
1

Combining Static and Dynamic
Storage Management

for Data Intensive Scientific Workflows
Nicholas Hazekamp, Nathaniel Kremer-Herman, Benjamin Tovar, Haiyan Meng,

Olivia Choudhury, Scott Emrich, and Douglas Thain
Department of Computer Science and Engineering, University of Notre Dame
{nhazekam,nkremerh,btovar,hmeng,ochoudhu,semrich,dthain}@nd.edu

Abstract—Workflow management systems are widely used
to express and execute highly parallel applications. For data-
intensive workflows, storage can be the constraining resource:
the number of tasks running at once must be artificially limited
to not overflow the space available in the filesystem. It is all
too easy for a user to dispatch a workflow which consumes all
available storage and disrupts all system users. To address these
issues, we present a three-tiered approach to workflow storage
management: (1) A static analysis algorithm which analyzes
the storage needs of a workflow before execution, giving a
realistic prediction of success or failure. (2) An online storage
management algorithm which accounts for the storage needed by
future tasks to avoid deadlock at runtime. (3) A task containment
system which limits storage consumption of individual tasks,
enabling the strong guarantees of the static analysis and dynamic
management algorithms. We demonstrate the application of these
techniques on three complex workflows.

I. INTRODUCTION

Workflow management systems are widely used to express
and execute highly parallel applications in bioinformatics, high
energy physics, earth science, data mining, and other fields
[1], [2], [3], [4], [5], [6], [7], [8], [9]. A workflow is a
set of independent programs which communicate with each
other by producing and consuming files or other data streams.
Workflows are often organized into a graphical representation.
A view of the entire workflow allows the workflow manager
to perform resource management by scheduling tasks within
limited global resources.

Resource limitations can cause workflow deadlock when the
user attempts to utilize more resources than are available. For
a system administrator, the limiting resource for throughput is
often cores or memory, as their goal is achieving maximum
throughput of the system. The limiting resource for a user is
storage, which is often quota-based. This establishes storage as
the finite resource at risk of causing deadlocks, since a user
would have to actively free space after use. This contrasts
with cores and memory, which may limit the throughput, but
are released at job completion. Regardless of the throughput
speed, sufficiently large workflows will fill the limited storage,
causing the workflow to deadlock. As storage reaches its limit,
the number of tasks that can run simultaneously is limited by
the available storage space. A large proportion of the storage
consumed may lie in intermediate files between tasks in a
workflow. As a result, the order in which tasks execute has a

significant effect on the storage consumption of the workflow
as a whole. An intermediate file must exist long enough to be
consumed by the next task, and then may be deleted. Previous
work [10] focused on basic reduction of storage usage, using
clean-up jobs to delete files which are no longer needed. From
this we can conclude that depth-first execution strategies, that
focus of freeing files quickly, will consume less storage than a
breadth-first execution strategy, which can result in deadlock
if insufficient space is left to process the files already created.

The problem is exacerbated by storage being the most
casually managed resource in high performance computing
centers. Most batch systems schedule based on job resource
needs for cores and memory. Although data centers are often
over-provisioned for storage, the process by which a user
attains more storage is often tied to paperwork or payment.
Neither of these methods prevent or mitigate the chance of
deadlock. Users typically have permission to write into a
global filesystem with a quota, as well as local temporary
storage without physical limits. This can cause tasks to exhibit
unexpected behavior and may crash outright when the user’s
storage space is completely exhausted. Storage exhaustion may
also occur if the shard of the filesystem within which the user
is located is full even though the user’s workflow is within
their quota. Though procuring more physical storage hardware
could resolve this issue, it depends upon the system’s partition
policy. Additionally, unlimited use of local storage, such as
scratch space, can also result in deadlock when in heavy use.
If many users greedily consume local storage, one or more
users’ work could deadlock due to local storage exhaustion.
When this happens all other tasks fail and work halts. The user
is left with no recourse except to attempt an execution while
deleting files and canceling jobs manually as they approach the
storage constraints. Little information is available in advance
to understand exactly how much storage a workflow will
require.

We present three coordinated techniques that allow users to
manage storage at runtime in user-level workflow-structured
applications. First, we present how the graph structure of
workflow applications allows us to observe the minimum and
maximum storage needs of a workflow before execution. This
enables a scheduler to judge whether a workflow will be able
to run to completion at all in the available storage, or whether
more resources must be obtained. Second, we demonstrate

2

an online accounting method by which a workflow manager
tracks not only the actual storage use, but the storage needed to
complete the current graph structure. This method is necessary
to avoid deadlock that would be caused by a naive approach.
Third, we demonstrate several techniques by which individual
tasks may be monitored and contained so they do not overflow
their expected storage consumption. A key challenge here is to
identify storage exhaustion so the workflow manager can stop
the task and re-plan. As a case study, we demonstrate how
these techniques have been applied to a selection of workflows,
including a binary tree, the Montage image analysis workflow,
and a genomic analysis workflow. For each, we demonstrate
that the measurement technique accurately captures the min-
imum and maximum storage footprint, that arbitrary runtime
storage limits are respected, and that individual tasks are
contained with modest overheads compared to uncontrolled
execution.

II. BACKGROUND

We assume a workflow is a directed acyclic graph (DAG) of
programs and files produced and consumed by each program.
Nodes in the DAG are logically ready for execution when all
input files exist at the execution site. The workflow structure
is recorded in a file authored by the end user, while the
individual programs and files are assumed to be present in
the filesystem at the execution site or accessed via URLs in
the workflow itself. Files may be divided into three categories:
input files which exist before the workflow begins, output files
which are produced by the workflow and must be retained,
and intermediate files which are created within the workflow
but may be deleted once they are no longer needed. The size
of input files is known in advance, and an estimate of the size
of intermediate and output files is stated in the workflow.

Figure 1 shows the relationship between a workflow, run-
ning tasks, and the available storage. The workflow itself is
fed into a workflow manager which dispatches individual tasks
to a batch system that selects an execution node for each task.
Each task has a task sandbox in which it executes, which must
be large enough to contain the inputs, outputs, and auxiliary
files needed for that single task. Likewise, the workflow as a
whole has a workflow sandbox which must be large enough
to contain the inputs, outputs, and intermediates files of the
workflow.

Typically, the workflow sandbox is stored in a large parallel
filesystem used for user data and home directories, such as
Panasas [11], Lustre [12], or Ceph [13]. We assume that
this storage is large and fast, but of finite capacity. There
are two common configurations for the task sandbox. Some
systems have storage local to each node, so the task’s storage
consumption is different from the workflow. Some systems do
not have storage local to each node, and so the task’s sandbox
exists in the global filesystem and must be accounted against
the workflow’s storage. In either case, each task’s consumption
must be allocated and measured.

In the context of workflow and task storage management,
we make three contributions:

1 - Static analysis of the storage footprint. We present
an algorithm which statically determines the storage footprint

Fig. 1: System Architecture. In the DAG, files are represented
as squares and programs as circles. When a node is submitted,
the input files are sent to the task sandbox, where upon
completion the output files are retrieved. These files are held
in the workflow sandbox, which is managed by the Workflow
Management System.

of a DAG before execution. The algorithm uses a single-pass,
bottom-up approach to determine the storage needs for the
execution of each task. As the algorithm traverses up the tree
it accumulates values that correspond to the storage needs of
the task’s descendants in a global context. Once the traversal is
complete, the set of head nodes is used to determine the overall
needs of the DAG as well as inform concurrent branches on
the loose ordering to maintain limits. The algorithm makes a
single pass through the graph, limiting the cost of analysis.
Utilizing this analysis to prevent deadlock, as opposed to
a scheduling algorithm, limits the runtime costs while still
providing a precise minimum and maximum data footprint.

2 - Online management of the storage footprint. The
dynamic management of the DAG is performed in two ways:
storage allocation and task dispatch. The storage allocation
works as a transaction hierarchy. When a task is committed,
space is reserved for descendants as well. When a node
is selected to run, the data footprint from static analysis
provides a limit and the length of that commitment. When
a task completes, the appropriate files are deleted, and the
committed storage is updated. The task dispatch component
works in conjunction with the storage allocation, by using
the commitment hierarchy and the eligible node’s footprint to
determine if there is enough available space. If so, the node’s
footprint is committed and the node is submitted for execution.

3 - Runtime containment of individual tasks. The as-
sumptions made about file size in the static and dynamic
algorithms must eventually be enforced at the execution site.
The necessity for strict runtime storage containment for a
task is two-fold: first it gives a guarantee to the workflow
management system that the task in question will only use
as much space as it has been allocated. Secondly, it honors
the resource request between the task and the execution node
which states the task will not consume excess resources, which
could alter the availability of the node for future tasks. We
provide these guarantees by mounting a loop device filesystem,

3

Binary Tree Montage BWA-GATK

Fig. 2: Example Workflows
Three example workflows used to evaluate storage management strategies. Binary Tree is a synthetic workflow which generates
1GB files in a tree structure, resulting in a large amount of intermediate data. Montage is a widely used workflow benchmark
which produces image mosaics from raw astronomical images. BWA-GATK is a bioinformatics workflow that performs
alignment and genotyping of sequences related to the oak tree. Each graph shown is reduced in cardinality from the actual
workflow in order to more clearly show the general structure.

a file backed pseudo-disk, in the place of the task sandbox.
From the task’s perspective, it appears that it has an entire
device to itself with the right amount of space needed to fully
execute and report back to the workflow management system.
The loop device also guarantees that the task will consume no
more space than it has been allocated. If the loop device is
exhausted by accident, a library interpositioning tool detects
the exact moment of overage and communicates the details to
the workflow manager.

III. THE STORAGE FOOTPRINT

We begin static analysis by defining the storage footprint of
a workflow and computing the footprint manually for several
simple examples. This will serve as a basis for the static
algorithm in the next section.

For any given workflow, the absolute maximum storage
it can consume occurs when all files (input, intermediate,
and output) exist simultaneously. If the target storage system
has enough space for the sum of all files mentioned in the
workflow, then it is not necessary to delete any files during
execution, and there is no storage management problem.

If storage space is limited, then we may delete intermediate
files incrementally, whenever they have been consumed and
are no longer needed by any node in the workflow. We define
the storage footprint of the workflow to be the maximum
amount of storage consumed during execution with the policy
that all files are deleted at the first possible opportunity.

Footprint is affected by the concurrency used to execute the
workflow. We define two extreme values of the footprint:

• Maximum storage footprint is the largest possible foot-
print achieved when tasks run with maximum possible
concurrency, subject to the workflow ordering constraints.

• Minimum storage footprint is the smallest possible
footprint, achieved when only one workflow branch is
executed at a time, and possibly concurrent tasks are
executed in the order that minimizes the footprint.

By computing these values before executing the workflow,
we can give the user a realistic assessment of the likelihood
of success. If the available storage is less than the minimum
footprint, the workflow cannot run to completion at all, so
the end user is advised to look for another system or acquire
more storage. If the available storage is between the minimum
and maximum footprint, the workflow can complete but con-
currency must be limited dynamically. If the available storage
is at or above the maximum footprint, then the workflow can
run at maximum concurrency if files are deleted at the first
opportunity.

Here are the footprints of a few simple workflows:

0 ZA

Example 1: A single task 0 reads an input file A and
produces an output file Z. The size of a file is defined as
|X|, where X is the file. At some point during the execution
(however briefly) both A and Z must exist simultaneously, so
the footprint of the workflow is the sum of the size of the
files |A| + |Z| which we abbreviate as |AZ|. After the task
completes, A may be deleted, but Z remains, so the residual
file of the workflow is Z.

1 Z0 MA

Example 2: Two tasks execute in sequence. Intermediate
file M is then created by executing task 0 with input A, after
which file A is no longer needed and can be deleted. Next,
output file Z is created by executing task 1 with input M ,
at which point file M can also be removed. This results in
only output file Z remaining in the end. A and M must exist
simultaneously, and M and Z must exist simultaneously, so
the footprint is the max(|AM |, |MZ|), and the residual is the
sole output Z.

4

2 Z

1 N

0 MA

B

Example 3: Two tasks combine outputs in a third. This
workflow can execute three different ways:
• Case 1: If tasks 0 and 1 can execute simultaneously, then

files A, B, M , and N must co-exist. Files A and B can
be deleted, at which point M , N , and Z must co-exist.
The footprint is max(|ABMN |, |MNZ|).

• Case 2: If task 0 executes first, then files A, B, and M
co-exist, after which file A can be deleted. Then, task
1 executes, so files B, M , and N co-exist. File B can
now be deleted. Finally, task 2 executes, so M , N , and
Z co-exist. The footprint is the largest of the three steps:
max(|ABM |, |BMN |, |MNZ|)

• Case 3: If task 1 executes first, the combinations are
similar to Case 2: max(|ABN |, |AMN |, |MNZ|)

As can be seen, the maximum storage footprint occurs in
case 1, while the minimum storage footprint is the minimum
between cases 2 and 3. This presents the runtime manager
of a workflow with a trade off – increased concurrency can
result in increased storage consumption. If this is not carefully
quantified, storage may be accidentally exhausted.

IV. EXAMPLE WORKFLOWS

Figure 2 shows three workflows that we use as running
examples. Each of these workflows can be generated at various
scales; the figure shows a low-degree example to make the
macro-structure clear. Each presents a somewhat different
storage management challenge; we can give a qualitative sense
of the footprint by examining the workflow structure.

The Binary Tree workflow is a synthetic benchmark con-
sisting of processes that each consume and produce a single
file of 1MB. Each file is consumed by two children until the
desired depth d, and then the data is reduced to a single file
in a similar manner. If all branches are executed concurrently,
the maximum footprint is 2d + 2d−1, when two levels co-
exist at once. The minimum footprint is d + 2, when a single
branch plus one task must exist simultaneously. Many values
in between may occur if the workflow proceeds unevenly. The
footprint tends to peak in the middle of execution.

The Montage [14] workflow computes mosaics of astro-
nomical images, and is widely used as a benchmark for
evaluating workflows. It can be generated at a variety of scales
by varying the angle of sky (and thus number of images) to
be processed. Although Montage has been previously used to
explore storage consumption [15], it is an unusual workflow in
that most intermediate files it creates are used by multiple later
stages, such that most files cannot be deleted until the final
chain of individual jobs. Thus, the footprint tends to increase
slowly until reaching a peak near the end of the workflow.

The BWA-GATK [16] workflow combines two common
bioinformatics tools into a large scale parallel application. A

Algorithm 1 Algorithm to Measure Storage Footprint.
Term Definition
n Current node under examination
n.descendants Nodes that utilize a file produced by n
n.children Nodes related to n where no other

descendant of n is parent, subset of
descendants

n.residual nodes List of nodes where all children are used
n.residual files Files held until nearest residual node
n.diff Difference in size between

n.min footprint and n.residual files
n.run footprint Files used/created during n’s execution
n.diff order footprint Files forming largest footprint during

diff order traversal
n.wgt order footprint Files forming largest footprint during

wgt order traversal
n.min desc footprint Files forming minimal space needed to

execute to next residual
n.min footprint Files forming minimal space needed to

execute self and children
n.max desc footprint Files forming maximal space needed to

execute to next residual
n.max footprint Files forming maximal space needed to

execute self and children

procedure MeasureStorageFootprint(n)

for all c in n.children do
MeasureFootprint(c)

end for
n.residual nodes ← n + (

n.childrenT
c

c.residual nodes)

if |n.children| < 2 then
n.residual files ← n.outputs

else
n.residual files ← max(n.outputs,

n.childrenS
c

c.residual files)

end if

n.run footprint ← n.inputs + n.outputs

n.diff order footprint
tmp footprint ← n.outputs
for all c in n.children sorted by c.diff do

if |footprint| + |c.min footprint| > n.diff order footprint
then

n.diff order footprint ← footprint + c.min footprint
end if
tmp footprint ← footprint + c.residual files

end for

n.wgt order footprint

← maxn.children
c (c.min footprint) +

n.children - cP
r

(r.residual)

n.min desc footprint
← min(n.diff order footprint, n.wgt order footprint)

n.min footprint
← max(n.parent footprint, n.min desc footprint)

n.max desc footprint ←
n.childrenS

c

(c.max footprint)

n.max footprint
← max(n.parent footprint, n.max desc footprint)

n.diff ← |n.min footprint| − |n.residual files|
end procedure

5

9

Z

8

Y 7

W

6

N

5

M

4

L

3

D

2

X

1

C

0

A

Fig. 3: Worked Example DAG

Node Min Max Residual Run
(Res Nodes) Footprint Files Footprint Footprint

9 4 4 1 4
{9} {WXYZ} {WXYZ} {Z} {WXYZ}

8 2 2 1 2
{9,8} {DY} {DY} {Y} {DY}

7 4 4 1 4
{9,7} {LMNW} {LMNW} {W} {LMNW}

6 2 2 1 2
{9,7,6} {CN} {CN} {N} {CN}

5 2 2 1 2
{9,7,5} {CM} {CM} {M} {CM}

4 2 2 1 2
{9,7,4} {CL} {CL} {L} {CL}

3 2 2 1 2
{9,8,3} {AD} {AD} {D} {AD}

2 2 2 1 2
{9,2} {AX} {AX} {X} {AX}

1 4 4 3 2
{9,7,1} {CLMN} {CLMN} {LMN} {AC}

0 4 7 3 1
{9,0} {AWXY} {ACDLMNX} {WXY} {A}

Fig. 4: Worked Example Variables
Worked example of DAG, in Figure 3, with the relevant variables shown in Figure 4.

large genomic query file is split into task-sized pieces, and the
BWA alignment tool aligns the queries to a reference dataset.
Then, the GATK tool uses a Bayesian algorithm to compute
the quality of successful alignments. The workflow size is
increased by adding more data from multiple organisms. This
workflow has an irregular footprint over time: each stage of
the workflow produces files which are used only once and
then may be deleted. In some cases, single files are consumed
by single tasks in parallel, so the footprint changes in a
fine-grained manner. In other cases, multiple files must be
consumed by all tasks in a stage, creating a storage barrier
in which nothing is deleted until all tasks complete.

These three workflows are not intended to present a com-
plete profile of workflow behavior, rather show common be-
haviors which may result in deadlock given certain conditions.
The static and dynamic algorithms we present are suitable
for running these workflows in most distributed computing
environments. In this paper we utilized a centralized batch
system due to its wide-spread use, but the work we present
does not rely on a batch system environment. Further, we do
not make any assumptions about typical file sizes, workflow
behavior, or workflow needs. We do assume the user can
accurately estimate characteristics of their workflow to account
for any special needs or storage behavior it may experience
during execution.

V. STATIC ANALYSIS ALGORITHM

The algorithm used to analyze the abstract DAG utilizes a
single pass bottom-up approach for determining the estimated
storage utilization. The algorithm is presented in Algorithm 1.
The goal of the algorithm is to determine the storage using
information gathered at each node and passed upward.

A residual node is defined as any node that is the lone
child of another node or nodes. This is useful as it provides a
limit on the look-ahead needed to accurately determine storage

needs of the parent node. If a node’s children culminate in
a single node the storage impact of these nodes is limited
between the node and the residual node where they culminate.
The storage for the node’s children can be calculated and saved
at the node for future use. The value at the node now represents
the space needs to be committed for guaranteed execution.

Traversal begins from leaf nodes, where the residual nodes
and files include itself and its outputs. The only relevant
footprint at this location is the run footprint, which is also
the minimum and maximum footprints. As we traverse up the
DAG, there are two states in which a node resides. A node
in the first case has only a single child node, at which point
the residual nodes, files, and run footprint are equivalent to
the child’s residual nodes, files, and run footprint respectively.
As there is only one possible ordering for child execution,
the minimum and maximum footprints are defined as the
minimum and maximum respectively, between the node and
its child’s footprint.

In the case where there are multiple nodes, the ordering
can affect the overall footprint. To evaluate the interplay
between children we find the common subset of residual nodes
shared by each child. This becomes the residual node set
for the current node. Of the remaining uncommon residual
nodes, the residual files and the largest footprint are found
for each child. The node’s residual file set is the union of
all children’s residual files. We evaluated two methods of
traversal, each with its own goal. The straightforward approach
is to find the largest footprint among the children and add the
remaining children’s residual files. The other approach is to
order the children by the difference between their minimum
footprint and residual files. Traversing the nodes in this order
favors nodes that consume and release space instead of nodes
that hold their consumed space. To pick between which is
better we select the minimum between the two as they both
account for executing all of the nodes. The minimum footprint

6

Workflow Min Max Abs Tasks Analysis
Size (GB) (GB) (GB) Time(s)

Binary Tree
3 5 12 22 22 0.0015
5 7 48 94 94 0.0065

10 12 1536 3070 3070 0.2776
15 17 49152 98302 98302 10.631

Montage
0.01 0.07 0.12 0.13 35 0.0041

1 1.87 2.78 2.98 998 1.9558
1.99 4.01 6.49 9.33 2984 2.3500

BWA-GATK
1 2.69 2.69 3.614 53 0.0117
5 2.75 13.46 17.99 265 0.0439

10 2.82 26.93 35.94 530 0.0749
25 3.06 67.31 89.83 1325 0.1659
50 3.43 134.63 179.64 2650 0.3082

100 4.19 269.25 359.24 5300 0.4145
500 10.25 1346.26 1796.11 26500 2.8163

TABLE I: Static Analysis Results
Each section of this table refers to one of the three workflows used

in our analysis. The size column refers to different attributes for
each workflow. Size refers to the number of split levels in Binary
Tree, the degree of the sky being analyzed in Montage, and the

number of individual samples included in BWA-GATK. Min shows
the estimated minimum footprint, Max the estimated maximum

footprint, and Abs the sum of all files in the workflow. Tasks are the
number of tasks created in Makeflow. Analysis Time shows the

additional time needed to determine the footprint for each case.

is determined by utilizing the largest of the current nodes
footprint and the footprints reported by its children. The
maximum is the sum of all the children nodes’ maximum
footprints.

Figures 3 to 4 shows the algorithm applied to a simple
workflow. Assuming each file is of size 1, the minimum
footprint (ACLMN) occurs if the bottom-most branch of the
workflow is executed first. Files LMN exist simultaneously,
before being reduced to W, allowing the rest of the workflow to
proceed. The maximum footprint (ACDLMNX) occurs when
all three branches execute concurrently, so that DLMNX all
must exist at once, along with the input files (AC) to the tasks
that created them.

Table I shows the results of applying this algorithm to
the three example workflows previously described, as imple-
mented in Makeflow [9]. For various sizes of each workflow,
we compute the minimum footprint, maximum footprint, and
absolute maximum. The size of the three workflows are given
as the tree depth for Binary Tree, the degrees of resolution for
Montage, and the number of organisms for BWA-GATK. The
bold lines indicate the configurations actually run below. As
discussed above, the maximum footprint of Binary Tree grows
exponentially, the maximum footprint of Montage is close to
the minimum footprint, and the maximum footprint of BWA-
GATK is roughly linear with the width of the workflow. With
the exception of the very large binary tree, the single-pass
algorithm executes in a mater of seconds.

A. Limitations

This static analysis perform well in an organized consistent
environment, but there are several factors that affect execution.
The first is untracked files. Often in execution programs create

log files or auxiliary status files. These files have limited
scientific worth outside of performance and error logs, but
occupy no space. If they are specified in the task then we
account for them and remove them when no longer needed.
When they are not specified they clutter space and are never
cleaned causing more contention. Second when files vary
significantly from expected size, such as log files, the static
algorithm does not recompute to account for this. Ideally, we
recompute and reallocate using the dynamic management, but
if the limit is already close it may be beyond the point where
a change will help.

To combat these issues, we have additional mechanisms
to help determine if the environment is prohibiting forward
progress outside of the bounds of our management. This comes
up by actively cleaning old files and watching the working
directory. If the filesystem report almost full utilization of
storage error messages are printed to bring the users attention
to the issue, though the static analysis does little to help
prevent this.

VI. DYNAMIC STORAGE MANAGEMENT

In the previous section, the static allocation defines the
storage bounds of the workflow execution. The dynamic
algorithm utilizes the static analysis results to enforce the
space reservations needed for future execution.

The dynamic storage allocator uses a data structure that
tracks the current space utilized by files and reservations of
current and future nodes. The data structure is initialized with
a base size, called the base allocation, which is specified by
the end user with the help of the static analysis results. The
base allocation defines the upper limit of available space for
this execution of the workflow. Within the base allocation,
reservations are created to hold space for a node and its
ancestors. This creates a hierarchy in the data structure of
node reservations above their descendant reservations. When
a file is created it is accounted for in the current reservation
and tracked until deletion.

A. Dynamic Storage Algorithm

The dynamic algorithm consists of three stages for each
node’s execution: verification, allocation, and release.

When a node is logically ready for execution, the dynamic
storage allocator checks if there is sufficient space to run the
selected node. The allocator utilizes the residual node set to
compare against the existing data structure. The allocator starts
with the lowest residual node (nodes later in the workflow)
and compares the data structure with the required space for
the residual node. If the residual node reservation does not
exist in the data structure, the allocator checks for sufficient
space in the base allocation. If the reservation exists, but there
is not sufficient space, the allocator checks if the existing
hierarchy can be enlarged to reserve the additional size. If there
is sufficient space in the reservation hierarchy, the allocator
continues up the residual list using the available space to check
nodes. If there is not sufficient space, the node is postponed
for submission.

7

If the verification step is successful, the node is allocated
and submitted. To allocate a node, its residual nodes are passed
to the allocator. The allocator creates a reservation for each
residual node that does not exist in the data structure and
grows smaller allocations to accommodate. This proceeds for
all residual nodes until a hierarchy exists above the base
allocation. In this hierarchy, any lower node is at least as
large as the nodes above it. If multiple nodes share a common
residual node, the common node is at least as large as the
sum of the higher nodes. In this way, space is reserved for the
widest part of the ancestors to guarantee space.

After execution, the allocator must release the completed
reservations. During this release stage, files that are no longer
needed are deleted and their space is marked as available in
the data structure. The reservation for the completed node is
released, and files within the reservation are transferred to the
containing reservation. These files continue to exist until they
are no longer needed. If output files are larger than the existing
reservation, the reservation attempts to grow and accommodate
the increased size. This can cause deadlock or failure from
resource exhaustion. Due to these changes, the static analysis
is outdated and can no longer guarantee execution.

B. Worked Example
Figure 5 demonstrates the dynamic algorithm using the

earlier worked example (Figures 3 to 4).
Step 1: With Node 0 available to run, the algorithm checks

the stack to ensure there is enough space. Traversing the
residual nodes of Node 0, Node 9 is added to the stack with
the size needed for the nodes between 0 and 9. Node 0 is
then reserved on top of Node 9. Once executed, File A moves
from the space reserved by Node 0 to Node 9, and node 0’s
reservation is removed.

Step 2: With File A existing, Nodes 1, 2, and 3 are available
to run. The algorithm will check Node 1. Traversing Node
1’s residual nodes, Node 9 is reserved. With the remaining
space in Node 9, the algorithm can fit Node 7 and Node 1. A
reservation is then added to 7 above 9, and a reservation for
Node 1 is created on Node 7. After completing Node 1, File
C is created and Node 1’s reservation is removed.

Step 3: The available nodes to run are Nodes 2, 3, 4, 5, and
6. There is not enough space for Node 2 and 3. However, in
the reservation for Node 7, there is space for Nodes 4, 5, and
6. Space for Nodes 4, 5, and 6 is reserved. Upon completion,
files L, M, and N are created and the node reservations are
released. File C is no longer needed and is removed.

Step 4: With Nodes 2, 3, and 7 available, again we check
which nodes will fit. The reservation for node 7 already exists,
so Node 7 is executed. After outputting file W, files L, M, and
N are removed along with node 7’s reservation.

Step 5: Space now exists for Node 2 and 3, so reservations
are created for Nodes 2, 3, and 8. After running, file A is
removed, and reservations 2 and 3 are released.

Step 6: Reservation for Node 8 exists. File Y is created.
File D is removed, and Node 8’s reservation is released.

Step 7: Reservation for Node 9 exists. File Z is created. File
W, X, and Y are removed. Node 9’s reservation is released.

Step 8: Final output File Z exists. The workflow is complete.

Fig. 5: Dynamic Allocation Data Structure. Shown is the
execution of the worked example from Figure 3. Numbered
boxes represent storage allocations for nodes. Lettered Boxes
represent allocations for specific files. Boxes with slashes
through them are allocations which are being removed because
either the node is complete or the file is no longer needed.
Allocations are removed when no longer relevant.

8

C. Impact of Local Storage

Local storage can affect the dynamic storage management
in several ways. First, if the local storage that is utilized for
execution is accounted for within the same quota, then the
dynamic management needs to adjust. In this case, we need
to account for both the active space utilized during execution
and the space consumed in caches are used for data movement.
In the prior case, when a node is allocated the requisite
space needed for execution is added to the allocation, but
removed after execution. Caches are more difficult as they are
essentially copies of the existing data and may persist between
execution increasing the complexity. One method for handling
this is to set a limit on individual size of a cache such that old
files are removed and the space is statically accounted for.

Second, in cases where temporary space is unaccounted for,
such as in scratch spaces or local temporary directories, we do
not need to account for space. These resources can still become
contentious. In these cases we rely on the remote execution
to report on limited space to maintain limits. Unfortunately,
system wide storage contention on scratch storage is not in
the purview of this paper.

Currently, we do not consider either as our remote execution
happens on local temporary space outside of the quota, though
inclusion of these factors may become necessary in some
execution environments.

VII. TASK CONSTRAINTS

The methods we have presented so far have focused on
the storage footprint at the workflow level, but we must also
be concerned with constraining resources at the task level.
To prevent a compute node from exhausting storage, we
sandbox each task into its own directory to prevent interference
with other host processes. However, a directory is not strict
enough to prevent storage exhaustion. Enforcement of storage
constraints is not well supported in POSIX, but Linux loop
devices provide passive storage constraint of a sandbox. In
a loop device sandbox, a task cannot progress once it has
used the storage space available to the device. This prevents
the problem of storage exhaustion from impacting other tasks
since the exhausting task is contained within a loop device. A
loop device is considered a pseudo-device. Within the system
it is viewed as a physical device, while in reality it is a
file created to a defined size then mounted in the sandbox
namespace.

A. Greedy Space Allocation

There is a need to be cautious when allocating space
for each task at the workflow site. If not enough space is
allocated to a task, and the resulting outputs are larger than the
allocation, we will exceed the task’s allocated space. However,
if too much space is allocated to each task we risk wasting
time waiting on unused space, or worse, deadlocking due to
lack of space left for progress. We assume the space required
by a task includes the space needed to execute the task. We
also assume that user labeling of tasks is accurate enough to
prevent deadlock due to requesting exorbitant storage space.
Users can label their tasks with a slight overhead to account

for any intermediate data produced during task execution.
This overhead is in addition to the allocation size of input
and output data. While this approach is somewhat greedy,
it prevents the dynamic algorithm from committing more
tasks to a resource-limited execution space than the space
could handle. The extra overhead is added to a loop device’s
guaranteed storage space.

B. Mechanisms

Even with a hard limit to a task’s disk space, another
problem remains. The workflow management system must
receive a report when the task uses up all of its allocated
storage. Accurate reporting of this failure is non-trivial. Stor-
age exhaustion failures must be reported immediately. There
are multiple methods to report this kind of failure.

One way to report failures is through a sentinel process. This
kind of process periodically collects information on a task, and
it will report back to the workflow management system when
it notices that the task has surpassed its requested storage.
The sentinel process is not an ideal solution for resource-
constrained systems. It cannot guarantee that it will kill a task
and report its storage exhaustion as soon as it happens. This
is not the case with a dynamic library reporting mechanism
which we have implemented to use with loop devices.

We chose loop devices because they provide a generic
interface. However, this is not a perfect solution either as
it requires superuser access. Unlike the abstracted view of
sentinel processes, a loop device is a kernel-provided measure
to ensure storage constraint. Upon storage exhaustion, a task
will fail and throw an ENOSPC error. This is the key to letting
the workflow management system know that the loop device
is full. At this point, the workflow management system may
decide to re-dispatch the task with a larger allocation.

To properly capture task storage exhaustion, we have im-
plemented a dynamic library which overloads the write(2)
and open(2) standard functions via LD PRELOAD. This is
to catch any ENOSPC errors due to a loop device filling its
capacity as soon as it occurs. By intercepting errors relating
to the loop device’s capacity in this method, we avoid any
complications from a task having similar error handling. If a
task does have error handling which catches ENOSPC errors,
it may report back with a different, more ambiguous error
code. By our handling of the write(2) and open(2) calls
with a library interpositioning tool, we can know that a task
exhausted its storage space regardless of the task’s internal
error handling.

C. Performance Overhead

We measured the performance overhead of loop device
allocations with three micro-benchmarks: read, write, and file
metadata throughput. Our test platform has the following
specifications: 3GB RAM, 2 x Intel Core 2 Duo processors,
250GB SATA drive (16 heads, 7,200 RPM, 16,383 cylinders,
63 sectors/track, queue depth 32, maximum I/O data transfer
rate 300 MB/s, maximum sustained data transfer rate 125
MB/s, internal data transfer rate 1,695 Mb/s). Read and write
throughput tested a loop device’s speed at sequentially reading

9

 0

 20

 40

 60

 80

 100

 120

 140

native 0 1 2 3 4 5 6 7 8 9 10

M
B

/s

Nest Depth

Read

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

native 0 1 2 3 4 5 6 7 8 9 10

M
B

/s

Nest Depth

Write

 0

 5000

 10000

 15000

 20000

 25000

 30000

native 0 1 2 3 4 5 6 7 8 9 10

F
ile

s/
s

Nest Depth

Metadata

Fig. 6: Loop Device Performance of ext4 Filesystem

a file 95% of its allocation size and sequentially writing a file
95% of its allocation size respectively. Metadata throughput
was measured by timing a loop device’s creation of 10,000
blank files, retrieving file status on each, then deleting each
file. We used the commonly available ext4 filesystem for these
tests.

 0
 10
 20
 30
 40
 50
 60
 70
 80

1M
B

2M
B

4M
B

8M
B

16M
B
32M

B
64M

B
128M

B

256M
B

512M
B

1GB
2GB

4GB
8GB

T
im

e
(s

)

Size

Creation

Fig. 7: Loop Device Creation Performance of ext4 Filesystem

Each micro-benchmark test ran for twenty iterations then
created a nested loop device within the current device. We
provide results from the first ten nest depths since the trend
in performance can be seen that early. As shown in Figure 6,
this nesting shows an overall trend toward reduction in device
performance the deeper the device is nested. We note that there
were some minor increases in performance between adjacent
nest depths such as between nest depths 1, 2, and 3 in the
write test. These were caused by outliers, but the overall trend
shows a reduction in performance the further down we go
in nest depth. Though nesting loop devices is feasible, it is
not the expected behavior of a workflow. It does demonstrate,
however, that an entire workflow can run within a storage
container and still reasonably perform. The aim of these micro-
benchmarks was to demonstrate that a loop device does not
sacrifice much in the way of performance in order to provide
a resource guarantee and extra safety for the native filesystem.

We tracked the creation and deletion times for a loop device
of varying sizes. Like in the performance overhead testing,
we ran each test for twenty iterations. As demonstrated in
Figure 7, we began our tests with a size of 1MB and proceeded
exponentially to a size of 8GB. The creation time for loop
devices under a gigabyte took trivial time on our test platform.
Larger loop devices took much more time to instantiate, yet
they still took about a minute to set up. All deletion times

took less than half a second; faster than a user would notice.
Since the removal of a loop device is akin to the removal of a
file, the majority of the work was in removing file references
used for the device.

We also measured overhead while running the BWA-GATK
workflow once with no loop device workers and the second
time with only loop device enabled workers. Ten workers were
used for both tests. Each worker ran on identical hardware,
used a single core, and was allocated 10GB of memory and
32GB of disk space to use as a sandbox.

Figure 8 shows the effect using loop devices has on runtime
and throughput of the whole workflow. The overhead is
negligible primarily because the allocation and deletion times
are very short compared to the length of most tasks. We can
also see that the read and write performance is still quite
comparable to the non-loop device run. The normal execution
of BWA-GATK ran for around 4174 seconds (approx. 1.16
hours) while the loop device enabled test ran for about 4273
seconds (approx. 1.19 hours). The total performance overhead
resulted in a 99 second longer execution which is negligible
compared to the total runtime. Like in the runtime overhead,
the throughput does not see a significant overhead incurred.
The overall throughput (tasks per second) of both runs of the
workflow are generally the same throughout the workflow’s
lifetime.

D. Loop Device Evaluation

The results presented in Figure 6 display the median value
across each nest depth along with its respective median
absolute deviation. This format was chosen to present the
most accurate representation of loop device performance since
a few instances of outliers caused the use of mean and
standard deviation to be unfairly skewed. As is demonstrated
by Figure 6, the performance of a loop device mounted with
the ext4 filesystem performs comparably in many cases with
the native filesystem, which in our testing is also ext4. By
using non-trivial sizes for the test allocations, our test suite
simulates sustained I/O as would be expected of a batch job
task completing a realistic work load as opposed to burst I/O
from a task smaller than 1GB. Considering the vast majority
of workflows execute within a nest depth of zero, the most
pertinent results are located within the first few nest depths
compared against the native filesystem’s performance. The rare
case of a nested loop device task would occur if a batch job
task were to execute a workflow (separate from the workflow

10

 0

 100

 200

 300

 400

 500

 0 500
 1000

 1500
 2000

 2500
 3000

 3500
 4000

T
as

ks
 R

em
ai

ni
ng

Time (s)

Runtime Overhead

Loop Device BWA
Normal BWA

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 500
 1000

 1500
 2000

 2500
 3000

 3500
 4000

T
hr

ou
gh

pu
t (

ta
sk

s
/ s

)

Time (s)

Throughput Overhead

Loop Device BWA
Normal BWA

Fig. 8: Loop Device Overhead running BWA-GATK

which spawned this task) locally. For added perspective, we
have provided the performance results down to a nest level of
ten. This would be indicative of the performance of a batch
job task recursively executing ten separate workflows locally.
In both read and write tests, we examine the throughput (in
MB/s) of the given nest depth (from the native filesystem to
a loop device nest depth of ten).

Considering read performance first, we note an equivalent
performance to the native filesystem with a nest depth of zero
(a single loop device). However, as nest depth is increased
(a loop device is mounted within a parent loop device) there
is a linear decrease in read speed. We demonstrate that the
added constraint provided by loop devices does not come
at the cost of performance for the vast majority of cases.
Should a user execute a workflow which would make use
of nested loop devices, they must consider the nest depth at
which they see diminishing returns for their increased resource
security. Reasonable, though not comparable, performance can
be expected within the first four depth levels of loop devices.
After this point, read performance begins to become more
divergent from the speed of the native filesystem.

Write performance degrades about as gracefully as read
performance though it has a lower initial throughput. The ini-
tial few loop device nest depths have reasonable performance
though not as comparable as in the case of the read tests.
Again, the user would have to consider the added cost slightly
decreased write speed for resource guarantees. Depending on
the user’s preferences, they may find it in their best interests
to execute without loop device constraint.

Metadata performance is notably faster for the first four
depth levels. This is due to the asynchronous operation of loop
devices which is enabled by default. Because the metadata
performance is measured upon how quickly the device can
instantiate 10,000 empty files, we note this asynchronous
batching method is quicker for metadata operations. It is
worth noting that the lead a loop device will have over the
native filesystem drops off after a nest depth of five, at which
point the metadata performance is equivalent to the native
filesystem. Eventually, this performance degrades which would
necessitate the user to determine if the added security of loop
devices at that depth outweighs its slower performance.

VIII. OVERALL EVALUATION

Figure 9 shows the behavior of the dynamic algorithm
implemented in Makeflow [9]. The workflows are evaluated
by submitting each task to Work Queue [17], with up to 100
tasks running simultaneously on remote nodes. For each, we
chose a storage footprint limit (dotted line) that is larger than
the minimum footprint (solid line) but less than the maximum
footprint. The dark shaded area on each graph shows the
storage actually consumed, while the light shaded area shows
the “committed” storage value.

A. Configuration

Each workflow was created and run using the emboldened
configuration entry in Table I for each corresponding tool. All
three workflows executed using a shared filesystem accessed
by batch job workers. Each worker was allocated a single
core and at least 8GB of memory. The amount of storage
allocated to the worker was based on the the sizes from Table I.
The machines used to run the batch job workers were part
of a campus-scale cluster and thus varied in their hardware
configurations however the method used to acquire batch
job workers ensured the worker had access to the requested
amount of resources in order to begin work.

Each workflow is run in four different configurations:
The No Limit row shows each workflow run with maximum

concurrency and no explicit storage limits. The ordering
of tasks is solely due to logical constraints, and the exact
concurrency achieved depends upon the performance of the
tasks in the batch system. As can be seen, each workflow
meets or exceeds the minimum footprint, and in the absence
of control, exceeds the desired limit or deadlocks.

The Naive row shows the workflow system attempting to
enforce the desired storage limit by simply examining each
file as it is submitted. Storage is committed for the immediate
output files of a task when it is submitted. Tasks are only
submitted if the committed value can be kept below the
limit. This can result in deadlock (as shown) if the workflow
manager commits too much space and is unable to execute
tasks to consume created files.

We note that both the binary workflow and BWA-GATK
experience deadlock using the naive strategy given the storage

11

Mode Binary Tree Montage BWA-GATK

No Limit

 0
 5

 10
 15
 20
 25
 30
 35

 0 50 100 150 200 250 300

S
to

ra
ge

 (
G

B
)

Time (s)

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 100 200 300 400 500 600 700 800

S
to

ra
ge

 (
G

B
)

Time (s)

limit

min

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 20 40 60 80 100 120 140 160 180

S
to

ra
ge

 (
G

B
)

Time (m)

limit

min

(overflow)

Naive

 0

 5

 10

 15

 20

 0 5 10 15 20 25

S
to

ra
ge

 (
G

B
)

Time (m)

limit

min

(deadlock)

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 100 200 300 400 500 600 700 800

S
to

ra
ge

 (
G

B
)

Time (s)

limit

min

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 20 40 60 80 100 120 140 160 180

S
to

ra
ge

 (
G

B
)

Time (m)

limit

min

(deadlock)

Dynamic

 0

 5

 10

 15

 20

 0 5 10 15 20 25

S
to

ra
ge

 (
G

B
)

Time (m)

limit

min

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 100 200 300 400 500 600 700 800
S

to
ra

ge
 (

G
B

)

Time (s)

limit

min

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 20 40 60 80 100 120 140 160 180

S
to

ra
ge

 (
G

B
)

Time (m)

limit

min

Min

 0

 5

 10

 15

 20

 0 5 10 15 20 25

S
to

ra
ge

 (
G

B
)

Time (m)

limit at min

 0
 1
 2
 3
 4
 5
 6

 0 100 200 300 400 500 600 700 800

S
to

ra
ge

 (
G

B
)

Time (s)

limit at min

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 20 40 60 80 100 120 140 160 180

S
to

ra
ge

 (
G

B
)

Time (m)

limit at min

Fig. 9: Storage Limits Applied to Example Workflows
Timeline of storage consumption for each of the three example workflows, in different configurations. The top row shows uncontrolled
executions which exceed the desired limit. The second row shows naive storage limits which can result in deadlock. The third row shows
a limit applied using the dynamic algorithm. The fourth row shows the minimum storage footprint enforced. In each graph, the dark area
shows storage actually consumed, while the light area indicates storage committed to future use.

limit. The binary workflow’s rapid expansion behavior caused
the naive approach to very quickly exhaust its storage. In
BWA-GATK, deadlock occurred when a group of the most
data-intensive tasks in the workflow were dispatched at the
same time. Some of the data-intensive tasks remained but
could not be scheduled because there was not enough storage
available.

The Dynamic row shows the workflow system using the dy-
namic algorithm described in this section to limit submission
of new tasks. We note that the committed storage increases
more rapidly than in the naive case because the footprint of
each task is committed before submission. The storage actually
consumed does not always rise to the level of the committed
storage, which is an upper bound on all possible executions
following each node.

The Min row shows the workflow system using the dynamic
algorithm, but the limit is set to the minimum possible value.
As previously mentioned, the Montage Min graph utilizes the
file list approach to allocation management.

Overall, we observe that the dynamic online algorithm is
able to enforce the desired constraints without falling into
deadlock. As noted above, the committed value is an upper
bound on actual consumption. Noting this, there still exists
room for improvement in the upper bound. The difficulty
in optimally utilizing an upper bound is tied closely with
the runtime behavior of the workflow. Improvements could

be made if the execution time of tasks is combined with
the expected growth of a branch in order to overlap branch
executions more smoothly. The footprint is currently defined
as a means of preventing over-commitment. Optimal storage
use focuses more closely upon scheduling as a solution and
relies on consistent execution behavior while static footprint
analysis relies only on file sizes.

During real execution, we expect the static analysis and
dynamic storage algorithms to have broad appeal. The static
algorithm can help a user understand the needs and behavior
of their workflow better while the dynamic algorithm will
help keep the workflow constrained when necessary. The
runtime task constraint using loop devices is another way of
guaranteeing the user’s storage requirements are not exceeded.
We believe all three tools have general appeal to scientific
workflows regardless of the workflow’s behavior or size. The
limiting factor of our tools’ appeal comes from the user’s
storage needs.

IX. RELATED WORK

A wide variety of work [18], [19], [20], [21], [22] has
proposed different approaches for solving the classic DAG
scheduling problem. These approaches typically focus on
minimizing the overall execution time, while considering
utilization of various resources as a means of determining good
candidates. However, in a storage constrained environment

12

these algorithms may over commit the system with limited
calculations on the persistent storage needed to hold files
produced. As we have shown, naive accounting of storage
without consideration for dependencies can lead to deadlock.

Previous work by the Pegasus project demonstrated the
importance of minimizing the data footprint of a workflow.
The basic approach is to insert cleanup jobs [10] to remove
unneeded files after their tasks have been completed, in a
manner akin to garbage collection. By itself, this step achieves
the maximum footprint described above without computing it
in advance. In addition, the DAG itself can be restructured
by adding constraints so that concurrent branches are not run
simultaneously. This was first done manually [23] and later
automatically [24], in both cases by transforming the DAG
statically before execution. Our work builds upon these previ-
ous approaches by first providing a static analysis that quickly
computes storage bounds in advance of execution, without
committing to a specific order of execution. In addition, the
dynamic algorithm is able to maintain a given storage limit
while still adapting to the concurrency that is encountered at
runtime.

It is important to note that we assume a worker can be
limited to a specified size. This can be done in several ways.
One technique is to employ an online resource monitor [15]
which actively watches the task sandbox, making sure it stays
within its specified resource constraints. If it exceeds these
constraints, the process is killed and reported to the master.
Another technique is staging data ahead of the job to increase
performance and accuracy of accounting [25], [15], [26]. In
this work, we demonstrate the use of loop device filesystems
to allocate storage resources independently of the files that
consume those resources.

Makeflow, upon which this work is built, has many other
similar solutions for parallel execution and organizations.
Uintah[27] is a parallel design environment, where workflows
are constructed of components that create and consume data to
other components or into data warehouses. Similar to how files
are used in in Makeflow space could be monitored by watching
the streams. Other task based systems such as Charm++[28],
Legion[29], Swift[6], and Work Queue[17] are task based
programming language extensions that provide built-in meth-
ods for data movement, task execution, and remote resources.
However these approaches are often fluid and with out the
static structure of Makeflow, the static analysis this is built on
is not possible.

Storage limitations are also addressed in work that focuses
on utilizing RAM and temporary storage. Spark[30], [31] and
its concept of Resilient Distributed Datasets address both a
performance issues as well as the storage issue by holding
the data in memory. This process works well for moderately
sized intermediates that are created, but requires that enough
memory is available to maintain performance. The limitation
of this approach only come from limited memory on machines
and the rapid growth of data size to be processed. The
experiments utilized in this paper could easily be executed
within the memory of even modest machines, but as this data
scales the experiments will need to rely on persistent storage
for check pointing and execution. As the amount of memory

grows, this will continue to be a great approach for many
workflows.

X. CONCLUSION AND FUTURE WORK

We have shown three techniques for managing storage space
in workflows: a static algorithm for offline analysis of storage
consumption, a dynamic algorithm which enforces runtime
limits while avoiding deadlock, and a containment mechanism
for individual tasks. As discussed, the dynamic algorithm is
an upper bound on consumption and can overestimate in cases
where the same file is used in multiple places in the workflow.

This work is a preliminary step to more fully understanding
the interplay of storage constraints in a DAG workflow. Future
work will seek to make a tighter upper bound on runtime
consumption. There is also work to be done in understanding
how estimated or inaccurate file sizes affect performance and
accuracy of algorithm results. This includes looking at the
scale of re-computation on sufficiently different file sizes.

REFERENCES

[1] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, B. Berriman, J. Good, A. Laity, J. Jacob, and D. Katz,
“Pegasus: A framework for mapping complex scientific workflows onto
distributed systems,” Scientific Programming Journal, vol. 13, no. 3,
2005.

[2] B. Giardine, C. Riemer, R. C. Hardison, R. Burhans, L. Elnitski, P. Shah,
Y. Zhang, D. Blankenberg, I. Albert, J. Taylor, W. C. Miller, W. J.
Kent, and A. Nekrutenko, “Galaxy: a platform for interactive large-scale
genome analysis,” Genome research, vol. 15, no. 10, pp. 1451–1455,
2005.

[3] D. Blankenberg, G. V. Kuster, N. Coraor, G. Ananda, R. Lazarus,
M. Mangan, A. Nekrutenko, and J. Taylor, “Galaxy: A web-based
genome analysis tool for experimentalists,” Current protocols in molec-
ular biology, pp. 19–10, 2010.

[4] J. Goecks, A. Nekrutenko, J. Taylor, and T. G. Team, “Galaxy: a
comprehensive approach for supporting accessible, reproducible, and
transparent computational research in the life sciences,” Genome Biol,
vol. 11, no. 8, p. R86, 2010.

[5] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers,
S. Owen, S. Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher,
J. Bhagat, K. Belhajjame, F. Bacall, A. Hardisty, A. Nieva de la
Hidalga, M. P. Balcazar Vargas, S. Sufi, and C. Goble, “The
taverna workflow suite: designing and executing workflows of web
services on the desktop, web or in the cloud,” Nucleic Acids
Research, vol. 41, no. W1, pp. W557–W561, 2013. [Online]. Available:
http://nar.oxfordjournals.org/content/41/W1/W557.abstract

[6] Y. Zhao, J. Dobson, L. Moreau, I. Foster, and M. Wilde, “A notation
and system for expressing and executing cleanly typed workflows on
messy scientific data,” in SIGMOD, 2005.

[7] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker,
and I. Stoica, “Spark: Cluster computing with working sets,”
in Proceedings of the 2Nd USENIX Conference on Hot Topics in
Cloud Computing, ser. HotCloud’10. Berkeley, CA, USA:
USENIX Association, 2010, pp. 10–10. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1863103.1863113

[8] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed data-parallel programs from sequential building blocks,”
SIGOPS Oper. Syst. Rev., vol. 41, no. 3, pp. 59–72, Mar. 2007. [Online].
Available: http://doi.acm.org/10.1145/1272998.1273005

[9] M. Albrecht, P. Donnelly, P. Bui, and D. Thain, “Makeflow: A Portable
Abstraction for Data Intensive Computing on Clusters, Clouds, and
Grids,” in Workshop on Scalable Workflow Enactment Engines and
Technologies (SWEET) at ACM SIGMOD, 2012.

[10] Arun Ramakrishnan, Gurmeet Singh, Henan Zhao, Ewa Deelman, Rizos
Sakellariou, Karan Vahi, Kent Blackburn, David Meyers and Michael
Samidi, “Scheduling data-intensive workflows onto storage-constrained
distributed resources,” Seventh IEEE International Symposium on Clus-
ter Computing and the Grid (CCGrid), 2007.

13

[11] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small,
J. Zelenka, and B. Zhou, “Scalable performance of the panasas
parallel file system,” in Proceedings of the 6th USENIX Conference
on File and Storage Technologies, ser. FAST’08. Berkeley, CA,
USA: USENIX Association, 2008, pp. 2:1–2:17. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1364813.1364815

[12] “Lustre: A scalable, high-performance file system,” Cluster File
Systems, Inc., Tech. Rep., Novemeber 2002. [Online]. Avail-
able: http://www.cse.buffalo.edu/faculty/tkosar/cse710/papers/lustre-
whitepaper.pdf

[13] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and
C. Maltzahn, “Ceph: A scalable, high-performance distributed file
system,” in Proceedings of the 7th Symposium on Operating Systems
Design and Implementation, ser. OSDI ’06. Berkeley, CA, USA:
USENIX Association, 2006, pp. 307–320. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1298455.1298485

[14] J. C. Jacob, D. S. Katz, G. B. Berriman, J. C. Good, A. C. Laity,
E. Deelman, C. Kesselman, G. Singh, M. Su, T. A. Prince, and
R. Williams, “Montage: a grid portal and software toolkit for
science-grade astronomical image mosaicking,” Int. J. Comput.
Sci. Eng., vol. 4, no. 2, pp. 73–87, Jul. 2009. [Online]. Available:
http://dx.doi.org/10.1504/IJCSE.2009.026999

[15] Gideon Juve, Benjamin Tovar, Rafael Ferreira da Silva, Dariusz Krol,
Douglas Thain, Ewa Deelman, William Allcock and Miron Livny,
“Practical resource monitoring for robust high throughput computing,”
Workshop on Monitoring and Analysis for High Performance Computing
Systems Plus Applications, 2015.

[16] N. Hazekamp, J. Sarro, O. Choudhury, S. Gesing, S. Emrich, and
D. Thain, “Scaling Up Bioinformatics Workflows with Dynamic Job
Expansion,” in IEEE International Conference on e-Science, 2015.

[17] P. Bui, D. Rajan, B. Abdul-Wahid, J. Izaguirre, and D. Thain, “Work
Queue + Python: A Framework For Scalable Scientific Ensemble Ap-
plications,” in Workshop on Python for High Performance and Scien-
tific Computing (PyHPC) at the ACM/IEEE International Conference
for High Performance Computing, Networking, Storage, and Analysis
(Supercomputing) , 2011.

[18] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for
allocating directed task graphs to multiprocessors,” ACM Comput.
Surv., vol. 31, no. 4, pp. 406–471, Dec. 1999. [Online]. Available:
http://doi.acm.org/10.1145/344588.344618

[19] R. Sakellariou and H. Zhao, “A hybrid heuristic for dag scheduling
on heterogeneous systems,” in Parallel and Distributed Processing
Symposium, 2004. Proceedings. 18th International, April 2004, pp. 111–
.

[20] H. Topcuouglu, S. Hariri, and M.-y. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,” IEEE
Trans. Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274, Mar. 2002.
[Online]. Available: http://dx.doi.org/10.1109/71.993206

[21] M. M. Eshaghian and Y.-C. Wu, “Mapping heterogeneous task graphs
onto heterogeneous system graphs,” in Heterogeneous Computing Work-
shop, 1997.(HCW’97) Proceedings., Sixth. IEEE, 1997, pp. 147–160.

[22] L. He, S. A. Jarvis, D. P. Spooner, and G. R. Nudd, “Dynamic,
capability-driven scheduling of dag-based real-time jobs in heteroge-
neous clusters,” 2004.

[23] Gurmeet Singh and Karan Vahi and Arun Ramakrishnan and Gaurang
Mehta and Ewa Deelman and Henan Zhao and Rizos Sakellariou and
Kent Blackburn and Duncan Brown and Stephen Fairhurst and David
Meyers and G. Bruce Berriman, “Optimizing workflow data footprint,”
2007.

[24] S. Srinivasan, G. Juve, R. F. da Silva, K. Vahi, and E. Deelman, “A
cleanup algorithm for implementing storage constraints in scientific
workflow executions,” 9th Workshop on Workflows in Support of Large-
Scale Science (WORKS), 2014.

[25] Ann Chervenak, Ewa Deelman, Miron Livny, Mei-Hui Su, Rob Schuler,
Shishir Bharathi, Gaurang Mehta and Karan Vahi, “Data placement for
scientific applications in distributed environments,” Proceedings of Grid
Conference 2007, 2007.

[26] G. Juve and E. Deelman, “Resource provisioning options for large-
scale scientific workflows,” Third International Workshop on Scientific
Workflows and Business Workflow Standards in e-Science (SWBES) in
conjunction with Fourth IEEE International Conference on e-Science
(e-Science 2008), 2008.

[27] J. D. de St. Germain, J. McCorquodale, S. G. Parker, and C. R.
Johnson, “Uintah: a massively parallel problem solving environment,” in
Proceedings the Ninth International Symposium on High-Performance
Distributed Computing, 2000, pp. 33–41.

[28] L. Kalé and S. Krishnan, “CHARM++: A Portable Concurrent Object
Oriented System Based on C++,” in Proceedings of OOPSLA’93,
A. Paepcke, Ed. ACM Press, September 1993, pp. 91–108.

[29] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing
locality and independence with logical regions,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, ser. SC ’12. Los Alamitos, CA, USA: IEEE
Computer Society Press, 2012, pp. 66:1–66:11. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2388996.2389086

[30] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets.” HotCloud, vol. 10, no.
10-10, p. 95, 2010.

[31] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in Pro-
ceedings of the 9th USENIX conference on Networked Systems Design
and Implementation. USENIX Association, 2012, pp. 2–2.

XI. AUTHOR BIOGRAPHY

Nicholas Hazekamp received the B.S. in Computer
Science and Chemistry from Hope College and is
pursuing a Ph.D. in Computing Science at the Uni-
versity of Notre Dame. His research interests include
parallel and distributed computing. He enjoys board
games and going to the park with his dog.

Nathaniel Kremer-Herman received the B.A. in
Computer Science at Hanover College in Indiana.
He is pursuing a Ph.D. in Computer Science &
Engineering at the University of Notre Dame. His
research interests include scientific applications of
distributed computing systems, philosophy of sci-
ence, and computer-based education.

Benjamin Tovar is a research software engineer at
the University of Notre Dame. In his current role, he
is the lead maintainer of CCTools, a suite of tools
to quickly enable scientist the use distributed, high-
throughput computing. Prior to his position at Notre
Dame, he was a Post-doctoral fellow in the area
of control engineering in robotics at Northwestern
University, and he received a Ph.D. in Computer
Science from the University of Illinois Urbana-
Champaign, where he studied algorithmic modeling
for robotics.

14

Haiyan Meng received her Ph.D. in Computer
Science from the University of Notre Dame in May
2017 and is currently a Site Reliability Engineer at
Google Inc.. Her Ph.D. research focuses on improv-
ing the reproducibility of scientific applications with
execution environment specifications, and proposes
two preservation approaches and prototypes for the
purposes of both result verification and research
extension.

Olivia Choudhury received the B.Tech degree in
Computer Science and Engineering from West Ben-
gal University of Technology, India and Ph.D. in
Computer Science and Engineering from the Uni-
versity of Notre Dame, IN, USA. She is currently a
postdoctoral researcher at IBM T.J. Watson Research
Center. Her research interests include genomics,
healthcare effectiveness, high performance comput-
ing, and predictive modeling.

Scott Emrich received the B.S. in Biology and
Computer Science from Loyola College in Maryland
and the Ph.D. in Bioinformatics and Computational
Biology from Iowa State University. His research
interests include computational biology, bioinfor-
matics and parallel computing, including arthropod
genome analysis with applications to global health
and ecology.

Douglas Thain received the B.S. in Physics from
the University of Minnesota and the Ph.D. in Com-
puter Sciences from the University of Wisconsin -
Madison. He is currently an Associate Professor of
Computer Science and Engineering at the University
of Notre Dame, where his research focuses on scien-
tific applications of distributed computing systems.

