
LOG DISCOVERY, LOG CUSTODY, AND THE WEB INSPIRED APPROACH

FOR OPEN DISTRIBUTED SYSTEMS TROUBLESHOOTING

A Dissertation

Submitted to the Graduate School

of the University of Notre Dame

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Nathaniel Kremer-Herman

Douglas Thain, Director

Graduate Program in Computer Science and Engineering

Notre Dame, Indiana

April 2021

© Copyright by

Nathaniel Kremer-Herman

2021

All Rights Reserved

LOG DISCOVERY, LOG CUSTODY, AND THE WEB INSPIRED APPROACH

FOR OPEN DISTRIBUTED SYSTEMS TROUBLESHOOTING

Abstract

by

Nathaniel Kremer-Herman

Troubleshooting distributed systems is difficult due to the inherent complexities

of runtime environments in computing resources utilized by the system. This is

exacerbated in open distributed systems where membership of resources within the

system is transient, placement of computations to resources is not known before

runtime, and resources can be shared across multiple administrative jurisdictions

(i.e. multiple independent clusters, clouds, or grids). It is infeasible to expect a user

to know about these complexities. To make troubleshooting open distributed systems

approachable by a user, the debug output of each individual component of the system

(i.e. individual processes and services) must be discoverable and made queryable.

However, contemporary approaches cannot provide these capabilities. Instead, they

are provided using a novel architecture called TLQ (Troubleshooting via Log Query)

which facilitates log discovery and custody for the user and allows them to directly

query their system’s debug output. In addition, it links components together when

possible, inspired by the architecture of the World Wide Web. Through the lens of

TLQ, this work presents a data model for debug output, a comparison of multiple

querying approaches, a distributed querying architecture for open distributed systems

troubleshooting, and considerations for more effective debug log design.

A distributed system is one in which the failure of a computer you

didn’t even know existed can render your own computer unusable.

- Leslie Lamport

ii

CONTENTS

Figures . vi

Tables . viii

Chapter 1: Introduction . 1
1.1 A Notional Example of Troubleshooting a Distributed System 4
1.2 Effectively Troubleshooting Open Distributed Systems 6
1.3 Roadmap to TLQ . 7

Chapter 2: Related Work . 9
2.1 Early Attempts at Distributed Debugging 9
2.2 Misconfigurations and Testing . 12
2.3 Distributed System Analysis . 13
2.4 Distributed Debugging Visualizations 24
2.5 Databases and Querying Techniques 27
2.6 Semantic Web . 29

Chapter 3: Troubleshooting Distributed System Performance Using System
Capacity as a Metric . 32
3.1 Problem Introduction . 34
3.2 Capacity in a Master-Work Architecture 35
3.3 Capacity Model . 37

3.3.1 Dynamic Capacity Model . 39
3.4 Implementation . 40
3.5 Capacity Model as Troubleshooting Tool 42
3.6 Relationship to TLQ and Open Distributed Systems Troubleshooting 44

Chapter 4: Using Debug Logs to Troubleshoot Distributed Systems 46
4.1 Why Debug Logs are Important . 46
4.2 Common Traits Among Log Formats 48
4.3 Recording Links Between Components 49
4.4 Key Idea of TLQ using Debug Logs 51

iii

Chapter 5: Tracing Overhead and Scalability of Key Mechanisms 54
5.1 Overhead of System Call Tracing as a Debug Log 54
5.2 Scalability of Log Servers . 58

5.2.1 Parsing Stored Data . 58
5.2.2 Size of Stored Data . 59

5.3 Scalability of a User Client . 61
5.3.1 Fetching and Evaluating Queried Data 62

Chapter 6: Log Discovery and Log Custody: The Foundation of TLQ 64
6.1 Problem Introduction . 65
6.2 Troubleshooting as Distributed Querying 67

6.2.1 Querying Logs in Place Across Domains 69
6.3 Implementation . 70
6.4 Evaluation . 72

6.4.1 Distributed Queries at Scale 77
6.5 Three Lessons Learned . 81

Chapter 7: Query Models . 83
7.1 SQLite . 83
7.2 RethinkDB . 85
7.3 GraphQL . 87
7.4 JX . 90

Chapter 8: TLQ’s Web Inspired Approach . 96
8.1 Problem Introduction . 96
8.2 A Web Inspired Approach . 98
8.3 Log Record Data Model . 99

8.3.1 Query Model . 102
8.4 Implementation . 102

8.4.1 Server Requests . 104
8.5 Lessons Learned About Log Design 105
8.6 Conclusions on the Design of TLQ 106

Chapter 9: Case Studies of TLQ . 108
9.1 POV-Ray . 108
9.2 Scaling Up to Parallel Work . 110
9.3 Incorporating Persistent Resources 113
9.4 Lifemapper . 115

9.4.1 Interesting Troubleshooting Questions 118
9.5 TLQ Performance with Lifemapper 121

9.5.1 Command Line Queries via TLQ 122
9.5.2 Scalability of Command Line Queries 123
9.5.3 Comparing Centralized and Distributed JX Queries 124

iv

9.6 Key Usage of TLQ . 128

Chapter 10: Conclusion . 131
10.1 Summary of Key Contributions . 131
10.2 Potential for Future Work . 134
10.3 Parting Thoughts . 135

Bibliography . 137

v

FIGURES

1.1 Scientific workflow architecture. The workflow manager (S) acts as a
submitter and sends task definitions to the master process (M). The
master dispatches tasks to workers (W). Workers run tasks (T) locally.
Each component (S, M, W, T) writes to its own debug log file. 4

1.2 Concept map for TLQ. 8

3.1 Resource provisioning impact. When executing a parallel application,
there is a scale of resources which provides the fastest execution time.
Provisioning fewer or greater resources will cause a slowdown. 38

3.2 Visualization dashboard. This dashboard layout of visualizations is
based on performance metrics from the central catalog server. Included
are a bar chart on worker and task metrics, a bar chart on resource
consumption, and a pie chart of the master’s time. 43

4.1 TLQ key idea. The existence and location of each debug log is exposed
to a user client. The client is able to directly query and retrieve debug
logs existing on distributed machines in their open system. 52

5.1 HDFS architecture. Client processes communicate with the namenode
to retrieve file metadata. The client can interact with the file stored
at a datanode once given the necessary metadata from the namenode.
Data blocks written to datanodes are replicated. 55

6.1 TLQ system architecture. TLQ queries are either invocations of a
troubleshooting tool or a request for a particular log. Each log server
manages a set of parsers that consume local log files for key information
and export it to JSON documents to facilitate troubleshooting. 70

6.2 Monitor operation. Each component is wrapped by a monitor script on
submission. The monitor advertises the log created by the component
to its local log server and to a user client. 72

6.3 Lifemapper structure. Squares represent files, and circles represent
processes. Processes are dependent upon input files and produce out-
put files. Its structure allows for a high degree of parallelism. 74

vi

6.4 Cost of collecting and querying. All things being equal (communica-
tion overhead, transfer speed, and local read speed) there is a scale
at which distributed queries are faster than the collect-and-query ap-
proach used by centralized architectures. 78

6.5 Effect of centralizing log collection. There is some scale at which cen-
trally collecting all logs degrades system throughput due to unavailable
bandwidth (i.e. the system spends so much time transmitting log and
output data that it cannot do anything else). 79

8.1 Web architecture and TLQ querying architecture. Finding a web doc-
ument: directly access its URL or ask somebody who knows how to
find it (like a search engine). Finding a TLQ JSON metalog: directly
access its URL or ask a catalog server which knows about active log
servers. Both documents and metalogs may contain links to others. . 98

9.1 Rendered POV-Ray frame. 109

9.2 HTCondor architecture. Submitter advertises jobs to the matchmaker.
Matchmaker matches job requirements to available machines. Both
submitter and executor spin off connection handlers for transfers. . . 111

9.3 Lifemapper link structure. Makeflow and the Work Queue master
directly interact, thus know each other’s URL. The master and workers
advertise their URLs to each other. A task does not know it is being
executed by Work Queue. Only the worker can create an outbound
link to the task’s log. Each log references itself. 116

9.4 TLQ interactions in a Work Queue worker. The worker executes a task
from the master. The task is wrapped by the monitor which advertises
the task’s log(s). The task command is executed via ltrace. 117

9.5 Cost of collecting compared to distributed querying. There is a scale at
which it is more performant to leave logs in place rather than central-
izing them. Network transfer speed (top) and query latency (bottom)
affect command line queries for TLQ at different data scales. 122

9.6 Data transferred per query. The four example queries’ data trans-
ferred are presented with the calculated minimum cost if only the final
output was returned (query), the measured distributed cost (fetch),
and the measured centralized cost (collect). Query 4 is equivalent in
size to centralizing the logs. Query 5 is identical to query 4 except it
redundantly grabs worker logs (costing more than centralizing). . . . 126

vii

TABLES

5.1 Log server parse time. 59

5.2 User client query time. 62

6.1 Lifemapper query roundtrip time. 76

7.1 Query roundtrip time for synthetic data. 89

9.1 Centralized and distributed query metrics. 125

viii

CHAPTER 1

INTRODUCTION

When my distributed system does something unexpected, where do I look to

find out why? As the use of large-scale, complex distributed systems in research

and business applications continues to expand, this question has become increasingly

important. Beyond the need to fix or optimize a live (and potentially critical) system,

the question unveils a greater problem in transparency and comprehension of what

goes on in a distributed system. Which pieces of the system are likely culprits for

unexpected behavior? How can I access those, if I can at all? How do I make sense

of their debug output? Each of these questions need to be answered before we can

resolve why the system acted oddly in the first place. When troubleshooting issues

on a single machine, all the resources are available to answer these questions. The

behavior and its cause are co-located, and this makes it much easier to resolve bugs

and problems.

However, troubleshooting a distributed system can be much more complex. It

is not guaranteed the cause and effect of an issue are on the same machine. There

may be many components (services and processes representing individual parts of the

larger system) which interoperate. A hiccup in one component on Machine A can be

passed along as faulty input to a component on Machine B and so on, potentially

cascading throughout the whole system. Looking at the debug logs on Machine B

may not give enough context to figure out that the component on Machine A was

the problem.

In addition, distributed systems have added inherent complexity which a single

1

workstation does not experience. Dealing with the ordering of events and synchro-

nization across machines [69], differing degrees of fault tolerance and recovery mech-

anisms [71], and determining the state of the whole system at a given time [18] are all

added worries which make troubleshooting such a difficult prospect. This is especially

true at larger scales where we may not be able to figure out by hand which compo-

nents did what and where. We use troubleshooters and debuggers to help alleviate

the complexities of troubleshooting a distributed system. Each tool we use brings us

closer to answering our initial question. These can take the form of live monitoring

tools which track the state of all components of a system, log analyzers which at-

tempt to determine what happened after the fact, code injection methods which try

to trace and possibly correct issues at the component level when they occur, replay

tools which track state changes in the system and allow a step-by-step rerun of what

happened, and tools which provide similar experiences to low-level debuggers like gdb

or text search and querying like with grep but at scale. These methods each shed

more context as to what was happening in a distributed system when it misbehaved.

While these types of tools provide the context necessary to figure out why a

system is misbehaving, to varying degrees of detail and success, they are not suffi-

cient for troubleshooting all distributed systems. If we are troubleshooting an open

distributed system, the job becomes much more difficult. A distributed system is

considered to be open if it has the following qualities: transient membership and

quantity of resources, on-demand placement of computation to resources, and inde-

pendent resource domains are allowed or utilized.

Transient membership means resources can come and go in the system. Losing

a resource does not break the system, and adding a new one allows it to be utilized.

Further, the quantity of available resources provided to the system from each machine

is allowed to vary over time. For example, a user could directly log on to a machine.

This may preemptively kill any components on that machine, effectively taking its

2

resources away from the system. Or, perhaps this user is given some but not all

resources on the machine, so fewer components may run on it for the duration of

that user’s session. Once they log out, the machine (or the resources reserved on it)

are added back to the system’s available pool.

On-demand placement of computation to resources is in contrast of planned

placement. Both are often handled by a scheduler service. In planned placement,

each component is meticulously scheduled to land on particular machines before the

system begins to execute computations. In an open system, it is not possible to know

a priori on which machines each component will land since the scheduler places work

on any available machine which fits the requirements of the component. This must

be done at runtime, on-demand. Again, machines may come and go, so it is also not

possible to plan out where the scheduler should make its placements beforehand.

Independent resource domains refer to multiple administrative jurisdictions

which may be utilized to patch together an open system. Different cluster, cloud,

and grid providers may each provide some of the resources used by the system as

a whole. Because these machines are maintained by different organizations, they

may not be able to directly communicate with each other. Further, machines from

one administrative domain may not know that machines from other domains exist.

A user-facing component like a scheduler or workflow manager is typically provided

the necessary credentials to communicate across domains, however the majority of

system components cannot.

Each of these added complexities makes troubleshooting an open distributed sys-

tem difficult. A user typically does not know where their components have landed,

so they cannot directly look at their debug logs. Further, they may not have direct

access to those logs if the machine is either out of the system (and thus unreachable)

or if it is in a separate domain which the user cannot access. Typically, a user is

only aware of a single component of the system, which is user-facing like a work-

3

flow management system, job submitter, or interactive dashboard. Everything else

is obscured to varying degrees by nature of computations and data changing hands

multiple times among machines the user does not know exist. The categories of tools

mentioned before are insufficient when used alone because they are at the mercy of

these same complexities. They are not given the full context of an open system, so

they cannot be used as the primary driver for troubleshooting them.

Ti

T1
 .

S M

W1

Dispatch tasks

Wn

Submit tasks

 Run tasks

.

.Wait

Send
output

C1

CnTi

T1
 .

Master
debug
log

Write

Workern
debug
log

Write

Taski
debug
log

WriteWork-
flow
debug
log

Figure 1.1. Scientific workflow architecture. The workflow manager (S) acts
as a submitter and sends task definitions to the master process (M). The
master dispatches tasks to workers (W). Workers run tasks (T) locally.

Each component (S, M, W, T) writes to its own debug log file.

1.1 A Notional Example of Troubleshooting a Distributed System

To get a clearer insight as to why troubleshooting a distributed system can be

difficult, we demonstrate a notional example. Consider a typical scientific workflow

application which is being executed via a master-worker framework. The architecture

of this distributed system is show in Figure 1.1. A workflow is composed of tasks

which are definitions of work to be completed along with the necessary inputs and ex-

4

pected outputs. The workflow management system acts as a submitter process which

sends tasks to the master process. This master then dispatches the task definition

to a chosen worker process (which is typically on some other compute node) along

with the input files specified. It is responsible for dispatching all tasks to available

workers when possible. Assume a scale of O(10, 000) tasks. Each worker attempts

to execute their current task’s command, consuming any input files needed. This

will in turn generate the expected output file(s) if successful. Specified inputs and

outputs for each task are stored for reused at each worker’s local cache. Since this

is a scientific workflow, there most likely exist data dependencies between tasks. As

such, tasks are only submitted by the workflow manager when their respective input

dependencies are satisfied.

If a workflow fails because one task failed, how might we uncover this? We may use

some monitoring dashboard, command line tools like grep, or choose to seek through

debug logs manually. Regardless, we are most likely given only a piece of the puzzle

for finding the true cause of failure. As we dissect the system, we will uncover more

and more pieces in an iterative process of troubleshooting. This becomes intractable

at larger scales (both the scale of the system and the number of failures).

The workflow management system is typically the only component the user can

directly see. We can investigate the workflow management system log to see which

task failed and that it was dispatched to the master process. The master process’

log will show which worker ran that task. If we assume we can reach that worker’s

workspace sandbox (on another machine), we will see that its log will show the task

that failed. We may even be told the task has its own log, or we may have to rerun

the task locally and hope we can replicate the failure behavior.

This experience is clunky to the user since the onus is on them to know which

logs are relevant to read and where each log is located. Monitoring dashboards and

commonplace tools can help to reduce the overall time spent investigating these logs,

5

however they can only provide their functionality if the locations of each log are

known. We assume the user can find each log in this notional example. However,

in an open distributed system this is not the case. Since the user does not decide

where their components execute (e.g. a batch job system handles this scheduling),

nor are they typically told after the fact where these components were sent, an open

distributed system adds an additional layer of complexity to this already tedious

activity. It would be preferable to have a mechanism which can query the logs at

their respective points of creation.

1.2 Effectively Troubleshooting Open Distributed Systems

This work describes an architecture for effectively troubleshooting open distributed

systems called TLQ (Troubleshooting via Log Query). When using TLQ, a user is

able to to access debug output which is transparently advertised to a user-facing

client. Through TLQ, we provide mechanisms for log discovery (how to find debug

logs), log custody (how to access those logs), and a rich querying experience for linked

data (when one log references another) akin to the World Wide Web.

TLQ provides the key services of log discovery and log custody which make it

possible to troubleshoot an open system. Servers at each machine used by the system

advertise the existence and location of components and their debug output directly

to the user, giving them a unique uniform resource locator (URL) for each log created

by the system. These servers persist on each machine in the cluster, cloud, or grid,

dedicated to monitoring components they are told about. In addition, they take

custody of the logs created by components. If the server has permissions, it will take

direct possession of the log, redirecting the default path in the component’s command

line string to a unique file in the server’s working directory. If it does not, the server

will periodically attempt to copy over updates to a local copy. This allows for logs

to persist if the component which created it is ephemeral (incredibly short-lived).

6

Logs tracked by TLQ are periodically parsed, and the results are stored as JSON.

These JSON documents can then be queried using the JX (JSON eXtended) language

[114], providing a single interface for all logs. The querying possible with JX allows

TLQ to provide a web approach to open systems troubleshooting. By this we mean

JX queries can traverse links within one log to other logs, even if they are located

on different machines. As parts of the query are resolved, its context may change

multiple times depending upon how many links are fetched and evaluated, until a final

list of JSON objects is returned as the fully evaluated result. This is accomplished

by TLQ’s assigning of URLs to every log advertised to log servers. In short, TLQ

addresses the problems of log discovery and log custody while also providing an

effective querying mechanism which allows us to answer our initial question: when

something goes wrong in my system, how do I find out what happened?

1.3 Roadmap to TLQ

We have introduced why it is difficult yet so important to effectively troubleshoot

distributed systems. To further compound the issue, we have shown why trou-

bleshooting open distributed systems is an inherently more complex task. The sci-

entific workflow notional example demonstrates how many different components in

a system may need to be investigated to find the cause of a failure (though not all

distributed system issues are failures). Further, it shows how tedious looking through

logs by hand quickly becomes, especially as the scale of the system increases. Finally,

we have provided a quick definition and outline of TLQ.

We will introduce a body of relevant related works spanning the different kinds

of distributed systems problems which exist, tools (both contemporary and historic)

which have been made to address these problems, and querying mechanisms which are

relevant to TLQ’s operation. From this foundation, we provide a specific, observed

example of a common distributed system problem: proper resource scaling. We

7

provide a means of resolving this particular problem (a model called capacity) while

also addressing how TLQ can provide more extensive support than the originally

provided solution (an interactive web dashboard).

From there, we evaluate key pieces of TLQ’s functionality from a fundamental

level. We then present TLQ’s architecture and two of its core pieces of functionality:

log discovery and log custody. We define what these terms mean, how they help

resolve the complexities of troubleshooting open distributed systems, and how TLQ

guarantees the functionality of both. We then provide the final core functionality of

TLQ: log querying. This is placed into the context of TLQ’s web-inspired approach,

showing how TLQ’s JX queries are executed similarly to a request in the World

Wide Web. Figure 1.2 portrays the layers of this work’s contributions from most

foundational (the bottom) to the culminating results (the top).

TLQ: Troubleshooting via Log Query

Log Discovery Log Custody Log Querying
Web-Inspired Architecture

Troubleshooting Open Distributed Systems

Capacity Metric
Resource Scaling Misconfiguration

3. Describe the necessary guarantees needed
to effectively troubleshoot open distributed
systems, demonstrate the TLQ architecture.

1. Why distributed systems (especially open
distributed systems) are hard to troubleshoot.

2. Motivate the need for effective tools with
a specific class of open distributed system
problem.

Figure 1.2. Concept map for TLQ.

8

CHAPTER 2

RELATED WORK

The complexity of distributed systems has long made troubleshooting them a

difficult problem. By introducing parallel components and operations to a system,

many underlying assumptions are altered. The concept of a single, unified state does

not exist and cannot be reconciled. Concepts such as a unified time scale [69], taking

a snapshot of the entire system state [18], and keeping a consistent, agreed-upon

state [99] (as in the Byzantine Generals Problem [71] and the Part-Time Parliament

Problem [70, 72]) are all complications inherent to distributed systems. These issues

exist not only in clusters and grids but also in clouds [36] which can be even more

complex since virtual machine instances in a cloud are generally treated as blackboxes

to components communicating with them. Much work has been previously done

to explore troubleshooting and debugging distributed applications in spite of these

roadblocks which do not exist in traditional, serial debugging [95] noting at that time

most users resorted to altering their components to explicitly print out state changes

which becomes untenable even at small scales.

2.1 Early Attempts at Distributed Debugging

A comprehensive summary of many issues [15] outlines the aspects of distributed

systems which previous, earlier works in distributed debugging have attempted to

address. At a high level, these include: proper use of heterogeneous resources, con-

current execution both intra- and inter-machine, keeping sane distributed state infor-

mation, and recovering from partial failures. Many of these issues (such as misconfig-

9

urations, fault tolerance, and poor concurrent performance) were also investigated in

a longterm study of how to trace complex distributed systems [107] with an emphasis

on doing performant tracing to reduce overhead on the system under study.

Recording the execution of a parallel application for later replay has historically

been a method for troubleshooting nondeterministic behavior [28, 135] however the

overhead for recording complex distributed applications can be significant. An initial

work [74] investigated performance overheads for replay systems. Particularly, they

demonstrate how polling a component may produce a complete enough history of

events to meaningfully replay the system instead of exhaustively logging all events.

EREBUS [32] provided an interesting twist on replay mechanisms. Instead of logging

all nondeterministic events for an accurate recreation of the system under study,

EREBUS executes two concurrent instances of the system. The first system performs

as normal (including nondeterministic events which can be affected by monitoring by

replay mechanisms). The second system runs in a deterministic fashion, waiting for

the first system to produce the necessary state changes which are recorded and fed

into the second system’s workspace before proceeding in its execution. Another work

[30] examines the then state-of-the-art approach of tracing a system’s execution until

an issue occurs, investigating the traces, then rerunning faulty components if needed

to reproduce the issue. System replay is incredibly helpful since it stores a complete

execution of the system under study. Any nondeterministic factors are captured and

can be walked through deterministically within each replay. This is a capability other

approaches cannot implement.

Earlier event-based handlers and online debugging tools attempted to provide a

similar level of debugging to tools like gdb. One work [126] defined the differences

between replay systems and event-based handlers. Whereas replay systems provide

only observance of a system, event handlers institute control over the system. When

a problematic event occurs, an event handler can stop the system to unpack at fine-

10

granularity what happened and why. EDL (Event Definition Language) [10, 11] was

an early attempt at reducing the noise of potentially large logs. A user specifies types

of events an underlying trace process records, allowing a user to filter and cluster only

relevant component behaviors. This limits the number of breakpoints a user needs

to worry about defining.

Other troubleshooters provided their own novel methods of making found prob-

lems transparent to the user. Node Prism [119] was an early attempt at specifying the

scope of debug information that should be collected and operated upon. Node Prism

allows a user to specify a set of resources (in this case CPU cores in a large-scale

system) and remotely execute debugging commands upon monitor processes of those

cores, providing a high level of interactivity at runtime. The TUMULT debugger

[110] provided a means of creating a global, shared history of events in a distributed

system. A key goal of this debugger was to keep all compiled programs as is rather

than rely on users to alter their components. Comparing observed state changes to

user defined global predicates [131] has historically been used to halt system execu-

tion when an mismatch occurs. This approach assumes the user knows the bounds

their system’s state should be within.

The scale and complexity of distributed computing today makes the use of these

historical (and oftern lower-level) debuggers impractical since a user cannot make use

of such low-level debugging output at contemporary scale during runtime anymore.

This has been noted even in early parallel program tracers [56]. Communication de-

lays make it difficult to produce a consistent, traced state of the system. Distributed

systems are inherently nondeterministic at scale. By 1993, more than 200 bespoke

and commercial parallel program debuggers existed [96] providing evidence that trou-

bleshooting distributed systems has been a difficult problem for some time. These

earlier works lay the foundation for more recent related works.

11

2.2 Misconfigurations and Testing

The heterogeneity of distributed systems noted in [15] necessitates a wider breadth

of testing software and configuration management. Initially provided misconfigura-

tions and failing to test for edge cases are both common issues for parallel applica-

tions. A body of related works [139–141] is focused on investigating the common

causes of misconfiguration of a system. These can arise from poor documentation,

incorrect assumptions by the developer about user behavior, and incomplete descrip-

tions of the constraints a user can configure. One work [145] extols the benefits of

providing simple testing in production database technologies and execution frame-

works to find potentially critical bugs. Often times a user is not sure what options are

available to them and how to appropriately use them [140]. Leaving configuration in

users’ hands without providing tools to help them detect misconfigurations places an

undue burden on researchers, especially if they do not have the necessary technical

knowledge to troubleshoot their issues manually [54].

Misconfigurations can lead to the breakdown of a complete cluster, like in Hadoop

with misconfigurations being the most common cause of failure according to one study

[104]. Besides developer bugs, no other category of failure came close to the number

of misconfigurations encountered in the observed Hadoop cluster. Concerning trou-

bleshooting Hadoop misconfigurations, one work [103] provides a way to precompute

configuration errors in the system. By injecting faults into the system and analyzing

runtime logs, failures due to improper customization and setup of the Hadoop cluster

by system administrators are made clear. PCheck [141] was created to uncover mis-

configurations which could cause damaging failures. PCheck analyzes source code

and generates configuration values, seeing which instructions may be at fault for

passing misconfigured values. EnCore [146] uses machine learning to find potential

misconfigurations in a system. A training dataset of proper configurations are pro-

vided, and EnCore is then deployed in a production system. It will attempt to learn

12

the format of configurations it pulls from environment data available to it. Anomalies

and mismatches are reported as outcomes of potential misconfigurations.

Misconfiguration failures compose a critical class of distributed system problems

which TLQ seeks to address. We present a type of misconfiguration in Chapter 3

which spurred the development of TLQ. The TLQ architecture is designed to make the

configurations of distributed components more transparent, assuming those details

are logged. Environment variables and configuration files are two common ways to

configure the execution environment of a component, both of which can be easily

uncovered when using tracing programs on each component of the system under

study. If configuration details are not logged by certain components, general purpose

tools like TLQ would not be able to uncover these issues, leaving it up to domain-

specific utilities.

2.3 Distributed System Analysis

One popular method of analyzing a distributed system is to inject code into par-

allel applications or server processes. This could be API calls to some tracing library

for example. WAT (Why Across Time) provenance [136] injects code into a single

component of a distributed system whereby a user can retrieve a minimal causal his-

tory (a hierarchical history of recorded events with explicit cause-effect relationships

between events) for any given event meaning only the minimum number of opera-

tions required to replay that event would be returned. DySectAPI [52] provides users

a means to modify their components to create probe trees (a graph capturing the

causal history of logged events). The user modifies their application to make use of

DySect’s diagnostic functionality which is passed back to the user at runtime. Iron-

Fleet [44] utilizes injected code to verify a distributed system at a small scale such

that critical bugs are uncovered before the system is scaled up. The purpose is to

prove correctness for a system at a smaller yet non-trivial scale before implementing

13

the live system at its full scale.

Another suitable method of code injection is the inclusion of global state assertions

and event-driven conditional statements. Meld [128] provides a method for users to

specify expected outcomes of messages passed between components in a system. A

user specifies certain message passing functions in their code as sources which are

passed to Meld’s online message verification process. Messages with faulty content

or malformed headers are flagged as potential causes of issues in the system. Guard

[2] allows for user-defined state assertions of system-created data throughout the

system’s execution. Failed assertions are collected and available for user inspection,

providing context to which components may be faulty in a system. Panorama [48]

provides an API which a user can use to modify individual components. When these

modified components encounter a failure, it not only handles the failure as it would

normally. It also reports to Panorama, providing a user with real-time notifications of

observed failures. Rather than providing its own observers, Panorama relies on a user

modifying their system such that each relevant component becomes its own observer

of its state. However, these methods tend to favor applications and systems which can

be tuned during execution. With many scientific applications this is unfavorable since

alterations at runtime may affect results obtained. It is also possible the information

the API calls are recording is already logged in the application [136].

Another related technique is not to inject code on a component but rather to in-

ject faulty or noisy messages and events into a component at runtime. One work [100]

presents a method of injecting faulty messages into a system as a stress test of compo-

nents. The primary outcome of this method is the creation of a fault profile database

which highlights which types of components are likely to experience faults given cer-

tain types of faulty messages which are processed by those components. NINJA [109]

is a noise injection tool used to uncover message race conditions between communi-

cating components. It was applied to MPI applications where communication within

14

a hierarchy of components is essential to ensure work is coordinated and completed

properly. One work requires specifying breakpoints and instruction steps as flags for

a debugger to log an event [85] which is also similar to direct code injection in its

closeness to the source code of the system under study. However, one benefit of these

flags is they allow the debugger to be largely system agnostic so long as the particular

components being observed allow this level of interaction.

TLQ avoids this code injection approach in favor of monitoring components as

they are. So long as they produce some form of debug log and tells TLQ about it,

that component’s log will be kept and tracked. This lowers the barrier to entry for

users looking to add TLQ to their live system as no code needs to be modified. TLQ

can also serve users who cannot modify the source code of their components. Code

injection can also be used in tandem with TLQ since it will track the logs and enable

querying of them while the code injection will add more details to the produced log.

Another way to analyze a distributed system is through runtime monitoring. This

is particularly useful in large systems which run continuously. NetSight [42] monitors

at the network level. The packet histories it provides can be helpful in troubleshoot-

ing faulty interactions between components. In this case components are network

agents (such as a user client and a server) in communication with each other. An-

other packet analysis method [86] is aimed to assist cloud infrastructure providers

with greater transparency regarding the structure of applications running on their

resources. The individual processes (and even virtual machine instances) are linked

together by the tracer when they communicate (whereas by default they are treated

as blackboxes by the cloud infrastructure), providing a clear graph of all connected

components in a cloud. SNooPy [149] is a system designed to provide users trans-

parency of network provenance. It provides a user with the causal reasoning for

why individual components are in a given state, providing clarity to the effects of

interactions between components. ViSiDiA [88] is a framework for capturing snap-

15

shots of asynchronous networks, building off the distributed snapshot problem first

discussed in [18]. In addition to taking snapshots of global state in the network, it

also performs a comparison to user-defined predicates of what the state should be.

This provides a level of correctness detection in the network useful for debugging

faulty messages between components. NetCheck [150] collects traces of communica-

tion events between network hosts. It attempts to create a global ordering of events

across the network (i.e. create a single state of a distributed system) and compares

the events logged to an idealized model. Events that do not match the expected be-

havior according to the model are flagged as potential causes of issues encountered at

runtime. Another network debugger, called ndb [41], provides backtracing function-

ality for packet histories. Its goal is to make more transparent the origins of faulty

or redundant communications of components in a network.

Expanding from networking to distributed systems at large, a survey [108] of

tracing distributed systems looks at the design decisions which must be made when

designing tracing software. They note there are inherent attributes of distributed

systems (such as component interaction which leaves the tracer’s context) and how

metadata is needed to link one component’s trace to another to reveal meaningful

relationships between them. We provide this need with TLQ although we do not

encapsulate this linking process into a single tracing debugger. STAT [6] analyzes

stack traces of highly concurrent applications, emphasizing performance given large

scale input data. For the user, it provides a scalable visual presentation of call graphs

which can be explored, reducing the chance of information overload from potentially

thousands of individual traces by collapsing views of traces into more manageable,

abstract representations until the user wants to investigate in more detail. One

work investigates runtime tracing [120] and correlating related traces together (when

components interact). One problem they encounter, which we also experienced with

TLQ, is how to overcome parsing wildly different log formats to produce a consistent

16

view of a system. Pivot Tracing [83] allows users to specify at runtime certain metrics

in their system. Messages between components are intercepted, and a causal history is

built for each component’s state changes. Messages which match the defined metrics

of the user are presented to them. They can then filter and group the events contained

in these messages for runtime inspection of their system. Another work [23] compares

a trace of an active component to a reference trace of that component. The reference

is used to determine if unexpected events occur in the active component. This was

applied specifically to the case of a user moving their system from one platform to

another, where environmental differences can greatly affect outcomes of a system.

One work [9] extends a traditional debugger (Ladebug) to parallel applications.

This debugger works at the system level, providing the user with stack traces of the

components in their system. An emphasis is placed on aggregating similar messages

in the traces so as not to overwhelm the user. One work presented a utility which

merges stack traces [75] in order to identify performance bottlenecks and sub-optimal

configurations of a petascale system. BorderPatrol [61] is a system which collects

traces of components, creating links between components which interact. Each traced

process is considered a blackbox, and BorderPatrol’s only interactions with it is to

consult its internally produced trace log. Dapper [117] is a tracing infrastructure to

realize causal and temporal traces of system events. The goal is to make clear the links

between components at Internet scale, focusing primarily on network communications

between components across machines but allowing a variety of events to be logged.

Fay [26] is another platform for collecting component execution traces. Fay collects

traces across a system by way of probe modules. These modules report traces to a

centralized, user queryable aggregation of log data. PGDB [25] provides a low-level,

gdb-like experience for MPI applications. Data from distributed backtraces are sent

to a front-end machine to provide user interaction which is conceptually similar to

TLQ’s querying mechanism.

17

TLQ makes extensive use of system level component traces though it is not itself

a tracing system. Nor is its primary function to gather traces at a central location.

We present in Chapter 5 how tracing components’ executions is beneficial to trou-

bleshooting distributed systems and later apply this to TLQ specifically in Chapters

6 and 8.

While runtime tracing and reporting is beneficial for presenting the state of the

system at any given time, other tools provide more interactive debugging or provide

higher-level alerts of faults in the system under study. Falcon [78] creates a network

of spies (watchdog processes monitoring components). When a spy process detects

a failure, Falcon is made aware. If needed, Falcon has permissions to kill faulty

components for the preservation of the system as a whole. Dustminer [60] provides

troubleshooting for bugs in a network of sensor devices. Particularly, it uncovers

repeated series of events which are accompanied by faulty behavior, allowing a user

to see the series of events which may be producing a bug. Ganesha [93] attempts

to provide logging of communication endpoints between blackboxed components in

MapReduce systems. Machine learning was applied to training data to instruct Gane-

sha of ideally operating Hadoop applications. Components in a live system which

do not conform to the conditions of the training data are flagged to the user as po-

tential causes of failure without having to alter the components’ code (maintaining

they are blackboxes). One approach [134] provides real-time log parsing to discover

links between components in a system. These links and the logs containing them

are inserted into a graph representation of the system. These logs can then be more

effectively mined for debug information, similar to how TLQ provides log discovery

and log custody (presented in Chapter 6). Tools which can make use of the links be-

tween logs can take advantage of the graph structure to investigate relevant, related

components when looking for the cause of failures.

SAMC (Semantic-Aware Model Checking) [77] is a principle for discovery of bugs

18

in cloud systems. Messages between components are intercepted by SAMC. Generic

patterns for message types are used to determine if a message contains faulty state

information. If so, it is flagged as a potential cause of failure. SAMC tracks how many

times this flagged message occurs in the system, producing for the user a summary of

the most common faulty messages rather than providing all faulty messages (avoiding

information overload). DEMi [112] is a tool for minimizing the amount of log data

presented to a user when troubleshooting a faulty execution of a system. When

a fault occurs, the components involved are re-executed (if possible). The original

faulty execution is compared to the re-execution. If the fault occurs again, that

component is provided as a potential cause of the fault rather than providing the

user with a log of all component events. One work [27] provides a comparison check

to find data dependence faults in distributed applications. A serial implementation

of the application is run alongside the distributed system under study as a reference

where all data dependencies are satisfied since all data exists in the same locality.

When data races or atomicity violations occur during execution, the user is notified.

SEI (Scalable Error Isolation) [13] is an algorithm for detecting arbitrary state

corruption. State corruption can result in disastrous consequences as faulty state

does not necessarily lead to outright crashes of components. Instead, faulty state can

propagate across a system, doing more damage. Beyond detection, SEI also prevents

data corruption from propagating through a system. One work [3] seeks to provide

monitoring capabilities for OpenStack cloud systems. This monitor observes logs of

multiple critical components in the system and alerts a user when a fault occurs. The

emphasis is placed on components which would halt the system if a failure occurs as

opposed to all components. D3S [81] takes user provided predicates for the system

under study. At runtime, component events which do not conform to these predicates

are flagged. These events, called violations, are collected at a centralized log along

with the state which was altered by these events. BigSift [34, 35] is designed to

19

create data provenance graphs for big data applications. Its goal is to identify faulty

outputs created by components in a live system and provide the provenance history

for them, making these faulty outputs transparent to a user at runtime rather than

after the fact.

Lowgo [80] records dependencies between functions executed in cloud services.

Users define calls to Lowgo’s reporting mechanism in their serverless functions. These

calls log when a function is executed. The log of these calls is used to create a causal

history among the components of the system (including serverless function execu-

tions) which can then be investigated by the user. Antfarm [55] assists virtual ma-

chine monitors with system level events across virtual machines. A specific type of

error, a mismatch between the virtual machine monitor’s logging and an event occur-

ring in the operating system, is made clear by Antfarm which provides transparency

about processes in VMs. This allows the virtual machine monitor to more accurately

log operating system events. CloudRanger [133] performs root cause analysis of cloud

systems. It first analyzes logs for anomalies then creates a causal history of what led

to that anomaly, allowing a user to identify with a high degree of certainty the root

cause of an issue.

With TLQ, runtime analysis tools like those presented can be applied to open

distributed systems whereas before many could not. Many works constrain their scope

to well-defined system architectures or specific live systems. It should be noted that

TLQ does not perform any application-specific log analysis as that would add undue

complexity to its architecture (and other domain-specific tools may more readily

provide that functionality when used with TLQ). Rather, when relevant, traditional

and distributed debugging tools can be run alongside TLQ’s architecture, with TLQ

providing the locations of components allowing the runtime tools to perform their

jobs in an open system.

A final method for analyzing a distributed system is after-the-fact log analysis.

20

Many log analyzers are geared toward monitoring resource usage by an application or

for an entire system. Causal history analysis, which explores the history of component

interactions and how unique sequences of interactions trigger specific events in a

system, is a well understood technique for extracting potential sequences of events

which may be the culprit(s) of failures in distributed systems and can take the form

of event replay after-the-fact.

BITE [111] is a debugger which collects a history of component events for after-

the-fact replay. It allows for replaying instructions step-by-step, multi-stepping, and

fully replaying an execution of the system. Users are able to investigate the state

of the system before and after the replay stage has been performed. Newt [82] is a

framework for capturing data lineage between components of Hadoop and Hyracks

systems. Users can query the resulting lineage graphs to pull out a subset of compo-

nents which most likely caused faults, particularly those which created bad output

due to using faulty inputs. Actoverse [115] is a debugger for distributed applications

using the actor model (in which each component handles asynchronous message pass-

ing and no state is explicitly shared between components). It captures events for re-

play, providing a visual timeline of messages passed between components. The Intel

Message Checker [24] is designed to debug MPI applications. It collects traces from

components, performs an analysis, and highlights issues with deadlocks, performance

bottlenecks, and resource allocation issues through a user visualization. Nemo [90] is

a debugger which takes a more hands-on approach. When possible, it not only iden-

tifies issues but provides solutions to the user. It does this by identifying root causes

of issues through a causal history, drawing the user’s attention to faulty components

in the system. SherLog [144] analyzes source code, taking debug logs as input, to

identify areas of code which most likely triggered a failure in a system. It attempts

to create links between logged events, creating a causal history of the system. Re-

con [76] is a framework for providing system replay and fine-grain querying. Once a

21

system has executed, a user can replay the events of each component with fine-grain

instrumentation which provides an SQL-like querying mechanism for investigating

relationships between components.

Concerning networks in particular, it can help to explore the travel history of

packets and messages similar to a causal history of events in a parallel application.

One work focuses on making failures in routing packets transparent to the source host

[5]. These packet obituaries make delivery failures transparent to a user where they

would normally be opaque, hidden potentially many hops outside the source host’s

jurisdiction. One work investigates routers as a treasure trove of debug information

[102]. The focus of this work is providing a uniform representation of disparate router

log formats (which vary between vendors), much like TLQ provides a uniform rep-

resentation of log data at the component level. One network troubleshooting work

presents how to find missing events using negative provenance to determine why a

packet might not have reached its destination [138]. This concept of negative prove-

nance is useful when comparing the observed events of a system with the expected

behavior, showing when anticipated interactions do not occur.

Causal history is similar in concept to TLQ’s approach to linking related com-

ponents. Whereas a causal history identifies hierarchical relationships between com-

ponents (such as parent-child), TLQ’s approach creates links of components which

interacted but makes no assumptions about the relationship between those compo-

nents. This is introduced in detail in Chapter 6.

It is also common to apply some statistical model to the log data after-the-fact

in order to extract anomalous events. Supercomputers are known to generate an

abundance of system level log data, but extracting useful information from them

can be an intractable problem given a large enough scale. One work [40] attempts

to provide a more coherent view of these extremely dense log data by categorizing

types of events using a Markov random field approach. These categories make the log

22

output more digestible to the user as compared to investigating the log by hand. This

is a goal shared by TLQ. One work examines the difficulty of providing large-scale

anomaly detection on system logs of many formats [53]. Their focus was on security

violation detection in distributed systems, alerting the user of anomalous events in

an interactive dashboard.

LOGAN [123] uses reference models of a system when analyzing system level logs

of cloud applications. The user is given a report of normal, expected events and a list

of events which resulted in either failure or were otherwise anomalous. Pip [106] rec-

onciles differences between observed behavior of a system and its expected behavior

(which is provided by the user). Behaviors which do not conform to expectations are

flagged as potential causes of issues. The goal of Pip is to expose unexpected events,

which may not necessarily be bugs or failures. PAL [89] is an anomaly localization

system for cloud applications. PAL searches for anomaly propagation patterns, track-

ing down root causes of issues for these cloud applications. Another work focusing on

anomaly detection [45] investigated the benefits of applying machine learning to log

analysis in order to identify anomalous events. Their methods were applied to system

level logs millions of lines long, pulling thousands of anomalous events when parsing

through them. CORRMEXT [20] is a framework which analyzes resource usage logs

and message logs to troubleshoot issues in clusters. A correlator tool attempts to

establish links between resource usage and messages logged, attempting to determine

a causal history for diagnosis of problems encountered. Statistical analysis has been

applied to performance bottleneck diagnosis at the system call level [58] in large-

scale cloud systems. One of its primary goals, like TLQ, is to increase transparency

in systems under its observation.

Like the runtime monitoring systems presented, after-the-fact analysis can be

applied to open systems when ran with TLQ. Again, we do not provide specific

analysis of logs like these works. TLQ is more akin to a lookup system (with robust

23

querying capabilities of its own) which additional tools can be plugged into in order

to provide their own, potentially domain-specific, functionality.

2.4 Distributed Debugging Visualizations

Often, visualizations of distributed systems are designed to show significant re-

sults or performance metrics of a parallel application. These visualizations are needed

because often raw debug output is not easy to conceptualize [94]. Visualizations make

the results, performance metrics, and debug output more digestible. One such visu-

alization tool [33] makes the utilization of resources more transparent to the user. It

establishes moments of utilization spread across the logged runtime of an application

to provide a rough timeline of utilization. The Pegasus workflow management system

[22] has built-in tools and a web-based performance dashboard. This dashboard is

also able to pull up specific debug logs for the user on demand for their investiga-

tion. Another work demonstrates a compression of a parallel application’s execution

trace to show macro-scale behavioral motifs [84]. These motifs are collapsed repre-

sentations of larger behaviors of an application which can be conceptualized as an

identifiable segment of the whole workload. ParaGraph [46] visualizes a multitude of

these performance metrics. One of ParaGraph’s goals is to provide these graphs at

different granularities (communications, tasks, and processors) which other works do

not provide. The focus is generally not on troubleshooting these applications, rather

it is to showcase what these applications do and how well they do it.

ENaVis [79] visualizes network activities produced by specific users and appli-

cations. This can result in a large-scale connectivity graph of relationships between

activities which must be effectively managed. These relationships are based on logged

communication which is similar to how TLQ uses messages between components kept

in debug logs to establish links between components. Graphs showing performance

metrics such as network connections made are provided for user investigation. Mini-

24

NAM [59] is another visualization for network activities to aid system administrators,

this time focusing on packet flows. A relevant goal of MiniNAM is making load bal-

ancing issues clear to a user.

By going back further in the literature, one can find a collection of foundational

works on visual distributed system debuggers. Xab [12] is one such tool which records

events and provides a visual interface showing a monitoring dashboard. Like TLQ,

Xab was designed to also interoperate with commonly available debugging tools. In

this case, Xab is able to convert its records to formats used by other visualization

suites to display performance and resource usage metrics. The MAD environment

[62, 64] is designed to perform replay of recorded events like those described previously

yet adds visualizations on top. MAD informs a user about their system’s performance

as well as displaying a graph of recorded events. ATEMPT [63] focuses solely on

visualizing event graphs of recorded events in parallel applications. Specifically, it

highlights detected errors from the recorded events.

While the visualization tools presented thus far are helpful for understanding an

application’s behavior (which is a great first step in troubleshooting), the level of

interaction involved is not adequate for answering the question of why an application

returned one result when another was expected. Visual debuggers range in gran-

ularity from system event traces to graphs showing process relationships and task

relationships, and they can be used to help localize faults in production systems.

One work [21] provides a visualization for localizing faults in automotive dis-

tributed embedded systems. These small-scale computers help operate a vehicle

system in tandem and are locally networked. When an issue occurs, providing a

visualization of exactly where in the vehicle an embedded system has failed is an

incredibly helpful form of troubleshooting. In the domain of web applications [16], it

is helpful to visualize HTTP requests and failures due to HTTP accesses. Statistical

analysis was included alongside visualization to perform anomaly detection of large-

25

scale web request logs. A more relevant work displays a graph representation of a

master-worker framework [97] which displays the shared data across the master and

workers and the unique data at each worker. Multiple visualizations are provided

to make the structure of tasks executed by the framework and the structure of the

framework itself more clear to a user.

Perhaps most relevant to TLQ are visualizations which help increase the trans-

parency of a system’s structure. This includes visualizing causal relationships and

logged communications between components. Witt [19] is designed to visualize the

execution of serverless applications. It graphs the execution timeline as presented by

messages logged during runtime which provides context for the user about the behav-

ior of their applicaiton. Mochi [124] is a visual log analysis tool for debugging Hadoop

applications. It graphs the execution paths of each stage of MapReduce applications

on Hadoop. These can be represented as specific tasks ran or as the behaviors exe-

cuted (e.g. MapTime, MapWriteTime, or ReduceTime). SALSA [125] is another visual

debugger made for MapReduce applications which focuses on causal traces of runtime

events. Causal links are created between jobs which are then graphed in addition

to performance metrics of the application. A survey of visualization techniques as

applied to system performance [49] covers which visualizations are most descriptive

of particular system performance metrics such as memory utilization and call graphs.

A general aim of these visualization tools is to increase transparency to the user

(a goal of TLQ) and to highlight points of interest in the system which may otherwise

be lost in the noise of the system’s outputs, especially at large scale. One drawback

of using TLQ by itself is that there is no interactive visualization of its system un-

der study. The benefits of visualization tools and dashboards are well known (and

advocated in these works).

26

2.5 Databases and Querying Techniques

TLQ uses distributed querying to make it possible to keep debug logs in place

across an open distributed system. Database management systems and their respec-

tive querying techniques are incredibly relevant to how TLQ is designed. Indeed,

choosing a querying language is a critical design decision [57] as it will be the pri-

mary means by which a user interacts with the querying engine and management

technology. It must be comprehensible by the user, descriptive enough to write use-

ful queries, and must present results in a format which is conducive to the user’s

exploration of data. A framework has been established [51] for choosing which query

language best fits a use case. This framework names a few significant considerations

such as the importance of the language’s grammar, how queries are formulated, its

usability, and its interaction model with a user.

The first iterations of TLQ were implemented using traditional database manage-

ment technologies to varying degrees of success. Both SQL and NoSQL management

technologies were used. Their performance and approach relative to each other have

been extensively compared and are well understood [39, 98]. The high flexibility of

NoSQL technologies is noted by [101] however traditional relational database tech-

nologies they investigated offered faster overall performance.

SQL variants have been demonstrated to be effective at large scale. In the case of

Spanner [7], a NoSQL, schema-free management system was replaced at Internet-scale

in exchange for the raw performance afforded by SQL. SQLGraph [122] is a technology

which marries the relational database approach and graph traversal algorithms. They

effectively store large-scale data in graph form while efficiently querying it with SQL.

We show SQL applied to TLQ in Chapter 7.

The performance benefits of caching data at scale and tracking data provenance

are well understood. Couchbase [17] is a database technology which focuses on effec-

tive caching of distributed, big data records stored in memory. P2 [118] is a diagnos-

27

tic system which performs tracing on a distributed system with built-in, performant

querying of a cached database of logged events. While important, such performance

considerations are not directly addressed in this work as they are outside the scope

of TLQ’s direct application.

Provenance debugging (querying the lineage of which processes led to data being

created) is an effective method of finding root cause(s) of events in a distributed

system. TLQ enables provenance troubleshooting inasmuch as the underlying debug

logs created can be used to inform a user about the causal history of events. The

SPADE project [31] provides a querying interface for decentralized data, like TLQ.

Their focus is exclusively on provenance information. ExSPAN [148] also provides

querying of provenance data however at larger, Internet-scale. In order to optimize

their work, the authors investigated caching policies to reduce query roundtrip time.

ProvBase [1] is a provenance storage and querying system designed specifically for

scientific workflows which places provenance data at storage nodes on a network

which clients can query.

Property graphs, a representation of system components tracking their properties

(key-value pairs) and links to other components, have been the basis for multiple

querying engines. PGQL [130] applies SQL-like syntax to property graph traversal

like [122] however they focus on finding paths and determining reachability of records.

Quegel [147] is designed as a property graph traversal and reachability querying en-

gine focused on performance issues of traversing large graphs distributed across mul-

tiple machines. GoDB [50] thoroughly investigates common performance bottlenecks

of property graph traversal engines such as pre-fetching data, queries performing in

a distributed fashion, query path costs, and network communication costs. A sim-

ilar approach creates links between hardware component interactions [91], making

as few assumptions as possible about log structures, which can then be queried. In

TLQ, we focus on software components and their interactions rather than hardware.

28

GraphQL [43] is a ubiquitously used property graph traversal engine which allows the

developer to design their own query resolution mechanics which operate on top of the

underlying GraphQL system. This flexibility was utilized in another early iteration

of TLQ. The property graph approach is similar to TLQ’s data model (presented in

Chapters 6 and 8) which keeps track of links between components when interactions

are logged and stores key-value pairs of metadata about each component.

In early prototypes of TLQ, we explored using SQL, NoSQL, and a graph traversal

engine (directly applied to property graphs of debug information) as querying engines.

However, we found the provided functionality did not meet the needs of TLQ nor

did they apply cleanly to open distributed systems. As a consequence, we expanded

the JX (JSON eXtended) [114] language to drive TLQ’s querying capabilities. Its

straightforward and easily modifiable implementation allowed for fine-tuning a query

language which matched the open system use case. We discuss our choice of JX as the

query language for TLQ in Chapter 7, which is compared to SQLite [92], RethinkDB

[132], and GraphQL [43] as alternative implementations.

2.6 Semantic Web

The Semantic Web [14] is an expansion of the World Wide Web formally proposed

in 2001. The goal is to encode metadata necessary to allow machines to reason over

web data, uncovering the semantics of given data by exploring its relationships to

metadata documents and other data. This includes expressive ways of storing data

on the web, efficient querying mechanisms, and creating ontology networks [113].

These ontology networks provide taxonomies and classifications of data similar to

class hierarchical structures in many programming languages.

Multiple languages have evolved to express semantic information about web con-

tent [4]. These languages primarily have three core mechanisms: provide descriptions

of the concepts of a domain (classes), describe the relationships between concepts

29

(which may be hierarchical), and provide constraints on what can be expressed. The

Resource Description Framework (RDF) [87] is a metadata model which enables web

ontology. RDF data is represented by uniform resource identifiers (URIs). Expres-

sions are made about data in the form subject-predicate-object where the subject is

the data (called a resource in RDF), the predicate is the attribute of that resource

being described, and the object is the value associated with that predicate. Multiple

subject-predicate-object expressions can be made about any given resource. OWL

[47] is a family of languages designed to represent ontologies. OWL provides the

structure for how knowledge can be represented. In the Semantic Web, this means

providing structure for resources and their relationships. OWL is designed to ex-

tend RDF’s vocabulary, providing greater structure and descriptiveness of semantics

associated with resources.

Effective querying methods built on top of these languages and semantic repre-

sentations provide functionality to the data model. RDF establishes a graph repre-

sentation of resources (specified by URIs) which are queryable. SPARQL [8, 29] is a

Semantic Web query language for RDF. Its syntax is purposefully similar to SQL in

that explicit relationships between resources enable rich queries to traverse the graph

of resources. Starting with an initial class of resource (such as novels), a SPARQL

query can traverse relationships (such as genre, author, or publisher) to find other

resources within the same class (e.g. another novel by the same author) or to tra-

verse different classes (e.g. the author was also an inventor and published multiple

patents).

The goal of formalizing meaningful relationships between data is shared by TLQ

though applied to debug logs rather than web documents. Further, the source of

these debug logs may not have the necessary information to encode these meaningful

relationships (or may choose not to include it) in debug output. TLQ makes a

best effort attempt to find links between components from the information given to

30

it whereas the Semantic Web and web ontology frameworks enforce a schema and

hierarchical structure more strictly, guaranteeing the necessary metadata is encoded

in web data.

31

CHAPTER 3

TROUBLESHOOTING DISTRIBUTED SYSTEM PERFORMANCE USING

SYSTEM CAPACITY AS A METRIC

As stated in Chapter 1, not all issues in a distributed system result in outright

failure. In the case of performance troubleshooting, a system may be running slowly

without an explicit failure occurring. This is an issue of resource provisioning (provid-

ing a system with an appropriate number of machines, CPU cores, memory, storage,

etc.). When provisioning resources, a user often defines a certain number of resources

to provide their system. Underlying mechanisms match the requested resources to

the system when possible. However, a user may not know the best scale to run their

system, and the behavior of their system may not be transparent enough for them

to make an informed decision at which scale to execute it.

Resource provisioning belongs to two classes of distributed system issues: miscon-

figurations and performance issues. An initial resource provisioning may be provided

when a distributed system or application is set up. If this initial provisioning is poorly

chosen, the user has misconfigured their system (causing a misconfiguration issue).

In autoscaling applications which request more resources or release excess ones, the

resources may not properly scale to meet the demand at runtime. This is a perfor-

mance issue. We investigate the problem of resource provisioning in a master-worker

framework, a specific type of distributed system.

We find that there is some logical ideal scale of a distributed system. This is the

scale at which some key component(s) become saturated. Adding more resources to

the system would over-subscribe the key component(s). Providing fewer than that

32

ideal number of resources would under-subscribe the system, throttling how quickly

it is able to get work done.

This ideal can change over time, especially in heterogeneous workloads, when

different pieces of work (such as a job, task, or process) behave differently. We call

this metric the capacity of the system and provide a means of calculating it while a

system runs. This metric can then be used in the live system to scale up or scale

down the number of resources available to that system, giving it only as much as it

can effectively utilize. This approach is called right-sizing the system. We show the

application of this right-sizing capacity model to a live master-worker system.

Beyond the capacity model, we also uncovered a lack of transparency about the

state of the system. We provide two means of troubleshooting this resource provi-

sioning issue within the master-worker framework: a web troubleshooting dashboard

which ran in an open system as well as more robust, transparent logging of resource

needs [66]. The term application in this work is somewhat synonymous with the term

system since in this particular case (the Work Queue master-worker framework) run-

ning a research application includes an automated setup stage of the system upon

which the application is executed.

We provide this work on the capacity model for master-worker applications and

the problem it helps resolve as an introduction to a type of common distributed

system issue and how greater transparency of the system’s behavior helps resolve

it. This further demonstrates, beyond a notional example, how problems which do

not result in outright failure can have real, significant impacts upon a distributed

system. TLQ (examined in detail in Chapter 6) expands upon this work by being ap-

plied to distributed system troubleshooting in general, provides interactive querying

capabilities of the system at runtime, and ensures short-lived components (a common

occurrence in master-worker applications) have their debug logs maintained for closer

inspection.

33

3.1 Problem Introduction

Researchers have come to rely on clusters, clouds, and grids to analyze and collect

data on a large scale. However, it is difficult to know the resource requirements of an

application at scale. Decisions about just how large the application should be scaled

often have to be made by the researcher. This can lead to cases of requesting too few

resources to get their work done in a timely manner or asking for too many resources

and blocking other researchers from getting their work done.

When executing distributed applications, users will often under-provision or over-

provision their work by orders of magnitude. For example, users request resources on

ten cores for an application that should be using thousands. This prevents them from

getting their research done as quickly as it should. Conversely, users also request a

thousand cores when only tens could be used effectively. This is a problem for the

cluster since other users have to wait in the queue while their peer is holding onto

almost a thousand completely idle cores. In this case, the productivity of an entire

cluster can grind to a halt without intervention from a system administrator.

In principle, a user could run their application multiple times with varying re-

sources in order to discover an appropriate resource provisioning. This is not useful

in cases where the data from the application does not need to be processed more

than once. It is especially detrimental when the user is charged for computation such

as infrastructure-as-a-service platforms. Having to re-run the application to find an

appropriate resource allocation can quickly rack up cost. It also slows down the

rate of their research. It would be preferable to run the distributed application only

once to discover an appropriate number of resources and dynamically provision them

throughout the application’s lifetime.

We present a method for dynamically calculating the number of computational

nodes which can be effectively utilized by a master-worker system. This model is

called the capacity of the application. This method provides the benefit that the

34

application does not have to be rerun, and approximations of the true value of ca-

pacity are easily obtained as tasks are executed. This model prevents waste on idle

resources from over-provisioning which can in turn save users money and allocation

time in the case of infrastructure-as-a-service platforms. It also increases through-

put if an application experiences initial under-provisioning. The capacity model was

previously evaluated with four distributed applications [66].

We also present a web-based troubleshooting tool for researchers to diagnose com-

mon resource provisioning issues in their applications with the goal of providing a

transparent and informative interface to help users understand the behavior of the

application at run time. The capacity model, along with basic performance met-

rics, provide the basis for simple visualizations which make resource issues readily

apparent. The model and performance metrics also inform a troubleshooting recom-

mendation system which provides the user with actionable steps to address potential

problems.

3.2 Capacity in a Master-Work Architecture

Distributed applications executing in a master-worker system was the focus of the

capacity model’s implementation. In a master-worker framework, a master process

serves as a centralized controller of worker nodes and is responsible for coordinating

workers and feeding them tasks (shown in Figure 1.1 in the notional example from

Chapter 1). In fact, it is most often the only piece of the system the user can see.

Workers are processes scheduled to cluster, cloud, or grid nodes which persist so long

as they receive work from the master. The master submits work to be done, called

tasks, along with any necessary input data for that work. After executing their cur-

rent task, a worker will provide the master with any specified output. The scalability

of this application framework comes from the number of workers the master can

sustain given resource availability. With fewer workers, the magnitude of concurrent

35

work the master can achieve is decreased, but the work will still get done. The reverse

is true of being able to request more workers; concurrency will increase. However,

there is a limit to how many workers an application can handle.

The degree of parallelism of a master-worker application is constrained both log-

ically (i.e. tasks depend on each other) and practically: it is not always feasible

or possible to provide the resources necessary to achieve maximum concurrency. In

fact, it is sometimes detrimental for the execution of the application to over-provision

it in an attempt to increase its throughput. This is because a distributed system’s

architecture creates two intrinsic bottlenecks. First, the execution time of each com-

putation may be limited by the hardware available. If execution time is slow, the

master will spend much of its time polling the running tasks, waiting for output. The

other bottleneck is I/O time. If transmitting the input and retrieving the output of

a task takes longer than tasks take to execute, the master will be stuck sending and

receiving data instead of sending out new tasks.

Our definition of capacity builds directly upon an idea first presented in [143]

which was then derived on first principles. The presented capacity model finds its

roots in the Gustafson-Barsis Law (specifically the scaled speedup model) [38] and

initial work on parallel computation speedup [37]. The Gustafson-Barsis Law states

for computational workloads, there can exist portions of the workload which will

experience a speedup when given more resources. As more resources are provided to

the workload, that portion which can experience a speedup will continue to experience

greater speedup while the latency of the remainder of the workload remains the same.

This idea was later applied to parallel workloads [37].

We demonstrate there is a limit to the scalability of a master-worker application

due to the bottleneck of the master process. Chiefly, we consider throughput as the

bottleneck of a parallel application’s capacity, so we consider the factors which drive

throughput: execution time and I/O time. The model we present is a formal and

36

more complete consideration of the problem of resource provisioning. In particular,

we first note we must weight the most recently completed task heavier than the rest.

This better informs us of the application’s capacity at the current state of execution as

opposed to an average value computed across the whole of the application’s lifetime.

Without this contribution, we would be missing potential to seize more resources

or scale down if the application’s current state indicates that is needed. We then

implement the ability to scale regardless of cores being requested by the user whereas

the previous model [143] assumes each task requires only a single core. We must also

track the master’s own think time in the model. This think time is the time needed by

the master process to complete bookkeeping, manage resources, and execute any other

sub-routines. These contributions allow for a wider range of useful implementation.

3.3 Capacity Model

For each parallel application, there exists some ideal minimum number of re-

sources which, when provisioned, give the application its fastest execution time. If

the application is given fewer than the ideal number of resources, it will not reach its

maximum parallelism and thus run slower. If it is provisioned more than the ideal re-

sources, the application may run slower due to overhead incurred for managing those

resources. At best, providing more resources will neither speed up nor slow down the

application. This will, however, be wasting those over-provisioned resources.

Figure 3.1 models the impact upon application runtime from poor resource provi-

sioning. The application modeled in the figure consists of 100 independent, homoge-

neous tasks. Each task has a 100 second turnaround time. We assume in this model

that there is a 1 second cost for managing each additional computational resource.

The best run time for the entire application is thus 200 seconds (in the case that all

tasks are run concurrently for 100 seconds with 100 seconds of cumulative resource

management time). This is shown when the scale of resources reaches 100. Since we

37

 1

 10

 100

 1000

 10000

 1 10

 100

 1000

To
ta

l E
xe

cu
tio

n
Ti

m
e

(s
)

Scale

Peak Provisioning of a Parallel Application

Execution at Current Scale
Execution at Capacity

Figure 3.1. Resource provisioning impact. When executing a parallel
application, there is a scale of resources which provides the fastest execution

time. Provisioning fewer or greater resources will cause a slowdown.

assume there is some cost associated with managing resources, the total execution

time will increase as additional resources are added after the first 100. This may not

be the case for all applications, but at best adding more than the appropriate number

of resources will neither increase nor decrease the execution time of the application.

We can conclude from Figure 3.1 that there is some appropriate scale for each

parallel application. To provision above or below that scale will lead to a slower

execution time. It would be beneficial for the user if they were able to derive some

appropriate scale of resources they should request for their parallel application. We

say that the application is right-sized when that appropriate scale is reached.

Now consider a master process that delivers tasks to be executed by worker pro-

cesses. We can make the following observation with regards to the throughput (tasks

completed per second) of the master process: assuming the master process can only

transfer data (input and output) for a task at a time, all the workers have identical

processing and networking capabilities, and all the tasks have identical execution

time te and identical transfer time tio, then the maximum throughput of the master

38

process Tm is bounded above as Tm ≤ 1/tio. The observation easily follows since

the system cannot process a single task faster than tio. Note that this maximum

throughput is independent of the time it takes to execute a task te. The execution

time per task te comes into play with the upper bound on throughput of a single

worker Tw, which is bounded above as Tw ≤ 1/(tio + te). If the master has C workers,

their throughput upper bound, under the conditions of our observation, is CTw.

Let C be the number of workers the master needs such that it is never idle. From

the previous discussion, CTw = Tm, and C = 1 + te/tio. We call C the capacity of

the system1. Since the master process deals with tasks in a sequential manner, using

more workers than C will not increase the throughput of the system. The capacity

C is in fact the number of workers at which a speedup curve converges [67].

3.3.1 Dynamic Capacity Model

The basic model above makes assumptions that are hard to meet in practice.

For example, not all tasks are identical, and not all computing nodes have similar

resources. To deal with these issues, we extend the previous computation to derive

an estimate of the capacity.

Let Ci = 1 + tei/tioi be the capacity computed if all tasks were identical to the

ith finished task. Using an exponential moving average, a parameter α ∈ (0, 1) is

used to weight previous completed tasks against the most recently completed one.

We assume that the most recently completed task will be more indicative of the

application’s current behavior. In our testing, the value α = 0.05 performed well in

practice. With C0 = 0, for i > 0 and 0 < α < 1, we recursively define:

1With think time tz per task at the master, the bound on throughput becomes 1/(tio + tz), and
the capacity is C = (te + tio)/(tz + tio). Here we have to be careful. If we limit the number of
workers to integral values, we may find the only way to not have idle workers is to have none of
them (e.g. tio + tz > te, with the floor operator giving 0). We should then execute the application
locally since it cannot handle greater scale.

39

Ci = α(1 + tei/tioi) + (1− α)Ci−1

Using this dynamic model, we gain better insight into the application’s resource

needs. Seldom are tasks identical for an entire workload, so weighting the ith finished

task greater than the cumulative capacity of the previous workload allows us to

better adjust when workload changes occur. For example, consider a master-worker

application which has two categories of tasks: tasks of type A and tasks of type B.

There are an equal number of both types. Assume that both task types have the

same I/O time, but type A tasks run half as long as type B tasks. Let us also assume

the workload submits all the type A tasks first then submits the B tasks. There will

be a point in the workload when capacity will increase because B tasks run twice as

long as A tasks. Capacity will essentially double. A more naive model [143] which

does not weight the most recently completed task heavier can take awhile to adjust to

the sudden change in capacity. There may be a long lag between actual capacity and

realized worker acquisition. In our dynamic model, the added weight α allows our

application to realize the capacity change between A and B faster. This in turn will

reduce that lag and scale the number of workers quicker if the resources are available.

In essence, we present a model which follows the Gustafson-Barsis Law [38, 137] to

find the best speedup using an exponential moving average.

3.4 Implementation

We implemented our capacity model in the Work Queue master-worker execution

framework [105]. The model can be implemented in any framework where task ex-

ecution time (te) and task I/O time (tio) are readily available. Our users run Work

Queue applications to scale up their research by breaking up their analysis pipeline

into smaller tasks which can be executed concurrently. Work Queue is designed to

40

scale from O(10) up to O(10,000) cores. The largest scale application using Work

Queue has successfully scaled up to approximately 25,000 cores.

The Work Queue master is a process which the user executes on a frontend ma-

chine. It is responsible for giving workers tasks to run as well as any input files a

task may require. A worker is a process which runs on a batch system and claims

resources on a machine for a user’s work. Worker processes persist as long as they

are given work to do, and each worker has a local cache. These workers receive input

files and executables to run the task if they do not have them in their cache. If the

task is completed successfully, the worker waits for the master to acknowledge its

success then transfers the output of the task.

The master receives a task report from a worker once a task has finished exe-

cuting. If the task was completed successfully, the master uses that task report for

determining capacity. This task report contains the execution time (te) and I/O time

(tio) for that task along with many other performance metrics. These metrics are

measured at the worker process and are used in the calculation of capacity as shown

in the model. The master also keeps track of its think time during tasks which is

added to the task report. We use these times to calculate the capacity of the appli-

cation, weighting the most recently completed task most heavily as defined in our

model. If the task is not successful, the task report for that failed task is not included

in the capacity calculation.

The master determines the capacity using the stats retrieved from successful task

reports. The most recent task report’s execution time, I/O time, and master think

time are weighted more heavily than the rest of the application’s history because we

assume that task will be more indicative of the application’s current behavior. After

the capacity is calculated, the master submits it (and other metrics) to a catalog

server which a utility called Work Queue Factory can access.

In order to request and maintain the appropriate number of workers for the ap-

41

plication, we use a program called Work Queue Factory to dynamically provision

according to the master’s capacity calculation. Work Queue Factory is an applica-

tion which retrieves periodic information about a master and uses this information

to submit new workers for that master. This is useful in cases where workers have

idled out in an earlier section of the application but are needed at the moment. It

is also helpful in scaling down by not replacing idled-out workers if the master does

not need any more. The factory decides how many workers to request by calculating

the minimum among the result of the capacity model, the number of tasks currently

submitted by the application, and a user-defined upper bound. If the result of this

calculation is less than the number of workers currently connected to the Work Queue

master, the factory does not request more workers.

3.5 Capacity Model as Troubleshooting Tool

Although the capacity model provides usefulness for our users as implemented

in Work Queue Factory and as a simple paper model to gauge an application’s re-

source provisioning, we also implemented the model as the basis for a web-based

troubleshooting tool. This is possible by querying a catalog server which by default

every Work Queue master process communicates with in regular intervals. The cat-

alog server is used to match workers to masters, but it also stores basic performance

metrics and unique identifiers of the master.

Some of the metrics included in the catalog server are cores, memory, and disk

allocated as well as how the master process is spending its time (e.g. sending input,

receiving output, running application-specific code). We added capacity to these

metrics. We provide these metrics in a dashboard of simple visualizations of each

Work Queue master to give users insight into the behavior and current resource

needs of their application. Visiting this dashboard is intended to be the first step

when a user is troubleshooting resource provisioning issues with their application.

42

The visualizations are implemented in the D3 JavaScript library. A search function

allows for a user to see all their masters on one page in the case that their Work Queue

masters are sharing a pool of workers (a somewhat common tactic employed by our

users). The master’s metric visualizations are aligned in a tabular style to provide a

straightforward dashboard for easy comparison between masters. Each data point of

the visualizations provide added details on mouseover.

Figure 3.2. Visualization dashboard. This dashboard layout of
visualizations is based on performance metrics from the central catalog

server. Included are a bar chart on worker and task metrics, a bar chart on
resource consumption, and a pie chart of the master’s time.

In our experience, this tool has been a good first step in troubleshooting common

resource provisioning issues. To make the tool more user-friendly, we have added a

recommendation system which will briefly analyze a master’s metrics and provide

actionable steps to help the user troubleshoot. By clicking the “Performance Tips”

button in Figure 3.2, the tool briefly analyzes the master metrics and produces a list of

recommendations for the user. The recommendations are based on the most common

factors which would contribute to a master’s behavior. For example, a master which

is spending much of its time polling workers (i.e. the master is idle much of the time)

is most likely being under-provisioned. In this case, the recommendation system

will look at how many workers the master has connected as well as its capacity and

43

inform the user if they would benefit from asking for more workers. Another common

case is a user not providing any resources (in the form of worker processes) to their

system. Not only would this be made readily transparent to the user when looking

at the dashboard, they would also be informed of this when interacting with the

“Performance Tips” button.

3.6 Relationship to TLQ and Open Distributed Systems Troubleshooting

With the capacity model and performance dashboard, we have resolved the issues

of resource misconfiguration and runtime resource allocation as they relate to feeding

a master-worker architecture with resources. However, there are many other kinds

of distributed system issues. TLQ is designed to provide the framework necessary to

investigate distributed systems issues in general.

This work introduces the catalog server as an integral part in making sense of a

specific open distributed system. As Work Queue workers can come and go, can exist

across multiple independent jurisdictions, and are placed on-demand when using a

Work Queue Factory process, they constitute an open system of transient resources.

The catalog server, in addition to advertising basic metrics about active Work Queue

applications, provides a means of giving components in an open system a publicly-

addressable name. In the case of the work on capacity, we are concerned only with

Work Queue masters. The catalog server can be used to find the location of masters.

The impact of the catalog server upon TLQ is explained in more detail later, however

this initial work uncovered that the catalog server is itself both a treasure trove of

debugging data as well as a means for advertising the existence and location of

components in an open distributed system.

The capacity model as implemented in Work Queue can be readily used as a metric

for troubleshooting in TLQ. Capacity is not only displayed on the web interface;

it is also logged. As discussed in the background of master-worker applications,

44

the master is also most often the only process directly known to the user in their

application, making it an obvious first stop when troubleshooting failures in master-

worker applications. Even if a user knows the locations of their workers, it is likely

they do not know how to directly access their logs, which is where TLQ can help.

By exposing a class of performance issues to the user via the master’s debug log, this

class of problems (and their cause) is then made transparent in TLQ as well.

45

CHAPTER 4

USING DEBUG LOGS TO TROUBLESHOOT DISTRIBUTED SYSTEMS

Debug logs are frequently used as a means of capturing state information during

system runtime which can be used to troubleshoot misbehaviors during and after the

system has completed execution. Each type of log has its own format. Some are

meant to be human-readable while others are structured to be interpreted by other

programs like tabular spreadsheet editors. A log must contain enough information to

be useful in piecing together the history of the component being logged, the important

environment configurations and interactions the components made, and whether the

component interacted with others in the system. Having examined a notional example

and a specific system under study experiencing issues related to scaling, we turn our

attention to some important yet tertiary questions:

• Why is a debug log a straightforward means of troubleshooting after the fact?

• What information is useful to store in a debug log for troubleshooting?

• How can a component’s log give enough information to create links to others?

4.1 Why Debug Logs are Important

Logs are typically permanent records of the execution of a system. When a

component logs an event or state change, it is typically added to an existing debug log

file. Entries in a log are not usually altered once written, meaning the log may only

increase in size during runtime (barring garbage collection schemes which prevent

a log from becoming too large). Since logs contain a history of state changes per

46

component, we can use the set of debug logs created by the system as a means for

recreating the events which occurred. If a misbehavior happens during runtime, and

that event is logged, we can use troubleshooting tools to identify which state changes

are likely to have caused or resulted from that misbehavior.

Without creating a debug log per component, the user would be responsible for

actively monitoring their system for events at runtime. If they miss an indicator, and

no logs are created, the provenance for that event becomes irretrievable. It will be

almost as if the event did not occur. Additionally, the system under study may be

running at such a scale that the user cannot effectively monitor each component.

Expecting a user (perhaps a researcher not well-versed in debugging) to act as a

Panopticon, viewing each piece of their system in detail while it runs, is unrealistic

in the best case. At worst case, they may find an indicator but have no means of

deciphering its meaning. Keeping logs of events and state changes allows a user to

provide experts with the history of their system, proving that misbehaviors did occur

and where.

We could address this issue by having all relevant events and state changes be

reported as messages to some centralized collector, perhaps on a machine the user

can directly access. This would essentially create one debug log for the whole system.

However, this approach would fall prey to a few key factors which would negate the

benefit of this particular kind of logging. A performance factor to consider is the

scale of messages being sent to this centralized collector. The number of components

reporting (or the quantity of data being reported) may overwhelm the collector,

causing important messages to either be reported with some degree of latency or not

at all in the case of a buffer overflow.

Another factor to consider is the ordering of events. When logging is performed

locally, each component has a consistent history of events. Creating a shared history

of a system is a difficult feat to accomplish [69]. Event A may cause event B, but

47

what happens if the report for B shows up before A? What if the report for A is lost?

This centralized log loses its usefulness. Instead, having each component create their

own log is more consistent, in many cases more performant, and provides a more

complete view of a system. The issue this introduces is a difficulty in retrieving each

log, which is the thrust of TLQ’s architecture (formally introduced in Chapter 6).

4.2 Common Traits Among Log Formats

No matter the format of a log (i.e. structured for human or machine readability),

there are some common traits among many of them when effectively implemented.

Reporting initial configuration details is often helpful for understanding the runtime

environment of a component. Logging information such as local start time, the work-

ing directory/directories, the values of relevant environment variables, and known

identifiers for a component (such as jobID for a batch system job) are important for

effectively reporting a successful setup before a component begins its computation.

Often, these initial values have long-reaching effects, so logging them at the beginning

of a component’s lifetime ensures the user is able to discover upfront the environment

within which a particular component executed.

Beyond gathering the surrounding environment’s state, it is also critical to re-

port internal state changes. As the component executes, key metrics like resource

usage may be reported to help a user understand the performance of the component.

Progress made toward completing the component’s workload are also useful since

they can be investigated by the user to see if a particular piece of the workload is

misbehaving. Consider a worker process within a master-worker execution frame-

work, as was demonstrated in the notional example from Chapter 1. It may report

progress in terms of certain tasks completed (referenced by a taskID) and whether

the task completed successfully or not.

The previous two traits are critical for effectively troubleshooting a single compo-

48

nent. State information about the environment and a record of internal state changes

help create a history of events which produced the final state of that component. A

user can investigate misbehaviors on a per component basis this way. However, com-

ponents often communicate with others in distributed systems.

Reporting interactions between components is important for establishing concrete

links after the fact. Component A may send a message to component B, altering some

internal state for B. However, if component B ’s log never reports that it received a

message from A, it will be as if that interaction never occurred when inspecting the

log after runtime. It is also helpful for all components involved in an interaction to

record it in their own logs rather than rely on a single component to keep track. In

the case that one log becomes lost or corrupted, there are multiple records of the link

established.

Finally, explicit reports of errors, failures, misconfigurations, missing data, and

other unexpected behavior are critical for finding issues in a component. If a compo-

nent misbehaves at runtime without recording that event, it becomes harder for a user

to troubleshoot the issue. They would have to rely on the reporting of environment

configuration and internal state changes to piece together just what combination of

environment and state caused the misbehavior. It is preferable for a component to

explicitly report encountered failures (including whether they are fatal) or misbehav-

iors. Ideally, these reports are logged with or near any relevant log messages about

the state of the component when it experienced the issue.

4.3 Recording Links Between Components

Not all records of links between components are the same. There are two degrees

to which component interactions may be reported: implicit links and explicit links.

Implicit links are less helpful while still providing a user with more information than

not reporting. Explicit links, on the other hand, provide more specific, concrete

49

details about component interactions.

Two components are said to be implicitly linked if a provided log message can

be used to discover a link exists between two components without that message

explicitly reporting the component being linked. For instance, a log may state that

a message came from an IP address and port number, or it may have received some

task definition from a master process.

{"msgID": 1, "msg": "Request received from 127.0.0.1:9000"}

...

{"msgID": 7, "msg": "Got taskID 23 from master"}

These messages may be responsible for altering some internal state, causing a

misbehavior. However, the user is not told exactly which component sent this mes-

sage. They are not told which component is tied to that IP address and port (which

can also change over time), nor are they told which master process communicated

with the component. The user is given enough information to search for the source,

and perhaps they may be successful in collecting enough information external to this

log in order to troubleshoot their issue. Providing more information within the log

would be a preferable solution.

By contrast, explicitly linked components provide enough information to iden-

tify precisely which components interacted and how to find them. To understand a

link, the user only has to read the given log. They do not need to consult external

information as will often be necessary with implicit links.

{"msgID": 1,

"msg": "Request received from user client at 127.0.0.1:9000"}

...

{"msgID": 7,

"msg": "Got taskID 23 from masterID A56B at 127.0.0.1:7281"}

50

Unlike in the implicit examples, both explicit link messages contain enough infor-

mation to tie two components together. In the first message, the type of component

(in this case a user client) is identified along with an IP address and port number.

Preferably, a timestamp would also be provided to further specify exactly which user

client using 127.0.0.1:9000 contacted the component since an address and port

combination are not necessarily unique identifiers in a system. The second message

contains not only type (a master process) but also that particular master’s ID and its

address:port combination. Greater specificity decreases the user’s reliance on find-

ing outside information to troubleshoot their system. We demonstrate how TLQ

effectively uses explicit links to make troubleshooting more approachable for users

executing an open system in Chapter 6.

4.4 Key Idea of TLQ using Debug Logs

TLQ is an architecture for troubleshooting open distributed systems. It enables

effective troubleshooting by exposing the existence and location of debug logs to a

user. By knowing where a log exists, a user is able to directly query it in place or

selectively retrieve it rather than setting up a complicated mechanism for centrally

collecting all their system’s debug output.

Additionally, each debug log is parsed and transformed into a uniform JSON

representation no matter the original format of the log. Knowing both how to access

a log and its format, the user can then submit the same queries across all logs. These

queries are used to narrow down the user’s investigation of misbehaviors in their

system, expose important metadata to the user, and provide a means of retrieving

any relevant log to the user’s machine.

Debug logs are the data produced by the system TLQ requires to operate. Since

each log represents a history of configuration, state changes, and events of a compo-

nent, they are necessary to keep in order to effectively troubleshoot components both

51

c.log d.log

e.log

User
Client

Front-end
Machine

Distributed
Machine

f.log

Distributed
Machine

a.log

b.log

Distributed
Machine

g.log

Figure 4.1. TLQ key idea. The existence and location of each debug log is
exposed to a user client. The client is able to directly query and retrieve

debug logs existing on distributed machines in their open system.

at runtime and after the fact. A debug log proves the existence of a component in

the system and establishes its lifetime relative to the machine on which it ran. It is

a single, readable, and queryable artifact of a component’s execution. As such, it is

an invaluable resource. TLQ focuses on providing a user direct access to their logs in

an open system for these reasons; they are the critical puzzle pieces for performing

useful troubleshooting.

As discussed in Chapter 1, discovering where logs exist and making them available

are not trivial challenges, especially in open systems. The key idea of TLQ is that the

user client should be able to directly interact with their system’s produced debug logs

where they exist rather than try to collect all these logs in one centralized location

(an at best impractical and at worst impossible proposal). The TLQ architecture

provides mechanisms which make this level of interaction possible, enforces unique

names for each debug log in the system, and implements powerful, expressive querying

52

on top of allowing a user to continue running typical command line troubleshooting

tools on their remote logs. Figure 4.1 shows the desired functionality of TLQ: a

user directly interacting with and accessing their logs where they were created. We

present the key performance considerations of the mechanisms fundamental to TLQ,

the basic structure of the TLQ architecture, the importance of choosing an effective

query language, and finally the querying mechanism of TLQ.

53

CHAPTER 5

TRACING OVERHEAD AND SCALABILITY OF KEY MECHANISMS

The primary results of TLQ are derived from its core functionality: log discov-

ery, log custody, and the web-inspired approach to querying. The effectiveness and

correctness of these functionalities are demonstrated in Chapters 6 and 8. Before

delving into TLQ, we must lay the foundation of some key performance considera-

tions. Namely those are the cost of tracing a component if it does not produce its

own log, the scalability of a server keeping track of many debug logs (a key piece of

the TLQ architecture), and the scalability of a user client retrieving data.

5.1 Overhead of System Call Tracing as a Debug Log

If a component does not produce its own debug log, there will be precious few

records that the component ever existed. Further, those few records will probably

not be able to tell us anything interesting about what that component did and how it

interacted with its compute environment. In order to effectively troubleshoot issues

in a distributed system, each component must produce some form of meaningful

debug output.

If no log is created, we can use a tracing utility to create one for it. We demon-

strate how ltrace can be used to fill this logging capability. This can be used to

capture the component’s system level environment interactions and system level fail-

ures. Although explicit logging by the component may provide more domain-specific

context than the more generic system error messages, it provides fine-grained de-

tails of its execution all the same. However, this comes at a cost. System calls

54

Namenode
Client

Client

Metadata:
(name,
replicas, …)

Data block replication

Datanodes Datanodes

Metadata operations

Write Write

Read
Data block operations

Figure 5.1. HDFS architecture. Client processes communicate with the
namenode to retrieve file metadata. The client can interact with the file

stored at a datanode once given the necessary metadata from the
namenode. Data blocks written to datanodes are replicated.

are intercepted, logged, and passed through to the operating system. This increases

the overall execution time of the component. We demonstrate this overhead with

three utilities: the Hadoop filesystem’s ls, a scientific workflow process starting up

a concurrent master-worker framework master process and running a workflow, and

initializing Matlab.

The Hadoop filesystem (HDFS) [116] is itself a distributed system. There is a

centralized namenode which performs metadata operations on the filesystem and de-

termines the placement of data blocks and replicas. Data is replicated across multiple

machines connected to HDFS. Performing HDFS’ ls operation not only has many

metadata operations like the operating system level command, it also participates

(albeit briefly) in the Hadoop distributed ecosystem. Figure 5.1 demonstrates the

HDFS architecture.

This simple operation has complexity in the backend, which is largely invisible

55

to the user. Running ltrace captures many of these interactions which may be

relevant for troubleshooting. For example, executing this seemingly simple ls causes

HDFS to spin off multiple Java processes which in turn each instantiate multiple

threads. Some of these Java processes encountered an internal Java error, resulting

in their early termination. However, HDFS recovered from these errors without being

transparent with the user these processes were terminating. Using ltrace revealed

this hidden issue. TLQ (formally presented in Chapter 6) would allow a user to more

easily uncover this opaque behavior.

We configured a recursive HDFS ls over 20 directories and 65, 500 files. Without

tracing, the command executed in 11.80 seconds on average. With tracing enabled,

it completed in 15.48 seconds. At the O(10, 000) scale, an overhead of 31.18% is

significant. We performed the command non-recursively (i.e. only returning a list of

the 20 top-level directories). The overhead for this execution was 34.79% on average

(5.32s untraced compared with 7.17s traced), roughly matching the overhead at the

larger scale. Compared to the operating system level ls, we see the logging overhead

introduced is due to HDFS’ moving parts. Without tracing, running traditional ls

over the same set of files took on average 0.45 seconds while with ltrace enabled

took 0.48 seconds (an overhead of 6.66%). All things being equal, this roughly 33%

overhead on average is the price paid for tracing HDFS’ ls operation which must

be paid if troubleshooting HDFS operations since general filesystem commands in

HDFS do not have options to log any debug output.

We also demonstrate the Makeflow workflow management system and the Work

Queue master-worker framework’s master process being traced while executing a brief

workflow. The architecture for this system was introduced in Figure 1.1 for our initial

notional example. When using Work Queue as its execution engine, Makeflow and

the Work Queue master process are co-located (and are often treated as one logical

component though they are in reality two distinct components).

56

Makeflow executed a workflow consisting of 1, 887 tasks. The Makeflow and Work

Queue master processes were the only things traced (not the individual tasks). We

provided 30 workers to execute it. Without ltrace, the workflow completed in

roughly 5.35 minutes (321.26 seconds). This short execution time is due to every

Java task (a significant part of the work) critically failing early in their respective

executions. The reason for this failure is uncovered in Chapter 9.

When Makeflow and the master process were traced, the total runtime (using the

same worker processes) was 5.90 minutes (354.26 seconds). This led to an overhead

of 10.30% in the execution of the whole workflow. Although this workflow involved

plenty of distributed communication, like in the HDFS example, we note using ltrace

on Makeflow and the master process led to relatively low overhead due to the kind

of work being done. Makeflow is in charge of submitting work and input data (via

the Work Queue master) to remote workers and receiving output from those workers.

When it is not doing either of these two actions, it is either performing bookkeeping

or simply waiting.

There are some applications where this added logging has a crippling overhead.

Matlab is a program which is both popular among researchers and loads many li-

braries and files during its execution. It is an ideal application to demonstrate the

extreme end of ltrace’s effect on application runtime. We ran Matlab and config-

ured it to call exit(0) upon successful loading. Although this may seem trivial at

face value, we chose to simply start Matlab because of the number of libraries and

files it accesses on startup. Without ltrace, it took 12.01 seconds to start and exit

Matlab. With ltrace, however, it took 5 minutes (312.41 seconds on average). We

can conclude that it can be very expensive to turn on all debugging options if the ap-

plication accesses many files (approximately 2, 000 in Matlab’s startup). Depending

on the depth of logging needed to properly troubleshoot the system, this cost may

be unavoidable.

57

5.2 Scalability of Log Servers

Consider a server which is in charge of two actions: parsing a set of debug logs

into a JSON representation and responding to requests from clients to download logs

from that set. We discuss in Chapter 6 how these two actions are key mechanisms

for TLQ. We first evaluate the scalability of these foundational concepts.

A log server has two inherent factors limiting its scalability: the time taken to

parse logs and the storage space required for both debugs log and the parsed JSON.

We first demonstrate how parsing time can render a log server unusable at certain

scales. We then explain how the log server’s storage needs may be a concern for those

with limited disk space (which may rapidly become exhausted by the server).

5.2.1 Parsing Stored Data

One of the most time consuming actions a log server performs is parsing debug

logs into JSON. In order to prevent blocking at the server, consider this periodic

parsing is executed on a thread. When a new log is added or an existing log is

modified, it is (re)parsed by this thread.

We measured the overhead of this parsing using logs of uniform size (but not

uniform content). A parser was written to process these logs, transforming each line

into a JSON representation and adding some metadata about the file in a top-level

JSON object. The data stored at the log server was increased linearly. Each log

was 100MB in size and was approximately 68,000 lines long. We captured the time

taken to parse the entirety of all existing logs at different scales and noticed a linear

increase in the time taken to parse all logs. Table 5.1 shows this linear increase.

If the log server blocked while parsing, no client requests would be answered once

a certain scale of debug log data had been stored. Creating a thread to be responsible

for the parsing solves only half the problem. At a certain scale, the parsing would

essentially be constantly happening in the background. If a user requested some data

58

TABLE 5.1

LOG SERVER PARSE TIME.

Logs Total Size Total Parse Time

1 100MB 4.87s

10 1GB 45.29s

100 10GB 455.59s

1,000 100GB 4,546.88s

which had either not yet been (re)parsed or was in the process of being parsed, the

user would get out of date information about that log (if the log had been previously

parsed) or an error that the JSON version of the log does not yet exist (in the case the

log had not been parsed before). It is also probable that the parsing would rapidly fall

behind the outstanding logs yet to be parsed, especially if new components became

actively watched by the log server. In either case, the log server can become an

unreliable actor. It will be unable to provide (relatively) up-to-date information.

5.2.2 Size of Stored Data

Continuing to use the example of the previous set of logs, we also see another

limit to the scalability of a log server. Disk space is not only consumed by the debug

logs over which the log server takes custody. The parsed JSON logs are another

significant source of disk usage.

Each JSON log is at least the same size of the raw debug log. This is because

each line of the log is transformed into a JSON representation, and additional JSON

metadata may be added to the log (which is utilized by TLQ to great effect). If a log

server is started on a machine with low available disk, the server may quickly exhaust

59

the machine’s available disk space even if the machine can store the raw debug logs.

Even in machines with a vast amount of available space, the log server may be deemed

to be consuming too much for a user’s disk allocation (perhaps breaking some system

administrator’s policies). If the server is running in an infrastructure-as-a-service

platform, its disk consumption behavior may become costly. This is especially true

if the user budgeted only for the total anticipated disk usage of their system without

adding in the storage overhead for the parsed JSON versions of each log.

One alternative that comes to mind is deleting unused or inactive log data (and

perhaps their respective JSON logs). A server can handle individual delete requests

from a user, but assume instead it chose to automatically perform garbage collection

periodically. If the garbage collection window is too short, the benefits to a user are

negated. They may not ask for a debug log until after the log server has already

deleted it. Ephemeral components which have a very short lifetime may have their

logs evicted before the user decides to query them, effectively bringing us back to

the initial issue of ephemeral components: blink and you may miss them, taking all

evidence of their existence with them. If the window is too large, the server may not

evict data quickly enough and fill the disk (putting us in the same position as if we

did not evict at all).

Since the behavior of distributed systems vary so drastically between each other,

it is rational to have each log server retain both debug logs and the JSON logs

until a user explicitly tells them to evict the data. In some systems, there may be

components which run for hours or days. This necessitates that their debug logs be at

least as equally long-lived. Ephemeral components (existing on the order of minutes,

seconds, or less) need only have their logs exist as long as they are relevant to the

user. Perhaps their impact on the system as a whole is relegated to other components

which share some temporal locality with them (e.g. components which existed shortly

before, at the same time as, or shortly after the ephemeral component). Or, perhaps

60

their computation has long-running implications which stretch until the end of the

system’s execution. It is impossible to know this at runtime without having significant

domain knowledge about the system under study, so it is reasonable that log servers

not evict data until told to do so.

5.3 Scalability of a User Client

We have established there exist log servers which parse debug logs and allow users

to download logs local to that server. Now we turn our attention to the scalability

of a user client requesting those downloads. The client performs queries upon debug

logs, pulling relevant information out of them. The relevance of this action to trou-

bleshooting a distributed system is apparent. We provide results for TLQ’s querying

mechanism (discussed in detail in Chapter 8.1), however the same concept may be

applied to many query languages and evaluation mechanisms.

The primary limit to scalability at the user client is the overhead of performing

queries. A query is resolved in three stages: fetch all needed data, evaluate query

expression(s), and return the result. Fetching involves contacting a log server and

downloading a log to the client’s working directory. Query evaluation time depends

on the query language and evaluation mechanism used. Fetching data and evaluating

the query upon that data are the two stages which act as the bottleneck to making

progress at the client. At a certain scale, queries become long-lived computations.

This is not unreasonable since running a query on very large data should be expected

to take a long time, however it may become inconvenient to the user to evaluate a

query at that scale. The user may instead opt to use command line tools or arbitrarily

reduce the size of their fetches to perform queries in chunks.

61

TABLE 5.2

USER CLIENT QUERY TIME.

Logs Total Size Fetch Time Total Query Time

1 100MB 3.54s 5.60s

10 1GB 35.79s 55.87s

100 10GB 385.54s 596.31s

5.3.1 Fetching and Evaluating Queried Data

Using the same data generated to highlight the performance limits of the log

server, we demonstrate the scale at which using a querying mechanism becomes

inconvenient. Table 5.2 shows the number of logs fetched by the user client, the time

taken to completely fetch the data, and the time taken to evaluate a query. We use

TLQ’s query language (called JX) further detailed in Chapter 7 to ask the question

of the logs fetched: In each log, how many error messages were recorded? We end

Table 5.2 at a scale of 100 logs. Fetching all 1, 000 logs from the log server (which

stores the intermediate result in memory) would exceed the amount of memory on

the user’s machine (32GB in our case).

We note that the number of logs is a less important factor than the size of each log

when evaluating queries. In Chapter 8.1 we demonstrate the JX language effectively

querying 1, 850 logs with a total size of 278.54MB. However, in this case, each of our

logs is 100MB in size. This relatively large log size puts a greater strain on the query

evaluation mechanism.

Waiting approximately 6 seconds for a query to evaluate on a log 100MB in size

may be quite reasonable for a user. However, we see that asking for multiple, large

logs can cause queries to take quite a long time to fully resolve. While this increase

62

in time is linear, it does not provide much of an interactive, snappy experience for

the user. If the user needs to query multiple large logs, they may be better served

using lower level utilities than full-blown query languages. However, the user may

lose useful functionality desired to do meaningful troubleshooting.

63

CHAPTER 6

LOG DISCOVERY AND LOG CUSTODY: THE FOUNDATION OF TLQ

So far we have demonstrated that troubleshooting a distributed system can be an

incredibly complex task. With the work on the capacity model, we showed it is rarely

feasible to expect a user to know the fine-grained interactions between their system

and the environment configuration of each machine used in the system. Because of

this lack of transparency, work can grind to a halt when a seemingly trivial detail

changes. To address this, there is a plethora of state-of-the-art log analysis tools,

debuggers, and visualization suites (many of which we noted in Chapter 2). However,

as we have alluded to previously, a user may be executing in an open distributed

system where the placement of their components are not known before runtime.

This makes the process of tracking debug logs almost as difficult as troubleshooting

the runtime issues these logs have recorded because the location of those logs are not

typically transparent to the user (and by association the troubleshooting tools they

are using).

To solve the transparency issue, we need a mechanism for log discovery to make

the existence of debug logs known to the user. Beyond that, we also need log custody

which empowers the mechanism providing log discovery to also take ownership of

debug logs and become the authoritative source of that data. In Chapter 5 we

evaluated the foundational actions of these mechanisms, now we introduce them

formally. TLQ (Troubleshooting via Log Query) is a framework designed to provide

both these services for troubleshooting open distributed systems.

TLQ consists of a querying client and a set of servers which track relevant debug

64

logs spread across an open distributed system. Through a series of examples, we

demonstrate how TLQ enables users to discover the locations of their system’s debug

logs and in turn use well-defined troubleshooting tools upon those logs in a distributed

fashion. Both of these tasks were previously impractical to ask of an open distributed

system without significant a priori knowledge. We also verify TLQ’s effectiveness by

way of a production system: a biodiversity scientific workflow. We note the potential

storage and performance overheads of TLQ compared to a centralized, closed system

approach [65].

6.1 Problem Introduction

As computational research on complex distributed systems has more rapidly be-

come commonplace, users have experienced growing pains. Scaling up computations

and deploying large-scale systems necessitates troubleshooting misbehaviors at scale,

especially considering some faulty behaviors may not present themselves when ex-

ecuting on a single machine or at a small scale. Compared to troubleshooting an

unexpected issue on their workstation, it can be much more difficult and intimidat-

ing to troubleshoot them in a large-scale distributed system. There exist plenty of

troubleshooting tools which can perform log analysis, make connections between dis-

parate components, and provide querying capability to databases which ingest the

various debug logs from the system. However, these tools are rendered useless if the

user is not made transparently aware where the debug output of each component

(each service, computational unit, etc.) of their system exists, how to make sense of

each log, and how each component may impact the execution of others.

To provide further complication, the user may be executing in an open distributed

system. We define an open distributed system as a set of computing resources whose

membership in a cluster, cloud, or grid may not be permanent, which are assigned

computations at runtime (i.e. the system and user do not know in advance which com-

65

putations will be scheduled where), and may consist of cross-domain resources (e.g.

resources coming from multiple cloud providers, campus clusters, and national-scale

infrastructures) which span independent organizational jurisdictions. It is common-

place for a user1 to have direct knowledge of only a single component of their system

which is user-facing, however the other components of their system (e.g. worker

processes, remote services, replica storage) do not need to have a fixed location at

runtime. Instead, it is up to the scheduler of the underlying cluster, cloud, or grid

to determine the placement of these computations. Between executions of a system

(and during its execution), the underlying resources may vary as machines are added

or removed from membership. In addition, a system may have active components

communicating across domains which are under different jurisdictions (e.g. running

and interacting concurrently on two clusters at different research institutions).

We have encountered a key obstacle preventing straightforward troubleshooting

of open distributed systems: the user must be notified where their components land

in an open system and be given a unique name which can be used to access the debug

output of those components. A contemporary state-of-the-art approach is to require

debug output be collected at some centralized, highly performant rendezvous point

which we have seen applied to tools using the Elastic Stack (formerly ELK Stack)

[68, 129, 142]. However, this approach is not ideal for open distributed systems since

it requires the user’s knowledge a priori what debug output will be relevant and only

applies for a single domain (whereas an open distributed system may be composed

of multiple domains). This state-of-the-art approach is fantastic for large, cohesive

organizations such as businesses or standalone clusters, however it falls short when

the system under test crosses barriers between domains (i.e. the system lives within

and between the jurisdictions of multiple organizations).

1We define users as researchers accessing distributed resources to set up their own distributed
systems. However, these difficulties are also applicable for system administrators, developers, or
other support assisting these users.

66

From this observation we have designed TLQ, a framework for log discovery and

log custody of open distributed systems. It addresses the need to provide the user

a name and location for their components and debug output, and it emphasizes

leaving debug output in place rather than collecting it all at a single, centralized

machine since that approach is at best infeasible and at worst impossible for open

distributed systems. TLQ’s architecture allows troubleshooting tools to be placed

atop its software stack to provide users the troubleshooting experience they expect

albeit in a distributed fashion. Broadly, TLQ’s architecture consists of two parts: a

user-end querying client and a set of log watch servers which live on the open system.

The user client submits calls to troubleshooting tools to be performed on logs tracked

by the log watch servers. We demonstrate open distributed system troubleshooting

of a biodiversity scientific workflow called Lifemapper. We also briefly discuss the

overhead of this distributed approach as it applies to the troubleshooting experience.

We conclude by providing three critical lessons learned about distributed systems

troubleshooting which became apparent after implementing this iteration of TLQ.

6.2 Troubleshooting as Distributed Querying

Our scientific workflow notional example in Chapter 1 highlights a few key insights

as to why troubleshooting distributed systems is so difficult:

• There are many logs located on many machines.

• Misbehaviors are not restricted to a single component.

• Often no single log gives all the context for misbehaviors.

In the notional example in Chapter 1 we assumed the user knew where their logs were

located (or perhaps they were explicitly transferred to a front-end machine for manual

troubleshooting). However, this is not always the case. The underlying components of

the system may know where their logs are located, but this information is probably

67

not transparent to the user. They may not know where their logs are located let

alone how to retrieve them, or perhaps it is too expensive to transfer all the logs to

a centralized node. Further, transferring to a centralized node may be impossible if

the system executes across multiple domains, each with their own jurisdiction (e.g.

a private cloud provider and a research institution’s cluster).

In the notional example from Chapter 1, the user had to read three different

types of logs: a workflow manager log, a worker log, and multiple task logs. Either

they or the tools they used had to understand the format of each log type in order to

comprehend the context each log presented toward finding the cause of a misbehavior

in their system. Further, each log only provided pieces of the cause of the misbehavior

until the user found the misbehaving task’s log. This becomes an issue of finding the

needle in the haystack as the scale of distributed systems continues to increase.

Each of these insights translate into underlying problems with troubleshooting

distributed systems as they continue to become the commonplace method for research

and industry computing: quantity of debug output scale, understanding relationships

between components, and discoverability of debug output. Each of these problems

can be addressed by providing a unique name for each log, advertising it to the user,

creating a more readily queryable set of metadata about each log, and applying the

user’s troubleshooting tools in a distributed matter which sends computation (i.e.

the query) to the data rather than the other way around. We introduce TLQ, a

system which keeps debug output in place (removing the need to transfer a large

degree of data to a centralized node), allows for relationships between components

to be more transparent (so it is easier for the user to discover these connections)

by parsing out metadata about each log, and tracks where debug logs are located

(leaving the user free to troubleshoot their system issues without having to directly

know which computations happened where).

68

6.2.1 Querying Logs in Place Across Domains

In TLQ, we implement a service on each node of the compute resource (i.e. ma-

chines in a cluster, cloud, or grid). This service is called a log watch server, and it is

informed which logs it should track by the various components of a distributed sys-

tem under study. In TLQ, each component is programatically wrapped by a simple

monitor script which tells the log watcher the names of the logs that component will

create. This same script also reports back to the host which submitted the compo-

nent (this is usually a front-end node of a cluster, cloud, or grid in our day-to-day

experience with users) to tell the user where it landed and how to query that log

in the future. The log watcher then periodically parses its tracked logs to draw out

metadata about each log and places it as a separate JSON document which acts in

part as a metalog of the environment of that component (the files, processes, and

environment variables in the log) and to summarize the high-level status information

about that component such as exit status and total runtime. This provides an at-

a-glance view of each component which helps lower the noise of the total debug log

output of a distributed system.

There are multiple log watch servers monitoring the distributed system’s logs,

each representing a fraction of the collective debug output of the whole distributed

system which can then be queried by the user’s choice of troubleshooting tools. This

is done through a user-end client which dispatches either a query on the servers’

tracked logs or a request to transfer a specific log for manual inspection. The set of

log watchers are discoverable entry points for an open system since their existence is

advertised to the user. Figure 6.1 demonstrates the architecture of TLQ in action.

69

Return
Log
Records

Query
Service
3b52

d24a: /var/log/a.log
7ab3: /tmp/svc/b.log
3b52: /etc/c.log

a.log b.logLog
ServerMeta

-logs

Local
Services

c.log

Local
ServicesRunning

Services

Log
ServerMeta

-logs

Querying Client Log
ServerMeta

-logs

Log
ServerMeta

-logs

(Detail of One Log Server)

Parser
AParser

AParser
C

Figure 6.1. TLQ system architecture. TLQ queries are either invocations of
a troubleshooting tool or a request for a particular log. Each log server
manages a set of parsers that consume local log files for key information

and export it to JSON documents to facilitate troubleshooting.

6.3 Implementation

The underlying troubleshooting system architecture is composed of four parts:

a log watch server, a set of log parsers, a querying client, and a monitor script

which communicates with the log watcher and user client. Refer to Figure 6.1 for an

expanded view of this architecture. The server is designed to provide minimal HTTP

communication capabilities. Its primary function is to monitor and parse logs it is told

to watch and store the parsed content as JSON documents. These documents contain

metadata about the raw logs they represent such as the exit status, the command

executed, the files accessed, etc. In addition, each log’s filename is transformed into

a universally unique ID (UUID) and placed into the server’s working directory when

possible (thus implementing log custody). This UUID is used to provide a URL

for that log and a URL corresponding to its parsed JSON document, giving each

70

log a unique name in the system. Two logs may have the same logical name (e.g.

debug.log), but the log is assigned a UUID and a URL to uniquely identify it even

when logical names may collide. This functionality makes it a discoverable, queryable

node in an open system.

Each TLQ log watch server uses parsers to periodically add new records to its

JSON documents. Each parser is designed to produce records for a specific log type

(e.g. ltrace-parser is responsible for parsing logs created by ltrace to extract the

processes, files, and environment variables of the component). The specific details

for each parser are largely unimportant to understanding the broader architecture.

We provide a set of parsers specific to the tools used in this work, but it is expected

other developers provide the log parsers for their own software the goal being the

developer knows best how to interpret their software’s logs. TLQ needs some way to

transform raw debug output into records, in order to give users a higher level view

of their components’ logging, and we have chosen to create parsers for that task.

The querying client provides the user the capability to use the troubleshooting

tools of their choice upon specific components across their system. In this work, we

demonstrate how grep can be used to troubleshoot an open distributed system. In

order to use these tools, the client must be made aware of which logs it can query.

The list of logs available to the client, represented as UUIDs, is accumulated by a

local lightweight server running alongside the client. A monitor script is used to

execute each component of the system, and it communicates with both its respective

log watch server (on whichever machine the component lands) and with the client-end

server to ensure both parties know the UUID for the component being monitored.

The monitor shell script writes to a file in the log watch server’s working directory.

Each line it writes describes a log the server should watch and includes the name of

the distributed system to which the log belongs, the absolute path to the log (which

may be user specified or a defined value by the component’s code), and the component

71

Return
Log
Contents

Query
Service
3b52

d24a: /var/log/a.log
7ab3: /tmp/svc/b.log
3b52: /etc/c.log

a.log b.log
Log

Server
c.log

User Client

Monitor
Process

Advertise Log
Existence

Submitter

Front-end
Machine

Distributed
Machine

Component

Figure 6.2. Monitor operation. Each component is wrapped by a monitor
script on submission. The monitor advertises the log created by the

component to its local log server and to a user client.

type(s) contained in the log. The server periodically checks this file, updates its list

of files to watch, and writes this list to a separate file which includes a unique ID

used to identify the debug file at the client-side. The monitor script waits for the

server to update this list with the IDs of the files the monitor told the server to

watch. The script then reports back to the client the system name, host and port

of the server, and relevant file IDs. The monitor then executes the command it

had wrapped, starting up a component of the system. Figure 6.2 demonstrates the

monitor in action.

6.4 Evaluation

We demonstrate the effectiveness of TLQ for facilitating open distributed system

troubleshooting by utilizing the popular tool grep to diagnose intermittent failures

72

encountered while executing the Lifemapper biodiversity workflow across two separate

administrative domains (in this case, two separate campus-scale clusters). Lifemap-

per is a biodiversity scientific workflow [114] executed using the Makeflow workflow

management system [127]. The Lifemapper project2 is designed to create a species

biodiversity map of the world. The workflow is an instance of this larger project

which takes an input dataset of georeferenced biological samples and correlates them

to certain environmental models.

The input dataset for Lifemapper contained some unexpected and invalid records.

Tasks which consumed this improper data would explicitly fail, leading to a segmen-

tation fault. This was a source of frustration while designing the workflow. We knew

before running TLQ that this issue existed, and we demonstrate that TLQ makes it

convenient to verify this known issue.

TLQ provides the log discovery mechanism and the capability to run grep at

each log watcher by way of the user client. We show that, at Lifemapper’s scale,

distributed queries with TLQ perform on par with the collect-and-query approach

utilized by centralized architectures. We further demonstrate, by way of model, the

scale at which distributed querying can outperform collect-and-query given certain

conditions.

Makeflows consist of a set of rules, like a Makefile in GNU Make. Each rule

contains a set of inputs, a set of expected outputs, and a command which utilizes

the inputs to create the outputs. Through these rules, Makeflow creates a directed

acyclic graph (DAG) of data dependencies which determine both the parallelism of

the workflow and whether the workflow is complete (i.e. when the final outputs are

created). Figure 6.3 show the DAG structure of Lifemapper at a small scale. The

Lifemapper workflow executed in this work consists of 1, 887 rules, and it has 655MB

of input data. It took approximately 45 minutes to complete the workflow from start

2Lifemapper project found at: https://lifemapper.ku.edu/

73

https://lifemapper.ku.edu/

Figure 6.3. Lifemapper structure. Squares represent files, and circles
represent processes. Processes are dependent upon input files and produce

output files. Its structure allows for a high degree of parallelism.

to finish.

We made use of the Work Queue master-worker framework to run the Makeflow

rules. Figure 1.1 from the notional example demonstrates how Makeflow and Work

Queue interoperate. A single master process accepts rules from Makeflow and sub-

mits them to connected workers as tasks. Makeflow rules and Work Queue tasks are

roughly equivalent definitions of work to be done. Each worker executes on a sepa-

rate machine from the master and transfers input and output data to and from the

master node. Each worker also has its own data cache to avoid unnecessary duplicate

transfers.

The worker processes were submitted as pilot jobs to the HTCondor batch system,

which scheduled the workers onto their respective machines. In all, the distributed

system set up to run Lifemapper consists of five types of components: the work-

flow management system, the master process, worker processes, the batch system

interface, and the actual computations of Lifemapper (the commands executed in

each Makeflow rule). This creates a hierarchy of communication which, at scale, can

74

become increasingly difficult to troubleshoot when issues arise. The workflow man-

agement system, master process, and batch system interface logs are all created at the

same node the user accesses, so TLQ does not need to discover and advertise these

logs to the user. The worker logs and traces of the tasks, however, do need TLQ’s

help to become transparent to the user. We used 15 workers to execute Lifemapper

(a reasonable scale given the ability of the master to feed work to its workers [66]).

Approximately two thirds of Lifemapper’s rules execute Java code (the other third

being Python). Throughout Lifemapper’s runtime, the system encountered intermit-

tent unhandled exceptions (java.util.NoSuchElementException) which led to a

number of rules producing incomplete output. We ran Lifemapper five times to con-

firm these failures were intermittent and not a baked-in failure due to the workflow’s

construction. These failures became apparent from the STDOUT captured by the Work

Queue master process (which captures forwarded console output from its workers).

From this output, we can then match the error to the command executed in

Makeflow’s log. From here, we look up that command in the collection of logs which

the various log watchers are tracking (provided to us by the monitor). We find it,

and through the TLQ client we query the relevant log using grep. Based on the error

(and unhandled exception) we would expect that a search for SIGSEGV would turn up

some useful results. From STDOUT to local higher-level logs to the raw debug logs, we

have found out why certain rules failed in Lifemapper. Indeed, we find that certain

rules in Lifemapper fail early (producing only partial output). We later learned this

failure was due to improper input data causing the Java program to reach an error

state. Multiple threads of each failed rule encountered segmentation faults due to

the unhandled exception:

75

TABLE 6.1

LIFEMAPPER QUERY ROUNDTRIP TIME.

Distributed Query Collect-and-Query

One Log 0.02s 2.45s

All Logs 10.30s 2.56s

11026 3.629026 --- SIGSEGV (Segmentation fault) ---

11041 0.412124 --- SIGSEGV (Segmentation fault) ---

11044 0.880959 --- SIGSEGV (Segmentation fault) ---

Table 6.1 briefly summarizes the time taken to perform queries using TLQ and

performing collect-and-query. In total, Lifemapper produced 144MB of log data

remotely. These were Work Queue worker logs and traces recorded from running

ltrace on each rule. This demonstrates the scale at which smaller workflows generate

log data (roughly 22% the size of the input dataset). We see that querying only one

log (to verify the Java exception resulting in a segfault) using TLQ outperforms the

collect-and-query approach since this second method requires the transfer of all logs

before queries can occur. However, given the scale of the log data, collect-and-query

performs better querying all logs once it has collected them than TLQ does querying

each log individually. This is due to the overhead of opening connections one-by-

one rather than transferring all the files en masse and performing queries locally.

What these results tell us is that the most common approach to troubleshooting (i.e.

asking questions of just one log at a time) provides a performance benefit compared

to the centralized collect-and-query approach. However, TLQ’s performance does not

scale as well as collect-and-query if the user needs to query each log. Conceptually,

76

querying all the logs via TLQ is akin to the difference between performing a SELECT *

query upon a single, local database and performing a SELECT * query upon multiple,

remote databases.

6.4.1 Distributed Queries at Scale

Lifemapper, while a real-world example of an open distributed system, does not

produce a large degree of log output data (measuring O(100)MB) to demonstrate the

performance of TLQ as compared to collect-and-query at larger scales. So, we model

and discuss the effects of distributed querying versus collect-and-query to elaborate

upon initial observations gleaned from TLQ in use. Specifically, we demonstrate the

(in)efficiency of data transfers compared to the amount of relevant data to be queried.

We also look at the impact upon system throughput at the collection node when all

logs are streamed to one location.

TLQ keeps logs in place, allowing queries to be performed at each log watch

server. Contemporary state-of-the-art architectures require collecting logs to a cen-

tralized node before queries can be performed. The names and locations of logs in

the centralized approach must be known before creation thus avoiding the log dis-

covery problem at the cost of flexibility. Figure 6.4 demonstrates the scale at which

benefits of querying logs in place rather than collecting them at a centralized node

become apparent. We can easily model the scalability of distributed queries against

the collect-and-query approach in a way which is fair to both methods. We make

the generous assumption that the network transfer speed is equivalent to the local

disk speed (which may be the case for a system running in a completely local net-

work such as a supercomputer). We also assume there is a small, fixed network

communication overhead to transferring data and to performing queries. Our final

assumption is that the query execution (regardless if it is done locally or distributed)

will only output either 1% or 10% of the total data queried since a user typically

77

 0

 2

 4

 6

 8

 10

 12

 0 100

 200

 300

 400

 500

T
im

e
E

la
ps

ed
 (

s)

Data Queried (MB)

Collect-and-Query
Distributed Query (10%)
Distributed Query (1%)

Figure 6.4. Cost of collecting and querying. All things being equal
(communication overhead, transfer speed, and local read speed) there is a

scale at which distributed queries are faster than the collect-and-query
approach used by centralized architectures.

investigates fairly specific error messages or oddities in their logs. Without this final

assumption, the distributed query time would match quite closely with the collect-

and-query time since both would roughly measure the time taken to transfer (collect)

and read (query) a file.

At small scale, the collect-and-query approach performs as well as distributed

queries. In fact, when the scale is less that 100MB of log data as was practically

the case with the Lifemapper workflow, the collect-and-query approach performs

better due avoiding the communication overhead of sending over the query to the log

watcher. However, as the scale continues to increase the benefit of only transferring

over the relevant parts of a log becomes apparent, and we see that this crossover in

performance occurs quite quickly. As stated previously, we assumed the best case

scenario to the benefit of both approaches. Should network performance falter due

to system load, both approaches would in turn suffer at the same rate. If local

78

 0

 200

 400

 600

 800

 1000

 0 500

 1000

 1500

 2000

 2500

 3000
T

hr
ou

gh
pu

t (
Jo

bs
/s

)

A
va

il
ab

le
 B

an
dw

id
th

 (
%

)

Incoming Log Data (MB)

Available Bandwidth
System Throughput

Figure 6.5. Effect of centralizing log collection. There is some scale at
which centrally collecting all logs degrades system throughput due to

unavailable bandwidth (i.e. the system spends so much time transmitting
log and output data that it cannot do anything else).

disk performance were to slow due to system load, the collect-and-query approach

would suffer most since all logs are queried locally. The same would be true for the

distributed query approach is a log watcher node’s disk was under heavy load.

Figure 6.5 demonstrates the effect centralizing the collection of log data has upon

the distributed system under study’s throughput (defined generally as jobs completed

per second). This highlights an observation about centralization in open distributed

systems: there is some scale at which collecting more and more data in one location

will bring forward progress of the system to a halt. In this case, we denote this as

system throughput (represented as jobs completed per second).

Recall that there is some maximum effective scale of a system called its capacity

[66], and adding log data transfers further erodes the total capacity of a system.

We see this at play when the system reaches its capacity, plateaus, and then begins

to decrease in throughput as the available bandwidth of the system decreases. We

79

can observe this effect from two perspectives: from the node collecting the logs and

from the nodes sending their logs to the centralized repository. If we centralize the

collection of logs to the front-end machine (typically the machine the user accesses),

Figure 6.5 demonstrates the degradation of new work being submitted from the front-

end machine to other nodes in the system. Since it will be spending so much time

collecting log data (along with any output data from the computations), the front-

end machine cannot submit more work. It is bogged down in file transfers which fill

up the bandwidth of the machine, preventing the dispatching of more work.

The converse is true when viewing Figure 6.5 from the perspective of individual

nodes interacting with the front-end (or some other specified collection node). The

system will still come to a halt because the nodes doing the heavy lifting (running

components and computations) cannot receive more work because they are spending

their time sending logs to a centralized node. Further, that centralized node’s band-

width will eventually be exceeded meaning the other machines will have to wait to

transmit their log data rather than perform more work.

A critical caveat which must be made clear for both these models is that they

assume centralized log collection is even possible in the first place. TLQ was designed,

from first principles, contrary to this assumption. Open distributed systems can

function much like the World Wide Web. They can be executed on tightly coupled,

highly optimized, high locality machines like supercomputers or an organization’s

data center (which do allow for centralization of logs quite well), or they can be loosely

federated, heterogeneous groups of machines out in the ether in which each group

is not aware of others’ existence unless those others’ locations have been advertised

(centralization is not possible here).

In the first case, TLQ is useful out of practicality. Leaving the logs in place and

advertising their location is one less step the user needs to worry about when setting

up their system, and when only investigating a small portion of the debug output

80

of a system TLQ provides some performance benefits at large scale. In the second

case, TLQ and architectures like it are a necessity. They provide a mechanism for

log discovery and log querying when centralization is not a practical possibility.

6.5 Three Lessons Learned

We learned three critical lessons about open distributed system troubleshooting

when implementing TLQ. These pertain to how the querying experience for dis-

tributed systems troubleshooting is often only partially satisfied by current tools,

how a component of a distributed system essentially provides a scope and context for

computations, and how the differing structure of logs makes it difficult to connect one

component to another explicitly (and introduces the need to write multiple parsers

for logs).

Current tools, as demonstrated with our use of grep, are typically used to investi-

gate one context at a time. This translates to one component or log in TLQ. However,

we have shown that there are relationships between components in distributed sys-

tems. These relationships can be uncovered and investigated with iterative queries

from the client. This would result in chaining tools together, performing successive

invocations of the same tool, etc.

Our definition of a component also ended up being quite different at the end of

this implementation of TLQ than it was from its outset. Thus far we have presented

a component as a service or computation which is an atomic definition of work in the

distributed system. It interacts with its runtime environment (i.e. files, processes, and

environment variables). It is a piece of the whole system which the user submits to

a compute resource. However, after implementing TLQ using this working definition

we learned this was not sufficient in describing a component. Really, a component in

a distributed system is a (hopefully) sane environment context in addition to being

the unit of work for a user. We figured this out after running into a problem: names

81

are hard, especially in a set of uncoordinated distributed components. We cannot

trust, even on the same machine, that component 1’s file /a/b/c is equivalent to

component 2’s file /a/b/c. We must treat all the environment used by a component

to be contained within the context of that component though that component may

interact with others.

We found a significant pain point to implementing TLQ was the necessity to write

a set of parsers able to read in multiple log formats, extract the uniquely defined

records from those logs, and then have the log watch server give each of those unique

records an ID. Addressing the previous lesson of how names are hard, it would be

preferable to have components name themselves in some statistically unique manner,

placing this name in its own log(s) front and center. Whenever its log(s) are read by

the log watcher, the server knows exactly who it is dealing with. Further, when one

component communicates with another, it should pass along its name which should

in turn be noted in the recipient’s log (e.g. “I communicated with worker ABC-123,

and it sent me the following message: ...”). This would make relationships between

components concrete rather than implied through data exploration as is done in TLQ.

Further, it allows for a straightforward implementation of query chaining as discussed

previously.

There would be no need for specialized parsing if logs shared a common, trans-

actional format. This format, possibly JSON due to its ubiquity, would capture

each recorded state change as a transaction listing as much information as is rele-

vant all on one line, with keys and values defined for the log watcher. Many logs

are already structured in a transactional way, so transforming existing components’

logging mechanisms to a standard, transactional format would be straightforward.

82

CHAPTER 7

QUERY MODELS

Having explored TLQ’s command line utility querying capability, we now expand

to applying a proper query language to TLQ. The JX language provides the capability

for the user client to fetch JSON metalogs from log servers and perform queries

directly upon those logs. Rather than work within the confines of already existing

troubleshooting tools and command line utilities, JX matches the format of the JSON

metalogs.

We chose to expand JX to include querying capabilities after trying various ex-

isting database management technologies. In particular, we adopted SQLite (SQL),

RethinkDB (NoSQL), and GraphQL (property graph traversal engine) during the

early stages of TLQ’s development. Each of these had issues which prevented their

wholesale adoption as the querying engine within TLQ. JX, which was developed

within the Cooperative Computing Lab along with Makeflow and Work Queue, was

more readily adopted because we could more readily implement any functionality

which we found missing from the other three querying engines.

7.1 SQLite

We first demonstrate SQLite’s relational database approach to querying data,

then demonstrate why it did not work for TLQ. We ask our database to find each

file matching the name of the shared filesystem (/disk/) which every failed task

accessed. This is done with two table joins in order to match tasks to files (a many-

to-many relationship). Relating this to TLQ’s data model (which represents each

83

component as a queryable node in a property graph), the properties are explicitly

identified by the user in the query in SELECT and USING statements. The links are

made apparent on JOIN statements. We receive a set of failed accesses which are

presented as column-delineated rows. We present a condensed representation of the

output received.

Which failed tasks accessed the /disk/ shared filesystem?

SELECT * FROM tasks LEFT JOIN tasksToFiles USING (taskid) \

LEFT JOIN files USING (fileid) WHERE tasks.failures = 1 \

AND files.name LIKE ’%/disk/%’;

taskid|...|fileid|procid|masterid| name |

72 |...| 307 | 315 | 1 |’/disk/’|

16 |...| 307 | 35 | 1 |’/disk/’|

...

While SQL is known to be incredibly performant [7, 122] even in distributed

applications, we found it was insufficient for TLQ as is. Knowing the schema of

any possible log type is impractical to realize. TLQ sidesteps this by having the

parsers de facto handle component log schema (which may change over time). Each

parsed metalog contains key metrics at the top level rather than following a static

schema. Further, the query presented demonstrates a glaring incompatibility between

TLQ and SQL: SELECT * is impractical to implement. There are two methods by

which we can approximate the intended use of such a powerful statement. First, we

can interpret SELECT * to mean, ”Query the sources I have been told exist.” This

is essentially how TLQ’s user client operates. We can only query log servers the

client knows exist. However, this fundamentally changes SQLite’s operation (and

radically changes the semantics of queries). We decided it would be preferable to

84

find a querying engine which more closely matched TLQ’s needs than attempt to

engineer SQL in ways it was not designed to handle.

The second method would be to approximate constraining the open system to

a closed system. Log servers which contained logs the client knows exist would be

periodically queried to send a copy of each log file (and the parsed metalog) to the

user client. SQLite would then perform queries upon this local, closed system rather

than out to the open system. However, this negates the key benefit of TLQ which is

to leave all debug logs in place, querying them only when needed. This idea was a

nonstarter given it went against the design of TLQ.

7.2 RethinkDB

RethinkDB’s ReQL querying language is based on JavaScript and has a functional

approach to querying data. It is worth noting it is more verbose than the SQL query

used in SQLite to find the same information. The general approach is the same,

however. Two table joins were performed to find the files which each failed task

accessed. In contrast to the SQL JOIN ... USING syntax, ReQL allows for a user

to specify an anonymous function which resolves the join clause. Similar to SQLite’s

approach in realizing TLQ’s data model, the properties are explicitly defined in the

user’s query within the filter calls and anonymous functions of the joins. The links

are made readily apparent in the innerJoin calls. This allows for more flexibility at

the cost of verbosity. We show the query asked of the RethinkDB instance.

85

Which files did each failed task access?

r.table(’tasks’).filter({failures: ’1’})

.innerJoin(r.table(’tasksToFiles’),

function (task, file) {

return task(’taskid’).eq(file(’taskid’)) })

.innerJoin(r.table(’files’),

function (taskFile, file) {

return taskFile(’right’)(’fileid’)

.eq(file(’fileid’)) }).zip()

[{ fileid: ’307’, id: ’dc70f638-...’,

left: { category:’default’, name:’/disk/’,

command:’ltrace-wrapper ./fscheck’, ...

right: { fileid:’307’, id:’067ba70a-...’,

procid:’330’, taskid:’77’ } },...

RethinkDB comes a step closer than SQLite in that it is schema-free. Its output

is also JSON, which matches the format of the metalogs stored at each log server.

Further, its JavaScript querying interface makes the querying experience extensible.

We can seemingly add the necessary functionality into ReQL as JavaScript functions.

From first impressions, this seems like a good fit for TLQ.

However, as with SQLite, we found RethinkDB insufficient. The primary reason

is the same as one from our experience with SQLite: it cannot effectively be applied

to an open system. Even though we would not have had to override a key piece of

the querying language (unlike with SELECT * in SQL), our options remain the same.

Either we would have to approximate an open system by collecting all the debug logs

locally or modify ReQL to resolve HTTP requests to known log servers. Modifying

ReQL would involve changing backend code.

86

Rather than querying a specific database instance (the r variable in the ReQL

query contains a reference to the database), ReQL would need to resolve individual

HTTP queries over an array of known log servers. This would change the foundational

paradigm of RethinkDB which is to centrally collect data and add it to its local

database instance. For this reason, the approach to create a local, closed system

from the current state of the open system would be the same as in SQLite and falls

short of TLQ’s needs for the same reason.

7.3 GraphQL

Unlike the previous two technologies, GraphQL is a property graph traversal

engine. It is designed to retrieve requested properties from graph nodes and, when

needed, follow the links at those nodes to other related nodes, performing the same

actions (repeating this process until either exhausting all outgoing links or until a

certain depth is achieved). GraphQL’s query structure is the most distinct from

SQLite and RethinkDB however it is about as verbose as the SQL query. There are

no tables in its implementation, only a raw JSON document.

A query in GraphQL is also expressed as JSON, but it establishes a hierarchy.

By this we mean the user specifies some entrypoint node (we present the case of a

Work Queue master as an entrypoint) and dictates a traversal path in their query.

In this example, the master has tasks it submits which in turn run on a worker

and use files. The query follows this same order of traversal as a hierarchy, and

the result received (also JSON) matches this hierarchical structure. We provide a

GraphQL query asking to retrieve each failed task’s taskid, the address of the

worker it ran on, and the name of the file accessed only if it matches the name of

our shared filesystem (/disk/). GraphQL’s approach to the conceptual data model

is different from SQLite and RethinkDB. In GraphQL, the user must explicitly state

which properties of each record they would like retrieved. The links are represented

87

hierarchically rather than through joins. This graph walk approach to querying more

closely matches the hierarchy of components in many distributed system applications.

Which failed tasks accessed the /disk/ shared filesystem?

query { master {

tasks(failures:0,conditional:">") {

taskid

worker { address }

files(name:"/disk/",conditional:"match") {

name }}}}

result {

"data":{ "master":{ "tasks":[{ "taskid":1,

"worker":[{ "address":"localhost:33172" }],

"files":[{ "name":"/disk/" }] }, ...

The hierarchical structure of GraphQL is an especially appealing feature relative

to the SQL and NoSQL approaches. The query informs the user of the control flow

of its resolution. In short, the form of the input directs the form of the output. We

initially settled upon GraphQL as TLQ’s querying engine, even combining it with

SQLite as a storage layer for performance gains. GraphQL’s query structure is both

reasonably human-readable and makes links between components a core part of the

query itself. SQL, however, offers better performance which is why it was used as

GraphQL’s record storage layer. It has been developed over a longer period and

has undergone many iterations of performance optimization for what it does. Table

7.1 succinctly demonstrates the difference in roundtrip query time between GraphQL

using SQL as a storage layer and GraphQL using JSON as a storage layer (the default

setup for GraphQL). The records queried in this example are stored locally with the

query executor.

88

TABLE 7.1

QUERY ROUNDTRIP TIME FOR SYNTHETIC DATA.

Number of Records GraphQL + SQLite GraphQL + JSON

100 0.007s 0.007s

1, 000 0.018s 0.019s

10, 000 0.134s 0.602s

100, 000 1.098s 198.643s

However, there were significant barriers to adopting GraphQL. Primarily, it was

unclear where the schema enforcement mechanisms and traversal engine of GraphQL

ended and where our user-defined query resolution mechanics began. The framework

is incredibly extensible by virtue that all resolution mechanisms are written not by

the GraphQL developers but by its users. In this case, we (as users of the GraphQL

engine) developed the resolution mechanisms for the iteration of TLQ which used

GraphQL. This, in turn, means the efficiency of query resolution is only as good as

the user can express. One virtue of this roll-your-own approach is that GraphQL can

be applied to an open system. The TLQ client is informed of which log servers exist.

This can be passed to GraphQL as a list of hosts to query, and since we are writing

the resolution mechanics it is straightforward to include HTTP requests as part of

each query evaluation. However, care must be taken here. GraphQL is meant to be

asynchronous, so these requests must be non-blocking.

Whereas SQLite and RethinkDB provided too much structure to the point of

constricting TLQ’s effectiveness, GraphQL did the opposite. It did not provide

enough constraint to the point it became unclear how to measure the performance

of GraphQL. Figuring out how much of the performance impact was due to our res-

89

olution mechanics and how much was due to GraphQL’s internal code became an

obtuse question which could not readily be answered. Due to this, GraphQL was not

adopted as TLQ’s query language.

7.4 JX

This leaves JX (JSON eXtended)1 [114]. It adds Python-style list comprehensions,

variable resolution, and handy functions which are all evaluated by the JX parser

into a resulting JSON document. JX also allows variable bindings to be introduced

via contexts, or objects consisting of key-value pairs, where the value is bound to a

variable with its name given by the key. Additionally, useful built-in functions (such

as string formatting) allow for JX expressions to become incredibly rich in expressive

power without being incomprehensible to a reader.

As JX is not a general-purpose programming language, it does not allow un-

bounded iteration, recursion, and other control flow structures. Rather, JX serves

as a compact representation of complicated and deeply-nested data structures. Since

a JX document has the same general form as the JSON structure it produces, it

is straightforward to incrementally build complicated expressions by generalizing a

JSON structure. We provide brief examples of JX functions applied to atomic values,

array, and objects. In the final example the object argument is first evaluated, then

the variables x, y, and z are bound for the duration of the call to eval().

1Documentation for JX can be found at: https://cctools.readthedocs.io/en/latest/jx/

or at https://ccl.cse.nd.edu.

90

https://cctools.readthedocs.io/en/latest/jx/
https://ccl.cse.nd.edu

1 + 1 == 3;

=> false

range(10);

=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

len([1, 2, 3]);

=> 3

[x*x for x in range(5)];

=> [0, 1, 4, 9, 16]

[{"pet": x, "count": len(x)} for x in ["dog", "cat", "bird"]];

=> [{"pet": "dog", "count": 3}, {"pet": "cat", "count": 3},

{"pet": "bird", "count": 4}]

{"type": worker, "logs": [template("/tmp/task{x}.log") for x in

range(5, 8)]};

=> {"type": "worker", "logs": ["/tmp/task5.log",

"/tmp/task6.log", "/tmp/task7.log"]}

eval(y == 16, {"x": 8, "y": x * 2, "z": "test_value");

=> true

Before adding the querying functionality necessary for TLQ, JX was used as

an intermediate representation for Makeflow scientific workflows. The condensed JX

representation would be expanded into a full JSON representation of a workflow which

could then be executed directly by Makeflow. The expressions, list comprehensions,

and built-in functions provided by JX made it possible to compactly represent quite

lengthy workflows. To more effectively make use of the parsed JSON metalogs at

each log server, we implemented querying capabilities for the JX language by way of

adding new built-in functions to the language.

Three basic JX functions opened up the possibility to perform distributed queries

91

upon linked data: fetch, select, and project. The fetch function is given a path

or URL as an argument, retrieves the document located at that path/URL, and

returns a parsed JX object of that document. The retrieved document at the URL

or local path must be valid JX or JSON to be successfully returned to the user. The

fetch function is necessary for retrieving documents across the open system as well

as retrieving documents from the links of an object currently being queried.

The select function takes a Boolean expression (of arbitrary length and number

of predicates) and a list of objects upon which the expression is evaluated. Each

object is used as a context for evaluating the Boolean expression, and only those

objects for which the expression evaluates as true are included in the returned list.

select thus serves to filter the list of objects based on a given predicate. The list

of objects is often resolved from a call (or calls) to fetch. A select call on a single

object must still be treated as a list of objects (simply of size one).

The project function takes an arbitrary JX expression and a list of objects. The

expression is evaluated using each context object in turn, where the expression can

use any of the fields from the context objects. This expression can be used to extract

values from the context objects, or perform more complicated transformations. The

resulting, evaluated JX objects are accumulated in a list of the same length as the

passed in list of contexts. As with select, project may operate on just a single

object so long as it is still encapsulated within a list. We provide some brief examples

of these functions in practice.

92

[fetch("doc.1.json"), fetch("doc.2.json"),

fetch("http://doc.3.json")];

=> [{"type": "ltrace", "failures": 2, "top_error": "SIGSEGV"}

{"type": "worker", "failures": 0, "top_error": ""},

{"type": "ltrace", "failures": 74, "top_error": "ENOSPC"}]

select(failures > 0,

[fetch("doc.1.json"), fetch("doc.2.json"),

fetch("http://doc.3.json")]);

=> [{"type": "ltrace", "failures": 2, "top_error": "SIGSEGV"},

{"type": "ltrace", "failures": 728, "top_error": "ENOSPC"}]

select(failures == 0 and type == "ltrace",

[fetch("doc.1.json"), fetch("doc.2.json"),

fetch("http://doc.3.json")]);

=> []

project(failures,

[fetch("doc.1.json"), fetch("doc.2.json"),

fetch("http://doc.3.json")]);

=> [2, 0, 74]

project({"type": type, "valx2": value * 2},

[fetch("doc.1.json"), fetch("doc.2.json"),

fetch("http://doc.3.json")]);

=> [{"type": "ltrace", "valx2": 20}, {"type": "worker",

"valx2": 0}, {"type": "ltrace", "valx2": 148}]

Beyond fetch, select, and project, we also implemented two additional helper

functions for JX’s querying capabilities: schema and like. The schema function

takes as input a JX object and returns an object which contains a key-value pair of

93

each key of the input object and its data type (e.g. “exit status”: “integer”). The

like function is used to perform a regular expression match to a string similar to

SQL’s LIKE. It returns true if a match was found, false otherwise. We provide brief

examples of schema and like:

schema(fetch("doc.1.json"))

=> [{"type": "string", "failures": "integer",

"top_error": "string"}]

like("potato", "tomato")

=> false

like("*SIG*", project(top_error, [fetch("doc.1.json)])[0])

=> true

This simple, transparent parsing and expression evaluation provided a lower bar-

rier to entry than modifying the other technologies used previously. The querying

functions implemented in JX were, for the most part, purely additive. The existing

evaluation mechanics did not have to be modified, rather new cases were added to

them. New functions were added to the host of JX’s built-in helper mechanisms

rather than modifying existing ones to fit TLQ’s use case. Fetching data via HTTP

was included to allow JX queries to pull data from machines in an open system.

Selecting and projecting functions were included to perform data transformations

inspired by the foundational theory behind SQL. With these three functions, JX was

extended to perform distributed queries.

Adding the required functionality to JX was more straightforward than it would

have been for SQLite and RethinkDB. Instead of having to radically alter the backend

of an established technology, we could simply plug in our newly created mechanisms

to the existing JX parser so they would be recognized when a user submitted a

query to the TLQ client. However, unlike GraphQL, the evaluation mechanism was

94

already in place and well understood. It can be effectively measured, and its results

are predictable. The added querying functionality interacted with this transparent

evaluation mechanism whereas in GraphQL the evaluation was entirely user-defined,

and capturing the resolution in the GraphQL backend was not feasible.

With three critical functions (fetch, select, and project), JX provides the nec-

essary mechanisms to retrieve relevant debug log data which live in an open system,

perform transformations upon them, and output data to the user in a digestible man-

ner. The additional functions schema and like provide quality-of-life improvements

which make JX more convenient to use as a querying language. We demonstrate JX

in action in Chapter 9. The result of implementing querying for TLQ in JX is a

simple yet powerful querying mechanism for open distributed systems.

95

CHAPTER 8

TLQ’S WEB INSPIRED APPROACH

Implementing log discovery and log custody were critical for enabling the use of

existing tools in an open distributed system. With log discovery enabled, we are

able to figure out where debug logs exist. Log custody provides a way for ephemeral

components’ debug output to exist after that component’s lifetime. These combined

allow us to use TLQ to run troubleshooting tools on these logs spread out across the

open system under study. However, they are only parts of the whole functionality

TLQ provides.

8.1 Problem Introduction

In Chapter 6, we noted in some key lessons learned that it was not possible to truly

take advantage of the relationships between components with only log discovery and

custody. They provide mechanisms for inspecting and retrieving debug output, but

they do not give us the full breadth of exploration which would make troubleshooting

in an open system convenient. It would be preferable if we could follow the relation-

ships (i.e. the links) between components which interacted in the system. To this

point, that information is contained within the JSON metalogs for each component,

but TLQ has no mechanism to take advantage of these.

We implemented JX at the user client in TLQ to address this previously missed

opportunity. In addition, we iterated over the log discovery and custody mechanisms,

making them more effective. We also made each parser more full-featured. Each one

produces not only top-level metadata, but they also convert each line of the debug

96

log being parsed into a JSON representation (addressing the uniform log format

issue in Chapter 6). Further, we modified Makeflow and Work Queue to explicitly

record their own UUID in their debug log and record the UUIDs of components they

interact with at runtime. This again addresses a key lesson learned from Chapter 6.

The implemented JX querying capabilities are inspired by the structure of the World

Wide Web (the most large-scale contemporary open distributed system humanity has

created). Indeed, the architecture of the web can be mapped to TLQ’s architecture

quite readily, demonstrating how key fundamental aspects of the web can be applied

to TLQ’s use case.

Through TLQ, we provide mechanisms for log discovery (how to find debug logs),

log custody (how to access those logs), and a rich querying experience for linked data

(one log references another) akin to the World Wide Web. To reiterate: log servers

advertise the existence and location of components and their debug output directly

to the user, giving them a unique URL for each log created by the system. A log

server persists on each machine in the cluster, cloud, or grid, dedicated to monitoring

components it is told about. In addition, they take custody of the logs created by

components. If the server has the proper permissions, it will take direct possession of

the log. The given path in the component’s command line string to is replaced with

the unique file name (i.e. [UUID].log) in the server’s working directory. If it does

not, the server periodically copies over updates to a version of the log in its working

directory.

Logs tracked by TLQ are periodically parsed, and the results are stored as JSON.

These JSON documents can then be queried using the JX language, providing a

single interface for all logs. The querying possible with JX allows TLQ to provide

a web approach to open systems troubleshooting. By this we mean JX queries can

traverse links within one document to other documents, even if they are located on

different machines. As the query is resolved, it will fetch and evaluate along relevant

97

Web
Server

Web
Server

Search
Engine

Web Browser

Web
Server

Web
Server

?

Hypertext
Document

Hypertext
Document

Hypertext
Document

Hypertext
Document

Hypertext
Document

Log
Server

Log
Server

Catalog
Server

TLQ User Client

Log
Server

Log
Server

?

JSON
Metalog

JSON
Metalog

JSON
Metalog

JSON
Metalog

JSON
Metalog

Figure 8.1. Web architecture and TLQ querying architecture. Finding a
web document: directly access its URL or ask somebody who knows how to

find it (like a search engine). Finding a TLQ JSON metalog: directly
access its URL or ask a catalog server which knows about active log
servers. Both documents and metalogs may contain links to others.

links (i.e. perform a graph walk), until a final list of JSON objects is returned as the

fully evaluated result. This is accomplished by TLQ’s assigning of unique URLs to

every log advertised to log servers.

8.2 A Web Inspired Approach

The web is, at its core, an open distributed system. It is a massive, decentralized

network of components (sites, services, etc.) and HTML documents addressable by

unique names (URLs). So long as we know a component’s name, or can find its name,

98

we are able to traverse the web. TLQ is designed to explore open distributed systems

the same way. Debug logs are given unique names, and a user can request those logs

or query them by name to troubleshoot their system.

The top diagram of Figure 8.1 shows a simplified architecture of the World Wide

Web. Using a client (e.g. a browser) to access a hypertext document on the web

requires that we either know the name for that document (its URL) or have somebody

we can ask who may know its name (like a search engine). Once we have the URL,

we then access the document via its home server. Within a hypertext document are

links to other documents (perhaps hosted on other servers across the world). Our

browser can be redirected to these other documents because we know their names

from the links (their URLs).

We follow a similar approach with TLQ. Each log is parsed at its local log server

into a JSON metalog which contains metadata about the component which the log

represents as well as JSONified representations of each line in the log. The JX

language can then be used to query these metalogs. The bottom diagram of Figure 8.1

shows how TLQ emulates the architecture of the World Wide Web. JSON metalogs

are linked data and can be queried individually or iteratively by following the links

contained within a document. A user can directly access a metalog via its URL, or

it can ask a catalog server for a list of active log servers. As log servers run, they

periodically push a heartbeat to a publicly known catalog server to advertise their

existence. The client can ask individual log servers for a list of the logs they are

watching, returned as a list of URLs. Once a metalog is retrieved (via the fetch JX

function), its links can be followed by subsequent calls to fetch.

8.3 Log Record Data Model

Each TLQ log server periodically parses the logs it watches in order to produce

records which are stored locally as JSON metalogs. Each record follows a common

99

data model, no matter what type of component the record represents (such as a data

replica node, a traced computational process, or a workflow manager). Each record

has a type, a unique ID (in our case a URL), a set of properties (stored as key-value

pairs or lists of key-value pairs), and a set of links (a set of two key-value pairs each).

The record’s type corresponds to the kind of component the record represents.

The URL is generated by the monitor script from a UUID and its own address, after

which it informs its local log server a log with a given UUID and URL now exists. This

UUID is used as a unique identifier to establish links to other records. The properties

are key-value pairs which can correspond to state information about the component

such as total runtime, exit code, resources consumed, and component-specific debug

metrics. Links represent the relationships a record has to other records. They are

composed of the linked record’s type as well as its URL. Properties and links cannot

be removed once detected since they may be relevant for troubleshooting. We present

two examples of TLQ’s data model format: a batch job and a file.

record {

type: batch_job, url: "http://...",

jobID: 8672,

command: "run.exe",

...,

links: [{type: batch_system, url: "http://..."},

{type: submitter, url: "http://..."},

{type: process, url: "http://..."}]

}

100

record {

type: file, url: "http://server/log.json",

path: "/path/to/file.txt",

size: 10424, lastAccess: 177283,

...,

links: [{type: directory,url: "http://..."},

{type: user, url: "http://..."},

{type: user, url: "http://..."}]

}

TLQ’s data model is similar to (RDF) [87]. Links in TLQ JSON metalogs can

be thought of as relationships between RDF resources. However, there is no concept

of a triplestore (which is the typical data structure for storing RDF records). All

properties and links for a record are contained directly within that record rather

than being separate, linked records as in triplestores.

This data model is also similar to JSON-LD [73, 121]. JSON-LD has document

types called contexts which are like TLQ’s component types. These map to pre-

defined schema linked by URL to a document in JSON-LD whereas TLQ’s parsers

essentially create the schema of the component types. IDs in JSON-LD are URLs like

in TLQ as well. However, the context schema applied to TLQ would be redundant

information since we also need parsers at each log server. These parsers define the

schema at runtime, and they may change over time to address alterations to a log’s

format (whereas JSON-LD context documents as proper schema should not). We

chose to use JX without pre-defined schema (as in JSON-LD) as it was a more

straightforward approach which mapped better to the ever-changing nature of open

systems. Other frameworks and data models (though they may map well to the

problem, such as JSON-LD) were not as straightforward to implement.

101

8.3.1 Query Model

The main approach of TLQ is to keep all logs in place at the point of creation,

performing queries when possible. A query in TLQ is either a distributed invocation

of a command line tool on a log (i.e. a traditional troubleshooting utility) or a JX

query on a JSON metalog (or set of metalogs). Rather than trying to transform

an open distributed system to a closed one (an incredibly difficult problem with

diminishing returns), we focused on leveraging basic information necessary to have

machines in an open system communicate: names and a method to contact each

other. Once a component has a unique name (a UUID) and a means of accessing it

(a URL), a user can then submit queries directly to the URL which is serviced by a

log server. This means we treat troubleshooting open systems as a set of distributed

queries. The TLQ approach enables a user to keep the tools they like so long as they

can be invoked remotely on the logs.

8.4 Implementation

As was introduced in Chapter 6, the TLQ architecture is composed of four parts:

a log server, a set of log parsers, a user querying client, and a monitor script which

advertises debug output to a log server and reports back to the client where that log

ended up. Refer back to Figure 6.1 to see how these parts interoperate. The general

structure of these parts remain the same, however we add new querying capabilities

at the user client.

The user client provides the capability to use traditional troubleshooting tools

of a user’s choice upon logs (and metalogs) stored across different log servers. We

demonstrated how grep can be used to troubleshoot an open distributed system [65].

Before being able to use a troubleshooting tool, the client must have available logs

advertised to it. This list of logs, represented by unique URLs, is accumulated by

102

a minimal HTTP server running within the client which accepts messages from the

monitor script advertising a log has been accepted by a log server. In addition to

sending queries out to log servers, the client can also execute JX expressions. Using

the functions defined previously (fetch, select, and project), a user can chain

together powerful JX expressions to extract highly specific and interesting data from

the JSON metalogs across different log servers. We demonstrate this directly on two

different systems under study in Chapter 9.

The monitor script lands on a machine by a work scheduler and is in charge of

advertising a log’s existence and executing a given command. The monitor is given a

home address and port (the location of the user client), the working directory of the

log server (this location is known a priori by the user or administrator who initialized

the log server), the name and type of each log created by the command, and finally

the command to be executed. It then attempts to replace any occurrence of the

given log names in the command string with a generated UUID for that log. The

log server is informed by the monitor via HTTP the log names, log types, command

string, UUID, and whether the log was able to be replaced in the command string.

The monitor terminates before the command is executed if no log server is found.

Otherwise, the command is then invoked, starting up a component of the system.

We used the Makeflow workflow management system and the Work Queue master-

worker framework in our evaluation of TLQ. Makeflow and Work Queue interoperate

similarly to the layout shown in the initial notional example in Figure 1.1. While each

component (the workflow management system, the master process, the workers, and

individual tasks) interacted to varying degrees, these interactions were not explicitly

captured in the debug output of these components. This led to it being impossible

to concretely establish a link between two components. Makeflow, the Work Queue

master, and the Work Queue worker code were altered to look up the local TLQ log

server and retrieve the URL for their respective logs. The first time one of these

103

components interacts with another, they advertise their TLQ URL and request the

other’s URL in return. These URLs are then recorded in the respective components’

debug logs, thus explicitly linking two components together.

8.4.1 Server Requests

A log server can receive a number of requests from clients. It handles each request

over HTTP. The most basic of these is to send back raw logs and JSON metalogs to

the client. For this functionality, TLQ provides a means to transparently advertise

the location of all logs in an open system and allow for their retrieval. This alone is

useful for open systems.

In addition, a user can submit arbitrary command line queries to a log server. A

command line query is an invocation of a command line tool. This allows for a user

to bring along their tool(s) of choice rather than being locked into a domain-specific

language for TLQ. For example, grep can be called upon logs across log servers [65].

JX query requests are designed to operate specifically on JSON metalogs. JX

queries are evaluated at the client, however some JX functions may interact with

log servers to retrieve data. The fetch function, for example, directly accesses a

log server to pull JSON documents to the client, which the log server provides for

on-demand access.

TLQ log servers also have a user-centric data retention policy. A user can send a

request to a log server to have it delete a log. Upon receiving this request, the server

will attempt to remove both the raw log and JSON metalog. Unless overridden by

an administrator, log servers will hold all logs unless told otherwise by a client. This

also extends between invocations of the log server. If a new server is configured to

use the same working directory as a defunct log server, it will read through the log

deposits manifest and take ownership of any logs in that directory.

104

8.5 Lessons Learned About Log Design

Having fully described the architecture of TLQ, we return to one of the lessons

learned in Chapter 6: creating specialized parsers for each type of debug log was a

tedious process. The metadata a parser pulls out of a log is informed by some domain

knowledge. The person writing the parser must understand the format of the log, the

semantics of relevant lines, and which pieces of metadata are important and able to

be found or derived. This is not always straightforward, especially considering how

diverse different log formats can be.

One change to debug logs which would make parsers less tedious to write would

be establishing a transactional format. By this, we mean each line of the debug log

contains a complete record of a particular event. This may include data such as a

timestamp, a human-readable status report, all components involved in the event, etc.

Since this is not enforced by TLQ, a log format which contains the relevant context

for an event across multiple lines of debug output would require domain knowledge by

the parser writer to put all those pieces together. Instead, a transactional approach

would allow the parser writer to focus on which events (and by extension particular,

individual lines) are relevant for metadata reporting, lowering the barrier to entry for

users writing new parsers.

Related to adopting transactional logs is establishing a more universal log format.

There exist many popular formats for debug logs already such as JSON and XML.

TLQ parses each log into JSON to establish this universality. JX can directly query,

so making all debug logs JSON directly benefits the user when troubleshooting. If

each debug log were formatted in JSON at runtime, there would be no need for

specialized parsers. Instead, the raw logs would be directly queryable.

The logs produced my Makeflow and Work Queue used by TLQ approach these

two benefits. Each line contains a timestamp, the source of the event being logged,

and a human-readable message relating to that event. They are nearly transactional,

105

however some events such as tracking changes in a Work Queue task’s status, some-

times stretch across multiple lines of the log. Additionally, their nearly transactional

nature makes them very straightforward to transform into JSON. Altering both Make-

flow and Work Queue to output JSON debug logs rather than their current format

would be fairly approachable since most events’ contexts are currently formatted for

one line of debug output. Changing all types of logs involved in a system to JSON

would involve more work, akin to implementing the parsers, and would require the

requisite domain knowledge.

A final benefit to log design would be making links between components explicit.

If a log does not provide explicit reporting of a component interaction, it may be

missed by the parser. Or worse, there may not be enough information to make

that connection, meaning that information is irretrievable. We altered Makeflow and

Work Queue processes to report their TLQ URLs when communicating with each

other. This makes the linking between each component easy to recognize for parsers

(or for direct querying if the log is already JSON) since the type of the interacting

component and how to query it are directly provided by the log. No additional

investigation needs to be done by the user to find related components.

8.6 Conclusions on the Design of TLQ

We presented TLQ (Troubleshooting via Log Query), an architecture for trou-

bleshooting open distributed systems. This is made possible through a web approach

which allows queries to follow links from one debug log to another, which may span

across the machines used by the system. We demonstrated through notional example

why troubleshooting distributed systems is so difficult in Chapter 1 and have now

shown how the TLQ architecture addresses the inherent complexities of them.

With TLQ we have demonstrated the capability to effectively troubleshoot open

distributed systems where the membership of machines is not constant, the placement

106

of work is unknown a priori, and resources from multiple independent jurisdictions

may be utilized. By using a web approach where logs are addressable via URL and

have links within them to other logs (potentially on other machines), we are able to

traverse all logs in a system. This is, at best, impractical with a centralized approach.

At worst, it is impossible. TLQ makes this not only possible, but feasible within the

complexities inherent to open distributed systems.

107

CHAPTER 9

CASE STUDIES OF TLQ

Having defined the problem space for open distributed systems troubleshooting,

the corpus of related work, a concrete example of a distributed system problem in

action, the performance of key mechanisms needed to resolve the problem space, and

the facets of TLQ’s architecture, we conclude with two case studies of TLQ in ac-

tion providing log discovery, log custody, and a web approach to querying related

components of a system. The first case study presents a common user headache:

uncovering misbehaviors when scaling an application from serial to distributed oper-

ation. The second case study demonstrates the usage of JX in depth to troubleshoot

the previously uncovered issue in the Lifemapper biodiversity workflow.

9.1 POV-Ray

Scaling an application from a serial program to a distributed system is often a

time-intensive activity. Unforeseen behaviors and errors can crop up when transform-

ing a task typically ran in serial to one which runs in parallel. Further, we typically

begin interacting with machines we have no means to physically inspect once we

switch from a serial mode of operation to a distributed system. We demonstrate

how TLQ can be helpful in making transparent the misbehaviors that makes them-

selves known due to scaling up an application, allowing the user to more thoroughly

investigate any issues.

POV-Ray is a ray-tracing program which takes a description of a scene (via a

domain-specific language) and performs a realistic rendering of that scene. A scene

108

Figure 9.1. Rendered POV-Ray frame.

can be composed of multiple frames to create a video, and the markup language

is used to give POV-Ray directions how to manipulate the scene between frames.

Figure 9.1 shows a single rendered frame of a video of a Rubik’s Cube performing

rotations (as if attempting to solve itself).

When executed serially, each frame is rendered in order one-by-one. However,

each frame can be rendered independently; POV-Ray has a description of each frame

in the scene via the scene description. We can also render an arbitrarily long video

by having frames be repeated, but this requires duplicate renderings (added work).

POV-Ray is an embarassingly parallel (also called pleasingly parallel) application.

There are no dependencies between each frame render which means it should closely

follow the Gustafson-Barsis Law [38] as discussed in Chapter 3. It should experience

greater and greater speedup as more computing resources are provided to POV-Ray.

The ideal scenario would be to scale up a serial implementation of a ray-tracing

pipeline to a massively parallel pipeline which can run all frame renders at once.

Depending on the scale, this may overwhelm the machines in the cluster, cloud, or

grid. So, as a caveat, we should aim to scale up POV-Ray to as large a scale as the

109

underlying distributed system can handle, submitting a reasonable number of frame

renders in parallel. We demonstrate how TLQ can assist in troubleshooting issues

that come up as a result of scaling up a previously serial application to a distributed

system.

Our initial serial configuration for a POV-Ray video rendering pipeline was quite

simple. A script was written to take a few key input options: the input scene defi-

nition, the video to be output, the number of frames, the height of each frame, and

the width of each frame. POV-Ray was then called to render each frame in sequence.

This was the most time consuming portion of the work. Finally, a video stitching all

frames together was rendered using the ffmpeg program.

Each frame took approximately 35 seconds to render via CPU. Rendering a minute

long video took 600 frames. Rendering a more interesting five minute video took 3, 000

frames. It quickly becomes obvious running this application in series is an incredibly

inefficient use of time. It would be preferable to run the rendering process in parallel

until we are ready to combine all the frames into a video.

9.2 Scaling Up to Parallel Work

To scale up this pipeline, we used the HTCondor batch job system. A job in

HTCondor is like a Makeflow rule or Work Queue task. It is a definition of work

to be done. A job definition includes required inputs, expected outputs, and the

command to run. In addition, a job includes additional metadata such as resource

specifications and requirements for the machine which will eventually run the job.

This additional information ensures only machines with adequate hardware and en-

vironment configurations will execute the job.

These job definitions are communicated to a central manager which plays the

role of matchmaker. It will determine which machines are able to complete the

work described by the job and inform the submitter how to connect to one such

110

machine. The submitter and the executor (both daemon processes running on their

respective machines) spawn a connection handling process to begin communication

with each other. Once this connection is established, the job definition and inputs

are transferred to the machine running the job, the job is executed, and outputs are

pushed back to the submitter. Figure 9.2 demonstrates this architecture.

Machine A

Submitter

TransferConn.
Handler

Machine B

Executor

Conn.
Handler

Send
Job

Send
Job

Central
Matchmaker

Advertise
Job

Match
Requirements

Figure 9.2. HTCondor architecture. Submitter advertises jobs to the
matchmaker. Matchmaker matches job requirements to available machines.

Both submitter and executor spin off connection handlers for transfers.

Many jobs can be submitted at once, allowing a scale up the parallelism in the

rendering pipeline to as large as HTCondor will allow (since POV-Ray is a pleasingly

parallel application). In the serial script, we give each frame its own HTCondor job

definition. Instead of executing each frame render locally, we submit its job definition,

letting HTCondor handle it from there. This submission is non-blocking, allowing

submission of all frame renders without having to explicitly wait on any results to

come back. Once all jobs are submitted, we wait for all jobs to complete (i.e. all

111

frames rendered). Once all jobs are complete, ffmpeg is used to create the video

locally.

An HTCondor job is an example of an ephemeral component. Once the job

is completed, its working directory is cleaned up (including its debug log unless

explicitly defined as an expected output). TLQ can help keep track of all these

ephemeral components. It can be set up to help troubleshoot issues that crop up with

this new, scaled up job submission script. For each job definition, we can specify a

certain set of required machines. HTCondor’s matchmaker will only connect the jobs

to those machines (or will have the jobs wait until one of those machines is available).

We can set up TLQ’s log servers on each of those specified machines, ensuring each

job’s debug log will be captured.

We initially used 10 TLQ log servers (thus 10 machines) when testing the scale

up. Even at this seemingly small scale, we uncovered an issue thanks to TLQ. POV-

Ray had an incomplete specification of its jobs. There was an implicit input file

(WRC-RubiksCube.inc) which was uncovered within the debug logs of each attempted

job. This is an example of a misconfiguration failure. The scene description includes

this input file, but HTCondor and the submit script were never told about it. So,

when the jobs began to execute remotely, POV-Ray failed almost immediately on

each job. It could not provide even a partial result without that input file. We show

the debug log lines which correspond to this implicit input file.

POV-Ray Debug Log’s Helpful Output

Possible Parse Error: Cannot find file ’WRC-RubiksCube.inc’.

File: rubiks1920.pov Line: 54

#include

Parse Error: Cannot open include file WRC-RubiksCube.inc.

112

At the scale of this application (3, 000 jobs), it would have been overkill to bring

all 3, 000 debug logs back to the submit node. Instead, with TLQ, we kept all logs in

place and retrieved only a single one for analysis. Because POV-Ray’s debug log is

meant to be human-readable, a brief inspection of the log was all that was necessary

to uncover the root cause of the failure: this implicit input file needs to be explicitly

stated in the job description for HTCondor.

9.3 Incorporating Persistent Resources

One aspect of HTCondor which can be improved is persistence of resources. Each

job submitted to HTCondor is provided resources once the job lands on the executing

machine. After the job is complete, those resources are then released back to the

executing machine. This would not be a problem if we were the only ones wanting

access to this pool of resources. However, HTCondor’s resource pool is somewhat

competitive. It is first come, first served. On top of this, each user is given a priority

to ensure fairness. If you have been using a large quantity of resources in the recent

past, the penalty to your priority will be more significant. After all, the HTCondor

pool is for everyone.

Submitting a large enough quantity of jobs can cause HTCondor to slow down

how quickly jobs are placed on machines due to priority being affected. Essentially,

rendering a large enough number of frames in a short period of time will cause a wait

in a queue before successfully submitting more. To mitigate this, we can use Work

Queue as a way to hold on to a set of resources and reuse them until we are ready

to release them. Each Work Queue worker process we submit is much more long-

lived than the ephemeral POV-Ray jobs, and they are able to run the render jobs

in the same way as HTCondor. In essence, Work Queue creates a private cluster of

resources where each worker is submitted as a job to HTCondor. Once these workers

land on machines, they hold the resources for the POV-Ray frame renders.

113

Another benefit of using Work Queue is that we can more accurately track what

all is happening when a job runs, its resources used, etc. These metrics can be

retrieved from worker logs via TLQ’s JX querying mechanism and TLQ’s ability

to use command line tools remotely. If we were not using TLQ, we would have to

wait until each worker ends before being given its debug log (assuming we had even

specified that we wanted that debug log back in the HTCondor job definition). This

also assumes we knew exactly where the workers landed and where their respective

working directories were located. Without TLQ, we can only solve the first problem

by asking the Work Queue master process.

However, with TLQ we can check in on a log at runtime. This is particularly useful

for somewhat long-lived components (like Work Queue workers) to extremely long-

lived components (like system administration tools which are always on so long as

the machine has power). We demonstrate three interesting queries which help gauge

the status of the set of workers as they run which before TLQ was an inconvenient

task to accomplish at best and impossible at worst.

The first query helps answer a foundational question when operating in an open

system: where is everything located? In this case, we care primarily about the

placement of Work Queue workers. We can also make this query a bit more helpful

by also checking how many failures each worker had experienced so far (since the

system was still rendering frames at query time). The second query demonstrates

a very simple metadata operation which can be retrieved after parsing a log: a

component’s uptime. The final query uses the capability of TLQ to run command

line utilities. From the first query we saw one worker in particular had many failures.

A followup using grep narrowed down the failures were caused by a lack of storage at

the worker. This accounted for all failures at that worker, verified using wc to count

each individual match captured.

114

Query 1: Where are my workers, and have they had task failures?

project({"host": ip + ’:’ + port, "failures": failures}, x

for x in [fetch(y) for y in project(url,

select(type == "work_queue_worker",

project(links, project(work_queue_master,

[fetch("http://log.server.1:11855/jx/db7914e...")])

)[0]))]);

=>

[{"host": "worker.host.1:9001", "failures": 0},

{"host": "worker.host.2:9001", "failures": 138},

{"host": "worker.host.3:9124", "failures": 0}, ...]

Query 2: How long (in seconds) has a given worker been active?

project(uptime, [fetch("https://log.server.2:11855/jx/...")]);

=>

[3479]

Query 3: How many disk storage errors occurred at a given worker?

$ query https://worker.host.2:11855/jx/79c6b06f-fb6f-4d29-95...

> grep -E "not enough disk space"|"Failed to put file" \

79c6b06f-fb6f-4d29-95bc-c4c4e897c1e3.json | wc -l

=>

138

9.4 Lifemapper

We revisit the Lifemapper biodiversity scientific workflow as the second case study

demonstrating TLQ in action. This execution produced different quantities of data

115

Makeflow
log

WQ
Master

log

WQ
Worker
log x 30

Task log
(ltrace) x

1,887

Figure 9.3. Lifemapper link structure. Makeflow and the Work Queue
master directly interact, thus know each other’s URL. The master and
workers advertise their URLs to each other. A task does not know it is

being executed by Work Queue. Only the worker can create an outbound
link to the task’s log. Each log references itself.

(by virtue of running longer) than that introduced in Chapter 6, however the same

issue made itself known. Lifemapper was run using the Makeflow workflow manage-

ment system, which in turn used the Work Queue master-worker framework as its

execution engine. Workers were scheduled using the HTCondor batch system while

Makeflow and the master process executed at a user-facing head node. Figure 6.3

shows a condensed representation of Lifemapper’s structure.

In total, Lifemapper had 1, 887 tasks and had an initial dataset size of 655MB.

The tasks themselves consisted of either Java programs or Pythons scripts. Each task

was executed by the ltrace tracing program, providing a low-level debug log for each

task. A total of 30 Work Queue workers were provided to execute Lifemapper tasks,

executing across 7 machines. The workflow manager and the Work Queue master

executed together on a machine, for a total of 8 in the system. It was executed in 14

minutes and 27 seconds, ending in failure due to multiple Java runtime errors. These

errors induced segmentation faults in the child processes of the faulty tasks. Even at a

(relatively) small scale such as Lifemapper, a user would have to comb through nearly

2, 000 logs if they wanted to get a sense of what went on in the system, assuming

they could even find all the logs themselves.

Figure 9.3 shows the relationships between logs which were tracked using TLQ.

Makeflow and the Work Queue Master, although different components, shared the

116

Front-End Machine

Remote Machine

Monitor
Script

Work Queue
Worker

TLQ
Client

Log
Server Task

ltrace

Advertise
Log

Advertise
Log

Execute

Execute

Execute

Figure 9.4. TLQ interactions in a Work Queue worker. The worker
executes a task from the master. The task is wrapped by the monitor which

advertises the task’s log(s). The task command is executed via ltrace.

same log since they are co-located. They are obviously bi-directionally linked since

they know of each other’s existence implicitly. Each worker connected to the master

and advertised its TLQ URL. The master, in return, sent the workers its URL. This

creates a bi-directional link. However, each ltrace task did not have awareness that

it was executing in a Work Queue worker sandbox. Only the worker knew it was

executing a task, and each worker grabbed the URL of each task (from the task’s

description provided by the monitor script) before forking and executing it. This

resulted in a link made from the worker to the task, but the task did not have

enough context to make this link bi-directional. Refer back to Figure 1.1 for how

tasks are assigned to workers. Figure 9.4 shows how TLQ interacts with a task’s

execution at a Work Queue worker process.

117

9.4.1 Interesting Troubleshooting Questions

To demonstrate the querying effectiveness of JX upon the JSON metalogs, we

provide examples of interesting troubleshooting questions. The question is trans-

formed into a JX query which produces a fully evaluated JSON result. The results

have been truncated for space considerations.

We can use JX to perform regular expression lookups in a particular log. Using

the like function, we can do a grep-like search for alerts of a segfault in a given log.

Combined with the built-in len function, we end up with a count of all instances

of a segfault message in the log, a total of thirteen. Many of the Lifemapper tasks

executing Java programs spawn a number of child processes which reported failure

due to an array lookup error. This resulted in segmentation faults for each child

process at runtime, and the query verifies that.

Query 1: In a log, how many segmentation faults occurred in child processes?

len(

select(

like(".*SIGSEGV.*", message),

project(messages,

[fetch("http://log.server:11855/jx/ffffd2c5-25f2...")])[0]

));

=>

13

We can also use like to perform a comparison between two tasks’ PATH environ-

ment variables. Misconfigurations of the computing environment are often the cause

of failures in distributed systems [104, 139]. When scaling up computations to a new

set of computing resources, modifications to the environment are often necessary.

A query like this can be used to sanity check that the environment is configured

118

correctly across the different machines used by the system. The like JX function

returns a Boolean value, and it compares the value of the PATH key within the traced

environment variables of two separate tasks (grabbed using two invocations of the

project function which in turn each call fetch on the selected logs).

Query 2: Is PATH the same for these two tasks?

like(

project(environment["PATH"],

[fetch("http://log.server.1:11855/jx/a0a5bff7-f3bb...")])[0],

project(environment["PATH"],

[fetch("http://log.server.2:11855/jx/a217dc04-c8f7...")])[0]

);

=>

true

JX queries can not only perform direct queries upon JSON data. They can also

be used to traverse linked data, enabling a web-like approach to exploring debug

output. From the user-facing Makeflow debug log, we can reach each Work Queue

worker which ran tasks for Lifemapper. Each link is a JSON object with the keys

type and url. If we only wanted to investigate tasks which ran on workers from a

specific machine, we specify the machine name in the like function and compare it

to the URL of each worker link. After fetching each worker metalog, we can traverse

each link of type “ltrace” to retrieve the task traces. Once fetched, we project the

list of accessed files for each task.

119

Query 3: From workers on a given machine, which files were used by tasks?

project(files,

[fetch(x) for log in

[project(url, select(type == "ltrace", y))

for y in project(links,

[fetch(z)

for z in project(url,

select(type == "work_queue_worker" and

like(".*log.server.2.*", url),

project(links, project(makeflow,

[fetch("http://log.server.1:11855/jx/a3683...")]

))[0]))])] for x in log]));

=>

[["/usr/lib64/python2.7/site.so", ...],

["/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.265...",

"/usr/lib/jvm/java-1.8.0-openjdk-1.8.0.265..."],

...]

We finally demonstrate the richness of JX as a query language with a fairly com-

plex query. We want to determine the commands and URLs of tasks which ran

quickly (less than two seconds) across all workers which did work for Lifemapper.

This means traversing multiple sets of links as in query 3. The first links, for the

workers, come from Makeflow’s log. From there, we grab the links to each task (with

type “ltrace” since each task was executed with the ltrace tool). We retrieve each

task log, check that its runtime was less than two seconds, and if so return an object

with that task’s command and URL for further inspection later.

120

Query 4: For all workers in the workflow, which tasks took less than 2s?

project({"command": command, "url": url},

select(runtime < 2, select(type == "ltrace",

[fetch(x) for log in

[project(url,

select(type == "ltrace", y))

for y in project(links,

[fetch(z)

for z in project(url,

select(type == "work_queue_worker",

project(links,

project(makeflow,

[fetch("http://log.server.1:11855/jx/a36...")]

))[0]))])] for x in log])));

=>

[{"command":"python ./tools/process_points.py points/...",

"url":"http://log.server.2:11855/jx/4c1adeb8-b85f-45cb..."},

{"command":"java -cp ./tools/maxent.jar density.Project ...",

"url":"http://log.server.3:11855/jx/7090c478-ad00..."},

...]

9.5 TLQ Performance with Lifemapper

We use Lifemapper to briefly demonstrate relevant performance metrics as they

apply directly TLQ. We provide details on the performance of command line queries

first introduced in Chapter 6, and we investigate the overhead of executing JX queries.

We compare the performance of centrally collecting all logs then querying and keeping

121

 0

 2000

 4000

 6000

 8000

 10000

 12000

 1 1
0

 1
00

 1
000

 1
000

0

T
im

e
E

la
ps

ed
 (

s)

Collecting
Fetching (100%)

Fetching (50%)
Fetching (5%)

 0

 50

 100

 150

 200

 250

 1 1
0

 1
00

 1
000

 1
000

0

Collecting
Fetching (100%)

Fetching (50%)
Fetching (5%)

 0

 50

 100

 150

 200

 250

 1 10

 100

 1000

 10000

T
im

e
E

la
ps

ed
 (

s)

Data Queried (MB)

Collecting
Fetching (100%)

Fetching (50%)
Fetching (5%)

 0

 50

 100

 150

 200

 250

 1 10

 100

 1000

 10000

Data Queried (MB)

Collecting
Fetching (100%)

Fetching (50%)
Fetching (5%)

Figure 9.5. Cost of collecting compared to distributed querying. There is a
scale at which it is more performant to leave logs in place rather than

centralizing them. Network transfer speed (top) and query latency
(bottom) affect command line queries for TLQ at different data scales.

all logs distributed, performing distributed queries.

9.5.1 Command Line Queries via TLQ

Centralizing a distributed system’s debug log output has costs. Centralized sys-

tems like the Elastic Stack place all relevant data in a rendezvous node. All queries

can then be executed at a single site since all data (linked or otherwise) live in the

same location. As already discussed, open distributed systems make this centralizing

procedure either infeasible or outright impossible. This also has overheads, primar-

ily in moving data around. In contrast to the centralized method, data movement

must be done on demand in an open system since we probably do not know all the

locations from which we might prefetch data. This incurs an overhead at the time of

122

query whereas centralizing has an overhead at the time of collection. If we assume

we can collect all the debug output of an open system to a rendezvous node, we can

implement a centralized collection model of troubleshooting.

The top of Figure 9.5 shows the difference in cost between centrally collecting

and keeping debug output in place performing distributed command line queries

upon them (as in TLQ) with differing network speeds. We executed grep remotely

across generated logs (each 100MB in size) hosted on 10 TLQ log servers compared

to collecting all logs in a working directory and running grep locally [65].

9.5.2 Scalability of Command Line Queries

Often we do not receive the totality of a debug log (or logs) as the output of a

command line query. We present the results of grep fetching 5%, 50%, and 100% of

the debug logs queried to demonstrate the varying degree of overhead the distributed

approach incurs compared to the collecting method. The top row of the figure shows

the effect of network transfer speeds, from left to right, of 1MB/s and 100MB/s.

The bottom row demonstrates the effect of query latency (the time taken to execute

grep on each log server) on roundtrip execution time. This latency can be due to

server handling and waiting, authentication overheads, etc. From left to right we

have latency of 10s and 0.1s (representing 10MB/s and 1GB/s respectively). With

the distributed query approach, we prevent transferring the entire log in the case

when only a portion is relevant.

As the size of debug output increases, there will come a tipping point where

collecting it all becomes slower than keeping logs in place. Considering only network

overhead (the top row), we notice both cases of collecting only partial output of the

full logs yields more performant querying than the centralized collecting method.

The worst case scenario for a query would be it is so general the whole debug log

is retrieved. This is shown in the 100% fetching line. In this worst case, we see it

123

matches in the slower network case and only slightly exceeds in the fast case the time

taken to collect all logs and perform a local grep.

We notice that with high enough query latency, TLQ is actually more expensive

since we may have to wait on log servers to process a user’s request. The time taken

for TLQ to perform distributed grep calls and report back was slower than directly

downloading the data for local operations. However, in the more realistic low latency

scenario we see a similar behavior to network overhead: when only a partial amount

of each log is returned TLQ’s approach is more performant.

We note there is a limit to the scalability of the collection approach since the

incoming log data may saturate the network. This will leave some debug data tem-

porarily unqueryable. Figure 6.5, previously introduced, demonstrates this effect.

9.5.3 Comparing Centralized and Distributed JX Queries

Using the JX querying functionality also displays this cutoff point where dis-

tributed queries are more costly than the centralized collection approach. Figure

9.6 shows the increasing costs of each of the four example queries from Lifemapper

presented previously. Each query’s cost is broken into three parts: the minimum cost

if queries were evaluated at each log server and only the final output was retrieved

(query), the current TLQ method where logs are fetched on demand (fetch), and the

centralized approach (collect). Queries 1 and 2 fetched less than 1MB of data since

the ltrace logs from Lifemapper are individually quite small. Query 3 fetched the

Makeflow and Work Queue master debug log (which in this case is the same file for

both). This single log is relatively large compared to the worker logs and ltrace logs.

Query 4 traverses the Makeflow and master log, all worker logs, and each task trace.

It fetches all the data in the system. This is equivalent in cost to the centralized

approach in terms of data transferred. Table 9.1 summarizes the number of fetches

and data transferred per example query.

124

TABLE 9.1

CENTRALIZED AND DISTRIBUTED QUERY METRICS.

Query Fetches Centralized Data (MB) Distributed Data (MB)

Q1 1 278.54MB 0.03MB

Q2 2 278.54MB 0.18MB

Q3 349 278.54MB 106.22MB

Q4 1,850 278.54MB 278.54MB

In the case of Lifemapper, the benefit of keeping the logs in place exceeds the cost

of centralizing only when running either redundant or successive queries. At worst,

a single distributed query (such as query 4) costs only as much as centralization

(purely in terms of data transferred) so long as it is not redundant (i.e. does not

grab the same document multiple times). Query 5 in Figure 9.6 demonstrates this

redundancy case. It is identical in output to query 4 however it redundantly asks

for worker logs multiple times (an inefficiency which may arise due to poor query

construction). Running multiple queries will also add up over time.

Eventually there will be a tipping point in cost, as shown when considering the

combined costs of queries 1-4. Each of the examples ask different questions, as

we would expect a user to do when exploring their data. Over time, with enough

interesting questions, it may be that centralizing the logs would be less costly. This

assumes, of course, that collecting all the logs to one machine is possible or feasible.

At best there is a certain scale where the volume of logs will overwhelm the collection

node. At worst, the collection node will not know about certain logs’ existence nor

have a means to find out about them unlike in TLQ.

All four example queries were executed with both the collection approach and

125

Figure 9.6. Data transferred per query. The four example queries’ data
transferred are presented with the calculated minimum cost if only the final
output was returned (query), the measured distributed cost (fetch), and the

measured centralized cost (collect). Query 4 is equivalent in size to
centralizing the logs. Query 5 is identical to query 4 except it redundantly

grabs worker logs (costing more than centralizing).

the distributed web approach. The JX evaluation process was the same for both, so

each have the same number of fetches even though the centralized approach fetched

locally. Centralizing logs creates an upfront cost which, in the case of Lifemapper,

only pays off if the user performs many queries or runs many-hop queries as shown in

example query 4. As a note, the Makeflow and Work Queue master debug log alone

was 57.22MB in size.

While command line queries are extrinsic of TLQ and can thus be compared head-

to-head with the collection approach, JX is more tightly coupled with the operation

of TLQ. Much of the time spent executing a JX query is in the internal evaluation

mechanics of JX’s parser, which would be incurred in both the distributed and col-

lection approaches equally since it would operate upon the same data and equivalent

expressions. We present the performance of JX in TLQ with a few key metrics: the

data usage across all log servers as compared to raw log size, the total parsing time

126

spent across all servers during Lifemapper’s execution, and the roundtrip query time

for the example queries given previously.

Among the eight log servers, 346MB were consumed for the parsers, raw logs, and

JSON metalogs. 116MB of that space were the raw debug logs for the roughly 1, 800

tasks, workers, Makeflow, and the Work Queue master. The size of the parsers is

negligible, 40KB. The remaining 229MB comprised the parsed JSON metalogs. We

expect the JSON to be larger than the raw log since it not only contains every line of

debug into a JSON array, but it also provides metadata about the component (such

as its type, its links, the environment variables and files accessed, etc.).

Across the eight log servers, there was a total of 4, 224 seconds of parsing time.

Recall, TLQ log servers parse logs whenever there is a change from when it last parsed

the log. On log creation, the first parse is invoked. The log is then periodically re-

parsed after that. On average, 528 seconds of parsing occurred at each log server

while Lifemapper ran in 867 seconds. No log server spent more time parsing than it

took to execute Lifemapper.

We found that simple queries (with zero or one hop to exterior links) took fractions

of a second to complete in Lifemapper. The second query (Is PATH the same for these

two tasks?) took only 0.27 seconds to complete. It is a simple lookup and also

performs fetches of two quite small documents, so this makes sense. Query one (In a

particular log, how many segmentation faults occurred in child processes?) took even

shorter at 0.15 seconds. This is a single fetch with a regular expression evaluation

upon a JSON document 48KB in size. The final query (For all workers which ran

tasks for the workflow, which tasks took less than 2s?), on the other hand, is more

complex than the first two. In its sentential form, we can see it is asking a question

with multiple steps. In all, it took 162.79 seconds to complete. It required the

traversing of every component in the system: Makeflow + the Work Queue master,

each worker, and every task. All 229MB of JSON metalogs were fetched by JX, read

127

into memory, then evaluated upon. In systems which produce much larger logs (e.g.

have particularly verbose and long-lived components), we would expect to see that

queries on the whole take longer while following the trends shown in Lifemapper.

9.6 Key Usage of TLQ

We have demonstrated TLQ can be used not only in fully realized production

systems; it can also be used when initially scaling up a serial workload. We took

POV-Ray from an inefficient sequential pipeline to a highly parallel pipeline, and

TLQ helped uncover an issue along the way. Our experience with POV-Ray highlights

a few key uses for TLQ: decluttering a user’s workspace on a head node (the machine

they first log in to in a cluster, cloud, or grid), using command line tools directly on

components in an open system, and queries uncovering interesting data for subsequent

investigation.

One of the most tangible benefits of using TLQ is keeping debug logs at their

machine of origin. POV-Ray debug logs are not particularly long since each frame

render job is quite short. However, bringing 3, 000 logs to a user’s workspace can

lead to an instance of a needle in a haystack problem.

We demonstrated why using TLQ can help with the overall network overhead of

the system and can reduce total roundtrip time for some queries with Lifemapper

while with POV-Ray we highlighted how useful TLQ is for decluttering the workspace.

In the example of the missing implicit input file, bringing all 3, 000 logs to the user

would have been redundant. They all said the same thing with the same error

message. We only needed to request back one to get that information.

Imagine, instead, that every log was different. Each one contained (mostly) unique

information. Collecting all of these locally and leaving it up to the user to figure out

which ones are relevant would be entirely unhelpful. It is likely they would experience

information overload. Instead, with TLQ, the user chooses which information to see

128

and to what extent (whether running a query or retrieving the whole log).

We also demonstrated how TLQ can make effective use of already existing utilities.

It provides an architecture upon which traditionally serial tools can be used effectively

in an open system. The third query for POV-Ray could have used JX’s like and

len functions to arrive at the same answer.

But, we can also rely on proven, decades-old utilities like grep and wc which have

additional built-in functionality outside the scope of a querying language. In addition,

we can make use of the UNIX philosophy of pipelining multiple tools together to

create a desired output. TLQ makes it possible to quickly piece together a UNIX

style tool chain and execute it on arbitrary logs in an open system, something which

was not possible before purely due to the user not knowing where their debug logs

were located.

Essentially, a user is not locked in to the TLQ ecosystem. By design, TLQ does

not provide its own version of popular tools. It is designed to allow the execution of

these programs on top of its architecture. If the user wants to continue running the

utilities with which they are familiar, but they now find themselves executing their

workloads in an open system, TLQ empowers them to continue using what they know

rather than forcing them to adopt something brand new.

Finally, we showed the importance of exploration in the troubleshooting process.

A user typically does not know (and may not care) what information a debug log

contains, its formatting, etc. until there is a problem. TLQ helps a user uncover

the structure and data of their logs iteratively. The first POV-Ray query uncovered

the set of Work Queue workers and pointed out which ones had failed tasks. The

third POV-Ray query followed up on this uncovered information with a more specific

question. The fourth Lifemapper query was the represents a multi-step question,

the culmination of a user exploring what data exists in their logs. It is an iterative

process which allows the user to explore the content of their system’s debug output

129

at their own pace.

The queries we shown for Lifemapper were complete, and by virtue of their com-

pleteness the final two were quite complex. However, TLQ allows a user to build up

to this. They do not have to know exactly what information they want to find from

the get-go. Further, they do not have to query all the components of the system if

they do not want to do so. The user can pick and choose at their own speed, itera-

tively building more complex and specific queries until they find the information they

need. This sense of exploring the debug data rather than collecting it and having to

know its structure a priori is a boon for users just getting started with TLQ.

130

CHAPTER 10

CONCLUSION

The inherent complexities of distributed systems make them notoriously difficult

to effectively troubleshoot. Misbehaviors can occur in remote places in the system

and ripple outward. They can also be obscured by various levels of indirection as

components interact. Many tools exist to help make this process more tractable,

however they lose their effectiveness when applied to open distributed systems. These

systems have three critical features which make them more complex than general

distributed systems: transient membership, on-demand placement, and resources

spanning independent domains.

10.1 Summary of Key Contributions

We have introduced TLQ (Troubleshooting via Log Query) as an architecture

for troubleshooting these open systems. It provides crucial functionality which al-

lows users to effectively investigate misbehaviors in their system(s). These are log

discovery, log custody, and web-inspired querying. TLQ makes the troubleshooting

experience of open systems more convenient (and in some cases makes it possible

where before it was not).

Not all problems encountered in an open system result in outright failure. We

demonstrated firsthand two classes of distributed system problems (misconfigura-

tions and performance issues) through the lens of the capacity resource provisioning

metric [66]. While both of these classes can end in the termination of a system, we

saw when experienced in Work Queue this was not the case. Implementing a basic

131

troubleshooting dashboard for this specific problem led to further examination of how

distributed systems are structured and why troubleshooting them is so difficult.

When first implementing TLQ, we determined there were two key pieces of func-

tionality which were necessary to overcome the additional complexities of troubleshoot-

ing an open system: log discovery and log custody. A user is not typically aware of

where all the components in their system live. This is especially true of open sys-

tems where it may be impossible to transparently make the location of components

known to the user without help. Log discovery in TLQ surmounts this barrier. Each

component which lands on a machine being monitored by TLQ can advertise its exis-

tence to the local log server. A unique ID will be assigned to this component, acting

as a name for the component’s log. This name is then communicated to the user,

advertising to them its existence. Now that a user knows what components exist and

where, they are able to retrieve that component’s debug log or operate upon it with

command line tools remotely via TLQ.

But, some component are ephemeral. They exist for only a short time. After they

complete, the underlying resource provisioning mechanisms are liable to remove all

traces of its existence. Log custody enables each log server to take ownership of all

logs they are told exist. Rather than logs existing in a sandbox which will be cleaned

up upon a component’s completion, they can be redirected to the log server’s working

directory. If this is not possible, it will periodically copy the log. Users are allowed to

take their time analyzing or requesting individual logs since they are retained at the

log servers until explicitly told otherwise. Not only does TLQ keep track and own

each log. It also parses each to a standard format (in this case JSON). Not every tool

can handle heterogeneous formats, so TLQ makes it possible to reasonably query any

debug log using one format.

Finally, TLQ provides a querying experience designed from the beginning to op-

erate in an open system. We discussed various existing database technologies and

132

a graph traversal engine, showing how each fell short of TLQ’s use case. It became

clear that the structure of an open distributed system is much like the World Wide

Web. Components interact with each other, creating links which can be traversed

to find interesting connections in the system which may have been obfuscated to the

user. The JX language was expanded to give it the necessary functionality to per-

form queries which traverse these links. The additions to JX allow powerful queries

to be constructed from a few basic operations: fetch, select, and project. Other

built-in JX functions provide a breadth of the types of questions a user may want to

ask of their debug output, and we have demonstrated examples of those interesting

questions in practice as JX queries.

While the primary research outcome of our work creating TLQ was verifying its

capability to accurately help troubleshoot open systems, we also explored certain

performance considerations for using TLQ. These included roundtrip querying times,

network data transfer overhead, cases where the performance of log servers and the

user client degrade, and the choice of querying language. We demonstrated that at

scale TLQ’s architecture is more performant for its use case than its contemporaries

which collect debug output to a centralized node (or set of nodes). Only relevant

output is transferred to the user upon request, eliminating the need for expensive

data transfers when possible.

All together, TLQ’s mechanisms and its architecture allow us to answer signifi-

cant questions about open distributed systems. When my distributed system does

something unexpected, where do I look to find out why? Which pieces of the system

are likely culprits for unexpected behavior? How can I access those, if I can at all?

How do I make sense of their debug output? At the most fundamental level, TLQ

provides transparency where the system may be obscured, gives direct access to de-

bug output, and provides a rich querying experience designed particularly for open

distributed systems.

133

10.2 Potential for Future Work

The creation of an interactive web interface with a visualization showing the rela-

tionship(s) between each component as a property graph would be a useful next step

in TLQ’s development. This would go a long way toward increasing user understand-

ing of how their system is structured. In addition, this web interface would act as a

user client through which a user could submit both JX and command line queries.

The command line interface does not provide functionality like autoformatting and

providing tips on how to construct JX queries. This is made practical with a web-

based graphical user interface. Novel research could be conducted on the effectiveness

of visualizations to help a user comprehend how their system behaves.

The second lesson learned presented in Chapter 6 focused on the lack of standard-

ization in log structure across components. The parsers provided with TLQ went a

long way to making a standardized, queryable interface for JX. However, the cre-

ation of individualized parsers for each type of debug log was a tedious task. Each

parser had a significant piece of functionality in common: each transformed all lines

of the original log into a JSON representation. The primary customization came

from figuring out what metadata was necessary to pull out of the log to put at the

top level (for ease of querying) and how to find the links each component’s debug log

made to other components. It may be possible to more intelligently find these links,

and it may not be necessary to tediously pull out metadata if each line of debug

output (as JSON) is made readily queryable. It is worth investigating whether a sin-

gle, generic parser is sufficient to provide a useful, queryable set of debug output for

TLQ. Further, it is worth investigating policies for parsing logs (such as on-demand

when a component is queried, periodically, or with event-based mechanisms such as

component completion).

Finally, a usability study of TLQ could prove interesting. Considering long-term

system level tools like Recon [76] for supercomputers operate on debug logs which

134

accumulate data for months at a time, it would be useful to assess TLQ’s capability

to handle similar situations. Our work thus far has focused on using TLQ on a per-

user basis. The user sets up the log servers (whether by hand or submitting them to

a scheduler), modifies their system to use the monitor script on each component, and

starts up the user client. However, TLQ used in a system administration capacity

would accommodate potentially many simultaneous users. Both the scale of data

and of users would be investigated to see the limits of TLQ.

10.3 Parting Thoughts

We live in a society exquisitely dependent on science and technology and yet have

cleverly arranged things so that almost no one understands science and technology.

- Carl Sagan

Working on TLQ has provided a key insight to the nature of contemporary dis-

tributed systems. We have seen more layers of indirection being placed on components

such as using a submitter process to send off function invocations to a staging node

in a cloud which then forwards those computations to serverless computing resources

which then operate according to their own rules. Compounding this is an increase

in things which are becoming distributed. This includes adding edge devices and

Internet of Things devices to the cloud, allowing them to be harnessed as low-power,

expendable resources. Consumer workstations and laptops can be plugged in to clus-

ter resources, supplementing the usual server rack machines used in academic and

industry compute resources creating wildly heterogeneous systems. Cloud computing

is becoming the norm for how services are provided. Things which were once tra-

ditionally hosted in a centralized or closed fashion have begun being served in open

distributed systems.

TLQ provides a way to peel back the obfuscation these trends have placed over

135

components. However, it is not necessarily the only way this can be done. We imagine

it will become a greater priority for users of distributed systems to better understand

how their systems behave and why. This is becoming harder to easily provide. TLQ

shows an example of how an open distributed system can be made transparent, how

it can be investigated, and why it is important that users be able to interact with

their systems to better understand how they work.

136

BIBLIOGRAPHY

1. J. Abraham, P. Brazier, A. Chebotko, J. Navarro, and A. Piazza. Distributed
storage and querying techniques for a semantic web of scientific workflow prove-
nance. In 2010 IEEE International Conference on Services Computing, pages
178–185. IEEE, 2010.

2. D. Abramson, M. N. Dinh, D. Kurniawan, B. Moench, and L. DeRose. Data
centric highly parallel debugging. In Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing, pages 119–129. ACM,
2010.

3. V. Agrawal, D. Kotia, K. Moshirian, and M. Kim. Log-based cloud moni-
toring system for openstack. In 2018 IEEE Fourth International Conference on
Big Data Computing Service and Applications (BigDataService), pages 276–281.
IEEE, 2018.

4. G. Antoniou, E. Franconi, and F. Van Harmelen. Introduction to semantic web
ontology languages. In Reasoning web, pages 1–21. Springer, 2005.

5. K. Argyraki, P. Maniatis, D. Cheriton, and S. Shenker. Providing packet obit-
uaries. In ACM HotNets-III, 2004.

6. D. C. Arnold, D. H. Ahn, B. R. De Supinski, G. L. Lee, B. P. Miller, and
M. Schulz. Stack trace analysis for large scale debugging. In 2007 IEEE In-
ternational Parallel and Distributed Processing Symposium, pages 1–10. IEEE,
2007.

7. D. F. Bacon, N. Bales, N. Bruno, B. F. Cooper, A. Dickinson, A. Fikes,
C. Fraser, A. Gubarev, M. Joshi, E. Kogan, et al. Spanner: Becoming a sql
system. In Proceedings of the 2017 ACM International Conference on Manage-
ment of Data, pages 331–343. ACM, 2017.

8. J. Bailey, F. Bry, T. Furche, and S. Schaffert. Web and semantic web query
languages: A survey. In Reasoning Web, pages 35–133. Springer, 2005.

9. S. M. Balle, B. R. Brett, C.-P. Chen, and D. LaFrance-Linden. Extending
a traditional debugger to debug massively parallel applications. Journal of
Parallel and Distributed Computing, 64(5):617–628, 2004.

137

10. P. Bates. Distributed debugging tools for heterogeneous distributed systems.
In [1988] Proceedings. The 8th International Conference on Distributed, pages
308–315. IEEE, 1988.

11. P. C. Bates and J. C. Wileden. High-level debugging of distributed systems:
The behavioral abstraction approach. Journal of Systems and Software, 3(4):
255–264, 1983.

12. A. Beguelin, J. Dongarra, A. Geist, and V. Sunderam. Visualization and de-
bugging in a heterogeneous environment. Computer, 26(6):88–95, 1993.

13. D. Behrens, M. Serafini, F. P. Junqueira, S. Arnautov, and C. Fetzer. Scal-
able error isolation for distributed systems. In 12th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 15), pages 605–620,
2015.

14. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific amer-
ican, 284(5):34–43, 2001.

15. I. Beschastnikh, P. Wang, Y. Brun, and M. D. Ernst. Debugging distributed
systems. Queue, 14(2):50, 2016.

16. P. Bodic, G. Friedman, L. Biewald, H. Levine, G. Candea, K. Patel, G. Tolle,
J. Hui, A. Fox, M. I. Jordan, et al. Combining visualization and statisti-
cal analysis to improve operator confidence and efficiency for failure detection
and localization. In Second International Conference on Autonomic Computing
(ICAC’05), pages 89–100. IEEE, 2005.

17. D. Borkar, R. Mayuram, G. Sangudi, and M. Carey. Have your data and query
it too: From key-value caching to big data management. In Proceedings of the
2016 International Conference on Management of Data, pages 239–251. ACM,
2016.

18. K. M. Chandy and L. Lamport. Distributed snapshots: Determining global
states of distributed systems. ACM Trans. Comput. Syst., 3(1):63–75, Feb.
1985. ISSN 0734-2071. doi: 10.1145/214451.214456. URL http://doi.acm.

org/10.1145/214451.214456.

19. K. S.-P. Chang and S. J. Fink. Visualizing serverless cloud application logs for
program understanding. In 2017 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), pages 261–265. IEEE, 2017.

20. E. Chuah, A. Jhumka, S. Alt, T. Damoulas, N. Gurumdimma, M.-C. Sawley,
W. L. Barth, T. Minyard, and J. C. Browne. Enabling dependability-driven
resource use and message log-analysis for cluster system diagnosis. In 2017
IEEE 24th International Conference on High Performance Computing (HiPC),
pages 317–327. IEEE, 2017.

138

http://doi.acm.org/10.1145/214451.214456
http://doi.acm.org/10.1145/214451.214456

21. F. G. de Oliveira Neto, M. Jones, and R. da Silva Martins. Visualisation to
support fault localisation in distributed embedded systems within the automo-
tive industry. In 2018 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW), pages 112–117. IEEE, 2018.

22. E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny, and K. Wenger. Pegasus: a
workflow management system for science automation. Future Generation Com-
puter Systems, 46:17–35, 2015. doi: 10.1016/j.future.2014.10.008. URL http:

//pegasus.isi.edu/publications/2014/2014-fgcs-deelman.pdf. Funding
Acknowledgements: NSF ACI SDCI 0722019, NSF ACI SI2-SSI 1148515 and
NSF OCI-1053575.

23. L. DeRose, A. Gontarek, A. Vose, R. Moench, D. Abramson, M. N. Dinh,
and C. Jin. Relative debugging for a highly parallel hybrid computer system.
In SC’15: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 1–12. IEEE, 2015.

24. J. DeSouza, B. Kuhn, B. R. De Supinski, V. Samofalov, S. Zheltov, and
S. Bratanov. Automated, scalable debugging of mpi programs with intel® mes-
sage checker. In Proceedings of the second international workshop on software
engineering for high performance computing system applications, pages 78–82.
ACM, 2005.

25. N. Dryden. Pgdb: A debugger for mpi applications. In Proceedings of the 2014
Annual Conference on Extreme Science and Engineering Discovery Environ-
ment, page 44. ACM, 2014.

26. Ú. Erlingsson, M. Peinado, S. Peter, M. Budiu, and G. Mainar-Ruiz. Fay:
Extensible distributed tracing from kernels to clusters. ACM Transactions on
Computer Systems (TOCS), 30(4):13, 2012.

27. M. Feng, L. Tan, and R. Gupta. Lightweight fault detection in parallelized
programs. In Proceedings of the 2013 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), pages 1–11. IEEE Computer
Society, 2013.

28. E. Fromentin, N. Plouzeau, and M. Raynal. An introduction to the analysis and
debug of distributed computations. In Proceedings 1st International Conference
on Algorithms and Architectures for Parallel Processing, volume 2, pages 545–
553. IEEE, 1995.

29. T. Furche, B. Linse, F. Bry, D. Plexousakis, and G. Gottlob. Rdf querying:
Language constructs and evaluation methods compared. In Reasoning Web
International Summer School, pages 1–52. Springer, 2006.

139

http://pegasus.isi.edu/publications/2014/2014-fgcs-deelman.pdf
http://pegasus.isi.edu/publications/2014/2014-fgcs-deelman.pdf

30. H. Garcia-Molina, F. Germano, and W. H. Kohler. Debugging a distributed
computing system. IEEE Transactions on Software Engineering, (2):210–219,
1984.

31. A. Gehani, M. Kim, and T. Malik. Efficient querying of distributed provenance
stores. In Proceedings of the 19th ACM International Symposium on High Per-
formance Distributed Computing, pages 613–621. ACM, 2010.

32. O. Gerstel, S. Zaks, M. Hurfin, N. Plouzeau, and M. Raynal. On-the-fly replay:
a practical paradigm and its implementation for distributed debugging. In Pro-
ceedings of 1994 6th IEEE Symposium on Parallel and Distributed Processing,
pages 266–272. IEEE, 1994.

33. T. Godin, M. J. Quinn, and C. M. Pancake. Parallel performance visualiza-
tion using moments of utilization data. In Proceedings of the First Merged
International Parallel Processing Symposium and Symposium on Parallel and
Distributed Processing, pages 777–782. IEEE, 1998.

34. M. A. Gulzar. Interactive and automated debugging for big data analytics.
In Proceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings, pages 509–511. ACM, 2018.

35. M. A. Gulzar, M. Interlandi, X. Han, M. Li, T. Condie, and M. Kim. Automated
debugging in data-intensive scalable computing. In Proceedings of the 2017
Symposium on Cloud Computing, pages 520–534. ACM, 2017.

36. H. S. Gunawi, M. Hao, T. Leesatapornwongsa, T. Patana-anake, T. Do,
J. Adityatama, K. J. Eliazar, A. Laksono, J. F. Lukman, V. Martin, and A. D.
Satria. What bugs live in the cloud? a study of 3000+ issues in cloud systems. In
Proceedings of the ACM Symposium on Cloud Computing, SOCC ’14, pages 7:1–
7:14, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-3252-1. doi: 10.1145/
2670979.2670986. URL http://doi.acm.org/10.1145/2670979.2670986.

37. J. Gustafson, G. Montry, and R. Benner. Development of parallel methods for
a 1024-processor hypercube. SIAM J. Sci. Stat. Comput., 9(4), 1988.

38. J. L. Gustafson. Reevaluating amdahl’s law. Commun. ACM, 31(5):532–533,
May 1988. ISSN 0001-0782. doi: 10.1145/42411.42415. URL http://doi.acm.

org/10.1145/42411.42415.

39. C. Gyorodi, R. Gyorodi, G. Pecherle, and A. Olah. A comparative study: Mon-
godb vs. mysql. In 2015 13th International Conference on Engineering of Mod-
ern Electric Systems (EMES), pages 1–6, June 2015. doi: 10.1109/EMES.2015.
7158433.

40. T. Hacker, R. Pais, and C. Rong. A markov random field based approach for
analyzing supercomputer system logs. IEEE Transactions on Cloud Computing,
2017.

140

http://doi.acm.org/10.1145/2670979.2670986
http://doi.acm.org/10.1145/42411.42415
http://doi.acm.org/10.1145/42411.42415

41. N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McKeown. Where
is the debugger for my software-defined network? In Proceedings of the first
workshop on Hot topics in software defined networks, pages 55–60. ACM, 2012.

42. N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and N. McKeown. I know
what your packet did last hop: Using packet histories to troubleshoot networks.
In NSDI, volume 14, pages 71–85, 2014.

43. O. Hartig and J. Pérez. Semantics and complexity of graphql. In Proceedings of
the 2018 World Wide Web Conference, WWW ’18, pages 1155–1164, Republic
and Canton of Geneva, Switzerland, 2018. International World Wide Web Con-
ferences Steering Committee. ISBN 978-1-4503-5639-8. doi: 10.1145/3178876.
3186014. URL https://doi.org/10.1145/3178876.3186014.

44. C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L. Roberts,
S. Setty, and B. Zill. Ironfleet: proving practical distributed systems correct.
In Proceedings of the 25th Symposium on Operating Systems Principles, pages
1–17. ACM, 2015.

45. S. He, J. Zhu, P. He, and M. R. Lyu. Experience report: system log analysis
for anomaly detection. In Software Reliability Engineering (ISSRE), 2016 IEEE
27th International Symposium on, pages 207–218. IEEE, 2016.

46. M. T. Heath and J. A. . Etheridge. Visualizing the performance of parallel
programs. IEEE software, 8(5):29–39, 1991.

47. I. Horrocks, P. F. Patel-Schneider, and F. Van Harmelen. From shiq and rdf to
owl: The making of a web ontology language. Journal of web semantics, 1(1):
7–26, 2003.

48. P. Huang, C. Guo, J. R. Lorch, L. Zhou, and Y. Dang. Capturing and enhancing
in situ system observability for failure detection. In 13th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 18), pages 1–16,
2018.

49. K. E. Isaacs, A. Giménez, I. Jusufi, T. Gamblin, A. Bhatele, M. Schulz,
B. Hamann, and P.-T. Bremer. State of the art of performance visualization.
EuroVis 2014, 2014.

50. N. Jamadagni and Y. Simmhan. Godb: From batch processing to distributed
querying over property graphs. In 2016 16th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing (CCGrid), pages 281–290. IEEE,
2016.

51. M. Jarke and Y. Vassiliou. A framework for choosing a database query language.
In Readings in Artificial Intelligence and Databases, pages 363–375. Elsevier,
1989.

141

https://doi.org/10.1145/3178876.3186014

52. N. B. Jensen, N. Q. Nielsen, G. L. Lee, S. Karlsson, M. Legendre, M. Schulz, and
D. H. Ahn. A scalable prescriptive parallel debugging model. In 2015 IEEE
International Parallel and Distributed Processing Symposium, pages 473–483.
IEEE, 2015.

53. Z. Jia, C. Shen, X. Yi, Y. Chen, T. Yu, and X. Guan. Big-data analysis of multi-
source logs for anomaly detection on network-based system. In 2017 13th IEEE
Conference on Automation Science and Engineering (CASE), pages 1136–1141.
IEEE, 2017.

54. E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht. Occupy the cloud:
Distributed computing for the 99%. In Proceedings of the 2017 Symposium on
Cloud Computing, pages 445–451. ACM, 2017.

55. S. T. Jones, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, et al. Antfarm: Track-
ing processes in a virtual machine environment. In USENIX Annual Technical
Conference, General Track, pages 1–14, 2006.

56. J. Joyce, G. Lomow, K. Slind, and B. Unger. Monitoring distributed systems.
ACM Transactions on Computer Systems (TOCS), 5(2):121–150, 1987.

57. A. S. Kanade and A. Gopal. Choosing right database system: Row or column-
store. In 2013 International Conference on Information Communication and
Embedded Systems (ICICES), pages 16–20. IEEE, 2013.

58. N. Khadke, M. P. Kasick, S. P. Kavulya, J. Tan, and P. Narasimhan. Transpar-
ent system call based performance debugging for cloud computing. In Presented
as part of the 2012 Workshop on Managing Systems Automatically and Dynam-
ically, 2012.

59. A. Khalid, J. J. Quinlan, and C. J. Sreenan. Mininam: A network animator
for visualizing real-time packet flows in mininet. In 2017 20th Conference on
Innovations in Clouds, Internet and Networks (ICIN), pages 229–231. IEEE,
2017.

60. M. M. H. Khan, H. K. Le, H. Ahmadi, T. F. Abdelzaher, and J. Han. Dustminer:
troubleshooting interactive complexity bugs in sensor networks. In Proceedings
of the 6th ACM conference on Embedded network sensor systems, pages 99–112.
ACM, 2008.

61. E. Koskinen and J. Jannotti. Borderpatrol: isolating events for black-box trac-
ing. In ACM SIGOPS Operating Systems Review, volume 42, pages 191–203.
ACM, 2008.

62. D. Kranzlmüller. Scalable parallel program debugging with process isolation
and grouping. In Proceedings of the 16th International Parallel and Distributed
Processing Symposium, page 294. IEEE Computer Society, 2002.

142

63. D. Kranzlmüller, S. Grabner, and J. Volkert. Event graph visualization for
debugging large applications. In Proceedings of the SIGMETRICS symposium
on Parallel and distributed tools, pages 108–117. ACM, 1996.

64. D. Kranzlmüller, S. Grabner, and J. Volkert. Debugging with the mad environ-
ment. Parallel Computing, 23(1-2):199–217, 1997.

65. N. Kremer-Herman and D. Thain. Log discovery for troubleshooting open dis-
tributed systems with tlq. In Practice and Experience in Advanced Research
Computing, PEARC ’20, page 224–231, New York, NY, USA, 2020. Associa-
tion for Computing Machinery. ISBN 9781450366892. doi: 10.1145/3311790.
3396633. URL https://doi.org/10.1145/3311790.3396633.

66. N. Kremer-Herman, B. Tovar, and D. Thain. A lightweight model for right-sizing
master-worker applications. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage, and Analysis, SC ’18, pages
39:1–39:13, Piscataway, NJ, USA, 2018. IEEE Press. URL http://dl.acm.org/

citation.cfm?id=3291656.3291708.

67. S. Krishnaprasad. Uses and abuses of amdahl’s law. J. Comput. Sci. Coll., 17
(2):288–293, Dec. 2001. ISSN 1937-4771. URL http://dl.acm.org/citation.

cfm?id=775339.775386.

68. A. Lahmadi and F. Beck. Powering Monitoring Analytics with ELK stack, June
2015. URL https://hal.inria.fr/hal-01212015.

69. L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, July 1978. ISSN 0001-0782. doi: 10.1145/
359545.359563. URL http://doi.acm.org/10.1145/359545.359563.

70. L. Lamport. The part-time parliament. ACM Transactions on Computer Sys-
tems (TOCS), 16(2):133–169, 1998.

71. L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM
Transactions on Programming Languages and Systems (TOPLAS), 4(3):382–
401, 1982.

72. L. Lamport et al. Paxos made simple. ACM Sigact News, 32(4):18–25, 2001.

73. M. Lanthaler and C. Gütl. On using json-ld to create evolvable restful services.
In Proceedings of the Third International Workshop on RESTful Design, pages
25–32, 2012.

74. T. J. LeBlanc and J. M. Mellor-Crummey. Debugging parallel programs with
instant replay. Technical report, ROCHESTER UNIV NY DEPT OF COM-
PUTER SCIENCE, 1986.

143

https://doi.org/10.1145/3311790.3396633
http://dl.acm.org/citation.cfm?id=3291656.3291708
http://dl.acm.org/citation.cfm?id=3291656.3291708
http://dl.acm.org/citation.cfm?id=775339.775386
http://dl.acm.org/citation.cfm?id=775339.775386
https://hal.inria.fr/hal-01212015
http://doi.acm.org/10.1145/359545.359563

75. G. L. Lee, D. H. Ahn, D. C. Arnold, B. R. De Supinski, M. Legendre, B. P.
Miller, M. Schulz, and B. Liblit. Lessons learned at 208k: towards debugging
millions of cores. In SC’08: Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing, pages 1–9. IEEE, 2008.

76. K. H. Lee, N. Sumner, X. Zhang, and P. Eugster. Unified debugging of dis-
tributed systems with recon. In 2011 IEEE/IFIP 41st International Conference
on Dependable Systems & Networks (DSN), pages 85–96. IEEE, 2011.

77. T. Leesatapornwongsa, M. Hao, P. Joshi, J. F. Lukman, and H. S. Gunawi.
{SAMC}: Semantic-aware model checking for fast discovery of deep bugs in
cloud systems. In 11th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 14), pages 399–414, 2014.

78. J. B. Leners, H. Wu, W.-L. Hung, M. K. Aguilera, and M. Walfish. Detecting
failures in distributed systems with the falcon spy network. In Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles, pages
279–294. ACM, 2011.

79. Q. Liao, A. Blaich, A. Striegel, and D. Thain. Enavis: Enterprise network
activities visualization. In LISA, pages 59–74, 2008.

80. W. Lin, C. Krintz, and R. Wolski. Tracing function dependencies across clouds.
In 2018 IEEE 11th International Conference on Cloud Computing (CLOUD),
pages 253–260, July 2018. doi: 10.1109/CLOUD.2018.00039.

81. X. Liu, Z. Guo, X. Wang, F. Chen, X. Lian, J. Tang, M. Wu, M. F. Kaashoek,
and Z. Zhang. D3s: Debugging deployed distributed systems. 2008.

82. D. Logothetis, S. De, and K. Yocum. Scalable lineage capture for debugging disc
analytics. In Proceedings of the 4th annual Symposium on Cloud Computing,
page 17. ACM, 2013.

83. J. Mace, R. Roelke, and R. Fonseca. Pivot tracing: Dynamic causal monitoring
for distributed systems. ACM Transactions on Computer Systems (TOCS), 35
(4):11, 2018.

84. E. Maguire, P. Rocca-Serra, S.-A. Sansone, J. Davies, and M. Chen. Visual com-
pression of workflow visualizations with automated detection of macro motifs.
IEEE transactions on visualization and computer graphics, 19(12):2576–2585,
2013.

85. S. Marr, C. Torres Lopez, D. Aumayr, E. Gonzalez Boix, and H. Mössenböck. A
concurrency-agnostic protocol for multi-paradigm concurrent debugging tools.
In ACM SIGPLAN Notices, volume 52, pages 3–14. ACM, 2017.

86. H. Matsuba, M. Hiltunen, K. Joshi, and R. Schlichting. Discovering the struc-
ture of cloud applications using sampled packet traces. In 2014 IEEE Interna-
tional Conference on Cloud Engineering, pages 235–244. IEEE, 2014.

144

87. E. Miller. An introduction to the resource description framework. Bulletin
of the American Society for Information Science and Technology, 25(1):15–19,
1998. doi: 10.1002/bult.105. URL https://onlinelibrary.wiley.com/doi/

abs/10.1002/bult.105.

88. T. Morsellino, C. Aguerre, and M. Mosbah. Debugging the execution of dis-
tributed algorithms over anonymous networks. In 2012 16th International Con-
ference on Information Visualisation, pages 464–470. IEEE, 2012.

89. H. Nguyen, Y. Tan, and X. Gu. Pal: Propagation-aware anomaly localization for
cloud hosted distributed applications. In Managing Large-scale Systems via the
Analysis of System Logs and the Application of Machine Learning Techniques,
page 1. ACM, 2011.

90. L. Oldenburg, X. Zhu, K. Ramasubramanian, and P. Alvaro. Fixed it for you:
Protocol repair using lineage graphs. In CIDR, 2019.

91. A. J. Oliner and A. Aiken. A query language for understanding component in-
teractions in production systems. In Proceedings of the 24th ACM International
Conference on Supercomputing, pages 201–210. ACM, 2010.

92. M. Owens. The definitive guide to SQLite. Apress, 2006.

93. X. Pan, J. Tan, S. Kavulya, R. Gandhi, and P. Narasimhan. Ganesha: Blackbox
diagnosis of mapreduce systems. ACM SIGMETRICS Performance Evaluation
Review, 37(3):8–13, 2010.

94. C. M. Pancake. Debugger visualization techniques for parallel architectures. In
Digest of Papers COMPCON Spring 1992, pages 276–284. IEEE, 1992.

95. C. M. Pancake and C. Cook. What users need in parallel tool support: Sur-
vey results and analysis. In Proceedings of IEEE Scalable High Performance
Computing Conference, pages 40–47. IEEE, 1994.

96. C. M. Pancake and R. H. Netzer. A bibliography of parallel debuggers. In ACM
SIGPLAN Notices, volume 28, pages 169–186. ACM, 1993.

97. C. M. Pancake and S. Utter. Models for visualization in parallel debuggers.
In Proceedings of the 1989 ACM/IEEE conference on Supercomputing, pages
627–636. ACM, 1989.

98. Z. Parker, S. Poe, and S. V. Vrbsky. Comparing nosql mongodb to an sql db.
In Proceedings of the 51st ACM Southeast Conference, ACMSE ’13, pages 5:1–
5:6, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-1901-0. doi: 10.1145/
2498328.2500047. URL http://doi.acm.org/10.1145/2498328.2500047.

99. M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of
faults. Journal of the ACM (JACM), 27(2):228–234, 1980.

145

https://onlinelibrary.wiley.com/doi/abs/10.1002/bult.105
https://onlinelibrary.wiley.com/doi/abs/10.1002/bult.105
http://doi.acm.org/10.1145/2498328.2500047

100. C. Pham, L. Wang, B. C. Tak, S. Baset, C. Tang, Z. Kalbarczyk, and R. K.
Iyer. Failure diagnosis for distributed systems using targeted fault injection.
IEEE Transactions on Parallel and Distributed Systems, 28(2):503–516, 2016.

101. W. Puangsaijai and S. Puntheeranurak. A comparative study of relational
database and key-value database for big data applications. In 2017 Interna-
tional Electrical Engineering Congress (iEECON), pages 1–4. IEEE, 2017.

102. T. Qiu, Z. Ge, D. Pei, J. Wang, and J. Xu. What happened in my network:
mining network events from router syslogs. In Proceedings of the 10th ACM
SIGCOMM conference on Internet measurement, pages 472–484. ACM, 2010.

103. A. Rabkin and R. Katz. Precomputing possible configuration error diagnoses.
In Proceedings of the 2011 26th IEEE/ACM International Conference on Auto-
mated Software Engineering, pages 193–202. IEEE Computer Society, 2011.

104. A. Rabkin and R. H. Katz. How hadoop clusters break. IEEE software, 30(4):
88–94, 2013.

105. D. Rajan, A. Thrasher, B. Abdul-Wahid, J. A. Izaguirre, S. Emrich, and
D. Thain. Case studies in designing elastic applications. In 2013 13th
IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing,
pages 466–473, May 2013. doi: 10.1109/CCGrid.2013.46.

106. P. Reynolds, C. E. Killian, J. L. Wiener, J. C. Mogul, M. A. Shah, and A. Vah-
dat. Pip: Detecting the unexpected in distributed systems. In NSDI, volume 6,
pages 9–9, 2006.

107. R. R. Sambasivan, R. Fonseca, I. Shafer, and G. R. Ganger. So, you want
to trace your distributed system? key design insights from years of practical
experience. Parallel Data Lab., Carnegie Mellon Univ., Pittsburgh, PA, USA,
Tech. Rep. CMU-PDL-14, 2014.

108. R. R. Sambasivan, I. Shafer, J. Mace, B. H. Sigelman, R. Fonseca, and G. R.
Ganger. Principled workflow-centric tracing of distributed systems. In Pro-
ceedings of the Seventh ACM Symposium on Cloud Computing, pages 401–414.
ACM, 2016.

109. K. Sato, D. H. Ahn, I. Laguna, G. L. Lee, M. Schulz, and C. M. Chambreau.
Noise injection techniques to expose subtle and unintended message races. In
ACM SIGPLAN Notices, volume 52, pages 89–101. ACM, 2017.

110. J. Scholten and P. Jansen. Distributed debugging and tumult. In Distributed
Computing Systems, 1990. Proceedings., Second IEEE Workshop on Future
Trends of, pages 172–176. IEEE, 1990.

111. S. Schulz and C. Bockisch. A blast from the past: online time-travel debugging
with bite. In Proceedings of the 15th International Conference on Managed
Languages & Runtimes, page 13. ACM, 2018.

146

112. C. Scott, V. Brajkovic, G. Necula, A. Krishnamurthy, and S. Shenker. Minimiz-
ing faulty executions of distributed systems. In 13th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 16), pages 291–309,
2016.

113. N. Shadbolt, T. Berners-Lee, and W. Hall. The semantic web revisited. IEEE
intelligent systems, 21(3):96–101, 2006.

114. T. Shaffer, N. Kremer-Herman, and D. Thain. Flexible partitioning of scien-
tific workflows using the jx workflow language. In Proceedings of the Prac-
tice and Experience in Advanced Research Computing on Rise of the Machines
(Learning), PEARC ’19, New York, NY, USA, 2019. Association for Comput-
ing Machinery. ISBN 9781450372275. doi: 10.1145/3332186.3338100. URL
https://doi.org/10.1145/3332186.3338100.

115. K. Shibanai and T. Watanabe. Actoverse: a reversible debugger for actors. In
Proceedings of the 7th ACM SIGPLAN International Workshop on Program-
ming Based on Actors, Agents, and Decentralized Control, pages 50–57. ACM,
2017.

116. K. Shvachko, H. Kuang, S. Radia, R. Chansler, et al. The hadoop distributed
file system. In MSST, volume 10, pages 1–10, 2010.

117. B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal, D. Beaver,
S. Jaspan, and C. Shanbhag. Dapper, a large-scale distributed systems tracing
infrastructure. 2010.

118. A. Singh, P. Maniatis, T. Roscoe, and P. Druschel. Using queries for distributed
monitoring and forensics. In ACM SIGOPS Operating Systems Review, vol-
ume 40, pages 389–402. ACM, 2006.

119. S. Sistare, D. Allen, R. Bowker, K. Jourdenais, J. Simons, and R. Title. A
scalable debugger for massively parallel message-passing programs. In Proceed-
ings of IEEE Scalable High Performance Computing Conference, pages 825–832.
IEEE, 1994.

120. A. Spear, M. Levy, and M. Desnoyers. Using tracing to solve the multicore
system debug problem. Computer, 45(12):60–64, 2012.

121. M. Sporny, D. Longley, G. Kellogg, M. Lanthaler, and N. Lindström. Json-ld
1.0. W3C Recommendation, 16:41, 2014.

122. W. Sun, A. Fokoue, K. Srinivas, A. Kementsietsidis, G. Hu, and G. Xie. Sql-
graph: An efficient relational-based property graph store. In Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data, pages
1887–1901. ACM, 2015.

147

https://doi.org/10.1145/3332186.3338100

123. B. C. Tak, S. Tao, L. Yang, C. Zhu, and Y. Ruan. Logan: Problem diagnosis
in the cloud using log-based reference models. In 2016 IEEE International
Conference on Cloud Engineering (IC2E), pages 62–67. IEEE, 2016.

124. J. Tan, X. Pan, S. Kavulya, R. Ghandi, and P. Narasimhan. Mochi: visual
log-analysis based tools for debugging hadoop. 2009.

125. J. Tan, S. Kavulya, R. Gandhi, and P. Narasimhan. Visual, log-based causal
tracing for performance debugging of mapreduce systems. In 2010 IEEE 30th
International Conference on Distributed Computing Systems, pages 795–806.
IEEE, 2010.

126. A. Tarafdar and V. K. Garg. Debugging in a distributed world: observation and
control. In Proceedings. 1998 IEEE Workshop on Application-Specific Software
Engineering and Technology. ASSET-98 (Cat. No. 98EX183), pages 151–156.
IEEE, 1998.

127. D. Thain and C. Moretti. Abstractions for cloud computing with condor. Cloud
Computing and Software Services: Theory and Techniques, pages 153–171, 2010.

128. X. Tu, H. Jin, X. Fan, and J. Ye. Meld: A real-time message logic debugging
system for distributed systems. In 2010 IEEE Asia-Pacific Services Computing
Conference, pages 59–66. IEEE, 2010.

129. J. Turnbull. The Logstash Book. James Turnbull, 2013.

130. O. van Rest, S. Hong, J. Kim, X. Meng, and H. Chafi. Pgql: A property graph
query language. In Proceedings of the Fourth International Workshop on Graph
Data Management Experiences and Systems, GRADES ’16, pages 7:1–7:6, New
York, NY, USA, 2016. ACM. ISBN 978-1-4503-4780-8. doi: 10.1145/2960414.
2960421. URL http://doi.acm.org/10.1145/2960414.2960421.

131. S. Venkatesan and B. Dathan. Testing and debugging distributed programs
using global predicates. IEEE Transactions on Software Engineering, 21(2):
163–177, 1995.

132. L. Walsh, V. Akhmechet, and M. Glukhovsky. Rethinkdb-rethinking database
storage, 2009.

133. P. Wang, J. Xu, M. Ma, W. Lin, D. Pan, Y. Wang, and P. Chen. Cloudranger:
root cause identification for cloud native systems. In Proceedings of the 18th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
pages 492–502. IEEE Press, 2018.

134. S. Weigert, M. Hiltunen, and C. Fetzer. Mining large distributed log data in
near real time. In Managing Large-scale Systems via the Analysis of System
Logs and the Application of Machine Learning Techniques, page 5. ACM, 2011.

148

http://doi.acm.org/10.1145/2960414.2960421

135. S. Whitlock, C. Scott, and S. Shenker. Brief announcement: techniques for
programmatically troubleshooting distributed systems. In Proceedings of the
2013 ACM symposium on Principles of distributed computing, pages 134–136.
ACM, 2013.

136. M. Whittaker, C. Teodoropol, P. Alvaro, and J. M. Hellerstein. Debugging
distributed systems with why-across-time provenance. In Proceedings of the
ACM Symposium on Cloud Computing, pages 333–346. ACM, 2018.

137. M. C. Wikstrom and J. L. Gustafson. The twin bottleneck effect. In [1993]
Proceedings of the Twenty-sixth Hawaii International Conference on System
Sciences, volume ii, pages 574–583 vol.2, Jan 1993. doi: 10.1109/HICSS.1993.
284068.

138. Y. Wu, M. Zhao, A. Haeberlen, W. Zhou, and B. T. Loo. Diagnosing missing
events in distributed systems with negative provenance. In ACM SIGCOMM
Computer Communication Review, volume 44, pages 383–394. ACM, 2014.

139. T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng, D. Yuan, Y. Zhou, and
S. Pasupathy. Do not blame users for misconfigurations. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles, pages
244–259. ACM, 2013.

140. T. Xu, L. Jin, X. Fan, Y. Zhou, S. Pasupathy, and R. Talwadker. Hey, you
have given me too many knobs!: understanding and dealing with over-designed
configuration in system software. In Proceedings of the 2015 10th Joint Meeting
on Foundations of Software Engineering, pages 307–319. ACM, 2015.

141. T. Xu, X. Jin, P. Huang, Y. Zhou, S. Lu, L. Jin, and S. Pasupathy. Early
detection of configuration errors to reduce failure damage. In OSDI, pages 619–
634, 2016.

142. K. Yamnual, P. Phunchongharn, and T. Achalakul. Failure detection through
monitoring of the scientific distributed system. In 2017 International Conference
on Applied System Innovation (ICASI), pages 568–571, May 2017. doi: 10.1109/
ICASI.2017.7988485.

143. L. Yu. Right-sizing Resource Allocations for Scientific Applications in Clusters,
Grids, and Clouds. PhD thesis, University of Notre Dame, 2013.

144. D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy. Sherlog: error
diagnosis by connecting clues from run-time logs. In ACM SIGARCH computer
architecture news, volume 38, pages 143–154. ACM, 2010.

145. D. Yuan, Y. Luo, X. Zhuang, G. R. Rodrigues, X. Zhao, Y. Zhang, P. U. Jain,
and M. Stumm. Simple testing can prevent most critical failures: An analysis
of production failures in distributed data-intensive systems. In 11th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 14),
pages 249–265, 2014.

149

146. J. Zhang, L. Renganarayana, X. Zhang, N. Ge, V. Bala, T. Xu, and Y. Zhou.
Encore: Exploiting system environment and correlation information for miscon-
figuration detection. In ACM SIGPLAN Notices, volume 49, pages 687–700.
ACM, 2014.

147. Q. Zhang, D. Yan, and J. Cheng. Quegel: A general-purpose system for querying
big graphs. In Proceedings of the 2016 International Conference on Management
of Data, pages 2189–2192. ACM, 2016.

148. W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and Y. Mao. Efficient querying
and maintenance of network provenance at internet-scale. In Proceedings of the
2010 ACM SIGMOD International Conference on Management of data, pages
615–626. ACM, 2010.

149. W. Zhou, Q. Fei, A. Narayan, A. Haeberlen, B. T. Loo, and M. Sherr. Secure
network provenance. In Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, pages 295–310. ACM, 2011.

150. Y. Zhuang, E. Gessiou, S. Portzer, F. Fund, M. Muhammad, I. Beschastnikh,
and J. Cappos. Netcheck: Network diagnoses from blackbox traces. In NSDI,
pages 115–128, 2014.

This document was prepared & typeset with pdfLATEX, and formatted with
nddiss2ε classfile (v3.2017.2[2017/05/09])

150

	Abstract
	Contents
	Figures
	Tables
	Chapter 1: Introduction
	1.1 A Notional Example of Troubleshooting a Distributed System
	1.2 Effectively Troubleshooting Open Distributed Systems
	1.3 Roadmap to TLQ

	Chapter 2: Related Work
	2.1 Early Attempts at Distributed Debugging
	2.2 Misconfigurations and Testing
	2.3 Distributed System Analysis
	2.4 Distributed Debugging Visualizations
	2.5 Databases and Querying Techniques
	2.6 Semantic Web

	Chapter 3: Troubleshooting Distributed System Performance Using System Capacity as a Metric
	3.1 Problem Introduction
	3.2 Capacity in a Master-Work Architecture
	3.3 Capacity Model
	3.3.1 Dynamic Capacity Model

	3.4 Implementation
	3.5 Capacity Model as Troubleshooting Tool
	3.6 Relationship to TLQ and Open Distributed Systems Troubleshooting

	Chapter 4: Using Debug Logs to Troubleshoot Distributed Systems
	4.1 Why Debug Logs are Important
	4.2 Common Traits Among Log Formats
	4.3 Recording Links Between Components
	4.4 Key Idea of TLQ using Debug Logs

	Chapter 5: Tracing Overhead and Scalability of Key Mechanisms
	5.1 Overhead of System Call Tracing as a Debug Log
	5.2 Scalability of Log Servers
	5.2.1 Parsing Stored Data
	5.2.2 Size of Stored Data

	5.3 Scalability of a User Client
	5.3.1 Fetching and Evaluating Queried Data

	Chapter 6: Log Discovery and Log Custody: The Foundation of TLQ
	6.1 Problem Introduction
	6.2 Troubleshooting as Distributed Querying
	6.2.1 Querying Logs in Place Across Domains

	6.3 Implementation
	6.4 Evaluation
	6.4.1 Distributed Queries at Scale

	6.5 Three Lessons Learned

	Chapter 7: Query Models
	7.1 SQLite
	7.2 RethinkDB
	7.3 GraphQL
	7.4 JX

	Chapter 8: TLQ's Web Inspired Approach
	8.1 Problem Introduction
	8.2 A Web Inspired Approach
	8.3 Log Record Data Model
	8.3.1 Query Model

	8.4 Implementation
	8.4.1 Server Requests

	8.5 Lessons Learned About Log Design
	8.6 Conclusions on the Design of TLQ

	Chapter 9: Case Studies of TLQ
	9.1 POV-Ray
	9.2 Scaling Up to Parallel Work
	9.3 Incorporating Persistent Resources
	9.4 Lifemapper
	9.4.1 Interesting Troubleshooting Questions

	9.5 TLQ Performance with Lifemapper
	9.5.1 Command Line Queries via TLQ
	9.5.2 Scalability of Command Line Queries
	9.5.3 Comparing Centralized and Distributed JX Queries

	9.6 Key Usage of TLQ

	Chapter 10: Conclusion
	10.1 Summary of Key Contributions
	10.2 Potential for Future Work
	10.3 Parting Thoughts

	Bibliography

