pool, managed bye Biocompute

89

250 workérs submitted ———
workers connected -~ --

200 1
€ 150 + |
>
[@]
© 100}]

50 m]
0 “L“‘:‘E‘ L HR*» h T | T
02/16 02/23 03/02 03/09
Date

Figure 5.5: Biocompute Worker Pool Activity in 2013

system administrator, is responsible for allocating resources fdret Biocompute mas-
ters. Since the capacity management architecture is fully implemesd in the Work
Queue framework, the Biocompute system is now taking advantagé this resource
management capability. All the Biocompute masters advertise theown status to the
catalog server deployed at Notre Dame. The Biocompute worker @ids con gured to
respect the master capacity and will allocate resources accordingAnd because the
work ow runs as a Work Queue master, the user is now able to add @ditional grid
or cloud resources to the execution of the work ow at runtime. Té user only needs
to start some extra workers on the grid or the cloud platform (withtools provided in
the CCTools software) and point them to the desired master's hasaime and port,
which could be obtained from the catalog server.

Figure 5.5 shows the activity of the Biocompute worker pool from Eell, 2013
to Mar 25, 2013. The solid curve shows the number of submitted vikers over
time. The dotted curve shows the number of workers that are agally connected
to the biocompute masters over time. As can be seen, the workeo@ is able to
automatically request for resource when there are workloads pest and reduce them

as the workloads nish. Starting from Feb 23, the worker pool is ecogured to always

90

keep 5 workers submitted, as can be seen from the solid curve te tleft of the Feb
23 point. These 5 constantly running workers allows workers to coaect to a new
workload immediately when the workload starts. Without these worrs, the new
workload would have to wait for the underlying resource managentesystem (e.g.
Condor) to allocate the resources for the workers requested llye worker pool,
which typically involves a delay ranges from tens of seconds to a fewnotes. The
5 workers may timeout and quit when there are no Biocompute mass in which

case, the worker pool would resubmit workers to compensate tbe timed out ones.

5.2 Economics

The wavefront abstraction can represent a number of dynamic@romic problems.
Consider, for example, the competition between two microprocessvendors. Each
rm produces microprocessors and engages in R&D to improve thivck speed. That
game ends when they reach limits imposed by physics. Economic modamining
such dynamic games would discretize the problem by assuming thatetle areN
possible e ciencies and each rm begins with e ciency level 1. The stee of a two-
player game is denoted by the vector of e ciencies,ifj). At each such state, each
rm competes for sales of the chips of those e ciencies but each m also wants to
improve its e ciency. When the game reaches the stateN,N) the dynamics are
done and we have reached a static situation which can be computeidedtly. If the
state of the game isiN — 1,N) then rm 1 still works to improve its e ciency and
its incentives to work on R&D are a ected by the anticipated pro ts it receives when
the game goes tol,N). This is also true for player 2 in the state N,N —1). Hence,
the solution at (N,N) allows us to solve N —1,N) and (N,N — 1). Similarly, those
solutions allow us to solve d —2,N), (N —1,N —1) and (N,N —2). The wavefront
abstraction sweeps through the states until we have solved thgrthmic game at all

states (,J), 1 <1i,j < N.

91

200

180
160 -
140
120
100
80

“““““““

40 Hf/

20

Tasks
Running

.y
Speedup |
182x)

200
180
160
140

1 120
1 100
1 80
1 60
1 40
1 20

O L L L L L O
0 2000 4000 6000 8000 10000 12000
Elapsed Time (seconds)

Figure 5.6: 506<500 Wavefront in Economics
A timeline of a 500500 Wavefront problem in economics running on non-dedicated
multicore Condor pool. Because many of the remote CPUs were faster than the
submitting CPU, the overall speedup of 180X is greater than the number of CPUs.

This kind of game arises in many dynamic economic problems. See [42,35]
for original papers on the learning curve, [85, 87, 86, 30] for expl®s of dynamic
R&D races, and [88] for an example from the exhaustible resourdisrature. All of
these results are limited in scope because a sequential implementatdramatically
limits the number of parameters. For example, the learning and R&Dgpers assume
only two rms and a small number of steps. This is an unreasonable @asnption
since there are many rms in each industry, particularly at the earlystages where
innovation is rapid and many rms are competing to be one of the fewusvivors.
These models are essential for a serious examination of antitrustligies that limit
how ercely rms may compete and tax policies that are supposedly esigned to
encourage innovation.

Using the wavefront abstraction, we can easily carry out problenmaany orders of
magnitude larger than have been attempted before. With less thamday of coding,
we ported a Nash equilibrium function for two players with four pararmaters from
Mathematica into a 77-line C program usable with Wavefront. On a sirg input,
this function requires about 7.6 seconds to complete on a 1GHz CPU.

Figure 5.6 shows a timeline of this workload running on the Condor poollhe

92

workload quickly reached the maximum available parallelism of betwee2@ and 160
CPUs. An overall speedup of 182X was achieved, reducing the sewfial runtime
from 22 days to 2.9 hours. The speedup achieved was faster thaeatlbbecause many
of the remote CPUs were faster than the submitting machine on wiidhe function

was benchmarked.

5.3 Molecular Modeling

Molecular modeling is a research area that uses theoretical metlsoahd compu-
tational techniques (simulations) to model or mimic the behavior of wiecules. It
usually requires large amount of computing power, however, tradnal simulation
techniques lack the scalability to take advantage of the vastly avaite grid and cloud
computing resources. Accelerated Weighted Ensemble or AWE pade provides a
Python library for adaptive sampling of molecular dynamics. This methd requires
only a large number of short calculations and incurs minimal communitan between
computing nodes, which creates the potential to scale up the cootation onto a wide
range of distributed computing platforms.

A team of researchers from the University of Notre Dame and Sthord University
created a protein folding simulation system that uses the AWE teclque to run thou-
sands of short Gromacs and Protomol simulations in parallel with piedic resampling
to explore the rich state space of a molecule. Using the Work Queuarhework, these
simulations are executed by workers (managed by worker pools) tdisuted across
thousands of CPUs and GPUs drawn from the Notre Dame, Stanfiirand commer-
cial cloud providers. At the scale of thousands of cooperative cpating nodes, the
resulting system was able to simulate the behavior of a protein at am@regate sam-
pling rate of over 500 ns/hour, covering a wide range of behavior irags rather than
years. Figure 5.7 shows some scienti ¢ results obtained througheglAWE system {

two Fip35 folding pathways.

93

Figure 5.7: Fip35 Folding Pathways found from the AWE Network
Colors blue, grey, and red represent unfolded, intermediate, and folded conformations,
respectively.

To demonstrate the scalability on heterogeneous resources, vi®s a timeline
of three AWE applications started at di erent points over a three @y period along
with the resources that are provided to them in Figure 5.8. All threenasters share
the same set of workers (managed by multiple worker pools) and ede a certain
amount of workers according to their changing needs. Worker®fn the same resource
provider is managed by the same single worker pool. The workers agguested from
the following resource platforms: Notre Dame SGE cluster of 6000res, Notre Dame
Condor pool of 8000 cores (with the ability to request resource®m Condor pools at
Purdue University and the University of Wisconsin-Madison), Stardrd ICME(a ded-
icated cluster at Stanford University, consisting of about 200 CP&Jand 100 NVIDIA
C2070 GPUs), Amazon EC2, and Microsoft Azure. The latter two ptéorms are
commercial cloud platforms which provide virtually unlimited amount ofvirtual ma-
chines.

Figure 5.8 contains three graphs that show the number of connedtworkers over
time for each of the three masters. The progression of the ex#gon is as follows:
Master 0 (MO) is started and runs alone for 11 hours. The secondaster { M1 is
then started. Because MO has entered the straggling phase whibbes not need as

many workers, the workers that used to work for MO starts to migte to M1. The

94

2500

T
e o Total

v
E 2000 — ND Condor
= 1500 - - NDHPC
= 1000 - - Stanford ICME|]
(=] Amazon EC2
= a0 © MS Azure
1

25030 il
» 2000} B ey | A N, [e Total
E 2000 g 5 : : : — ND Condor
= L1500 oo g Qe b b - o ND HPC
= 1000 : T . SR— LU — - - stanford ICME|]
= i L . o : -+ Amazon EC2
= 500 !

- MS Azure

o]
0 70
2500 T T T T T T I
2000 : : MZ: acquires wcrke:rs : $ ' Total
[e o T Srsssts e P B
g soania : | roconar
S 1500 o e @ g = - ND HPC
= 1000} ! i ' f m k| - stenforaicue|]
o : n : 2 d ! -+ Amazon EC2
= 500 P] MS Azure 1
i 1
O0 10 20 30 40 50 60 70

Time (hours)

Figure 5.8: Multiple Worker Pools Providing Workers to Three AWE Appliations

third master { M2 started at hour 18. New workers are started byhe pool and some
workers from MO and M1 are migrated to M2. As can be seen throughe entire
timeine, when one master enters a slow phase (needs less worketkers are able to

share the available resources.

95

CHAPTER 6

CONCLUSION

This work has been focusing on the question of how many computingsources
should be allocated for a given workload. We have answered this cims for two
types of workloads { static and dynamic workloads. We have descetl abstractions
as a solution for regular static workloads and capacity managemeas a solution
for dynamic workloads. And we have shown the applications of theselutions in
bioinformatics, economics, and molecular modeling.

For static workloads, we have demonstrated how simple high levelstkactions can
be used to scale regularly structured problems up to clusters of tticore computers.

We have made the following key observations:

e It is feasible to accurately model the performance of large scales#factions
across a wide range of con gurations, allowing for the rational sekon of
appropriate resources.

e Processes are a realistic alternative to threads for programmingutticore sys-
tems, even on I/O intensive tasks.

e Abstractions are easy for non-experts to program, provided éne is a good
match between the application structure and the application.

» The All-Pairs and Wavefront abstractions can be scaled up to hundds of cores,
achieving good performance even under adverse conditions.

e General abstractions, like Make ow, are able to deal with more kirgl of ap-
plication structures; however, they might not achieve the same germance as
speci ¢ abstractions.

For dynamic workloads, we have shown how resource waste caneaamgen run-

ning elastic applications in a distributed computing environment and @sented the

96

capacity management architecture as a solution to avoid such wast Our solution
uses an external resource allocator to allocate and manage compy resources for
elastic applications based on their runtime performance and capaciineasurements.
In addition to the application's runtime measurements, we have idengd the follow-
ing factors that can a ect the e ectiveness of the resource allator: the limit on the
speed of allocating new resources, the default capacity for apptioas that do not
yet have capacity estimations, and the billing cycle of the computingesources. We
have shown how these factors, individually or combined, can a eché quality of the
resource allocation. By evaluating the resource allocator's perfoance with di er-
ent workload patterns ranging from highly homogeneous to compédy random, we
have demonstrated that our solution can signi cantly reduce resmce waste without
sacri cing application performance.

There are many avenues of future work. For static workloads, weave outlined
a two-level hierarchy of implementations for abstractions, but tb system could be
generalized to support solving very large problems across the widea with deeper
nesting. Additional implementations of abstractions on specializedhitectures such
as the Cell or FPGAs might be e ective ways of transparently addinguch devices to
large computations. For dynamic workload, there are several paitial improvements
that are worth studying for the capacity management architectte. In the current
implementation, the workers would only exit the system after a xedtimeout. If
this timeout can be determined at runtime based on some cost variab, the overall
resource waste reduction may be further improved. New capacigstimation algo-
rithms can be constructed measure the resource needs evenanarecisely. And the
system may apply di erent capacity estimation algorithm on di erent types of appli-
cation, if the type of application could be somehow determined in adwaee. Another
direction is to reduce the possibilities of false negative feedback,seen in the cache

bounce e ect, so that the resource allocator can make more aggsive decisions (re-

97

duce workers connected to a master immediately after its capacidgcreases) without
fall into oscillations. Last but not least, we can exploit various resaae providers'
specialties, such as Amazon EC2's spot instance, to make more e@sfctive resource

allocation strategies.

98

a &> ke

10.

11.

12.

13.

BIBLIOGRAPHY

Amazon elastic compute cloud (ec2). http://aws.amazon.com/&¢ July 2013.
Amazon auto scaling. http://aws.amazon.com/autoscaling/, July2013.
Nimbus home page. http://www.nimbusproject.org, July 2013.

Rightscale. http://www.rightscale.com, July 2013.

B. Abdul-Wahid, L. Yu, D. Rajan, H. Feng, E. Darve, D. Thain, ard J. A.
Izaguirre. Folding Proteins at 500 ns/hour with Work Queue. In8th IEEE
International Conference on eScience (eScience 2012), 2012.

l. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, @aS. Mock. Ke-
pler: An extensible system for design and execution of scienti c woows. In
Scientific and Statistical Database Management, pages 423{424, 2004.

S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman. Basic local R(gnment
search tool. Journal of Molecular Biology, 3(215):403{410, Oct 1990.

D. P. Anderson. Boinc: A system for public-resource computirend storage. In
Grid Computing, 2004. Proceedings. Fifth IEEE/ACM International Workshop
on, pages 4{10. IEEE, 2004.

D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Wehimer. Seti@
home: an experiment in public-resource computingCommunications of the
ACM, 45(11):56{61, 2002.

N. Andrade, W. Cirne, F. Brasileiro, and P. Roisenberg. OurgridAn approach
to easily assemble grids with equitable resource sharing.Job scheduling strate-
gies for parallel processing, pages 61{86. Springer, 2003.

M. Armbrust, A. Fox, R. Grith, A. D. Joseph, R. Katz, A. Kon winski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica, et al. A view of cloud computing.Commu-
nications of the ACM, 53(4):50{58, 2010.

M. Baker and R. Buyya. Cluster computing: The commodity supeomputing.
SOFTWAREPRACTICE AND EXPERIENCE, 1(1):1{4, 1988.

D. Bakken and R. Schlichting. Tolerating failures in the bag-ofasks program-
ming paradigm. In IEEE International Symposium on Fault Tolerant Comput-
ing, June 1991.

99

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

L. Beernaert, M. Matos, R. Vileca, and R. Oliveira. Automatic dasticity in
openstack. InProceedings of the Workshop on Secure and Dependable Middle-
ware for Cloud Monitoring and Management, page 2. ACM, 2012.

D. Bellenger, J. Bertram, A. Budina, A. Koschel, B. PlanderC. Serowy, I. As-
trova, S. G. Grivas, and M. Schaaf. Scaling in cloud environmentsRecent
Researches in Computer Science, 2011.

A. Bialecki, M. Cafarella, D. Cutting, and O. OMALLEY. Hadoop: aframework
for running applications on large clusters built of commodity hardwar. Wiki
at http://lucene. apache. org/hadoop, 11, 2005.

R. S. Boyer and J. S. Moore. A mechanical proof of the unsabiity of the
halting problem. Journal of the ACM (JACM), 31(3):441{458, 1984.

T. D. Braun, H. J. Siegel, N. Beck, L. L. Beleni, M. Maheswara, A. |. Reuther,
J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen, et al. A compiaion of eleven
static heuristics for mapping a class of independent tasks onto kebgeneous
distributed computing systems.Journal of Parallel and Distributed computing,
61(6):810{837, 2001.

P. Bui, D. Rajan, B. Abdul-Wahid, J. lzaguirre, and D. Thain. Wak Queue
+ Python: A Framework For Scalable Scientic Ensemble Applications. In
Workshop on Python for High Performance and Scientific Computing (PyHPC)
at the ACM/IEEE International Conference for High Performance Computing,
Networking, Storage, and Analysis (Supercomputing) , 2011.

R. Carmichael, P. Braga-Henebry, D. Thain, and S. Emrich. Bioempute: to-
wards a collaborative workspace for data intensive bio-science. Mmoceedings
of the 19th ACM International Symposium on High Performance Distributed
Computing, pages 489{498. ACM, 2010.

E. Caron, F. Desprez, and A. Muresan. Forecasting for gricha cloud com-
puting on-demand resources based on pattern matching. @loud Computing
Technology and Science (CloudCom), 2010 IEEE Second International Confer-
ence on, pages 456{463. IEEE, 2010.

T. Cheatham, A. Fahmy, D. Siefanescu, and L. Valiani. Bulk syhconous par-
allel computing-a paradigm for transportable software. ItHawaii International
Conference on Systems Sciences, 2005.

H. Chetto and M. Chetto. Some results of the earliest deadliner®duling al-
gorithm. IEEE Transactions on Software Engineering, 15(10):1261{1269, 1989.

W. Cirne, F. Brasileiro, J. Sauwe, N. Andrade, D. Paranhos, ESantos-neto,
R. Medeiros, and F. C. Gr. Grid computing for bag of tasks applicatis. In In
Proc. of the 3rd IFIP Conference on E-Commerce, E-Business and EGovern-
ment. Citeseer, 2003.

100

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. MartinWW. Smith, and
S. Tuecke. Resource management architecture for metacomipgt systems. In
IPPS/SPDP Workshop on Job Scheduling Strategies for Parallel Processing,
pages 62{82, 1998.

D. da Silva, W. Cirne, and F. Brasilero. Trading cycles for infornteon: Using
replication to schedule bag-of-tasks applications on computationgrids. In
Euro-Par, 2003.

W. Dawoud, I. Takouna, and C. Meinel. Elastic virtual machine fio ne-grained
cloud resource provisioning. li&slobal Trends in Computing and Communication
Systems, pages 11{25. Springer, 2012.

J. Dean and S. Ghemawat. Mapreduce: Simplied data procesgimon large
cluster. In Operating Systems Design and Implementation, 2004.

E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, Gvehta,
K. Vahi, B. Berriman, J. Good, A. Laity, J. Jacob, and D. Katz. Pe@sus: A
framework for mapping complex scienti ¢ work ows onto distributed systems.
Scientific Programming Journal, 13(3), 2005.

U. Doraszelski. An R&D race with knowledge accumulationBell Journal of
Economics, 34:19{41, 2003.

R. C. Dorf. Modern control systems. Addison-Wesley Longman Publishing Co.,
Inc., 1991.

J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J.iQ, and G. Fox.
Twister: a runtime for iterative mapreduce. InProceedings of the 19th ACM
International Symposium on High Performance Distributed Computing, pages
810{818. ACM, 2010.

E. Elmroth and P. Gardfjall. Design and evaluation of a decentliaed system for
grid-wide fairshare scheduling. Ire-Science and Grid Computing, 2005. First
International Conference on, pages 9{pp. IEEE, 2005.

S. I. Feldman. Makea program for maintaining computer prognas. Software:
Practice and experience, 9(4):255{265, 1979.

I. Foster and C. KesselmanThe Grid 2: Blueprint for a new computing infras-
tructure. Access Online via Elsevier, 2003.

J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. TueckeCondor-G: A com-
putation management agent for multi-institutional grids. Cluster Computing, 5
(3):237{246, 2002.

M. Frigo, C. Leiserson, H. Prokop, and S. Ramachandran. Qe oblivious
algorithms. In Foundations of Computer Science (FOCS), 1999.

101

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

M. R. Garey and D. S. Johnson. Complexity results for multiprassor schedul-
ing under resource constraints. SIAM Journal on Computing, 4(4):397{411,
1975.

M. R. Garey, D. S. Johnson, and R. Sethi. The complexity of oghop and
jobshop scheduling.Mathematics of operations research, 1(2):117{129, 1976.

N. Geddes. The national grid service of the uk. Ie-Science and Grid Com-
puting, 2006. e-Science’06. Second IEEE International Conference on, pages
94{94. IEEE, 2006.

W. Gentzsch. Sun grid engine: Towards creating a compute pawgrid. In
CCGRID ’01: Proceedings of the 1st International Symposium on Cluster Com-
puting and the Grid, 2001.

P. Ghemawat and A. M. Spence. Learning curve spillovers and rket perfor-
mance. The Quarterly Journal of Economics, 100:839{852, 1985.

C. T. Gibson. Time-sharing in the ibm system/360: model 67. IRroceedings
of the April 26-28, 1966, Spring joint computer conference, pages 61{78. ACM,
1966.

R. Grossman and Y. Gu. Data mining using high performance datdouds:
experimental studies using sector and sphere. Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery and data mining,
pages 920{927. ACM, 2008.

M. Hategan, J. Wozniak, and K. Maheshwari. Coasters: unifior resource pro-
visioning and access for scienti c computing on clouds and gridBroc. Utility
and Cloud Computing, 2011.

R. Henderson and D. Tweten. Portable batch system: Extemhreference spec-
i cation. Technical report, NASA, Ames Research Center, 1996.

Z. Hill, J. Li, M. Mao, A. Ruiz-Alvarez, and M. Humphrey. Early ob®rvations
on the performance of Windows Azure. IiProceedings of HPDC, 2010.

D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock, P.iLand T. Oinn.
Taverna: a tool for building and running work ows of services.Nucleic Acids
Research, 34:429{732.

M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Dis tributed data
parallel programs from sequential building blocks. IfProceedings of EuroSys,
March 2007.

S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, and K. Kennedy. Tak
scheduling strategies for work ow-based applications in grids. 280

102

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

N. P. Jouppi and D. W. Wall. Available instruction-level parallelism for super-
scalar and superpipelined machines, volume 17. ACM, 1989.

H. T. Kung. Why Systolic Architectures? IEEE Computer, 15:37{46, January
1982.

S. M. Larson, C. D. Snow, M. Shirts, et al. Folding@ home and gene@
home: Using distributed computing to tackle previously intractable pblems
in computational biology. 2002.

E. Laure and B. Jones. Enabling grids for e-science: The egeejgct. Grid
Computing: Infrastructure, Service, and Applications, CRC Press, pages 55{74,
2009.

H. Li and R. Durbin. Fast and accurate short read alignment wit burrows{
wheeler transform.Bioinformatics, 25(14):1754{1760, 2009.

C.-C. Lin, J.-J. Wu, J.-A. Lin, L.-C. Song, and P. Liu. Automatic resource scal-
ing based on application service requirements. @loud Computing (CLOUD),
2012 1EEE 5th International Conference on, pages 941{942. IEEE, 2012.

J. Linderoth, S. Kulkarni, J.-P. Goux, and M. Yoder. An enablingramework for
master-worker applications on the computational grid. INNEEE High Perfor-
mance Distributed Computing, pages 43{50, Pittsburgh, Pennsylvania, August
2000.

A. Luckow, L. Lacinski, and S. Jha. SAGA BigJob: An extensibleral in-
teroperable pilot-job abstraction for distributed applications andsystems. In
Cluster, Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM Interna-
tional Conference on, pages 135{144. IEEE, 2010.

J. MacLaren, R. Sakellariou, K. T. Krishnakumar, J. Garibaldi, ad D. Ouel-
hadj. Towards service level agreement based scheduling on thielgin Proceed-
ings of the Workshop on Planning and Scheduling for Web and Grid Services,
pages 100{102, 2004.

T. Maeno. PanDA: distributed production and distributed analgis system for
ATLAS. Journal of Physics: Conference Series, 119, 2008.

M. Mao and M. Humphrey. Auto-scaling to minimize cost and meetpplica-
tion deadlines in cloud work ows. InHigh Performance Computing, Network-
ing, Storage and Analysis (SC), 2011 International Conference for, pages 1{12.
IEEE, 2011.

M. Mao, J. Li, and M. Humphrey. Cloud auto-scaling with deadlinerad budget
constraints. In Grid Computing (GRID), 2010 11th IEEE/ACM International
Conference on, pages 41{48. IEEE, 2010.

103

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

P. Marshall, K. Keahey, and T. Freeman. Elastic site: Using closdo elastically
extend site resources. IProceedings of the 2010 10th IEEE/ACM International

Conference on Cluster, Cloud and Grid Computing, pages 43{52. IEEE Com-
puter Society, 2010.

P. Mell and T. Grance. The nist de nition of cloud computing (drdt). NIST
special publication, 800(145):7, 2011.

R. G. Michael and D. S. Johnson. Computers and intractabilityA guide to the
theory of np-completenessWH Freeman & Co., San Francisco, 1979.

C. Moretti, J. Bulosan, D. Thain, and P. Flynn. All-Pairs: An Abstraction
for Data Intensive Cloud Computing. InlIEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), pages 1{11, 2008.

C. Moretti, K. Steinhaeuser, D. Thain, and N. V. Chawla. ScalingJp Classi-
ers to Cloud Computers. In IEEE International Conference on Data Mining
(ICDM), pages 472{481, 2008.

C. Moretti, A. Thrasher, L. Yu, M. Olson, S. Emrich, and D. Than. A Frame-
work for Scalable Genome Assembly on Clusters, Clouds, and Grid$EEE
Transactions on Parallel and Distributed Systems, 23(12), 2012.

A. W. Mu'alem and D. G. Feitelson. Utilization, predictability, workloads, and
user runtime estimates in scheduling the ibm sp2 with back llingParallel and
Distributed Systems, IEEE Transactions on, 12(6):529{543, 2001.

H. Muller, M. Pitkanen, X. Zhou, A. Depeursinge, J. lavindrasaa, and A. Geiss-
buhler. Knowarc: enabling grid networks for the biomedical resear community.
Studies in health technology and informatics, 126:261, 2007.

A. Nagavaram, G. Agrawal, M. A. Freitas, K. H. Telu, G. Mehta,R. G. Mayani,
and E. Deelman. A cloud-based dynamic work ow for mass spectretny data
analysis. InE-Science (e-Science), 2011 IEEE 7th International Conference on,
pages 47{54. IEEE, 2011.

S. B. Needleman and C. D. Wunsch. A general method applicabtethe search
for similarities in amino acid sequence of two proteinsJournal of Molecular
Biology, 48:443{453, 1970.

G. Neiger, A. Santoni, F. Leung, D. Rodgers, and R. Uhlig. Intevirtualiza-
tion technology: Hardware support for e cient processor virtudization. Intel
Technology Journal, 10(3):167{177, 2006.

Z. Ning, A. J. Cox, and J. C. Mullikin. Ssaha: a fast search metkofor large
dna databases.Genome research, 11(10):1725{1729, 2001.

104

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.
85.

86.

87.

88.

89.

T. Oliver, B. Schmidt, D. Nathan, R. Clemens, and D. Maskell. Usm re-
con gurable hardware to accelerate multiple sequence alignment Wwitlustalw.
Bioinformatics, 21:3431{3432, 2005.

J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. StonenéJ. C. Phillips.
Gpu computing. Proceedings of the IEEE, 96(5):879{899, 2008.

A. H. Paterson, J. E. Bowers, R. Bruggmann, |. Dubchak, JGrimwood,
H. Gundlach, G. Haberer, U. Hellsten, T. Mitros, A. Poliakov, et al. The
sorghum bicolor genome and the diversi cation of grassedlature, 457(7229):
551{556, 20009.

X. Qiu, M. Hedwig, and D. Neumann. SLA Based Dynamic Provisiongnof
Cloud Resource in OLTP Systems. IrE-Life: Web-Enabled Convergence of
Commerce, Work, and Social Life, pages 302{310. Springer, 2012.

M. Rahman, S. Venugopal, and R. Buyya. A dynamic critical patfalgorithm
for scheduling scientifc work ow applications on global grids. 2007.

I. Raicu, Y. Zhao, C. Dumitrescu, |. Foster, and M. Wilde. Falkan: a Fast and
Light-weight tasK executiON framework. INIEEE/ACM Supercomputing, 2007.

S. Rajko and S. Aluru. Space and time optimal parallel sequenakgnments.
IEEE Transactions on Parallel and Distributed Systems, pages 1070{1081, 2004.

C. Ramamoorthy and H. F. Li. Pipeline architecture ACM Computing Surveys
(CSUR), 9(1):61{102, 1977.

R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed esource
management for high throughput computing. InHigh Performance Distributed
Computing, 1998. Proceedings. The Seventh International Symposium on, pages
140{146. IEEE, 1998.

T. Redkar and T. Guidici. Windows Azure Platform. Apress, 2011.

J. Reinganum. Dynamic games of innovatiorlournal of Economic Theory, 25:
21{41, 1981.

J. Reinganum. A dynamic game of R&D: Patent protection and capetitive
behavior. Econometrica, 50:671{688, 1982.

J. Reinganum. CorrigendumJournal of Economic Theory, 35:196{197, 1985.

J. Reinganum and N. Stokey. Oligopoly extraction of a commongguerty natural
resource: The importance of the period of commitment in dynamic gees.
International Economic Review, 26:161{174, 1985.

N. Roy, A. Dubey, and A. Gokhale. E cient autoscaling in the clow using
predictive models for workload forecasting. IrCloud Computing (CLOUD),
2011 IEEE International Conference on, pages 500{507. IEEE, 2011.

105

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

S. M. Rumble, P. Lacroute, A. V. Dalca, M. Fiume, A. Sidow, and MBrudno.
Shrimp: accurate mapping of short color-space readBLoS computational bi-
ology, 5(5):€1000386, 2009.

J. Saltz, S. Oster, S. Hastings, S. Langella, T. Kurc, W. Sareh M. Kher,
A. Manisundaram, K. Shanbhag, and P. Covitz. cagrid: design and pfe-
mentation of the core architecture of the cancer biomedical infioratics grid.
Bioinformatics, 22(15):1910{1916, 2006.

A. Sarje and S. Aluru. Parallel biological sequence alignments thre cell broad-
band engine. Ininternational Parallel and Distributed Processing Symposium
(IPDPS), 2008.

I. Sligoi. GlideinWMS { a generic pilot-based workload managemergystem.
Journal of Physics: Conference Series, 119, 2008.

M. Shirts, V. S. Pande, et al. Screen savers of the world unitEOMPUTING,
10:43, 2006.

M. Snir, S. W. Otto, D. W. Walker, J. Dongarra, and S. Huss-Lgerman. MPI:
the complete reference. MIT press, 1995.

A. M. Spence. The learning curve and competitiorBell Journal of Economics,
12:49{70, 1981.

A. M. Spence. Cost reduction, competition, and industry pesfmance. Econo-
metrica, 52:101{121, 1984.

C. Team. The directed acyclic graph manager.
http://www.cs.wisc.edu/condor/dagman, 2002.

D. Thain, T. Tannenbaum, and M. Livny. Condor and the Grid. InF. Berman,
A. Hey, and G. Fox, editors,Grid Computing: Making the Global Infrastructure
a Reality. John Wiley, 2003.

D. Thain, T. Tannenbaum, and M. Livny. Condor and the grid. h F. Berman,
G. Fox, and T. Hey, editors,Grid Computing: Making the Global Infrastructure
a Reality. John Wiley, 2003.

K. B. Theobald and G. R. Gao. An e cient parallel algorithm for dl pairs
examination. In Supercomputing '91: Proceedings of the 1991 ACM/IEEE con-
ference on Supercomputing, pages 742{753, New York, NY, USA, 1991. ACM.
ISBN 0-89791-459-7. doi: http://doi.acm.org/10.1145/125826.8B475.

A. Thrasher, Z. Musgrave, D. Thain, and S. Emrich. Shiftingtte Bioinformatics
Computing Paradigm: A Case Study in Parallelizing Genome Annotation &ing
Maker and Work Queue. InlEEE International Conference on Computational
Advances in Bio and Medical Sciences, 2012.

106

103.

104.

105.

106.

107.

108.

A. Tsaregorodtsev, M. Bargiotti, N. Brook, A. C. Ramo, G. @stellani, P. Char-

pentier, C. Cio, J. Closier, R. G. Diaz, G. Kuznetsov, et al. Dirac: acommu-

nity grid solution. In Journal of Physics: Conference Series, volume 119, page
062048. IOP Publishing, 2008.

D. Warneke and O. Kao. Exploiting dynamic resource allocatiomif e cient
parallel data processing in the cloud.Parallel and Distributed Systems, IEEE
Transactions on, 22(6):985{997, 2011.

D. Warneke and O. Kao. Exploiting Dynamic Resource Allocatiorof E cient
Parallel Data Processing in the Cloud. January 2011.

W. Zhao, K. Ramamritham, and J. A. Stankovic. Preemptive $@duling under
time and resource constraintsComputers, IEEE Transactions on, 100(8):949{
960, 1987.

Y. Zhao, J. Dobson, L. Moreau, I. Foster, and M. Wilde. A nattion and system
for expressing and executing cleanly typed work ows on messy stie data.
In SIGMOD, 2005.

S. Zhou, X. Zheng, J. Wang, and P. Delisle. Utopia: a load shagirfacility
for large, heterogenous distributed computer systemsSoftware: Practice and
Experience, 23(12):1305{1336, December 1993.

This document was prepared & typeset WithATEX 2¢, and formatted with
nddiss2g class le (v3.20133[2013/01/31]) provided by Sameer Vijay and
updated by Megan Patnott.

107

