
A COMPILER TOOLCHAIN FOR DISTRIBUTED DATA INTENSIVE

SCIENTIFIC WORKFLOWS

A Dissertation

Submitted to the Graduate School

of the University of Notre Dame

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Peter Bui

Dr. Douglas Thain, Director

Graduate Program in Computer Science and Engineering

Notre Dame, Indiana

June 2012

© Copyright by

Peter Bui

2012

All Rights Reserved

A COMPILER TOOLCHAIN FOR DISTRIBUTED DATA INTENSIVE

SCIENTIFIC WORKFLOWS

Abstract

by

Peter Bui

With the growing amount of computational resources available to researchers

today and the explosion of scientific data in modern research, it is imperative that

scientists be able to construct data processing applications that harness these vast

computing systems. To address this need, I propose applying concepts from tradi-

tional compilers, linkers, and profilers to the construction of distributed workflows

and evaluate this approach by implementing a compiler toolchain that allows users

to compose scientific workflows in a high-level programming language.

In this dissertation, I describe the execution and programming model of this

compiler toolchain. Next, I examine four compiler optimizations and evaluate

their effectiveness at improving the performance of various distributed workflows.

Afterwards, I present a set of linking utilities for packaging workflows and a group

of profiling tools for analyzing and debugging workflows. Finally, I discuss modifi-

cations made to the run-time system to support features such as enhanced prove-

nance information and garbage collection. Altogether, these components form

a compiler toolchain that demonstrates the effectiveness of applying traditional

compiler techniques to the challenges of constructing distributed data intensive

scientific workflows.

CONTENTS

FIGURES . iv

TABLES . vi

ACKNOWLEDGMENTS . vii

CHAPTER 1: INTRODUCTION . 1

CHAPTER 2: RELATED WORK . 13
2.1 Workflow Systems . 13
2.2 Distributed Computing Abstractions 15
2.3 Programming Languages . 16
2.4 Compiler Toolchain . 18

CHAPTER 3: COMPILING WORKFLOWS 23
3.1 Programming Interface . 24
3.2 Workflow Compiler . 32
3.3 Workflow Manager . 36

CHAPTER 4: OPTIMIZING WORKFLOWS 41
4.1 Structured Allocation . 43
4.2 Instruction Selection . 49
4.3 Hierarchical Workflows . 55
4.4 Inlining Tasks . 62

CHAPTER 5: LINKING WORKFLOWS 67
5.1 Application Linker . 68
5.2 Workflow Linker . 74

ii

CHAPTER 6: PROFILING WORKFLOWS 82
6.1 Workflow Analyzer . 83
6.2 Workflow Monitor . 89
6.3 Workflow Reporter . 93

CHAPTER 7: MANAGING WORKFLOWS 100
7.1 Local Variables . 101
7.2 Nested Makeflows . 109
7.3 Provenance and Annotations . 114
7.4 Garbage Collection . 119

CHAPTER 8: CONCLUSION . 128
8.1 Automatic Optimizations . 128
8.2 Dynamic Workflows . 129
8.3 Compiling to DAGs . 132
8.4 Beyond Distributed Computing 133
8.5 Impact . 135

APPENDIX A: WEAVER API . 137
A.1 Datasets . 137
A.2 Functions . 142
A.3 Abstractions . 149
A.4 Nests . 153

APPENDIX B: WEAVER INTERNALS 156

BIBLIOGRAPHY . 162

iii

FIGURES

1.1 Typical Biometrics Workflow . 2

1.2 Workflow Toolchain versus Conventional Compiler. 6

3.1 Weaver Abstractions . 29

3.2 Weaver Nests . 30

3.3 Weaver Compiler . 33

3.4 Weaver Software Stack . 39

4.1 Stash Structure . 44

4.2 Stash Benchmark Workflows . 45

4.3 Stash Benchmark Execution Times 46

4.4 Stash Benchmark on AFS Sample Timelines 48

4.5 Instruction Selection . 51

4.6 Instruction Selection Benchmark Workflows 52

4.7 Instruction Selection Benchmark Results 53

4.8 Hierarchical Workflows . 56

4.9 Transcode Benchmark Workflows 58

4.10 Transcode Benchmark Execution Times 59

4.11 Transcode Benchmark Task Rates Over Time 61

4.12 Inlined Tasks . 63

4.13 Inlined Tasks Benchmark Workflow 64

4.14 Inlined Tasks Benchmark Results 65

5.1 Starch (STandalone application ARCHiver) 70

5.2 Starch Benchmark Workflows . 72

5.3 Starch Benchmark Workflow Execution Times 74

5.4 makeflow link Command Line Options 76

iv

5.5 Result of Linking with makeflow link (1) 79

5.6 Result of Linking with makeflow link (2) 81

6.1 Sample Workflow Provenance Information by makeflow analyze . 85

6.2 Sample Node Provenance Information by makeflow analyze . . . 87

6.3 Workflow Progress with LuLuLua Android Application. 88

6.4 makeflow monitor Console Output 90

6.5 makeflow monitor Web Output 91

6.6 makeflow report Sample (Overview) 94

6.7 makeflow report Sample (Tasks Profiling) 96

6.8 makeflow report Sample (Tasks Histogram) 97

6.9 makeflow report Sample (Symbols Profiling) 98

7.1 Weaver Variable Example . 106

7.2 Weaver Batch Options Example 108

7.3 dag width Algorithm . 111

7.4 dag width Illustration . 112

7.5 Modified Makeflow Transaction Journal Example 115

7.6 Weaver Generated Debugging Symbols Example 118

7.7 Garbage Collection Benchmark Workflow 122

7.8 Garbage Collection Benchmark Execution Times 124

7.9 Garbage Collection Benchmark Running Time Percentages 125

7.10 Garbage Collection Benchmark Collection Histograms 127

8.1 Iteration Workflow Example . 131

A.1 Weaver Dataset Examples . 139

A.2 BXGrid SQL Dataset Examples 140

A.3 Weaver Function Examples . 143

A.4 Weaver Abstraction Examples . 152

A.5 Weaver Nests Examples . 154

B.1 Weaver Function call Method 157

B.2 Weaver Dataset iter Method 159

B.3 Weaver Map generate Method 160

v

TABLES

1.1 COMPILER TOOLCHAIN CONTRIBUTIONS 7

3.1 WEAVER PROGRAMMING INTERFACE COMPONENTS . . . 24

3.2 WEAVER DATASETS . 25

3.3 WEAVER FUNCTIONS . 26

3.4 WEAVER ABSTRACTIONS . 28

3.5 WEAVER AND MAKEFLOW DAG EXAMPLE 37

4.1 COMPILER OPTIMIZATIONS OVERVIEW 42

5.1 STARCH CREATION AND EXTRACTION BENCHMARK . . . 71

A.1 WEAVER COMMAND FORMAT TEMPLATE 144

A.2 WEAVER OUTPUTS TEMPLATE 146

vi

ACKNOWLEDGMENTS

First, I would like to thank my family for their encouragement throughout my

time in graduate school. I especially owe a debt of gratitude to my wife, Jennifer

Rising, for her infinite patience and unwavering support.

I would also like to thank my friends, colleagues, and collaborators who not

only provided encouragement, technical help, and moral support, but also intel-

lectual stimulation and inspiration. In particular, I thank my colleagues Michael

Albrecht, Hoang Bui, Patrick Donnelly, Dinesh Rajan, and Li Yu, my collabo-

rators Badi Abdul-Wahid, Rory Carmichael, Irena Lanc, and Andrew Thrasher,

and my undergraduate advisees, Kevin Partington and Samuel Lopes.

I am also grateful for the guidance and mentoring of my advisor, Dr. Douglas

Thain, whose insight and intellect routinely challenged me to improve and expand

my research and myself.

Finally, I would like to thank my committee members, Dr. Scott Emrich,

Dr. Patrick Flynn, and Dr. Jesus Izaguirre, who were supportive of my research

and allowed me to collaborate with their students to produce the work in this

dissertation.

vii

CHAPTER 1

INTRODUCTION

Today, research scientists face the challenge of generating, processing, and

analyzing a deluge of scientific data in a timely and organized manner [53]. Fortu-

nately, they have access to an abundant amount of computing resources available

to them in the form of distributed campus clusters, parallel computing grids, and

commercial cloud environments. One of the key challenges that these researchers

face is how to effectively and efficiently harness the computing power of these dis-

tributed systems to accelerate and scale their data intensive scientific workflows.

Fulfilling the role of the toolsmith [16], computer scientists have begun to ad-

dress this problem by developing new distributed programming software tools that

simplify and ease the use of such computing resources in processing this scientific

data. Some of these new programming tools come in the form of distributed

computing abstractions such as MapReduce [35] and All-Pairs [78] that optimize

specific patterns or models of computation. These new systems generally come

from the nascent cloud computing field and have been proven useful in enabling

the development of high performance and high throughput distributed scientific

applications [41, 110].

Unfortunately, while these distributed computing abstractions have been suc-

cessful in facilitating specific patterns of computation, they often fail to encompass

1

large and sophisticated scientific workflows. This is because while many compu-

tational data processing workflows consist of a series of separate computational

stages, these tools normally focus on a single particular stage. Such multi-stage

workflows are often too complicated to be performed in a single abstraction and

may in fact require the use of multiple computational abstractions. Therefore,

while computing abstractions are powerful and easy-to-use, they are not general

or flexible enough to support all scientific workflow patterns.

MapQuery

BXGrid

NEF

NEF

NEF

Convert

Convert

Convert

All-Pairs

BIT

BIT

BIT

Compare Compare Compare

Compare Compare Compare

Compare Compare Compare

BITBITBIT

Figure 1.1. Typical Biometrics Workflow

A typical biometrics experiment involves extracting data from a repository, trans-
forming it into an intermediate format, and then analyzing it using domain-specific
tools.

For instance, researchers in the Computer Vision Research Laboratory (CVRL)

at Notre Dame typically perform a experimental workflow that consists of (1) se-

lecting and extracting a subset of data from a repository, (2) transforming the raw

2

data into an intermediate form suitable for processing, (3) and finally performing

the experiment as shown in Figure 1.1. The first step involves defining a collection

of input data and filtering it into the subset required for the experiement. The

second step requires converting all of the elements of this selected dataset from the

original raw format into a distilled version suitable for comparison and analysis by

domain-specific applications. The final step takes all of the transformed data and

computes a scoring matrix by comparing every pair-wise combination of the input

dataset. Because each of these three steps is a unique pattern of computation, it

is necessary for a workflow that encompasses all of these steps to support multiple

abstractions that are capable of implementing these patterns.

In the more traditional cluster and grid computing world, the problem of multi-

stage workflows has been address by distributed systems such as DAGMan [1],

Pegasus [36], Kepler [75], and Taverna [86], which allow users to specify a pipeline

of computational tasks. These specifications usually consist of relationships be-

tween tasks and the data inputs and outputs and are used by the software tools

to construct a directed acyclic graph (DAG) representing the flow of data through

the pipeline. Distributed computing abstractions can be incorporated into these

systems by implementing the abstraction directly as nodes in the DAG or by using

a specialized implementation as a single node in the graph [25, 60, 89, 117, 125].

Once a DAG has been formed, it is processed by a workflow manager which dis-

patches tasks to a distributed computing engine such as Condor [113], SGE [48],

or Hadoop [51].

The main disadvantage of these DAG-based systems is that they require end

users to explicitly construct workflow graphs, which is often cumbersome and te-

dious for larger sophisticated workflows [21, 23, 29, 59]. For example, it is not

3

uncommon for scientific workflows to consist of thousands to millions of tasks,

where each job must be specified as a DAG node. Recent research projects such

as Swift [120, 126] tackle the problem of efficiently specifying scientific workflows

by proposing new programming languages. In these systems, the directed acyclic

graph is implicitly constructed by a compiler or interpreter that parses and pro-

cesses a workflow specification written in a high-level scripting language. The

advantage of this approach is that it allows for rapid construction of sophisticated

distributed applications in concise and maintainable workflow applications [119].

The introduction of a new programming language, however, has significant

challenges in terms of adoption and ease of use. For instance, it is not always

possible to deploy the new system onto unprivileged distributed resources, and

it may be difficult to convince non-expert users to adopt the new language due

to the unfamiliar syntax or programming model. Rather than developing a new

language, my dissertation addresses the problem of enabling both novices and

experts to develop distributed data intensive scientific workflows by proposing

a workflow compiler named Weaver [21, 23] that is built on top of an existing

general purpose programming language, Python [96]. By building the compiler

as a domain-specific language (DSL) in Python, Weaver enables researchers to

effectively and efficiently script scientific distributed workflows using a familiar

and ubiquitous programming language with a rich ecosystem of existing software,

documentation, and community.

As noted previously, the problem of enabling both expert and novice users to

effectively utilize the abundant computing resources available to them is an active

and ongoing topic in distributed systems. While robust and scalable systems exist

for managing resources and scheduling tasks, it is still difficult, particularly for

4

non-specialists, to effectively harness distributed systems such as campus grids or

cloud data centers. Although software tools such as abstractions and workflow

systems exist, they are either not flexible enough for large scale distributed ap-

plications or too cumbersome to utilize effectively. What is needed is a way to

integrate both of these types of systems.

This dissertation asserts that we need a compiler toolchain that enables

scientific researchers to take advantage of the power of distributed computing

abstractions along with the flexibility of DAG-based workflow systems. To ac-

complish this goal, my dissertation combines ideas from cluster, grid, and cloud

computing with conventional compiler and programming language techniques into

a workflow compiler toolchain facilitates the construction of distributed data in-

tensive scientific workflows.

By applying concepts from traditional compilers, linkers, and de-

buggers to the challenges of distributed workflows, we will be able to

improve the expression, performance, portability, and management

of the resulting workflows.

With this in mind, I approach the problem of composing distributed workflows

by drawing parallels between the programming and execution model of traditional

programming languages with the proposed workflow toolchain. As illustrated in

Figure 1.2, there are striking similarities between conventional compiler and the

workflow toolchain. Conceptually, the programming and execution model found

in both systems involve: (1) a compiler that translates a high-level representation

of the application into a low-level object format and (2) a virtual machine that

executes the generated objects by dispatching work to a target execution platform.

5

For instance, in a traditional programming language such as Java [49], we start

with a program specified in high-level source code and pass it to the Java compiler

to translate the program specification into low-level object code (i.e. class files).

These generated objects can then be passed to the virtual machine, in this case the

JVM [73], which executes the program by issuing instructions to a conventional

computer hardware system.

Python Java

Weaver Javac

DAG Class

Makeflow JVM

Distributed
Systems

Conventional
Computer

High Level
Source Code

Compiler

Low Level
Object Code

Virtual
Machine

Execution
Platform

Figure 1.2. Workflow Toolchain versus Conventional Compiler.

The key insight this dissertation contributes is that one can approach the challenge
of constructing distributed workflows by utilizing the programming and execution
model used in conventional programming languages: translate a high-level specifi-
cation of the workflow using a compiler to produce a low-level object that is then
passed to a virtual machine for execution on available computing resources.

6

As with the traditional compiler, the toolchain proposed in this dissertation

begins with a high-level specification of the application. In this case, a Python

script that represents the workflow is passed to the Weaver compiler, which in

turn generates a low-level DAG representation of the workflow. This DAG is then

sent to a workflow manager, Makeflow [3] in this case, that executes the applica-

tion by dispatching tasks to available distributed systems. In this programming

model, DAGs are viewed as the assembly language of distributed workflows and

abstractions are high-level functions to be combined to form these workflows.

TABLE 1.1

COMPILER TOOLCHAIN CONTRIBUTIONS

Component Description of Research Contribution

Compiler Apply optimization techniques to DAG-based workflow con-
struction.

Utilities Provide tools to package, analyze, monitor, and profile work-
flow.

Run-time Modify run-time system to support local variables, nested
workflows, enhanced provenance information, and garbage
collection.

This dissertation applies the novel conceptual approach of compiling distributed

workflows to the problem of constructing distributed data intensive scientific ap-

plications. It begins by exploring how effective various compiler techniques are

7

when constructing distributed workflow applications. Specifically, I investigate

the application of the concepts of register allocation, instruction selection, data

partitioning, software pipelining, and loop unrolling in compiling distributed work-

flows. Beyond these compiler optimizations, my dissertation also investigates the

utility of various toolchain components such as linkers and profilers in modify-

ing and monitoring the generated workflow objects. Additionally, I also perform

some modifications to the run-time system to address some shortcomings in the

virtual machine. A summary of the components of the compiler toolchain and my

research contributions is provided in Table 1.1.

While my concrete contribution is the development of a compiler toolchain

for distributed workflows, the dissertation also includes the construction of a few

distributed applications. Some of these workflows will be synthetic benchmarks

designed to demonstrate and evaluate the characteristics and features of both the

toolchain and the distributed systems utilized in this dissertation. Other results,

however, are from productive-level applications used by researchers from various

disciplines and backgrounds. These are real world applications from fields such

as biometrics and bioinformatics that benefit directly from the advances made by

the research presented in this thesis.

The key impact of this work is enabling both expert and novices to effectively

construct scalable data intensive scientific workflows that execute on various dis-

tributed systems. Such an ability not only increases the number of experiments

researchers can perform, but also facilitates the completion of otherwise infeasi-

ble applications. Even though the dissertation focuses primarily on the design

and implementation of the compiler toolchain, it is important to note that the

software is already being utilized by various third parties to develop distributed

8

data intensive scientific workflows in the fields of biometrics, bioinformatics, and

molecular dynamics, and thus is having an immediate impact on research and

science beyond distributed systems.

The remainder of this dissertation describes, examines, and evaluates the var-

ious components of the proposed distributed workflow compiler toolchain and

proceeds as follows:

Chapter 2 provides a review of previous research related to programming dis-

tributed data intensive scientific workflows. In particular, it first examines the

use of abstractions, workflow systems, and programming languages in construct-

ing distributed scientific applications. While abstractions are powerful in that

they facilitate distributed computing without requiring the user to know the in-

timate details of the distributed system, they come at the cost of execution gen-

erality and flexibility. On the other hand, workflow systems enable a variety

of workflow patterns but are cumbersome or difficult for novice users to utilize

effectively. High-level programming language approaches provide an alternative

approach that combines the ease-of-use of abstractions with the power of the more

general workflow systems. In addition to discussing previous distributed comput-

ing work, Chapter 2 also describes relevant compilers and programming languages

research that are incorporated into the programming toolchain proposed in this

dissertation.

Next, chapter 3 discusses the Weaver compiler’s programming interface and

execution model. Unlike programming languages such as Swift, Weaver is im-

plemented as a domain-specific language (DSL) on top of Python, which allows

users to utilize a familiar scripting language to compose scientific workflows. Ad-

ditionally, rather than introducing another workflow system, Weaver targets and

9

augments the Makeflow [3] workflow manager as its run-time system. Because

of this, I concentrate on the programming language and compiler aspects of the

toolchain, while leaving the details of distributed execution and management to

Makeflow. A more in-depth examination of the programming API and implemen-

tation of the compiler is presented in Appendix A and Appendix B.

To evaluate the workflows generated by the compiler toolchain, I executed the

various benchmarks and tests presented in this dissertation on the different grids,

computing clusters, and cloud platforms available at the University of Notre Dame.

These distributed systems are representative of the type of computing resources

available to researchers at most medium to large research institutions [111].

Chapter 4 presents the application of various compiler techniques to the gen-

eration of distributed workflow applications. In particular, register allocation,

instruction selection, data partitioning, software pipelining and loop unrolling are

utilized by Weaver to transform directed acyclic graphs (DAG) into optimized

workflows. The design and implementation of each method is discussed and eval-

uated using synthetic benchmarks consisting of appropriate applications and tests.

The goal here is to identify how effective such traditional compiler and program-

ming language techniques are in increasing the performance of distributed work-

flows and to determine when an end user should employ such optimizations to

their scientific applications.

In Chapters 5 and 6, I discuss two sets of utilities that operate on the gener-

ated workflow objects. The first set is a pair of linkers: an application linker that

packages individual commands for reliable deployment and a workflow linker that

modifies the workflow DAG for portability. These linkers help users manage their

software components, which is non-trivial when operating in a distributed envi-

10

ronment. The second set of applications consist of an analyzer that will examine

the Makeflow log and return information regarding the execution of the workflow

in a variety of formats, a monitor that tracks the progress of a running workflow

in real-time, and a reporter that provides a statistical summary of a workflow’s

execution. These three profiling utilities facilitate debugging and tracking of the

users workflows which are often challenging tasks for distributed applications.

In addition to developing new software tools such as a compiler and utilities,

I also modify and augment Makeflow, the target run-time system used in this

dissertation. Chapter 7 details the type of modifications made in my research

work. For instance, the Makeflow parser is modified to support local task variables,

which is vital for enabling the setting of task-specific batch options. Makeflow is

also augmented to be made aware of nested Makeflow instances so that it can

accurately perform resource allocations on hierarchical workflows. Likewise, the

workflow manager is enhanced to emit additional provenance information and

to support symbolic annotations. Lastly, methods for collecting garbage (i.e.

temporary intermediate files) are implemented, benchmarked, and analyzed are

implemented in Makeflow to prevent filesystem resource exhaustion.

Finally, in Chapter 8, I reflect on the results of my dissertation and consider

possible future enhancements. For instance, I briefly explore the idea of data-

mining provenance information in order automatically optimize a workflow and

consider how to support dynamic workflows that allow for conditionals and run-

time decision making. Additionally, I reflect on the advantages and disadvantages

between having a workflow interpreter and a workflow compiler. Moreover, I

discuss how the core ideas in my dissertation can be applied beyond the field of

distributed computing and to programming in general.

11

The last decade has seen a surge in the amount of data involved in scientific

research. Due to the increasing demand and requirement generating, processing,

and analyzing massive quantities of experimental data, the role of distributed

computing in scientific research has grown in importance across all disciplines. As

such, the problem of effectively constructing distributed data intensive scientific

workflows is an important, though difficult problem. This dissertation proposes a

bold novel approach to constructing these data intensive workflows: a distributed

workflow compiler toolchain that enables both novice and expert users to specify

their workflow in a concise and maintainable high-level language which is trans-

lated to a DAG to be executed on a variety of distributed systems such as campus

grids, parallel computing clusters, and cloud platforms.

12

CHAPTER 2

RELATED WORK

The challenge of enabling both expert and novice users to effectively harness

abundant computational resources in data intensive scientific research is an active

and ongoing research problem in the field of distributed computing. In particular,

there has been a plethora of research into various workflow systems, distributed

computing abstractions, and programming languages aimed at providing intuitive

and powerful systems for constructing distributed applications. This chapter dis-

cusses the relevant work related to the proposed compiler toolchain.

2.1 Workflow Systems

Traditionally, the main approach to programming distributed applications is

to provide researchers workflow systems based on the concept of directed acyclic

graphs (DAGs) [123]. In these systems, the nodes of the graph are the set of

tasks to be executed and the links between the nodes determine the order in each

tasks are executed. Condor DAGMan [2] and Pegasus [36] are two examples of

modern workflow systems that allow the user to specify a set of tasks to compute

and the relationship between each task. Makeflow [3, 124] is another example a

workflow manager that utilizes a DAG to schedule and manage tasks. Each of

these systems provide a custom workflow language and an interpreter that takes

13

the job specification and produces an execution plan that is utilized by the system

to process the workflow.

Another modern workflow system is Kepler [75], which is sophisticated scien-

tific workflow application that allows users to construct workflows using a graph-

ical interface. This system comes with many built-in components and has been

used for large scale experiments. Taverna [86] is a similar graphical workflow sys-

tem which builds on top of various web services and grid systems. Internally, it

operates on a high-level XML language called Scufl [85], which while lacking in

explicity looping constructs allows for nesting to create sophisticated data flows.

BPEL [74] is an Oasis standard for composing a set of interacting Web services

into larger composite Web-based workflows [42]. Since most scientific workflows do

not currently utilize Web services, BPEL’s adoption in scientific data processing

has been limited. Moreover, the specification itself is control-flow oriented and

involves explicitly defined XML and WSDL variables and does not support dataset

iteration. As such BPEL is cumbersome for computational scientists to write and

often results in large and repetitive documents [118].

Though proven to be powerful and robust, these workflow systems remain

underutilized due to their complexity and unfriendly user interfaces [9, 101]. That

is although these workflow tools are effective and scale well to large distributed

workflows, the manual construction of DAGs can be tedious and error-prone for the

end user. This ineffective programming interface serves as an unfortunate barrier

for many users, both expert and novices, and thus prevents such systems from

reaching wider adoption and limiting their possible impact on scientific research.

14

2.2 Distributed Computing Abstractions

In recent years, distributed computing abstractions have been introduced to

simplify the use of distributed computing systems. The most well-known such

abstraction is Google’s Map-Reduce [35]. Although the orignal Map-reduce system

is proprietary, there a few open source implementations such as DisCo [91] and [51],

with the latter being used extensively in both industrial and academic settings.

In this programming model, users only need to provide two functions, a mapper

for selecting or filtering data, and a reducer for combining or reducing the data.

The complexity of dispatching and scheduling jobs is abstracted or hidden from

the user by a run-time execution manager.

Beyond Map-Reduce, other abstractions have been introduced. For instance,

the Cooperative Computing Lab (CCL) at the University of Notre Dame has

introduced All-Pairs and Wavefront [79, 124]. The former is a pattern of com-

putation normally found in biometrics experiments where two datasets must be

compared pairwise, while the latter is a distributed dynamic programming pat-

tern often used in economics of genomics. These abstractions not only simplify

the construction and execution of certain types of distributed applications, but

also tend to be more efficient than naive implementations of the desired workflow.

Overall, all of these distributed computing abstractions have been relatively

successful at enabling non-expert users to create certain distributed applications

while shielding them from the complexity of distributed systems. Due to their

limited and simplified programming models, however, abstractions by themselves

are not sufficient for the many types of workflows [60, 122]. For instance, it

can be difficult to develop an application that requires multiple instances of an

abstraction or even to combine different ones in the same workflow.

15

A few systems approach the problem of constructing distributed workflow ap-

plications by combining both DAG-based systems and computing abstractions.

For instance, Oozie [89] is a XML-based workflow system that runs on top of the

Hadoop Map-Reduce framework and is used extensively for data processing tasks

at web service providers such as Yahoo!. Additionally, Kepler has modules for

designating particular nodes or tasks for running on Hadoop [117]. Despite this

hybrid approach, these systems still lack expressive programming interfaces and

ease-of-use.

2.3 Programming Languages

In response to these deficiencies, there has been a surge in research aimed at

developing new programming languages and frameworks to bridge the gap between

workflows and abstractions, while still providing the user friendly programming

interfaces. Some of these languages build on top of abstractions, while others

operate directly on workflow systems. The compiler toolchain proposed in this

dissertation is a part of this current research trend and attempts to tackle the

challenge of programming distributed workflows.

Pig [88] and Sawzall [93] are two languages that provide a high-level interface

to Map-Reduce [35]. The former targets the open source Hadoop platform, while

the latter runs on the Google’s proprietary system. Both of these languages pro-

vide a simplified programming model composed of datasets and functions that is

presented as new declarative programming languages with SQL-like syntax [28].

Cascading [25] is a Java library built on top Hadoop that allows users to explicitly

construct dataflow graphs in order to program data-parallel pipelines that run on

Hadoop’s Map-Reduce. FlumeJava [29] is another Java library that runs on top

16

of Hadoop and also supports constructing data processing pipelines by performing

operations on a set of parallel collections provided by the library. Unfortunately,

due to the nature of the Hadoop platform, it can be difficult to integrate legacy

or external software. Moreover, since these frameworks are tightly tied to the

Map-Reduce abstraction, the user is constrained in the types of workflows they

can effectively specify.

Dryad [60] is another workflow system where users develop applications through

the construction of DAGs. Because the work of building a workflow graph is rather

low-level and complex, the authors of Dryad suggest the use of various higher-level

tools such as DryadLINQ [59]. This programming construct takes advantage of

the LINQ programming idiom in Microsoft’s .NET system to allow the specifica-

tion of Map-Reduce type workflows using a single LINQ [76] expression. Another

language built on top of Dryad is SCOPE [26], which is a declarative scripting

language where programs are written in a variant of SQL. Like Pig and Sawzall,

these Dryad-based languages are tied to their distributed computing platform and

thus are limited to the Map-Reduce programming model.

Swift [120, 126] also tackles the problem of specifying diverse scientific work-

flows, but does so by providing a general purpose programming language complete

with a data type system. In Swift, users construct data structures representing

their input and output data and specify functions that operate on these structures

in a new custom programming language. This specification is then compiled into

a set of abstract computation plans which is processed by the CoG Karajan [116]

execution engine which works in conjunction with the Swift run-time system and

Falkon [97] to execute the plans on loosely-coupled distributed systems such as

Condor.

17

GEL (grid execution language) [71] is another programming language similar

to Swift. It requires users to define programs to run and what order to execute the

tasks, while handling data transfer and job execution for the users. Unfortunately,

it also requires users to explicitly state which jobs are parallel and which ones are

not, rather than determining these from data dependencies as in Swift and the

proposed compiler toolchain.

GRID superscalar [104] demonstrates the use of an imperative programming

language to implicitly construct workflows. In the GRID superscalar programming

environment, users utilize either C/C++ or Perl in conjunction with CORBA

IDL specifications of the tasks to automatically generating a task data-dependent

workflow graph. This workflow generation an execution is accomplished using a

run-time library which dispatches tasks in a master-worker paradigm.

Skywriting [82] is an interpreter-based approach to programming cloud applica-

tions that utilizes a purely-functional programming language based on Javascript.

It relies on futures [5] and lazy evaluation to implicitly extract parallelism from

the workflow script. Because its CIEL execution engine [83], it supports dynamic

applications that involve iteration and recursion.

2.4 Compiler Toolchain

In addition to adopting ideas from distributed workflows, abstractions, and

programming languages, this dissertation incorporates a variety of techniques and

methods from research involving compilers and traditional programming languages

to produce a compiler toolchain for data intensive scientific workflows. The pro-

posed compiler toolchain in this thesis is meant to be analogous to common de-

velopment toolchains such as GCC [106] and LLVM [69].

18

The first set of contributions involves implementing a few compiler optimiza-

tion techniques in order to increase the performance of the generated distributed

workflows. For instance, like a conventional compiler where we need to manage

stack allocation [4, 31] and perform name mangling [98, 99], distributed workflows

need to manage and store both a priori data and intermediate data. Another im-

portant optimization method is instruction selection, which is used to translate

an intermediate program presentation to a lower-level form closer to the target

platform [45]. When performing instruction selection, the goal is to choose the

optimal set of instructions that will yield the best performance in the context

of the targeted architecture (e.g. SIMD [102] instructions), rather than lowest

common denominator code that is portable. A third compiler technique is data

partitioning [57], which is used to minimize communication overhead by group

instructions (normally in a parallel loop).

In addition to these capabilities, I also investigate and evaluate graph trans-

formation techniques based on conventional compiler optimization methods. One

such optimization method is software pipelining [65], where code segments are

scheduling in such a way that they can interleave based on data dependencies. An-

other optimization is unrolling instructions to overcome dispatch overhead [12, 38].

Related to this is function or method inlining, which is also used to mitigate run-

time lookup or dispatching [52]. All of these common optimizations are regularly

performed on most modern compilers and help increase execution performance in

traditional applications.

Distributed computing researchers have only recently begun to utilize similar

techniques to optimize the performance of DAG-based workflows. For instance,

clustering or transforming a directed graph to reduce dependencies [63] was ex-

19

plored by the Pegasus project on the Montage and Tomography applications [103].

Some researchers have utilized flowcharts as models to optimize workflows [37],

while others have focused on run-time transformations of workflows to improve

scheduling and resource allocation [94]. In this dissertation, I concentrate only on

compiler optimization techniques that operate on a static DAG representation of

a scientific workflow.

In addition to incorporating compiler optimizations, my dissertation also im-

plements a few common toolchain utilities. The first set of tools is a pair of linkers

[10] which can be used to package individual applications that are a part of the

workflow or to organize the generated workflow DAG as a whole. In other words,

these software tools enable static linking [33] of executables and workflows in a

manner similar to crunchgen [61] and statifier [115]. Unlike these tools, how-

ever, the linkers presented in this dissertation do not require access to the original

source code, and they can package data and environmental settings in addition

to executables and libraries into one self-contained application unit. The goal of

these linker tools is to encapsulate individual executables (or the entire workflow)

with their dependencies (i.e. libraries, configuration files, environment variables)

and in order to minimize the complication of distributing dynamically linked [55]

applications in a heterogeneous execution environment.

Likewise, I also present a pair of profiling utilities to analyze and monitor

the execution of the workflow. These programs are distributed workflow analogs

of the traditional gprof [50] application found in GCC and the condor status

-better-analyze command provided by Condor. Because profiling and monitor-

ing workflows is a complex and ongoing research field [40], I primarily focus on

demonstrating the utility of these tools and how they improve the experience of

20

developing and debugging distributed workflows. The objective here is to provide

a set of tools that can parse, display, and export the provenance [8] information

generated by the workflow both during and after its execution in an user-friendly

manner such that the researchers can monitor and debug their distributed appli-

cations.

Finally, this dissertation also modifies and augments the Makeflow workflow

manager to support additional run-time capabilities. For instance, garbage col-

lection [15, 121], which typically involves a variety of algorithms for allocating

and managing resources such as memory is implemented to tackle the problem

of intermediate files exhausting filesystem resources. Additionally, a method of

annotation similar to that found in OpenMP [34] and Cilk [13] is used to allow

users to specify resource constraints to be propagated. This information is utilized

by Makeflow to allow users to take advantage of platform specific options such as

Condor ClassAds. Furthermore, Makeflow is modified to make it aware of nested

invocations and to manage environmental variables in a manner more consistent

with the traditional Make utility [43]. Note, that I avoid addressing any compli-

cations with recursive make [77] and only focus on nested configurations in my

dissertation.

Overall, the proposed compiler toolchain shares a few of the important features

present in these many projects. As noted previously, the compiler toolchain uti-

lizes the DAG-based workflow engine as its run-time system. Because the Weaver

compiler does not force users to define workflows in terms of graph nodes and

links, it is most similar to DryadLINQ, Swift, and FlumeJava in providing a high-

level programming interface. Like FlumeJava, but unlike Swift, Weaver builds on

top of an existing programming language, Python, rather than introduce a new

21

one. This takes advantage of Python’s user-friendliness and allows programmers

to utilize the plethora of existing Python software. Likewise, Weaver is not re-

stricted to a single programming construct as in DryadLINQ, Pig, and Sawzall,

but encompasses a whole library of components that form a domain-specific lan-

guage for distributed computing. Furthermore, the compiler toolchain also applies

techniques found in traditional compilers and programming languages such as op-

timizations and garbage collection. All of these features combine into a compiler

toolchain that enables users to rapidly and effectively construct data intensive

scientific workflows.

22

CHAPTER 3

COMPILING WORKFLOWS

The central component of a programming toolchain is the compiler. In or-

der to evaluate the application of compiler techniques to distributed workflows,

I implemented the Weaver [23] workflow compiler that enables computational re-

searchers to construct distributed data intensive scientific workflows in the Python

programming language.

To construct a distributed workflow using Weaver, the user programs a spec-

ification in Python that utilizes various Dataset, Function, Abstraction, and

Nest components provided by the Weaver programming interface. Once the speci-

fication is complete, the user processes the script using the Weaver compiler which

generates a workspace (sandbox directory) that contains a directed acyclic graph

(DAG) enumerating each task in the workflow and their relationship with each

other and any other files materialized by the compiler during compilation. The

generated DAG is passed to a workflow manager whose job is to schedule the tasks

specified in the generated DAG by dispatching the jobs to a distributed execution

engine. This chapter briefly summarizes the programming interface provided by

the compiler, examines the execution model of the compiler, and discusses the

components of the entire software stack.

23

3.1 Programming Interface

Weaver provides a simple, though restricted, programming model that consists

of Datasets, Functions, Abstractions, and Nests as shown in Table 3.1. These

concepts are the fundamental building blocks of the Weaver application program-

ming interface (API) and are implemented as a custom Python package consisting

of modules, classes, and functions that end users combine and extend to define

their distributed scientific workflows.

TABLE 3.1

WEAVER PROGRAMMING INTERFACE COMPONENTS

Component Summary

Datasets Collections of data objects that represent physical files.

Functions Specifications of executables used to process data.

Abstractions Patterns of execution that define how functions are applied
to datasets.

Nests Execution context consisting of a DAG and namespace.

The first component of the Weaver programming interface is the idea of a

Dataset. Data intensive scientific workflows typically involve processing and an-

alyzing a repository of experimental data that is stored as files on the filesystem.

In the Weaver, collections of such data are represented by Dataset objects where

24

each element’s string (i.e. str) method returns the filesystem location of a

particular item’s data. This convention means that a Dataset in Weaver can

be a Python list, set, generator, and any other object that implements Python’s

iteration protocol.

TABLE 3.2

WEAVER DATASETS

Dataset Description

Glob Collection of files based on path expression.

FileList Collection of files stored in a text file.

SQLDataset Collection of data from a SQL database.

Query ORM selection and filtering function for Weaver Datasets.

Table 3.2 provides a list of the Dataset objects provided by Weaver. The first

Dataset constructor provided by Weaver, Glob, allows users to select a collection

of files based on a path expression such as *.dat, while the second Dataset,

FileList, specifies that the data files are enumerated in a text file. The third

Dataset, SQLDataset, provides users a straightforward mechanism for extracting

data from a SQL [28] database such as MySQL [84] and transparently materializing

the data as physical files. All of these Datasets can be filtered into smaller

subsets using Weaver’s Query function, which allows users to perform selection

25

and filtering operations on Datasets using an ORM [62] expression language

similar to SQLAlchemy [105].

The second component of Weaver’s programming interface is the Function. In

most scientific workflows, an ensemble of executables are used to process and ana-

lyze a set of data. Weaver accounts for these applications by providing the notion

of a Function specification object that defines the location of the executable and

its command line interface. This means that each Function specifies information

such as the path to the executable and how arguments to the Function are to

be formatted to generated a shell command that can be executed to perform the

desired operation. Like objects in a Dataset, each Function also corresponds to

an object on the filesystem.

TABLE 3.3

WEAVER FUNCTIONS

Function Description

Function Base Function object constructor.

ParseFunction Convenience wrapper that constructs Function and sets
command format.

ShellFunction Constructs Function out of shell script specified as string.

PythonFunction Constructs Function from inline Python code.

Pipeline Combines multiple Functions into a single meta-Function.

26

As shown in Table 3.3, Weaver provides a set of custom Python components

designed to expedite and simplify the specification of workflow Functions. The

first item in the table is the base object constructor from which all other construc-

tors are derived and requires the user to specify the location of the executable

and the command format specifying how the shell command should be arranged.

ParseFunction is a utility wrapper that will construct a Function based on a

string template and will automatically set the location and command format for

the user. It is used internally by Abstractions when parsing the Function ar-

gument and is provided to the user for convenience. The next two Functions,

ShellFunction and PythonFunction allow the user to embed or inline shell and

Python code respectively. This means that rather than having to create external

scripts, the user can simply place the scripts inside the main workflow specifica-

tion and the compiler will automatically materialize a script file for the user. The

final Function is Pipeline, which enables users to combine multiple Functions

into a single meta-Function that behaves as a normal Function.

The third component in the programming interface is Abstractions. These

are high-order functions that specify a specific pattern of computation with a

precise set of semantics. In Weaver, Abstractions are basically lazily evalu-

ated [5] Datasets that take Function and Dataset arguments and specify how

the Functions are to be applied to the input Datasets to produce the output

Dataset. As such, the result of one Abstraction can be passed as an argument

to another Abstraction or to a Function to coordinate a sequence of operations.

This means that rather than explicitly forming a graph of tasks, users implicitly

construct their workflow DAGs by passing Datasets as inputs to Abstractions

and Functions.

27

TABLE 3.4

WEAVER ABSTRACTIONS

Abstraction Description

AllPairs(function, inputs a,

inputs b)

Apply function to all pair-wise com-
binations of inputs a and inputs b.

Map(function, inputs) For each input in inputs, apply
function.

MapReduce(mapper, reducer,

inputs)

For each input in inputs apply
mapper, sort intermediate outputs,
and then apply reducer.

Merge(function, inputs) Use function combine inputs by us-
ing a parallel reduction.

Table 3.4 summarizes the four Abstractions provided by the Weaver com-

piler. The first Abstraction is AllPairs [78], which is a pattern of computation

where each member of one dataset is compared to each member of a second dataset

to produce a matrix that contains the resulting scores for each comparison. The

second Abstraction is Map, which involves applying a Function to each item in

a Dataset to produce a new output Dataset. MapReduce [35] is a computational

pattern that first applies a mapper Function to the input Dataset to generate an

intermediate collection of key-value pairs that are shuffled, sorted, and then pro-

cessed by the reducer Function. The final Abstraction is Merge which performs

a parallel reduction [64] on the input Dataset using a specified merge Function.

As illustrated in Figure 3.1, all of the tasks generated by these Abstractions

exhibit data independence and thus can be scheduled concurrently and executed

in parallel.

28

A0 A1 A2 A3

B0

B1

B2

B3

0.5 0.7 0.1F

0.1 1.0 0.3 0.7

1.0 0.80.50.2

0.1 0.8 1.0F

AllPairs(F(a, b), A[], B[])

(a) All-Pairs

I0 I1 I2 I3

O0

F F

Map(F(i), I[])

F F

O1 O2 O3

(b) Map

I0 I1 I2 I3

M

T0 T1 T2 T3

MapReduce(M(i), R(t), I[])

M M M

R R R R

O0 O1 O2 O3

(c) Map-Reduce

I0 I1 I2 I3

F

T0 T1

Merge(F(i[]), I[])

F

F

O0

(d) Merge

Figure 3.1. Weaver Abstractions

The structure of the four Abstractions provided by Weaver are illustrated in this
Figure. In each pattern of computation, the processing of the data can be performed
independently and thus can be scheduled to execute in parallel or concurrently.

29

The final component in the Weaver programming interface is the notion of a

Nest. In Weaver, all workflows consist of a workspace and a directed acyclic graph.

The workspace serves as a storage area for any intermediate and output workflow

artifacts, while the DAG encodes the relationships between tasks in the workflow.

Nests are Weaver objects that represent both a workspace and DAG. Whenever

an Abstraction is processed, it is done so in the context of a particular Nest,

which captures any tasks produced by the Abstraction being executed. Figure

3.2 illustrates the structure of Weaver Nest object. As can be seen, a Nest consists

of both a workspace and a DAG.

Nest

Workspace DAG

Inputs Executables

Figure 3.2. Weaver Nests

In Weaver, a Nest is a conceptual object that consists of a namespace (e.g.
workspace on the filesystem) and a directed acyclic graph that contains the tasks
in the workflow.

30

One way to understand the Nest concept is to consider that a workflow typi-

cally has two key features that distinguish it from other workflows: (1) a names-

pace and (2) a DAG. The namespace of the workflow determines the environment

in which the workflow is to be executed. Typically this namespace corresponds

to workspace on the filesystem and thus can be mapped to a specific sandbox. In

addition to this namespace, a workflow also consists of a directed acyclic graph

that specifies the tasks to be performed and how they are related to one another.

Taken together, both the namespace and the graph combine to uniquely iden-

tify a single workflow. It is possible, for instance, that a single namespace would

contain multiple DAGs or for a single DAG to exist in multiple namespaces. To

properly identify a specific workflow, then, we must use the combination of both

the namespace and the DAG. In Weaver, each Nest object is associated with a

particular namespace and a single DAG. Therefore, each Nest maps to a specific

workflow. That is, a workflow in Weaver is a represented by a Nest. Whenever

we compile a workflow using Weaver, we are constructing a Nest.

To utilize the Weaver compiler, users employ the Dataset, Function, Abstraction

and Nest components described here to specify their distributed workflow. The

programming interface is restrictive in that it requires that all data and functions

to be represented on the filesystem, but is flexible enough to support a variety

of computational patterns. The compiler comes with a collection of components

for the user to utilize, but also allows developers to extend these modules and

even add their own. A more in-depth discussion of the Weaver API, along with

example source code, is provided in Appendix A.

31

3.2 Workflow Compiler

As mentioned earlier, the workflow language is implemented as a domain-

specific language on top of Python. This means that rather than having its own

lexer and parser, Weaver depends on the language facilities of the Python in-

terpreter. When writing Weaver scripts, the user is basically programming in a

restricted subset of Python that primarily consists of invoking and utilizing the

various Datasets, Functions, and Abstractions components discussed previ-

ously. The advantage of this is that users get to leverage their familiarity with

Python instead of having to learn a new programming language.

To construct a workflow, users simply utilize the Weaver components in a

Python script to specify their distributed workflow. In addition to the Weaver

library and the standard Python library, users may employ any available third

party Python module such as NumPy or SciPy [87] to construct their workflow.

Once the workflow application is completely specified, the script is passed to the

Weaver compiler for processing.

As shown in Figure 3.3, the output of the Weaver compiler is a sandbox direc-

tory that contains the DAG file detailing the tasks scheduled by the compiler. If

necessary, any scripts or files materialized by the compiler (e.g. ScriptFunctions

or PythonFunctions) are placed in this sandbox. As such, this sandbox directory

represents the Nest’s workspace component, while the DAG file generated by the

compiler corresponds to the Nest’s workflow graph component. Together, the

sandbox and DAG file represent a single unique workflow.

When a script is passed to Weaver, the compiler begins processing the spec-

ification by initializing the output sandbox which serves as the default location

for the compiler’s output. This includes creating the directory if it does not exist

32

Python
Script Weaver Sandbox

Input Compiler Output

Scripts Executables Input DataDAG

Figure 3.3. Weaver Compiler

In Weaver, a workflow is specified using the Python library components provided by
the compiler. This specification is passed to the compiler that evaluates the Python
script and generates a sandbox directory that contains a DAG file enumerating the
tasks necessary to execute the desired workflow and any files materialized during
compilation.

and setting up the Stash structure which is described in Section 4.1. After this,

the compiler configures an initial Python environment by importing the various

components of the framework into the global interpreter namespace and setting

required paths. After this the compiler evaluates the specified Python script using

Python’s execfile function, which reads in the Python script and evaluates it

using the environment setup by the compiler.

The side-effect of this evaluation is the generation of the workflow DAG and

any necessary materialized files. That is, in order to generate a Weaver workflow,

it is necessary to evaluate the Weaver script in a specially constructed Python

environment. The toolchain includes a Python script, weaver, that sets up the

sandbox, configures the environment, and evaluates the Weaver specification as

described in the previous paragraph and is considered the compiler.

It should be noted, however, that it is possible to utilize the Weaver library

components without this compiler (i.e. execute the script using Python directly

33

rather than with weaver) and still have it generate proper workflows. In fact,

evaluating or executing the Dataset, Function, and Abstraction components

directly in Python will work as long as an initial Nest object is setup as the current

context manager. For the most part, however, it is recommended that users

generate workflows with the weaver compiler script which ensures the environment

is properly configured.

During the evaluation of the workflow script, the compiler tracks the tasks

generated by the Abstractions and Functions. Whenever users invoke one of the

Weaver Abstractions in the Python script, Functions are applied to Datasets

in the pattern proscribed by the Abstraction and a sequence of tasks in the form

of (abstraction, function, command, inputs, outputs, options) tuples is

scheduled with the current Nest.

As noted previously, in Weaver, Abstractions are Datasets. In fact, the

current implementation has Abstractions as a child class of the Dataset class.

This is because in Weaver, Abstractions generally behave as Datasets (i.e. users

pass them as inputs to Functions or other Abstractions), except that they also

schedule some computation (Datasets, on the other hand, do not schedule any

computation). Because of this, Abstractions are memoized futures [5] that (1)

are lazily evaluated and (2) cache their results. This is important to consider

because if an Abstraction is not iterated over (i.e. used as an argument to

another Abstraction or Function), then it will never be computed and thus

never scheduled in the workflow.

To prevent the situation of using an Abstraction, but not generating any tasks

during compilation, Weaver registers each Abstraction with the CurrentNest

during initialization of the Abstraction instance. When the Nest goes to compile

34

the workflow, it will iterate over every Abstraction associated with it to ensure

that every Abstraction is computed and scheduled. Since the results of iterating

over a Dataset are cached, we will never schedule tasks more than once because

the Dataset will only be generated once.

If the user utilizes the Nest constructor in the workflow specification, then a

new sub-workflow is initialized and subsequent tasks are associated with this new

Nest. This continues until the Nest is out of scope, and then the previous Nest

is restored. Just as Abstractions are registered with the CurrentNest, child

Nests are registered with their parents. This is done to ensure that all of the

Abstractions defined in the child Nests are appropriately compiled.

When the weaver compiler is finished evaluating the Weaver script, it will then

call the compile method of the CurrentNest. This will in turn perform the cas-

cading series of compilations described above. Besides iterating over Abstractions

and compiling sub-Nests, the compiler will also perform some optimizations. For

instance, rather than having a single DAG node responsible for a single task, the

user may wish to aggregate a group of tasks into one single super DAG node.

This is an example of clustering which was shown by the Pegasus project to have

significant performance benefits on the Montage and Tomography applications

[103]. Another possible optimization technique is the use of instruction selection

to take advantage of native optimization tools. These optimizations and others

implemented by the compiler are discussed in further detail in Chapter 4. Once

everything is compiled, the compiler will then emit the computed DAG in a format

suitable for the target workflow manager.

In summary, a directed acyclic graph of tasks is generated as a side-effect

of the evaluation of the Weaver script that utilizes the Dataset, Function, and

35

Abstraction components of the Weaver programming interface. All of these

tasks are tracked by a Nest object, which will perform various optimizations on

the graph and finally emit a DAG representing the specified workflow. A more

detailed examination of the Weaver’s implementation is provided in Appendix B.

3.3 Workflow Manager

As mentioned previously, the Weaver compiler generates a sandbox directory

containing a DAG and various files required for proper execution of the workflow.

To actually execute the workflow, the user must pass this workspace and DAG to

a workflow manager which will use the sandbox as the storage area for the outputs

of the workflow and any intermediate workflow artifacts generated during execu-

tion and will parse the DAG to generate tasks to execute on various distributed

execution platforms.

Currently, the compiler only supports the Makeflow [3] workflow manager al-

though the initial version [21] did support Condor’s DAGMan system [1]. The

decision to only support Makeflow was done because some critical aspects of the

dissertation required modifying the run-time system to support some of the de-

sired features of the toolchain. Because of my familiarity with Makeflow, I decided

to only target it and add the features the toolchain required to it. These modifi-

cations are discussed in detail in Chapter 7.

When a workflow script is compiled with Weaver, a Makeflow DAG is generated

in the sandbox directory. This DAG contains rules similar to those found in a

regular UNIX Makefile [43] that describe tasks in terms of the inputs and output

dependencies and the command used to accomplish the desired task. These rules

are used by Makeflow to form an internal directed acyclic graph of the entire

36

workflow. In this graph, the nodes are the data to be processed and the tasks

to be executed with this data, and the links are the relationships between the

tasks and the necessary input and output files. By forming this directed graph,

Makeflow can accurately determine which tasks depend on others and schedule

the work appropriately to optimize concurrency and parallelism.

TABLE 3.5

WEAVER AND MAKEFLOW DAG EXAMPLE

Weaver Source Makeflow DAG

jpgs = [str(i) + ‘.jpg’ for i in range(1000)] 0.png: 0.jpg /usr/bin/convert

conv = ParseFunction(‘convert {IN} > {OUT}’) /usr/bin/convert 0.jpg 0.png

pngs = Map(conv, jpgs, ‘{BASE WOEXT}.png’) 1.png: 1.jpg /usr/bin/convert

/usr/bin/convert 1.jpg 1.png

2.png: 2.jpg /usr/bin/convert

/usr/bin/convert 2.jpg 2.png

...

999.png: 999.jpg /usr/bin/convert

/usr/bin/convert 999.jpg 999.png

An example of the relationship between the user-defined Weaver workflow

script and the generated Makeflow DAG is shown in Table 3.5. In this simple

37

example, we wish to convert a thousand JPG images to PNG format. We can

specify this workflow in three lines of Weaver as shown on the left side of the

table. If we process this workflow specification with the Weaver compiler, we get

the Makeflow DAG displayed on the right side of the table below. For each JPG

file, we created a rule consisting of the output PNG file, the input JPG file, the

convert executable, and the shell command required to perform the task. Note

the listing on the right is only an abbreviation of the Makeflow DAG, as the

whole DAG would be two thousand lines, which is much longer than the three

line Weaver specification. As can be seen, Weaver enables concise specifications of

large data intensive workflows and thus improves the expression of such workflow

applications.

This is the one of the key reasons for compiling workflows rather than con-

structing them directly. With a high-level language such as the Weaver DSL, it

is possible succinctly specify a complex workflow consisting of thousands to mil-

lions of tasks in a very few lines of code. Constructing the DAG manually would

be tedious and error-prone, while using ad-hoc scripts would become difficult to

manage in the long-term. Having a formalized method of generating workflows, as

provided by the Weaver compiler, enables rapid and reliable development of these

data intensive applications. Additionally, as we will see in Chapter 4, compiling

workflows also provides an opportunity to perform optimizations that can boost

the performance of the workflows.

The complete Weaver software stack is composed of three layers as shown in

Figure 3.4. The first layer is the Weaver compiler framework which is used to

translate a workflow specification in Python into a Makeflow DAG. The second

layer is the Makeflow workflow manager which processes the DAG and dispatches

38

Weaver

Makeflow

Local, Condor, SGE, WorkQueue

Python

DAG

Jobs

Figure 3.4. Weaver Software Stack

To create and execute workflows using this toolchain, users write workflow spec-
ifications in Python and then compile them using Weaver. This will generate a
workspace and a DAG containing the tasks necessary for accomplishing the work-
flow. In order to execute the workflow, the workspace and DAG is passed to the
Makeflow workflow manager which will create batch jobs on a variety of execution
platforms.

jobs to the third layer, the various distributed execution engines. As a portable

DAG-based workflow manager, Makeflow provides the ability to utilize different

execution engine such as Condor [113], Sun Grid Engine (SGE), WorkQueue [22],

and local Unix processes. To perform workflow execution, Makeflow internally

employs the master-worker paradigm [72] to perform task scheduling and resource

allocation.

Because Weaver generates Makeflow DAGs rather than directly scheduling for

a specific execution engine, users of the framework can easily take advantage of

multiple execution environments by simply selecting the appropriate platform at

run-time. This flexibility allows users to adapt to the resources available to them

without having to modify their workflow specification. Additionally, Makeflow

utilizes a transaction journal to record the progress of a workflow. This journal is

normally stored as a plain text file in the workflow’s workspace and can be used

39

to collect provenance information such as the number of tasks failures, attempts,

execution times, and more. The log also enables Makeflow to resume or restart

a failed workflow without rescheduling already completed tasks. Batch system

specific logs such as a Condor log file are also stored in the workspace and can

also be used to collect provenance information.

Overall, this system architecture is similar to other workflow systems such as

Swift and Pegasus. For instance, Swift relies on CoG Karajan execution engine

[116, 126] to dispatch tasks and perform resource allocation, while Pegasus relies

on Condor DAGMan [1, 36] for distributed execution. In this case, the toolchain

presented in this dissertation depends on the Makeflow workflow manager to per-

form the actual execution of the workflow. Because Makeflow supports a variety of

distributed execution platforms, this means that Weaver workflows can be easily

ported to and executed on different distributed systems.

Finally, the power and utility of the Weaver’s execution model is that the

compiler allows for users to rapidly construct and configure workflows in a high-

level language (Python). This is important because it is not always clear what the

best decomposition of a workflow should be or what elements are required. Using

the Weaver compiler, users can rapidly prototype and generate their distributed

workflows in a concise and reliable manner. With Makeflow’s support for local and

distributed systems, these workflows can be tested locally on a multi-core system

and then later executed on different distributed platforms when the workflows

have been debugged.

40

CHAPTER 4

OPTIMIZING WORKFLOWS

As with traditional compilers, Weaver supports a few optimization techniques

that can be used to increase the performance or run-time characteristics of the

generated workflows. This chapter discusses four optimization methods that were

implemented by the Weaver workflow compiler and examines their effect on the

performance of a few sample benchmarks. These methods were inspired by tech-

niques from traditional programming language compilers and are summarized in

Table 4.1. As noted in the table, each optimization corresponds to a traditional

compiler technique and has its advantages and disadvantages. In addition to dis-

cussion and testing these optimizations, this chapter also includes analysis for

when these methods are appropriate for achieving improved performance. Over-

all, these optimization techniques can yield significant performance increases un-

der the right circumstances and provide evidence of the effectiveness of applying

certain traditional compiler methods to DAG-based workflows.

41

TABLE 4.1

COMPILER OPTIMIZATIONS OVERVIEW

Optimization Analogy Advantages Disadvantages

Structured Allocation Name mangling Prevents inode exhaustion,
keeps sandbox clean

Slower compilation, negligi-
ble performance increase

Instruction Selection Instruction selection Take advantage of optmized
implementation

Lack of availability, limited
interface

Hierarchical Workflows Data partitioning Increase concurrency, inter-
leave execution

Explicit management, barri-
ers

Inline Tasks Loop unrolling Minimize dispatch time Namespace complications,
break constraints

42

4.1 Structured Allocation

The first optimization method attempts to address the problem of intermediate

files. During the execution of a large workflow, it may be necessary to generate

many intermediate output files. A problem occurs when these intermediate files

are naively placed in a single directory: many filesystems either have limits to how

many files can be placed in a single folder or greatly degrade performance with

after a certain threshold. To work around these filesystem limits and to avoid

performance degradation, the workflow compiler must have an intelligent way of

managing intermediate output files.

In a sense, we need a form of name mangling [98, 99] combined with stack

allocation [4, 31] for our workflows. In a conventional compiler, name mangling

is used to uniquely encode programming entities with the same identifier but dif-

ferent namespaces, while stack allocation involves automatically reserving a fixed

amount of storage in a function’s reserved region of memory. In distributed work-

flows, the locations of the intermediate files need to be modified such that filesys-

tem limits are not exhausted. In other words, the compiler must utilize intelligent

namespace organization in order to efficiently allocate a storage resources.

In Weaver, the solution to this problem is to allow users to utilize a struc-

ture called the Stash, which is an object that returns a unique filename for each

invocation. This means that whenever a user needs to generate a name for an

output file, he may simply call next(CurrentNest().stash), which will return

the next unique path from the current Nest’s Stash (every Nest has its own

Stash structure). The Stash enables users to avoid exhausting filesystem limits

by spreading the files across a hierarchy of directories, rather than a single folder

as shown in Figure 4.1. This is a technique utilized by ROARS [18] to overcome

43

similar filesystem limits in storing a massive scientific data archive and Parrot

[112] for caching remote files.

Stash

0 1 E F

0 1 E F 0 1 E F

000000 _Stash/0/0/000000 FF3FFF_Stash/F/F/FF3FFF

Figure 4.1. Stash Structure

Rather than storing all the files in a single directory, the Stash spreads the files
out across a hierarchy of folders. This diagram shows a three level Stash. In the
actual Weaver implementation four levels are used.

In the default configuration, each Stash object contains four levels of directo-

ries with the actual files placed in the lowest level. The first level is the root direc-

tory and is usually named Stash and placed in the CurrentNest’s workspace.

The next three levels consist of 16 directories on each level, with the folders cor-

responding to the hexadecimal numbers 0 - F. As mentioned previously, files are

placed in the bottom directory, with the following format: <L2><L3><L4>XXXX

where <L2>, <L3>, <L4> correspond to the hexadecimal numbers belonging to

those levels and XXXX is a 4-digit hexadecimal number. The full path of the file

then is Stash/<L2>/<L3>/<L4>/<L2><L3><L4>XXXX.

44

For example, in a four level configuration the first unique Stash file path is

Stash/0/0/0/0000000. The last file in this setup is Stash/F/F/F/FFF3FFF.

This is because the Stash limits the number of files in a single directory to 214

(16384 in decimal or 3FFF in hexadecimal) in order to avoid surpassing filesystem

limits. In total, a four level Stash can support 163 × 214 = 67, 108, 864 unique

intermediate output files, which, from our experience, is sufficient for most data

intensive scientific workflows. If this default configuration is insufficient, the depth

of the Stash can be modified by simply adjusting the depth attribute of the

appropriate Stash object.

In order to test the effectiveness of the Stash structure, I devised a simple

workflow as shown in Figure 4.2. The test workflow involves creating a file and

listing the contents of the directory into that file for 100, 000 iterations. In the

first version of the workflow, we store the all the files in the same directory, while

in the second version we explicitly utilize the Stash to manage the location of the

files for us. Normally, if we do not explicitly set an output file template to an

Abstraction, then the Stash will be used to generate output paths.

1 # 1. Without Stash

2 Iterate('touch {OUT} && ls > {OUT}', 100000 , '{i}.out')
3

4 # 2. With Stash

5 Iterate('touch {OUT} && ls > {OUT}', 100000 , '{stash}')

Figure 4.2. Stash Benchmark Workflows

This is a simple workflow that creates 100,000 files. Without using the Stash

these files will be created in the workflow directory. With the Stash, these files
will be spread across the internal Stash hierarchy.

45

To measure the effectiveness of the Stash, I executed the described workflows

using Makeflow’s local batch system on a 16-core machine and employing a sand-

box located on a local filesystem, AFS [56], and NFS [100]. The results of these

Stash benchmarks are shown in Figure 4.3.

 0

 500

 1,000

 1,500

 2,000

 2,500

 3,000

AFS Local NFS

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
o
n
d
s
)

Filesystem

NoStash
Stash

Figure 4.3. Stash Benchmark Execution Times

This graph shows the execution times of the iteration workflow with and without
the Stash on three types of filesystems: AFS, local, and NFS. For the local and
NFS filesystems, the Stash made little to no difference in performance. However,
for AFS, the Stash enabled the workflow to complete; without it, the iteration
workflow would fail.

In the case of the local filesystem, the Stash provided a modest performance

increase in terms of execution time. On NFS, the Stash yielded a slight perfor-

46

mance decrease. In both cases, however, the execution times for the workflows

with and without the Stash were within the standard deviation of each other

(as indicated by the error bars), meaning the performance differences were in-

significant. From the evidence provided by the benchmarks the use of the Stash

structure did not greatly impact the performance of the workflow on the local

filesystem or NFS.

The benchmarks for executing on AFS, though, did produce interesting results.

As can be seen in Figure 4.3, there is no bar for the workflow without a Stash while

using AFS. This is because the workflow could not complete without utilizing the

Stash when executing on AFS. Figure 4.4 provides sample execution timelines

of the workflow with and without the Stash on AFS. Without this structure,

the workflow stalls around 25 minutes when the workflow has generated around

64, 000 files as shown in Figure 4.4a. This is because AFS has a hard limit of 216

or 65, 536 inodes per directory. Without the Stash, each subsequent file creation

will fail, and thus block progress of the workflow. Because the Stash limits the

number of files in one directory to 214 and spreads the files across multiple folders,

it allows the workflow to complete as shown in Figure 4.4b.

From these results it is clear that while the Stash does not significantly af-

fect the performance of the workflow, it can be critical to enabling workflows on

filesystems such as AFS with limited inodes per directory. Because it does not

harm performance and makes it possible for workflows with many intermediate

files on certain filesystems, Weaver utilizes the Stash by default for anonymous

or implicit output files. To forgo the Stash, users may simply explicitly name all

of their output files. As such, the Stash is there as a convenience to help users

deal with managing many intermediate files, but does not force them to utilize it.

47

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 20 40 60 80 100 120

N
u
m

b
e
r

o
f
ta

s
k
s

Elapsed Time (Minutes)

Waiting
Running

Completed
Failed

Aborted

(a) Without Stash

 0

 20000

 40000

 60000

 80000

 100000

 0 5 10 15 20 25 30 35 40

N
u

m
b

e
r

o
f

ta
s
k
s

Elapsed Time (Minutes)

Waiting
Running

Completed
Failed

Aborted

(b) With Stash

Figure 4.4. Stash Benchmark on AFS Sample Timelines

Without the Stash, the iteration workflow stalls after about 64,000 tasks, which
is near the limit for the number of files in an AFS directory, and never completes
(it was manually aborted after 100 minutes). Using the Stash, the workflow was
able to complete in a little under than 40 minutes while executing from an AFS
directory.

48

As the issue of managing intermediate files is a persistent problem in large

data intensive scientific workflows, Chapter 7 investigates garbage collection as

an alternative method of addressing this problem. Fortunately, the compiler is

implemented in such a manner that the user may utilize both the Stash and

garbage collection, just one method, or none at all. The guiding design principle

for the Weaver compiler is to provide facilities for improving the performance

and execution of the workflow, but to ensure the end user has control of what is

utilized. This principle is reflected and reinforced in the optimizations discussed

in the remainder of this Chapter.

4.2 Instruction Selection

As discussed earlier, Weaver implements a variety of distributed computing ab-

stractions such as All-Pairs. Normally, Weaver Abstractions generate a sequence

of task tuples in order to implement the appropriate execution pattern while rely-

ing on the workflow manager to assemble a DAG and determine proper execution

order. This allows for the specification of sophisticated workflows consisting of

high-level abstractions that are completely agnostic of the underlying execution

engine. One can view the abstraction primitives provided by Weaver, then, as

generic operations that would work on any distributed execution platform.

Unfortunately, these generic operations are not necessarily the most optimal

or efficient implementations of the particular pattern. One reason is that the

Weaver programming model requires input and output data to be manifested as

physical files. In workflows that involve many short running applications, this

model will yield an inefficient implementation since each data record will need to

be instantiated on the filesystem and each application will appear as a separate

49

task in the DAG. Depending on the execution engine, the latency for each job

start up can greatly diminish the performance of such a workflow.

Another reason why the generic implementations may be non-optimal is that

some abstractions require intimate knowledge of the underlying distributed system

to be effective. For instance, the Map-Reduce implementation presented by Google

is successful not only because of the data parallel task scheduling but also because

of its ability to take advantage of data locality [35].

Because there already exists optimized tools that implement some of the ab-

stractions provided by Weaver and because the generic implementations may be

non-optimal, Weaver allows users to perform instruction selection [45]. That is,

they can easily specify which version of the abstraction to utilize during com-

pilation. To use a optimized native version of an abstraction, the user sets the

native keyword argument in the abstraction’s constructor to True. If the native

version is available for that abstraction, then Weaver will use that optimized tool

instead of a generic version. That is, instead of generated a complete DAG to

implement the desired pattern, Weaver will schedule a single task that calls the

native implementation to perform the abstraction.

Figure 4.5 demonstrates this transformation for the All-Pairs abstraction. In-

stead of generating all of the tasks that would implement this pattern, the compiler

simply generates a single task that utilizes the optimized tool to accomplish the

desired computation. Beyond utilizing the optimized native tool, this transforma-

tion also greatly reduces the size of the DAG, which can yield small performance

increases due to reduce scheduling overhead on the part of Makeflow.

This ability to choose between a generic and specialized operation is similar to

the use of SIMD [102] instructions with computer processors. In a conventional

50

Generic All-Pairs Optimized All-Pairs

All-Pairs Native Tool

All-Pairs Sub-DAG

Figure 4.5. Instruction Selection

Normally, abstractions are implemented by generating a set of tasks that when
executed will perform the desired computation. When using an optimized native
tool, the compiler can avoid generating all of these tasks and instead schedules a
single task that utilizes the optimized tool to perform the abstraction.

compiler, operations are compiled using the lowest common denominator instruc-

tion set for a particular processor architecture. However, if the user requests

an architecture specific optimization, such as SIMD instructions, the compiler

will output optimized program code that takes advantage of the hardware [45].

Weaver behaves in a similar manner. By default, it generates DAGs with generic

implementations of any requested abstraction. If the user specifies the use of a

native tool, then Weaver will forgo the generic version and instead use the opti-

mized tool. As shown in Figure 4.5, a native tool can greatly reduce the size of

the DAG since it no longer needs to implement the whole abstraction as a set of

task rules and instead uses the specialized software as a single optimized task.

To demonstrate the performance gains possible in using a native implementa-

tion over a generic DAG, I wrote two workflows that performed an All-Pairs on a

51

set of BIT iris templates from the BXGrid [17] biometrics repository as shown in

Figure 4.6. Using Makeflow’s WorkQueue batch system and a pool of 100 workers,

I varied the size of the input dataset from 10 to 1, 000 iris templates and executed

both the generic and optimized workflows multiple times.

1 # 0. Common code

2 all_bits = Glob('{0}/*. bit'.format(CurrentScript (). arguments [0]))
3 bits_set = Query(all_bits , limit=int(CurrentScript (). arguments [1]))

4

5 compare_bits = ParseFunction('iris_template_compare {IN} > {OUT}')
6

7 # 1. Generic version of AllPairs

8 results = AllPairs(compare_bits , bits_set , bits_set)

9 table = Merge(results , 'table.txt')
10

11 # 2. Native version of AllPairs

12 results = AllPairs(compare_bits , bits_set , bits_set ,'table.txt',
13 native=True , port=int(CurrentScript (). arguments [2]))

Figure 4.6. Instruction Selection Benchmark Workflows

The top part of this code segment is the portion of code common to both workflows.
Lines 7− 9 contains the source for the generic version of All-Pairs. In this case,
we perform an AllPairs and then a Merge to construct a table of results. For the
optimized version, shown on Lines 11− 13, we simply set native to True and set
the output file since the native tool automatically constructs a table for us.

The results of these benchmarks are shown in Figure 4.7. From the graph, it

is clear that the generic version scales linearly as the number of inputs increases

(the total size of the inputs increases quadratically since all inputs are compared

in a pair-wise fashion), while the optimized native version scales super-linearly

relative to the size of the input dataset. The generic implementation is several

52

orders of magnitude slower because it must use files for intermediate storage and

is unable to take advantage of specific execution engine environment features.

For instance, the optimized All-Pairs tool uses the WorkQueue execution engine

internally to enable low-latency work dispatching and takes advantage of multi-

core systems by intelligently scheduling tasks to multiple cores. Moreover, the

native tool aggregates intermediate outputs in memory and streams the outputs

to a single file at the end of execution.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 100 200 300 400 500 600 700 800 900 1000

R
u

n
n

in
g

 T
im

e
 (

S
e

c
o

n
d

s
)

Size of Input Dataset (x
2
)

X Cancelled after 50% progress

Generic
Native

Figure 4.7. Instruction Selection Benchmark Results

In these benchmarks, the generic All-Pairs scales linearly with respect to the input
dataset (which grows quadratically) and begins to produce unreasonable execution
times around 250 input files. The native tool, on the other hand, performs super-
linearly and continues to yield excellent performance even for the largest datasets.

53

As shown in the benchmark results demonstrated in Figure 4.7, there is a

performance penalty associated with using the generic abstraction implementa-

tions. The Weaver programming model requires that input and output data must

be stored as files, which greatly constrains the performance of certain types of

workflows. In the benchmark shown, the generic version had to be stopped af-

ter around 250 input files since it was taking too long to complete (around 7

hours to reach 50% completion). In these cases, a specialized native tool eas-

ily outperforms the generic implementation because it is not constrained by the

programming model. Fortunately, Weaver provides an instruction selection mech-

anism to take advantage of these optimized abstraction implementations, allowing

for specialized versions to be used when available.

It is important to note that the availability of generic abstraction implementa-

tions is useful and necessary for the cases where a native implementation does not

exist or does not match the semantics of the user’s workflow. This allows users to

still take advantage of a particular pattern of work, even if the tool is not available

for their particular distributed computing platform.

Finally, the ability to choose between a generic implementation and an opti-

mized one also makes Weaver flexible and attractive for exploring new abstrac-

tions. For instance, new patterns of execution can be quickly developed as a set

of DAG relationships and tested on a variety of execution engines. If the new

abstraction proves useful, then an optimized implementation can be developed

and then plugged into Weaver seamlessly.

54

4.3 Hierarchical Workflows

Another method of optimizing a workflow is to allow the user to carefully

utilize hierarchical Nests to structurally partition the workflow into smaller sub-

workflows that can be executed concurrently. A high-level view of this transforma-

tion is shown in Figure 4.8 and is similar to data partitioning compiler technique

where a sequentially iterated parallel loop is divided in a manner to minimize

interprocessor communication and to software pipelining [65] in which iterations

of a loop are continuously started at constant intervals.

When applied to scientific workflows, the idea behind utilizing these compiler

techniques is to transform a flat monolithic DAG into a hierarchical organization

of Nests such that each Nest represents to an independent sub-DAG that can

be executed concurrently with its siblings. This hierarchical configuration, along

with careful specification of execution platform parameters, allows for increase

scalability and performance since multiple portions of the overall workflow can be

executed in parallel.

The most straightforward way to construct a hierarchical workflow is to take

a large dataset, split into evenly sized chunks, then treat each chunk as a smaller

input dataset. To create the hierarchy, the user simply uses Python’s with state-

ment syntax with a Nest as explained in Section A.4, which creates a new child

context with its own DAG and sandbox. Any Abstractions executed under this

context will be attached to the created Nest rather than the parent.

This hierarchical arrangement should lead to scalability and performance im-

provements due to the following:

1. Interleaving: By partitioning the workflow into concurrent sub-DAGs and

executing those sub-DAGs, more portions of the DAG can be active at once.

55

Hierarchical Nest

Flat Nest

Figure 4.8. Hierarchical Workflows

In a hierarchical workflow, the end user uses multiple Nests to partition the DAG
into smaller nested sub-DAGs that can be executed concurrently. Each sub-DAG
is encapsulated by a Nest and thus has its own sandbox and DAG separate from
the parent Nest.

Typically, a workflow engine such as Makeflow would execute as many in-

dependent tasks as possible, given its resource constraints. Some tasks,

however, may tie up the workflow engine during data transfer or simply

take a long time, preventing other tasks from being dispatched. By having

multiple sub-DAGs with their own workflow engine instance (and thus mas-

ter) portions of the DAG can perform I/O while other segments perform

execution. In a single flat DAG, tasks would have to block while waiting for

I/O to complete.

56

2. Run-time Overhead: Another performance advantage to partitioning the

workflow is to overcome some of the performance limitations of the run-time

system. For instance, parsing a workflow in Makeflow is a linear operation

and thus becomes a small bottleneck in the startup of larger workflows.

Moreoever, since Makeflow uses a fixed hash table representation and a linear

scan algorithm for determining tasks to execute, processing and managing

a larger workflow can take significantly more computational and memory

resources that dividing the workflow into smaller, more manageable pieces.

In summary, hierarchical workflows allow for better resource utilization by

enabling interleaving of I/O and execution and by reducing the amount of overhead

incurred by the run-time system. By creating and using new Nest objects in

conjunction with Python’s with statement, end users can construct hierarchical

workflows to take advantage of these possible performance enhancements.

To test the effectiveness of hierarchical workflows, I simplified the transcoding

workflow currently used for the BXGrid project [23] into the benchmark workflows

shown in Figure 4.9. In these benchmark workflows, I queried seven different types

of biometrics data (ABS, CR2, image, POE, RAW, iris, and video) to produce one

workflow that transcodes a certain number of files (1, 000 in these tests) of those

types in a single flat workflow and a second workflow that performed the same

transcoding using a hierarchical set of Nests instead.

For these benchmarks, I took the workflows in Figure 4.9 and created two sets:

(1) the first set of workflows involved transcoding only Small files (i.e. excluding

video and POE files) using a flat and a hierarchical workflow, (2) a second set of Big

workflows that included all seven types of files mentioned previously using both

flat and hierarchical workflows. To test these configurations I used Makeflow’s

57

1 # 0. Transcoding datasets

2 bxgrid = MySQLDataset(HOST , 'biometrics ', 'files ')
3 datasets = [

4 ('abs', 'convert_abs_to_gif_animation {IN} 512 384 {OUT}',
5 Query(bxgrid , bxgrid.c.fstate == 'ok',
6 bxgrid.c.extension | ('gz', 'abs.gz'), limit=LIMIT),

7 '{BASE_WOEXT }.gif'),
8 ('cr2', 'convert_cr2_to_jpg {IN} 512 384 {OUT}',
9 Query(bxgrid , bxgrid.c.fstate == 'ok',

10 bxgrid.c.extension == 'cr2', limit=LIMIT),

11 '{BASE_WOEXT }.jpg'),
12 ('image ', 'convert_image_to_jpg {IN} 512 384 {OUT}',
13 Query(bxgrid , bxgrid.c.fstate == 'ok',
14 bxgrid.c.extension | ('JPG', 'ppm'), limit=LIMIT),

15 '{BASE_WOEXT }.jpg'),
16 ('POE', 'convert_POE_to_gif_animation {IN} 512 384 {OUT}',
17 Query(bxgrid , bxgrid.c.fstate == 'ok',
18 bxgrid.c.extension == 'b3d', limit=LIMIT),

19 '{BASE_WOEXT }.gif'),
20 ('raw', 'convert_raw_to_jpg {IN} 512 384 {OUT}',
21 Query(bxgrid , bxgrid.c.fstate == 'ok',
22 bxgrid.c.extension == 'NEF', limit=LIMIT),

23 '{BASE_WOEXT }.jpg'),
24 ('tiff', 'convert_iris_to_template {IN} {OUT}',
25 Query(bxgrid , bxgrid.c.fstate == 'ok',
26 bxgrid.c.extension == 'tiff', limit=LIMIT),

27 '{BASE_WOEXT }.bit'),
28 ('video ', 'convert_video_to_gif_animation {IN} 512 384 {OUT}',
29 Query(bxgrid , bxgrid.c.fstate == 'ok',
30 bxgrid.c.extension | ('avi', 'mp4', 'MPG', 'ts'),
31 limit=LIMIT),

32 '{BASE_WOEXT }.gif'),
33]

34 # 1. Flat Transcoding Workflow

35 for type , convert , files , output in datasets:

36 Map(convert , files , output)

37

38 # 2. Hierarchical Transcoding Workflow

39 for type , convert , files , output in datasets:

40 with ParrotNest(type):

41 Map(convert , files , output)

Figure 4.9. Transcode Benchmark Workflows

This is a simplified version of the transcoding workflow used for the BXGrid web-
site. The first workflow transcodes all the different files in a single DAG while the
second one performs the transcoding using hierarchical Nests.

58

WorkQueue batch system with a pool of 100 workers and executed these workflows

multiple times. For the hierarchical workflows, I had all of the sub-DAGs run as

local jobs on the parent node.

 0

 500

 1,000

 1,500

 2,000

 2,500

 3,000

 3,500

 4,000

 4,500

Small Big

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

BXGrid Transcode Workflow

Flat
Hierarchical

Figure 4.10. Transcode Benchmark Execution Times

In this graph, the Small workflow used only smaller files (i.e. without video and
POE data), while the Big workflow included all seven types of data. As can been
seen, hierarchical workflows performed better than the flat monolithic workflow.
This difference in performance between flat and hierarchical, however, was larger
for the Small workflow than the Big workflow.

The results of these benchmarks are shown in Figure 4.10. As can be seen,

the hierarchical workflows performed much better than the flat monolithic work-

flows in transcoding the biometric data. In the case of the Small workflow, the

hierarchical version cuts the execution time nearly in half. For the Big workflow,

59

the hierarchical version yielded a significant performance increase but not nearly

as much as it did for the Small workflow.

The cause of these performance increases is made clear in Figure 4.11. These

two charts show the Current Tasks/Minute rate (how many tasks have completed

in the last minute) of a Big flat transcoding workflow and a Big hierarchical

transcoding workflow. As demonstrated in the top graph, there are many points

in the graph where the completion rate drops to zero. This is because the workflow

engine, Makeflow is so busy transferring data to workers that it cannot receive

output data from finished workers and cannot dispatch new tasks. The reason for

this long period of I/O is that some of the video files were quite large (i.e. multiple

gigabytes) and thus forced a stall in the pipeline. The second graph supports this

analysis as even in the hierarchical version, the video sub-DAG also experiences

dips to zero in the completion rate, which is evidence of large file transfers.

The hierarchical workflow was able to mitigate or workaround this huge I/O

bottleneck because it while the video sub-DAG blocked on transferring files, the

other sub-DAGs were able to continue processing. As predicted above, hierarchical

workflows enabled interleaving of I/O and execution across a wider portion of the

graph and thus increased the performance of the workflow.

There is a limit to this performance increase, however, as shown in Figure 4.10.

In running the benchmarks, all the masters of the hierarchical workflow ran on a

single machine. This means that there were periods of time during the execution

of the workflow that the network bandwidth was saturated. This explains why the

Big workflow did not see as much of a performance increase as the Small one: in

the Big workflow the video files dominated the outgoing network bandwidth and

served as a bottleneck on how quickly tasks could be dispatched. The solution

60

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10 20 30 40 50 60

C
u

rr
e

n
t

T
a

s
k
s
 P

e
r

M
in

u
te

Elapsed Time (Minutes)

Big Flat Transcode

(a) Big Flat Transcode

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30 35 40 45 50

C
u

rr
e

n
t

T
a

s
k
s
 P

e
r

M
in

u
te

Elapsed Time (Minutes)

ABS
CR2

Image
POE
RAW
TIFF

Video

(b) Big Hierarchical Transcode

Figure 4.11. Transcode Benchmark Task Rates Over Time

As can be seen this first graph, the flat version has lots of dips in task per minute
completion rate. This means that there were many moments during the execution
of the workflow where the workflow engine was busy transferring data out instead
of receiving data and dispatching new tasks. Contrast this with the bottom graph,
where only the video line shows huge dips to zero, while all the other file types are
able to maintain a positive completion rate.

61

to this is to distribute the multiple masters in a hierarchical workflow to different

machines in order to spread out the data transfers. This was beyond the scope of

my immediate research, however, so I leave it as possible future work.

The overall takeaway from these results is that using Nests to construct hierar-

chical workflows can yield significant performance increases due to interleaving of

tasks across multiple sub-DAGs and minimizing of run-time overhead. In partic-

ular, workflows with large datasets that can be divided into smaller independent

chunks are well-suited for this technique. For workflows composed of a long se-

quence of inter-dependent phases, however, hierarchical workflows do not offer

much of an advantage and may in fact hinder it as each stage of the workflow

must block for the entire sub-DAG to complete before dispatching any of the

tasks of the subsequent sub-DAG.

4.4 Inlining Tasks

The final optimization method investigated in this dissertation is inlining tasks.

When this technique is enabled by the user, groups of similar tasks are aggregated

into super-tasks which consist of sub-DAGs that perform the collected tasks as

shown in Figure 4.12. This optimization method is similar to inlining functions [30]

and unrolling loops [12, 38] in conventional programming languages. The principle

behind this technique is to minimize the dispatch latency by reducing the overhead

involved in executing the desired operations. By aggregating similar tasks together

into super-tasks, we reduce the amount of tasks the top-level workflow manager

has to oversee. This technique has been used in the past in DAG-based workflow

system such as Pegasus, which refers to this particular method as “level clustering”

[63].

62

Generic Inlined Tasks

Sub-DAG Sub-DAG

Figure 4.12. Inlined Tasks

When using the Weaver compiler, a user may either perform this optimization

globally by passing the -t <group size> parameter or by specifying a value to

an Abstraction’s group keyword argument. In either case, the group size is

used to divide the schedule tasks associated with each Abstraction into evenly

sized groups. That is, after each Abstraction is compiled and a set of tasks is

generated, the compiler checks to see if the global group size parameter is set

or if the Abstraction’s group attribute is set. If so, the compiler will take the

generated set of tasks and aggregate them into sub-groups based on the specified

parameter and then schedule these meta-tasks.

To test the effectiveness of inlining tasks, I used the workflow shown in Figure

4.13. In this workflow, I create a series of tasks that simply sleep for a random

amount of time and then create the specified output file. The total amount of

tasks to be executed is passed as an argument to the workflow during compila-

tion. In my benchmarking I used 1, 000 as my ITERATIONS amount and executed

this workflow using Makeflow’s local, Condor, and WorkQueue batch systems on

a 16-core machine. Most importantly, I ran the workflow with varying global

63

1 import random

2 random.seed (1)

3

4 ITERATIONS = int(CurrentScript (). arguments [0])

5 Iterate('sleep {ARG}; install -D /dev/null {OUT}',
6 [random.randint(0, 5) for i in range(ITERATIONS)], '{stash}')

Figure 4.13. Inlined Tasks Benchmark Workflow

This benchmark simply performs N tasks where each task involves sleeping a ran-
dom amount of time and then creating a file and where N is the number of tasks
to execute as specified by ITERATIONS.

group sizes (e.g. 1, 2, 4, 8, 16) to determine the affect of inlining tasks on these

different distributed execution platforms.

The results of these benchmarks are shown in Figure 4.14. On all three dis-

tributed execution platforms, as we increase the amount of inlining we do (i.e.

increase the group size), we also increase the performance of the workflow. In

other words, the more we inline tasks, the more speedup relative to not inlining

we accomplish. Condor, in particular, received the biggest performance boost,

which is not a surprise since it has the largest dispatch latency and most vari-

ability. This volatility also explains why for larger group sizes we experience a

reduction in speedup relative to previous sizes; it is most likely that my Condor

user priority prevented tasks from executing in a timely manner towards the end

of the benchmarking.

While the workflows on Condor experienced significant speedups, the work-

flows on local and WorkQueue demonstrated more modest running time improve-

ments. This could be simply due to the fact that both of these batch systems are

already low latency execution platforms, so the advantage of aggregating similar

tasks is lessened on these faster systems. It is interesting to note, however, that

64

 0

 50

 100

 150

 200

 250

 0 2 4 6 8 10 12 14 16

R
u

n
n

in
g

 T
im

e
 (

S
e

c
o

n
d

s
)

Number of Inlined Tasks

Local
Condor

WorkQueue

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p

Number of Inlined Tasks

Local
Condor

WorkQueue

Figure 4.14. Inlined Tasks Benchmark Results

As the number of inlined tasks increases, we see performance increases across all
three distributed execution engines. Unsurprisingly, the workflows on Condor ex-
perienced the most speedup, as that execution platform has worst and most variable
dispatch latency.

65

inlining brought the running time of the WorkQueue workflows down to the same

level as the local workflows. That is, due to task inlining, executing the workflows

using WorkQueue was just as fast as using the local batch system. Compared

to the local system, WorkQueue experienced greater speedups, but since it was

slower than the local system to begin with, it never surpassed it in terms of actual

execution time.

Altogether, these four optimizations manifest the effectiveness of applying tra-

ditional compiler techniques to distributed workflow generation. The Stash struc-

ture addresses the problem of intermediate files by providing the user a convenient

method of automatically managing the workflow namespace in a manner similar

to register allocation. The Weaver compiler allows the end user to perform in-

struction selection by supporting the native keyword argument to abstractions

which will replace the generic DAG implementation of the pattern with a native

optimized tool. Using Nests, users can partition their workflows into hierarchi-

cal workflows that improve the scalability and performance of their applications

through increasing interleaving of tasks and minimizing run-time overhead. Fi-

nally, inlining tasks allows users to minimize the dispatch latency of the distributed

execution engine in a manner similar to how compilers perform loop unrolling or

function inlining. As the results presented in this chapter show, all of these com-

piler techniques can greatly improve the performance of the generated workflow

when used appropriately.

66

CHAPTER 5

LINKING WORKFLOWS

While the compiler is the central component of a programming toolchain, many

software development suites include a variety of auxiliary utilities. A critical utility

in a conventional toolchain is the linker, which is a special program that takes one

or more objects produced by a compiler and combines them into a single unit (e.g.

executable, shared library, etc.). In the traditional GCC toolchain [106], the LD

linker combines various object and library archives, relocates the application data,

and modifies symbol references for proper run-time resolution. During this linking

process, LD may also perform various optimizations such as removing unnecessary

instructions or modifying calling procedures [10].

In the context of distributed workflows, we are mainly concerned with the

packaging and reference modification capabilities of a linker. As noted previously,

distributed workflows are generally ensembles that consist of multiple executables

and libraries working together to form a single meta-application. Within this pro-

gramming environment we face two main problems: (1) Applications with external

dependencies and (2) Workflows with many components and static workspaces.

To address the first problem, my solution is to combine all the relevant com-

ponents of an application into a self-extracting executable archive. For normal

binaries, this involves packaging the executable along with its library dependen-

cies. For applications such as Python or Matlab scripts, this involves archiving

67

the script and the language interpreter and run-time system in order to produce

a self-contained executable. The general principle is to link in any external de-

pendencies into a single portable unit for reliable distribution and execution.

The solution to the second problem is to modify the paths and references

in the workflow’s directed acyclic graph in order to enclose the namespace of

application. This normally involves converting absolute paths to locations internal

to the workflow’s workspace. To increase portability even further, input files and

executables may also be copied to the workspace. Because the references of the

workflow have been modified to only point to internal files, the linked workflow is

more portable and less reliant on the particular environment in which it is created

or executed.

The remainder of this chapter describes how these linking principles are utilized

in two utilities provided by the compiler toolchain. The first is an application

linker that allows users to create self-contained applications for a wide variety of

applications including non-binary executables such as Python and Matlab scripts.

The second is a workflow linker that modifies the internal references to make the

workflow less dependent on the environment in which it was created.

5.1 Application Linker

It is common for individual applications to depend on external files such as

shared libraries or run-time data. On a single machine, the existence of multiple

external dependencies is not a significant problem. However, in a distributed

environment, the application is most likely to be transfered to a remote machine

where its requirements may not be sufficiently satisfied. As such, applications

with external dependencies pose a significant problem for distributed workflows.

68

For executables that depend on shared libraries, the most straightforward so-

lution is to simply statically link external libraries into the target executable. This

avoids the need to dynamically locate and load the libraries at run-time (i.e. the

libraries are instead embedded in the executable). A potential downside to this

solution is that static linking increases both the size of the program (thus transfer

costs) and the amount of memory required for execution [33]. In the context of

a distributed workflow, however, this resource trade-off is reasonable as it allows

the user to avoid the complexity of managing the external dependencies of an

application across multiple machines.

Unfortunately, it is not always possible for end-users to create a static ex-

ecutable without access to the original source or object files. Moreover, files

such as configuration settings and other run-time data cannot be linked into the

executable using the traditional LD utility. Applications which invoke other ex-

ecutables (e.g. shell scripts) also cannot be statically linked but have external

dependencies that must be managed. For these situations, an application linker is

required to package the external dependencies of a program into a single execution

unit for manageable distribution.

Although the compiler supports specifying a Function’s dependencies, it is of-

ten desirable to execute these individual applications independently (i.e. outside

the context of the workflow). Moreover, some programs require data or configura-

tion that are difficult or cumbersome to specify in Weaver. To solve this problem,

the toolchain includes an application linker named Starch [114] to create stan-

dalone application archives (SAA). These packaged executables are self-extracting

archives that contain all of the dependencies, configuration, and environment set-

tings necessary to execute the particular application.

69

Executables

Libraries

Data Files

Starch

Template Shell
Script

Application
Archive

Standalone
Application Archive

Environment
Scripts

Figure 5.1. Starch (STandalone application ARCHiver)

To create a standalone application archive, the user gives Starch a list of exe-
cutables, libraries, data files, and environmental scripts to package. The resulting
artifact is a self-extracting executable that consists of a shell script and a tarball
embedded at the end of the script.

As illustrated in Figure 5.1, to create a SAA using Starch, the user specifies

a list of executables and libraries to include in the target execution image along

with the appropriate shell command to run when the SAA is executed by the

user. By default, Starch will automatically search for any dynamically linked

libraries required by the executables specified and embed those in the archive.

If any special input data files are required by the application, they may also be

specified to be included in the SAA. Additionally, special environmental variables

and other run-time configuration options can be stored in the package through the

use of user-defined environment scripts that will be imported before the SAA’s

command is executed.

Once all of the necessary options are specified, the executables, libraries, and

environment scripts are archived and compressed as a standard Unix tarball. This

70

tarball is then appended to Starch’s template shell script to generate a standalone

application archive. When the SAA is executed the wrapper shell script will auto-

matically extract the embedded archive, configure the environment, and run the

user specified shell command. To utilize Starch generated application packages in

their workflows, users simply replace the normal executables with the constructed

SAA’s in their workflow specifications.

TABLE 5.1

STARCH CREATION AND EXTRACTION BENCHMARK

Program LIBS EXE Size SAA Size Creat. Time Extract. Time

convert 27 24.83 KB 7.13 MB 3.37± 0.35 1.39± 0.17

ffmpeg 10 6.44 MB 4.46 MB 2.55± 0.21 0.95± 0.11

Table 5.1 provides the results of creating and extracting the convert and

ffmpeg applications using Starch. The first application, convert, was dynam-

ically linked and had many library dependencies (27). This bloated the SAA

size to 7.13MB from the 24.83KB of the original executable. The second pro-

gram, ffmpeg, had fewer dependencies and actually decreased in size, with the

SAA at 4.46MB and the original command at 6.44MB. This is most likely due

to compressing long text strings embedded in the executable and the libraries.

Unsurprisingly, the creation and extraction times for convert was greater than

71

ffmpeg, since the former was larger in file size and had more components. Because

SAAs are extracted before execution, the extraction times in Table 5.1 reveal that

using SAAs for short tasks could severely degrade performance. That is, if the

execution time if the task is less than the extraction time of the SAA then the

overhead incurred in using the SAA will adversely affect the running time of the

workflow.

1 # 1. Normal Convert

2 convert = ParseFunction('convert {IN} {OUT}')
3

4 jpgs = Glob('{0}/*. jpg'.format(CurrentScript (). arguments [0]))
5 Map(convert , jpgs , '{basename }.png')
6

7 # 2. Starched Convert

8 convert_sfx = ParseFunction('convert.sfx {IN} {OUT}',
9 environment ={'SFX_UNIQUE ': 1})

10

11 jpgs = Glob('{0}/*. jpg'.format(CurrentScript (). arguments [0]))
12 Map(convert_sfx , jpgs , '{basename }.png')
13

14 # 3. Starched Convert with keep option

15 convert_sfx = ParseFunction('convert.sfx {IN} {OUT}',
16 environment ={'SFX_KEEP ': 1})

17

18 jpgs = Glob('{0}/*. jpg'.format(CurrentScript (). arguments [0]))
19 Map(convert_sfx , jpgs , '{basename }.png')

Figure 5.2. Starch Benchmark Workflows

In all of the benchmarks we convert a set of JPG images to PNG format. The
first benchmark workflow uses the normal convert executable, while the second
one uses a Starched version of the application. The third one uses a Starched

convert but with the SFX KEEP flag that lets the SAA to use a previously extracted
version of the application.

72

To test the impact of using SAA instead of normal executables, I constructed

three simple workflows as shown in Figure 5.2 and executed them using Makeflow’s

local batch system on a 16-core machine. The goal of all three benchmarks is to

convert a set of JPG images to PNG format. The first benchmark workflow uses

the system installed convert executable, while the second one uses a SAA linked

by Starch that is extracted before each invocation. The last workflow also uses

the convertSAA but with the SFX KEEP flag enabled. When set to a positive value,

the SFX KEEP environment variable allows the SAA to use a previously extracted

version of the application, and thus avoid the cost of extracting the archive.

The results of these benchmarks are shown in Figure 5.3. As can be seen in

the chart, using the normal convert executable was almost twice as fast as using

the SAA in the workflow where we had extract the archive every time we executed

the application. By using the SFX KEEP flag in the third workflow, we are able to

ameliorate the costs associated with using a SAA by only extracting the archive

once (i.e. the first time it is executed). Using this technique, the third workflow

is much closer to the first one in terms of execution time. The small difference in

performance can be attributed to the remaining overhead incurred when using a

SAA: checking for the extracted archive and trampolining the shell command.

Although the application linker is conceptually simple, Starch is a useful utility

in the compiler toolchain that enables users to package complex executables for use

in distributed workflows. It is currently being used by collaborators to simplify and

package a variety of bioinformatics workflows [67, 114] which incorporate many

executables and libraries that need to work across multiple distributed systems.

73

 0

 10

 20

 30

 40

 50

 60

 70

 80

Convert Starch Starch_Keep

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
o
n
d
s
)

Starch Benchmark Workflow

Figure 5.3. Starch Benchmark Workflow Execution Times

Using SAAs can incur significant execution overheads if the execution time of the
application is dwarfed by the time it takes to extract the archive. One way to
mitigate this overhead is by setting the SFX KEEP to a positive value, which will
allow the SAA to skip extracting the archive it the target directory already exists.
This graph shows that this technique can bring the execution time of a workflow
using SAAs down to close proximity to a workflow using the normal executables.

5.2 Workflow Linker

In addition to the Starch application linker, the toolchain also includes a work-

flow linker called makeflow link. Unlike Starch, which mainly deals with packag-

ing a single application, the makeflow link utility operates on the whole workflow

and primarily performs reference or symbol manipulation on the DAG, which is an-

other common responsibility for traditional linkers such as LD. The makeflow link

tool supports the following linking actions:

74

1. Copying: makeflow link can be used copy available input and executable

files to the workflow’s workspace. Copying these files to the workspace would

allow users to simply archive up the folder containing the workflow to form

a snapshot of their workflow or to share with collaborators.

2. Symlinking: Instead of copying input or executable files, makeflow link

can be instructed to symlink these files to the workflow’s workspace. This

can be useful for distributed execution platforms that expect all files to be

inside the workspace. If snapshotting or archiving is not desired, symlinking

allows the user to meet the execution platform’s requirements without the

cost of copying many files to the local sandbox.

3. Starching: Executables can automatically be converted into standalone

application archives by having makeflow link run Starch on each of these

applications. Using this option in conjunction with copying input files should

produce a portable workflow that can be re-located to other systems with

relative ease.

The linker also supports options for specifying whether input, output, Stash,

or executable files should use relative or absolute paths. By default, Weaver gen-

erates workflow DAGs that contain absolute paths. While most of the distributed

execution engines supported by Makeflow can handle absolute paths, there are

some situations where relative paths are required or preferred. makeflow link

can systematically convert these paths for the user and ensure that all rules are

updated properly. Since Stash and executable files can be either input or output

files, any options associated with these types of files will take precedence of the

options for input or output files. Note that copying, symlinking, or Starching a

file implies the use of a relative path for that particular file.

75

Usage: makeflow_link [options] <DAG> ...

Options:

-h, --help show this help message and exit

General Options:

-d COPY_DIRECTORY Copy or symlink input files to this sub-directory.

-r Recursively link nested DAGs.

-v Report progress information.

Backup Options:

-b Backup existing DAG before overwriting.

-s SUFFIX Use this as suffix for DAG backup name.

Linking Options:

Input, Output, Stash, and Executable files may be set a combination of

the following linking options: (1) copy: copy input or executable

files to sandbox, (2) symlink: symlink input or executable files to

sandbox, (3) starch: starch executables, (4) absolute: use absolute

file path in rules, (5) relative: use relative file path in rules. The

Stash and Executable settings take precedence over the Input and

Output settings.

-I options Set linker options for input files.

-O options Set linker options for output files.

-S options Set linker options for stash files.

-X options Set linker options for executable files.

Figure 5.4. makeflow link Command Line Options

This linker allows the user to specify various linker options for input, output,
Stash, and executable files. Options for the latter two take precedence over the
first two. The utility over-writes the DAG, but the user can request the original
is backed up. Additionally, the command can detect nested sub-workflows and
recursively link those as well.

As an additional feature, if the workflow contains sub-workflows as in the case

of hierarchical workflows or when using inlined tasks, the makeflow link can

recursively link the all of the nested workflows to ensure that the entire collection

of workflows is consistently linked. To ensure that inter-DAG dependencies are

updated properly, the DAG is traversed recursively in a depth-first manner. This

76

means that a DAGs children are linked before the parent’s DAG is processed by

the linker.

The workflow linker works by reading in the Makeflow DAG and parsing it

using the cctools.makeflow.dag module from the python-cctools library. This

module provides a recursive-descent parser that translates a Makeflow DAG into

a Python data structure. Once the DAG is read and parsed into memory, the

makeflow link traverses the graph starting with the children first to ensure that

any path modifications performed in the sub-workflows are propagated to the

parent workflow.

To perform the actual linking, the makeflow link application looks at each

node in the DAG and determines if any of the files associated with the node needs

to be modified according to the command line arguments passed by the user.

As mentioned above, linker options for Stash and executable files take precedence

over the options for input and output files. When each file in node is examined, all

of these linker options are analyzed to determine whether or not to copy, symlink,

or starch a file and whether or not to use relative or absolute paths. If no options

is specified for that particular type of file, then no action is performed. This means

that if a file is in absolute format, it will remain in that format unless the user

explicitly requests for it to be converted to relative form. During this checking, if

any files are renamed then the node’s command is updated to reflect these changes

using Python’s string replacement methods. Once the whole DAG has been parsed

and linked, then it is written to the original DAG file. For convenience, the linker

can be told to backup the original file before writing the new DAG.

Figure 5.4 displays the command line options to makeflow link. Suppose a

user wanted to modify a workflow such that all the input files were copied to

77

the sandbox, all executables are symlinked and relative, and all output files used

relative paths. From my experience, it is quite common for the user to put all

of the input data into the workflow’s sandbox, keep the executables where they

are, and capture all of the output data in the local workspace. To accomplish this

configuration, the user would use the following invocation of makeflow link:

makeflow_link -I copy -O relative -X relative,symlink Makeflow

The result of this command is demonstrated in Figure 5.5. The top portion of

the listing shows the original DAG before linking was performed. As can be seen,

all of the paths are in absolute format because that is what the compiler generates.

The bottom half of the listing displays the resulting DAG after makeflow link has

transformed the graph such that all inputs are copied to the workflow’s workspace,

all executables are symlinked and use relative paths, and all output files are re-

ferred to using relative paths. Note that for executables such as touch are prefixed

with “./”. This is because the Makeflow commands are treated as shell commands

and if the current directory is not in the PATH environmental variable, then the

command will fail without the prefix.

78

Before linking

/tmp/pbui-weaver-tests/iterate/0: /usr/bin/touch

/usr/bin/touch /tmp/pbui-weaver-tests/iterate/0

/tmp/pbui-weaver-tests/iterate/1: /usr/bin/touch

/usr/bin/touch /tmp/pbui-weaver-tests/iterate/1

/tmp/pbui-weaver-tests/iterate/2: /usr/bin/touch

/usr/bin/touch /tmp/pbui-weaver-tests/iterate/2

/tmp/pbui-weaver-tests/iterate/0.stat: /tmp/pbui-weaver-tests/iterate/0 /usr/bin/stat

/usr/bin/stat /tmp/pbui-weaver-tests/iterate/0 > /tmp/pbui-weaver-tests/iterate/0.stat

/tmp/pbui-weaver-tests/iterate/1.stat: /tmp/pbui-weaver-tests/iterate/1 /usr/bin/stat

/usr/bin/stat /tmp/pbui-weaver-tests/iterate/1 > /tmp/pbui-weaver-tests/iterate/1.stat

/tmp/pbui-weaver-tests/iterate/2.stat: /tmp/pbui-weaver-tests/iterate/2 /usr/bin/stat

/usr/bin/stat /tmp/pbui-weaver-tests/iterate/2 > /tmp/pbui-weaver-tests/iterate/2.stat

After linking

0: ./touch

./touch 0

1: ./touch

./touch 1

2: ./touch

./touch 2

0.stat: ./stat 0

./stat 0 > 0.stat

1.stat: ./stat 1

./stat 1 > 1.stat

2.stat: ./stat 2

./stat 2 > 2.stat

Figure 5.5. Result of Linking with makeflow link (1)

In this example the original DAG is transformed by copying all the inputs to the workflow’s workspace, symlinking the
executables, and using for output files and executables.

79

Now suppose that the user wishes to modify a workflow such that all inputs are

left alone, but outputs are relative, and executables are converted into standalone

application archives. This type of situation may occur if the input data is large

and thus is quite prohibitive to copy to a local sandbox, but the user still wants to

capture the outputs to the workflow’s workspace and to create SAAs for increased

portability. To achieve this setup, the following command may be used:

makeflow_link -O relative -X starch Makeflow

Figure 5.6 demonstrates the output of such a command. In this example,

makeflow link automatically packages the convert and stat executables into

standalone application archives and all of the output and executable paths are

converted to relative paths. The input files, however, continue to use absolute

paths since we did not specify any linker options for input data.

As manifested in these examples, the makeflow link utility is a powerful tool

for systematically manipulating a generated workflow DAG. It can be used to make

the workflow more portable by copying files, archiving executables, or converting

paths to relative format. Moreover, the utility also sanitizes the DAG by removing

duplicates from input and output file lists and compacts the DAG by stripping

unnecessary whitespace.

Because packaging applications and modifying the generated DAG are com-

mon and desirable operations, the toolchain includes two linker applications. The

first is Starch, which serves as an application linker that allows for convenient

packaging of programs, libraries, data files, and environment configurations. The

second tool is the makeflow link workflow linker that provides the ability to sys-

tematically modify and the entire DAG to make it more portable or amendable

to the distributed execution platform.

80

Before linking

/tmp/pbui-weaver-tests/map/xterm-color_32x32.jpg: /usr/share/pixmaps/xterm-color_32x32.xpm /usr/bin/convert

/usr/bin/convert /usr/share/pixmaps/xterm-color_32x32.xpm /tmp/pbui-weaver-tests/map/xterm-color_32x32.jpg

/tmp/pbui-weaver-tests/map/xterm_32x32.jpg: /usr/share/pixmaps/xterm_32x32.xpm /usr/bin/convert

/usr/bin/convert /usr/share/pixmaps/xterm_32x32.xpm /tmp/pbui-weaver-tests/map/xterm_32x32.jpg

/tmp/pbui-weaver-tests/map/parcellite.jpg: /usr/share/pixmaps/parcellite.xpm /usr/bin/convert

/usr/bin/convert /usr/share/pixmaps/parcellite.xpm /tmp/pbui-weaver-tests/map/parcellite.jpg

/tmp/pbui-weaver-tests/map/nest.py.stat: /home/pbui/src/research/weaver/weaver/nest.py /usr/bin/stat

/usr/bin/stat /home/pbui/src/research/weaver/weaver/nest.py > /tmp/pbui-weaver-tests/map/nest.py.stat

/tmp/pbui-weaver-tests/map/data.py.stat: /home/pbui/src/research/weaver/weaver/data.py /usr/bin/stat

/usr/bin/stat /home/pbui/src/research/weaver/weaver/data.py > /tmp/pbui-weaver-tests/map/data.py.stat

/tmp/pbui-weaver-tests/map/function.py.stat: /home/pbui/src/research/weaver/weaver/function.py /usr/bin/stat

/usr/bin/stat /home/pbui/src/research/weaver/weaver/function.py > /tmp/pbui-weaver-tests/map/function.py.stat

After linking

xterm-color_32x32.jpg: /usr/share/pixmaps/xterm-color_32x32.xpm ./convert.sfx

./convert.sfx /usr/share/pixmaps/xterm-color_32x32.xpm xterm-color_32x32.jpg

xterm_32x32.jpg: /usr/share/pixmaps/xterm_32x32.xpm ./convert.sfx

./convert.sfx /usr/share/pixmaps/xterm_32x32.xpm xterm_32x32.jpg

parcellite.jpg: ./convert.sfx /usr/share/pixmaps/parcellite.xpm

./convert.sfx /usr/share/pixmaps/parcellite.xpm parcellite.jpg

nest.py.stat: /home/pbui/src/research/weaver/weaver/nest.py ./stat.sfx

./stat.sfx /home/pbui/src/research/weaver/weaver/nest.py > nest.py.stat

data.py.stat: ./stat.sfx /home/pbui/src/research/weaver/weaver/data.py

./stat.sfx /home/pbui/src/research/weaver/weaver/data.py > data.py.stat

function.py.stat: ./stat.sfx /home/pbui/src/research/weaver/weaver/function.py

./stat.sfx /home/pbui/src/research/weaver/weaver/function.py > function.py.stat

Figure 5.6. Result of Linking with makeflow link (2)

In this example the original DAG is transformed by converting all of the executables to standalone application archives
and using relative paths for the output files and executables.

81

CHAPTER 6

PROFILING WORKFLOWS

In a conventional toolchain, run-time provenance information detailing the

events that occur in the course of executing an application can be gathered by

recording logging statements, profiling the program using a tool such as gprof

[50] or oprofile [70], or tracing the application using gdb [107] or strace [44].

All of this run-time information allows users to analyze their applications for bugs

or performance bottlenecks, and thus to make corrections and improvements to

the programs. Due to the complex nature of executing a workflow in a distributed

environment, it is imperative that the toolchain provide analogous tools that fa-

cilitate the profiling and examining of a workflow’s execution.

As discussed in Chapter 3, the compiler toolchain in this dissertation depends

on Makeflow for managing and executing the actual workflow. Like most other

workflow managers, Makeflow generates provenance data detailing the progress of

the workflow while executing the tasks in the DAG. Usually this data is recorded

in a makeflowlog transaction log file, while additional batch system specific in-

formation is recording to a <batch system>log file.

This chapter examines a set of profiling utilties that provide different methods

of analyzing, monitoring, and reporting a workflow as it is running or after it has

been executed. These utilities enable users to analyze the provenance information

generated during workflow execution in a consistent and reliable manner in order

82

to debug their workflows should problems arise and to measure the performance

of their applications.

6.1 Workflow Analyzer

The first profiling tool is makeflow analyze, which is a program to parse

the makeflowlog generated by Makeflow and convert it into a more user-friendly

format for analysis. Normally, the provenance log generated by Makeflow is series

of event records detailing when a node in the DAG has changed states (e.g. a

task goes from the waiting state to the running state). This event record looks

something like the following:

1336672272295027 17 1 17235 17 1 0 0 0 18

In the event record, the first number is the timestamp of the event, followed by

the identifier of the node being modified, the new state of the node, and the

job identifier associated with the node. After this, the number of nodes in the

waiting, running, complete, failed, and aborted states are record, followed the

total number of nodes in the DAG. Although this event record is easily parsed

by a computer application, it is not very human-readable. For instance, it is not

immediately clear from the long how long the workflow took to execute or how

many times an individual task failed. To remedy this lack of readability and to

convert the log data into more conventional formats, the toolchain includes the

makeflow analyze application.

makeflow analyze reads in a makeflowlog parses the provenance informa-

tion, performs some basic statistical computation and data aggregation, and ex-

ports this information in a variety for formats. Internally, the profiler uses the

cctools.makeflow.log recursive descent parser provided by the python-cctools

83

library. This module reads a stream of transaction log events, performs statistical

and data processing on the provenance information, and returns a Python data

structure for simplified access to the computed workflow profile.

Currently, makeflow analyze can generate plain text, CSV, and JSON output.

Figure 6.1 displays a sample output of the makeflow analyze tool in all three

formats. The plain text format is normally used for a quick display of the workflow

or in conjunction with traditional UNIX text processing tools such as grep and

awk. The comma-separated-values format is useful for importing the provenance

data into a spreadsheet such as Microsoft’s Excel for manipulation. The JSON

format is supported to allow various web and mobile applications to manipulate

the provenance information.

Compared to the raw makeflowlog event data, the makeflow analyze pro-

filing tool provides a much user-friendlier set of information by performing some

data analysis and aggregation while parsing the transaction log. The exported

data includes the following information:

• Start/Stop Times: It is not clear from the transaction event log when

the workflow has started or stopped. This is because the transaction log

is node based, and does not record the status of the workflow itself. To

address this shortcoming, I modified Makeflow to generate additional prove-

nance information. This augmentation is discussed in detail in Section 7.3.

makeflow analyze understands these additional annotations and can report

reliable start and stop times.

• Elapsed Time: Related to the previous information, the tool provides the

total elapsed or running time of the workflow. Again, this is not immediately

apparent from the raw transaction log.

84

Plain Text

log.path = Makeflow.makeflowlog

log.starts = 1336672272.29

log.failures =

log.abortions =

log.completions = 1336672272.6

log.elapsed_time = 0.303680896759

log.percent_completed = 100.0

log.average_tasks_per_second = 59.2727438311

log.current_tasks_per_second = 0

log.estimated_time_left = None

log.state = completed

log.finished = True

log.goodput = 0.57969045639

log.badput = 0

log.nodes.waiting = 0

log.nodes.running = 0

log.nodes.completed = 18

log.nodes.failed = 0

log.nodes.aborted = 0

log.nodes.retried = 0

log.nodes.total = 18

CSV

Makeflow.makeflowlog,1336672272.29,,,1336672272.6,0.303680896759,100.0,59.2727438311,0,\

None,completed,True,0.57969045639,0,0,0,18,0,0,0,18

JSON

{ "log": {

"estimated_time_left": null,

"current_tasks_per_second": 0,

"badput": 0,

"completions": [1336672272.598511],

"starts": [1336672272.29483],

"finished": true,

"elapsed_time": 0.3036808967590332,

"average_tasks_per_second": 59.272743831110205,

"state": "completed",

"percent_completed": 100.0,

"abortions": [],

"failures": [],

"path": "Makeflow.makeflowlog",

"nodes": {

"aborted": 0,

"completed": 18,

"running": 0,

"failed": 0,

"waiting": 0,

"retried": 0,

"total": 18

},

"goodput": 0.5796904563903809

}

}

Figure 6.1. Sample Workflow Provenance Information by
makeflow analyze

This demonstrates the provenance information exported by makeflow analyze in
plain text, CSV, and JSON format.

85

• Task Rates: The profiling tool also calculates the average tasks that com-

plete per second. If the workflow is still running, a current task rate is

calculated and used to compute the estimated time left for finishing the

workflow.

• Goodput/Badput: makeflow analyze aggregates the amount of compu-

tation that yield successful results (goodput) and the computation that

ended in failure or abortions (bad put).

• Node Summaries: The profiler summaries the number of nodes in the

waiting, running, completed, failed, and aborted states.

In addition to reporting information on the whole workflow, makeflow analyze

can also be used to profile individual nodes by specifying the -v command line

option to the application. Users may also filter which nodes to report by specifying

the -F <condition> command line option. For example, to get all nodes that

have failed, a user can pass the argument -F "node.failures > 0" and only the

nodes that have a failure count greater than 0 will be reported to the user.

A sample of this node provenance information in plain text format is shown in

Figure 6.2. For the most part, the node contains much of the same information as

the workflow such as elapsed time, goodput, and badput. In addition to this data,

the node also includes important information such as the command executed, the

input and output files, and its associated job ids, which is data not normally

present in Makeflow’s transaction log. To facilitate the mapping between tasks

and nodes, I augmented Makeflow to embed a copy of the DAG in the transaction

log. This is further explained in Section 7.3. All of this information is important

because makes it easier for the user to identify which task maps to which node

when debugging or profiling a workflow.

86

node.id = 17

node.command = ./stat function.py > function.py.stat

node.original_command = ./stat ./function.py > ./function.py.stat

node.parents =

node.sources = ./stat, ./function.py

node.targets = ./function.py.stat

node.states = 1, 2

node.state = 2

node.timestamps = 1336672272.3, 1336672272.32

node.elapsed_time = 0.0202300548553

node.job_ids = 17235

node.attempts = 1

node.failures = 0

node.abortions = 0

node.goodputs = 0.0202300548553

node.goodput = 0.0202300548553

node.badputs =

node.badput = 0

Figure 6.2. Sample Node Provenance Information by makeflow analyze

This is a sample of the type of node specific provenance information provided by
makeflow analyze in plain text format.

Figure 6.3 is an example of a creative use of the provenance information ex-

ported by the makeflow analyze utility. For the CSE 60333 Mobile Application

Development course, Michael Albrect, Patrick Donnelly, and I built a small An-

droid application called LuLuLua that was basically a framework for building

small mobile applets using the Lua [58] programming language. One of these

applets was a Makeflow monitor application that periodically pulled a JSON file

generated by the makeflow analyze profiler and displayed a visual summary of

the workflow’s progress based on the exported provenance information.

Because the Makeflow transaction journal is so terse, the makeflow analyze

profiling utility is an important and useful tool for extracting information about

a workflow. Since the profiler tool processes and aggregates the provenance infor-

mation from the raw Makeflow transaction log, the makeflow analyze tool saves

87

Figure 6.3. Workflow Progress with LuLuLua Android Application.

In this screenshot, the LuLuLua Android Application is retrieving a JSON file ex-
ported by the makeflow analyze utility and displaying the progress of the Makeflow
along with other provenance information on a mobile device.

88

users from having to create ad hoc programs for computing this information. By

providing multiple export formats, the profiler allows for traditional command-line

processing, spreadsheet manipulation, and even web and mobile visualization.

6.2 Workflow Monitor

The next profiling tool is the makeflow monitor. The current implementation

of Makeflow does not provide the user a display of its progress and thus it is

difficult for a user to know how far along the workflow is in terms of execution.

Fortunately, Makeflow records event information to a transaction log as discussed

above, which can be processed to get the current status of the workflow.

As with the makeflow analyze utility, the makeflow monitor application uses

the cctools.makeflow.log module from the python-cctools library to parse

and process makeflowlog generated by Makeflow. Once the transaction log is

processed and the statistical information is computed, the makeflow monitor

reads the returned Python data structure and outputs the status of the work-

flow to the active console or terminal. Normally, the transaction log to monitor

is passed via command-line arguments to makeflow monitor, which can accept

multiple makeflowlogs. For convenience, the utility also has the ability to watch

a directory for new transaction logs and will automatically parse and display any

logs that it detects.

Figure 6.4 shows an example of the console output of the makeflow monitor

utility. In this example, the progress of two workflows are displayed. The first

workflow appears at the top of the output and has a “Completed“ status. The

makeflow monitor utility reports it’s start time, elapsed execution time, the aver-

age tasks completed per minute, and a summary of all the task states. The second

89

Makeflow: nostash.1.makeflowlog

Status: Completed

Time Started: 09:39:46

Time Elapsed: 32:12

Average Tasks/Minute: 3104.44

Tasks: Waiting: 0, Running: 0, Completed: 100000, Failed: 0,

Aborted: 0, Retried: 0, Total: 100000

Makeflow: nostash.2.makeflowlog

Status: [=====================================>] 75.02%

Time Started: 10:12:08

Time Elapsed: 25:42

Average Tasks/Minute: 2917.43

Current Tasks/Minute: 2853.65

Estimated Time Left: 08:45

Tasks: Waiting: 24968, Running: 15, Completed: 75017, Failed: 0,

Aborted: 0, Retried: 0, Total: 100000

Figure 6.4. makeflow monitor Console Output

In console mode, the makeflow monitor periodically outputs a variety of progress
information such as the workflow status, the elapsed time, etc. directly to the
user’s terminal. It has options such as sorting by workflow progress, hiding com-
pleted workflows, and watching set of directories for new Makeflow logs.

workflow is still executing, so the status shows a progress bar and percentage. In

addition to the fields mentioned for the first workflow, makeflow monitor also re-

ports the current tasks completion rate and the estimated time left. As mentioned

previously the cctools.makeflow.log performs all of these computations, so the

information displayed in the makeflow monitor is the same information exported

by the makeflow analyze utility which uses the same library.

While the console output provided by makeflow monitor is useful and suffi-

cient for quickly assessing the progress of a workflow, some users perform a more

graphical and detailed user interface. To support a more graphical monitoring of

workflows, I hired and advised Samuel Lopes, an undergraduate Computer Sci-

ence student, for a semester to create a graphical and more user-friendly version

90

(a) Workflow Overview

(b) Node Information

(c) Workflow Plots

Figure 6.5. makeflow monitor Web Output

The web version of the makeflow monitor displays a dashboard showing the overall
progress of the workflow. By selecting a node from the dashboard, the individual
task information is displayed. The web site also provides a few graphs illustrating
the different aspects of the workflow’s execution.

91

of the makeflow monitor. The result of this undergraduate research experience

is the web version of the monitoring utility as shown Figure 6.5.

Samuel took the original makeflow monitor and used modules from the Python

standard library to embed a small web server. In his new version, when the user

starts makeflow monitor with the -t webserver option a HTTP server is started

on the local machine. For security reasons, the web site served by the HTTP server

requires basic HTTP authentication. When the server is started, the username

and password is automatically generated and printed to the console for the user

to copy and paste into the web browser.

Once users access the web site served by the modified makeflow monitor,

they are greeted with an overview of the workflow as shown in Figure 6.5a. The

textual information displayed here is nearly identical to the console output of the

normal makeflow monitor. Beneath the overview is a dashboard of colored circles

representing the tasks in the workflow. Blue means the task has completed, while

green means the task is running, and gray indicates that task is in the waiting

state. Clicking on one of the task circles takes the user to a page with the node

information associated with the task as shown in 6.5b. This information is similar

to the node specific data exported by makeflow analyze. Finally, the website

also includes a couple of graphs based on the provenance data as demonstrated

in 6.5c. The graph on the left shows how the various task states change over

the execution of the workflow, while the second graph is a histogram of the task

execution times.

Because Makeflow does not provide a user-friendly way of monitoring the

progress of a currently workflow, the toolchain provides makeflow monitor as

a means of assessing the status of the workflow. By default, this profiling util-

92

ity can monitor multiple transactions logs or even a directory and displays the

progress of the workflows to the console. For graphical monitoring of a workflow,

I worked with Samuel Lopes to produce a version of the profiler that presented

the progress information through a web site. Currently, Samuel’s web extension

of the makeflow monitor is available separately from the original utility. There

are plans, however, to integrate the two in the near future.

6.3 Workflow Reporter

The final profiling utility is makeflow report. Once again, this application

uses the cctools.makeflow.log modules from the python-cctools package to

read and parse Makeflow transaction logs. After the raw event data is processed,

this utility performs some high-level statistical analysis such as determining the

fastest and slowest tasks, the mean task execution time, and the median task

execution time. It also sorts the tasks and creates a histogram of the execution

times to allow the user to examine the running-time characteristics of the workflow.

All of this profiling information is gathered, formatted, and then outputted to the

console as plain text.

In addition to providing task-based profiling information, the makeflow report

utility can also display profiling statistics for Weaver Abstractions and Functions

if the transaction log contains symbolic annotations. Normally, the Makeflow DAG

only contains the rules that specify the workflow. By using the -g flag, the user

can instruct the Weaver compiler to embed symbolic annotations into the DAG,

similar to how GCC can include debugging symbols in object code. More details

on how symbolic annotations are implemented and used throughout the toolchain

are discussed in Section 7.3.

93

With symbolic annotations turned on, the profiler will aggregate provenance

data for specific Abstractions or Functions and display the average, median,

slowest, and fastest execution times for the tasks associated with these symbols

along with the tasks states of the nodes associated with the symbol.

An example report generated by makeflow report is presented in Figures 6.6,

6.7, 6.8, 6.9 (this is a single report split into separate parts for formatting purposes

and increased readability).

Makeflow Log Summary: /tmp/pbui-weaver-tests/map/Makeflow.makeflowlog

===

Status: Completed

Time Started: 17:00:18

Time Elapsed: 33

Average Tasks/Minute: 32.21

Current Tasks/Minute: 0.00

Estimated Time Left: None

Good Computation: 287.93

Bad Computation: 0.00

Tasks Summary

Total Tasks: 18

Tasks Waiting: 0 (0.00%)

Tasks Running: 0 (0.00%)

Tasks Failed: 0 (0.00%)

Tasks Aborted: 0 (0.00%)

Tasks Completed: 18 (100.00%)

Figure 6.6. makeflow report Sample (Overview)

The top part of the generated report, as shown in Figure 6.6 displays the

summary of the workflow. Unsurprisingly, this information is similar to that

found in makeflow analyze and makeflow monitor. Instead of a long line for the

94

task states as found in the two tools, the makeflow report utility breaks down

the task states in tabular format.

The next portion of the report is displayed in Figure 6.7. Here, a statistical

profiling of all the tasks in the workflow is presented. Specifically, the average,

median, slowest, and fastest task execution times are reported. Additionally, the

details of the three median, slowest, and fastest nodes are also provided. By

displaying the node command and symbol (if available) it is possible for the user

to not only determine what the fastest task execution time is, but what tasks

achieved that time. This allows the user to discover any possible performance

bottlenecks and make adjustments to the workflow.

The task profiling is followed by a histogram of the task execution times as

presented in Figure 6.8. The purpose of this chart is to allow the user to see the

spread of their tasks in terms of execution times. This graphical display makes

it easy for users to quickly identifier if there are any outliers such as stragglers

taking an unusable amount of time.

The last part of the report is shown in Figure 6.9 and is only generated if

symbolic annotations are present in the makeflowlog. In this portion of the

report a summary of all of the task states for each included symbol (i.e. Weaver

Abstraction or Function) is displayed. This is followed by a reporting of the

task statistics for each symbol. The benefit of having symbolic annotations and

this provenance reporting is that the user can determine which Abstractions

are problematic. That is, users can analyze their workflow in terms of high-level

components rather than merely looking at low-level tasks. This is advantageous

because the original Weaver specification is defined in terms of these high-level

symbols and not individual tasks.

95

Tasks Profiling

Average Task Time: 15 +/- 02

Median Task Time: 15

1. NODE 9

TIME 14

SYMBOL Map[1](/usr/bin/stat {IN} > {OUT},/tmp/pbui-weaver-tests/map/_Stash/0/0/0/0000003)

COMMAND ./stat.sfx /home/pbui/src/research/weaver/weaver/__init__.py >

__init__.py.stat

2. NODE 8

TIME 15

SYMBOL Map[1](/usr/bin/stat {IN} > {OUT},/tmp/pbui-weaver-tests/map/_Stash/0/0/0/0000003)

COMMAND ./stat.sfx /home/pbui/src/research/weaver/weaver/options.py >

options.py.stat

3. NODE 7

TIME 17

SYMBOL Map[1](/usr/bin/stat {IN} > {OUT},/tmp/pbui-weaver-tests/map/_Stash/0/0/0/0000003)

COMMAND ./stat.sfx /home/pbui/src/research/weaver/weaver/compat.py >

compat.py.stat

Slowest Task Time: 33

1. NODE 1

TIME 30

SYMBOL Map[0](/usr/bin/convert {IN} {OUT},/tmp/pbui-weaver-tests/map/_Stash/0/0/0/0000001)

COMMAND ./convert.sfx /usr/share/pixmaps/xterm_32x32.xpm xterm_32x32.jpg

2. NODE 2

TIME 28

SYMBOL Map[0](/usr/bin/convert {IN} {OUT},/tmp/pbui-weaver-tests/map/_Stash/0/0/0/0000001)

COMMAND ./convert.sfx /usr/share/pixmaps/parcellite.xpm parcellite.jpg

3. NODE 3

TIME 25

SYMBOL Map[0](/usr/bin/convert {IN} {OUT},/tmp/pbui-weaver-tests/map/_Stash/0/0/0/0000001)

COMMAND ./convert.sfx /usr/share/pixmaps/xterm-color_48x48.xpm xterm-

color_48x48.jpg

Fastest Task Time: 02

1. NODE 17

TIME 02

SYMBOL Map[1](/usr/bin/stat {IN} > {OUT},/tmp/pbui-weaver-tests/map/_Stash/0/0/0/0000003)

COMMAND ./stat.sfx /home/pbui/src/research/weaver/weaver/function.py >

function.py.stat

2. NODE 16

TIME 04

SYMBOL Map[1](/usr/bin/stat {IN} > {OUT},/tmp/pbui-weaver-tests/map/_Stash/0/0/0/0000003)

COMMAND ./stat.sfx /home/pbui/src/research/weaver/weaver/data.py >

data.py.stat

3. NODE 15

TIME 05

SYMBOL Map[1](/usr/bin/stat {IN} > {OUT},/tmp/pbui-weaver-tests/map/_Stash/0/0/0/0000003)

COMMAND ./stat.sfx /home/pbui/src/research/weaver/weaver/nest.py >

nest.py.stat

Figure 6.7. makeflow report Sample (Tasks Profiling)

96

Tasks Histogram

02 [xxxx] 11.11%

05 [xxxx] 11.11%

08 [xxxx] 11.11%

11 [xxxx] 11.11%

14 [xxxx] 11.11%

17 [xxxxxx] 16.67%

20 [xx] 5.56%

23 [xx] 5.56%

26 [xx] 5.56%

29 [xx] 5.56%

32 [xx] 5.56%

35 [] 0.00%

Figure 6.8. makeflow report Sample (Tasks Histogram)

Because of the myriad number of problems and issues that may arise when

executing a workflow on a distributed system, it is important to have the abil-

ity profile and analyze the workflow application. The toolchain addresses this

difficulty by including tools to process the provenance information, monitor the

status of the workflow, and generate a report summarizing the key aspects of the

workflow.

The impact of these tools are increased productivity and improved work-

flow analysis. For instance, the distilled provenance information exported by

makeflow analyze utility was used to automate the generation of graphs and plots

for not only this dissertation but various publications that utilize the toolchain.

Likewise, while executing the many benchmarks and tests for this dissertation,

I regularly employed the makeflow monitor utility to track of the status of the

workflows and to estimate how much time left was required to complete the tests.

Moreover, whenever I ran into problems or needed to compare two workflows,

I used the makeflow report tool to get a break-down of the workflows’ tasks in

order to identify bottlenecks and to get a sense of the overall pattern of a workflow.

97

Symbols Summary

Total Symbols: 2

1. SYMBOL Map[0](/usr/bin/convert {IN} {OUT},/tmp/pbui-weaver-tests/map/_Stash/0/0/0/0000001)

TIME 02:27

TASKS 5

Waiting: 0 (0.00%)

Running: 0 (0.00%)

Failed: 0 (0.00%)

Aborted: 0 (0.00%)

Completed: 5 (100.00%)

2. SYMBOL Map[1](/usr/bin/stat {IN} > {OUT},/tmp/pbui-weaver-tests/map/_Stash/0/0/0/0000003)

TIME 02:27

TASKS 13

Waiting: 0 (0.00%)

Running: 0 (0.00%)

Failed: 0 (0.00%)

Aborted: 0 (0.00%)

Completed: 13 (100.00%)

Symbols Profiling

1. SYMBOL Map[0](/usr/bin/convert {IN} {OUT},/tmp/pbui-weaver-tests/map/_Stash/0/0/0/0000001)

Average Time: 28 +/- 01

Median Time: 28

Slowest Time: 33

Fastest Time: 22

2. SYMBOL Map[1](/usr/bin/stat {IN} > {OUT},/tmp/pbui-weaver-tests/map/_Stash/0/0/0/0000003)

Average Time: 11 +/- 01

Median Time: 11

Slowest Time: 19

Fastest Time: 02

Figure 6.9. makeflow report Sample (Symbols Profiling)

These profilers were instrumental in analyzing and understanding the nature of

sophisticated workflows such as the transcoding hierarchical benchmark in Chap-

ter 4. While using makeflow monitor to track the transcoding benchmarks, I

discovered that different file types exhibited very different running times. Using

the makeflow report utility I quickly identified the video transcoding as the chief

bottleneck. This in turn lead me to test both small and big workflows and to plot

the current task completion rate of each file type in order to further understand

the impact of interleaving different types of tasks. Without the profiling tools,

98

it would have been difficult for me to recognize the behavior of the transcoding

workflows and to adjust the metrics I was measuring and investigating.

Altogether, these profiling tools provided by the toolchain increase productiv-

ity by enaling users to effectively analyze workflows, monitor their progress, and

identify any problems that occurred during execution.

99

CHAPTER 7

MANAGING WORKFLOWS

As discussed in previous chapters, the compiler toolchain in this dissertation

relies on Makeflow [3] as its run-time system. Because it is a portable work-

flow manager that supports Makefile [43] syntax, Makeflow serves as a convenient

and straightforward tool for constructing large distributed data intensive scientific

workflows that can be executed on a variety of distributed systems such as Condor

[113], SGE, and WorkQueue [22]. It has been used to build a variety of research

and production level scientific workflows with great success [3, 21, 23, 66, 114],

and thus is a capable run-time target for the compiler toolchain.

This chapter examines a few modifications that extend Makeflow’s current

capabilities and enable new additional features that enhance the usability and in

some cases the performance of the toolchain and the workflows it generates. The

following augmentations to Makeflow are discussed:

1. Local Variables: The current implementation of Makeflow only supports

global environmental variables. There are situations where it would be de-

sirable to task-specific variables to define items such as batch system specific

parameters or task specific configuration settings. Section 7.1 presents how

the Makeflow parser was redesigned to support this use case.

100

2. Nested Makeflows: Currently, Makeflow has no knowledge of whether or

not a task is actually a recursive or nested Makeflow. Because of this, it can-

not make decisions such as setting resource constraints for child workflows.

Section 7.2 details how I introduced the MAKEFLOW operator to denote that

a task was indeed another workflow, and then provides an example how this

information can be used to control nested resources.

3. Provenance and Annotations: As discussed in Chapter 6, Makeflow

records events to a transaction log during execution. Unfortunately, this

journal is limited and not sufficient for the higher-level profiling capabilities

desired by the toolchain. Section 7.3 presents the additional provenance in-

formation emitted and supported by Makeflow that enables for sophisticated

debugging and track of Makeflow DAGs.

4. Garbage Collection: Finally, Section 7.4 revisits the problem of interme-

diate files by exploring the use of various garbage collection methods during

the execution of a workflow managed by Makeflow. I perform a benchmark

of these methods on three different filesystems to examine the performance

impact of garbage collection on workflows with many intermediate files.

7.1 Local Variables

In the current implementation of Makeflow, all variables defined in Makeflow

are simply environmental variables. When the Makeflow parser comes across a

variable it simply performs a setenv to store the variable in the environment of

the current process. This is convenient as it allows for batch jobs to access these

variables by simply inheriting the environment of workflow manager and absolves

Makeflow from having to track the variables itself.

101

Unfortunately, the current parser design means that it is difficult to set task-

specific variables. For instance, one command may require a certain variable to

be set to one value and another command may need another setting. Because the

variables in Makeflow are global it is not possible to set a task-specific version for

each rule in the current implementation.

A possible work around is to simply use the env command to set environment

variables as a part of executing a task’s shell command. Consider the following

set of Makeflow rules:

out.0: in.0

env VAR=0 command in.0 out.0

out.1: in.1

env VAR=1 command in.1 out.1

In both rules, the VAR variable will be set to local values and made available

to the batch job process. That is when the first command executed it can access

VAR and it will have the value 0, while the second command would retrieve 1 from

the variable VAR. Unfortunately, this is insufficient if the variable is needs to be

made available as part of the shell comand or to Makeflow itself. For instance,

Makeflow supports the BATCH OPTIONS variable that allows the user to send any

batch system specific parameters such as Condor requirements or SGE command-

line arguments. Because the env is executed as part of the batch job, the variable

definitions are not available to the caller, Makeflow, and thus this mechanism

would not support setting the BATCH OPTIONS parameter.

One possible modification to support task-specific variables is to simply have

the variables be bound when tasks are parsed by Makeflow. For instance, consider

the following Makeflow DAG:

102

VAR=0

out.0: in.0

command $VAR in.0 out.0

VAR=1

out.1: in.1

command $VAR in.1 out.1

In this proposal, when the first rule is parsed it would store VAR as 0 which was

set on the line before it. The second rule would store VAR as 1. This would

satisfy the need to set task-specific variable definitions for both the process and

Makeflow. The problem with this method, however, is that it removes Makeflow’s

declarative syntax. Instead of being context-free, the meaning of variable depends

on the order in which variables and tasks are defined, which is an undesirable

characteristic and breaks compatibility with the original Make.

An alternative approach to this is to introduce a minimal form lexical scoping

[80, 109] such that each task has its own variable environment separate from the

global variable environment. In this approach there are now three levels of variable

scoping:

1. Local Task: Variables defined at this scope are only available to the task

being defined. Consider the following Makeflow rule:

out: in

@LOCAL_VAR = cat

$LOCAL_VAR in > out

In this example, a task-specific variable is defined by prefixing the variable

assignment statement with @ and placing it underneath the file specification

component of the task rule. This is done to maintain syntax compatibility

103

with Make, but not semantic compatibility (i.e. the rule would parse fine in

Make, but would not necessarily yield the same output).

In GNU Make, this situation is handled by supporting target-specific vari-

able assignments. The above rule look like this in GNU Make:

out: LOCAL_VAR = cat

out: in

$LOCAL_VAR in > out

In GNU Make, we specify the output target and set the variable we wish to

define. Now any rule used to generate this output target will have this local

variable. Unfortunately, supporting this target-specific variable assignment

syntax would have required invasive modifications to Makeflow (i.e. would

need to switch to a two-pass parser instead of a single-pass as it is now).

Moreover, semantically, Makeflow is task-centric rather than target-centric,

which means it makes more sense for the user to associated a variable setting

with a whole task than individual targets. Thus the above @ syntax for

specifying task local variables was introduced.

It should be noted that this target-specific variable syntax is only supported

by GNU Make not any of the other Make systems such as BSD Make.

2. Global DAG: Variables defined at this scope are available to the whole

DAG, including the task nodes:

GLOBAL_VAR=cat

out: in

$GLOBAL_VAR in > out

104

3. Process Environment: These are read-only variables that can be fetched

from the process environment (i.e. using getenv).

In the previous version of Makeflow, all variables were set and fetched from the

global process environment. With this new implementation, the original process

environment is basically left alone. When a global variable is defined, it is stored in

a DAG environmental table which all tasks share, while local variables are stored

in a table associated with that particular node. To resolve a variable, the local

node table is searched, then the global DAG, and then the process environment.

This means that the task variables can shadow global variables (i.e. have the

same name, but different values) but always take precedence. That is if a variable

is defined in both the global and task environment, then the value from the task

environment will be used rather than the global one.

Because variables are no longer stored in Makeflow’s process environment (and

thus implicitly exported), the variable definitions are only available to Makeflow

itself and in parsing the rules. To allow for executing batch jobs access to the

variables the export operator was introduced as a mechanism for enabling the

user to explicitly state which variables to export so that the values are available

to a running batch job process. The following code demonstrates the use of the

export command:

GLOBAL_VAR=1

out:

echo $$GLOBAL_VAR > out

export GLOBAL_VAR

In this example, the GLOBAL VAR variable is exported such that the task shell

command can access it. Internally, this is implemented by maintaining a global

DAG-wide export list. Before any batch job is executed, all of the variables in this

105

export list is set in the environment. This implementation of the export operator

matches the syntax and semantics of the export command found in GNU Make.

To support the definition and exporting of variables, the compiler was up-

dated to add the Define and Export functions. The former allows users to define

a global variable, while the latter is used to tell Makeflow which variables to ex-

port. For task specific variables, the user may pass in an dictionary containing

variable definitions to a Function or Abstraction using the environment key-

word argument.

1 # Weaver Script

2 Define('MYVAR1 ', 1)

3 Export (['MYVAR1 ', 'MYVAR2 '])
4

5 env = ParseFunction('env > {OUT}', enviroment ={'MYVAR2 ': 2})

6 env(outputs='env0.txt')
7 env(outputs='env1.txt', environment ={'MYVAR3 ': 3})

8

9 # Makeflow DAG

10 env0.txt: /usr/bin/env

11 @MYVAR2 =2

12 /usr/bin/env > env0.txt

13 env1.txt: /usr/bin/env

14 @MYVAR3 =3

15 @MYVAR2 =2

16 /usr/bin/env > env1.txt

17 MYVAR1 =1

18 export MYVAR1

19 export MYVAR2

Figure 7.1. Weaver Variable Example

The top portion of this example demonstrates how to define and export variables
in Weaver, while the bottom portion shows the Makeflow DAG generated by the
compiler when processing the Weaver script.

106

Figure 7.1 provides an example of how Define and Export are used along with

the environment keyword argument in Weaver to specify variables in the Makeflow

DAG. At the top is the Weaver Script that defines MYVAR1 and exports MYVAR1

and MYVAR2. Next it defines the env Function that includes an environment

dictionary that defines the MYVAR2 variable. After this, we call the env variable

twice. The first with just an outputs argument and the second time with an

additional environment table that defines the MYVAR3 variable. Below the Weaver

script is the Makeflow DAG generated by the DAG. As can be seen the DAG

rules match the Weaver specification: MYVAR1 is defined as a global variable, the

MYVAR1 and MYVAR2 variables are exported, and each task has the appropriate set

of local variables associated with it.

As mentioned earlier, one of the motivations for having support for task-specific

variables is to allow users to specify batch-specific options for particular tasks.

For instance, one task may require one set of machines while another may require

machines with a specific amount of memory. In the current version of Makeflow,

such resource specifications can be only be set globally through the BATCH OPTIONS

environment variable. With the new support for local task variables, users can now

specify batch options for individual tasks as show in Figure 7.2. In this example,

we create three tasks that require three different Condor machine groups. To do

this, we simply create the batch options string and then pass it to the function via

an environmental dictionary as shown previously. When the generated Makeflow is

executed using the Condor batch system, then these requirements will be utilized

to schedule the tasks to the desired set of machines.

Overall, the implementation of local variables satisfies our goal of enabling

users to set task specific variables while minimizing the amount of changes to

107

1 # Weaver Script

2 uname = ParseFunction('uname -a > {OUT}')
3

4 for group in ['disc', 'ccl', 'gh']:
5 options = 'requirements = MachineGroup == "{0}"'.format(group)
6 env = {'BATCH_OPTIONS ': options}

7 uname(outputs='uname .{0}'.format(group), environment=env)

8

9 # Makeflow DAG

10 uname.disc: /bin/uname

11 @BATCH_OPTIONS=requirements = MachineGroup == "disc"

12 /bin/uname -a > uname.disc

13 uname.ccl: /bin/uname

14 @BATCH_OPTIONS=requirements = MachineGroup == "ccl"

15 /bin/uname -a > uname.ccl

16 uname.gh: /bin/uname

17 @BATCH_OPTIONS=requirements = MachineGroup == "gh"

18 /bin/uname -a > uname.gh

Figure 7.2. Weaver Batch Options Example

This example shows how to set the BATCH OPTIONS environment variable for indi-
vidual tasks. The top part is the Weaver source, while the bottom is the Makeflow
DAG generated by the compiler. As can be seen, the local task variable mechanism
allows for each task to require a separate MachineGroup.

Makeflow itself. As noted previously, this modification is syntactically compatible

with GNU Make but not semantically. This is unfortunate, but using Make’s

target-specific variable assignment mechanism would require major changes the

Makeflow’s current implementation. Moreover, the target-specific syntax did not

match Makeflow’s task-centric model. That said, the internal mechanism in how

variables are defined and resolved are basically equivalent and thus it would be

conceivable that the two syntaxes could be reconciled in a future work. The main

point is to allow users to set local task variables such as BATCH OPTIONS and to

show that the toolchain can take advantage of this feature, which the examples

above demonstrate.

108

7.2 Nested Makeflows

The second modification to Makeflow is to turn nested Makeflows into first-

class objects in the DAG language. This means that after parsing the DAG,

Makeflow should be aware if a particular task is a nested invocation of Makeflow.

Knowing this information will allow Makeflow to make run-time adjustments to

things such as resource allocation. Moreover, having Makeflow as a first class

object also makes it easier for the toolchain utilities to manipulate and modify a

hierarchy of Makeflows.

Normally, if a user wishes to nest a Makeflow, they simply construct a task

whose command is makeflow <dag path>. This, however, does not allow the

workflow manager to make intelligent decisions regarding resource allocation since

it cannot distinguish between a rule for a nested Makeflow and a rule for a normal

task. Conceivably, Makeflow could search the shell command to detect if makeflow

is called, but this would not be too error-prone and fragile, especially if command

line arguments are present in the shell command.

To address this problem and make Makeflow aware of child workflows, I in-

troduced the MAKEFLOW command operator. When a user wishes to have a task

execute a nested Makeflow, the user specifies the following as the command:

MAKEFLOW "<dag_path>" "<dag_work_dir>" "<dag_wrapper>"

The first argument after the MAKEFLOW keyword is the path to the DAG file.

The next argument is the path to the workspace to use. The final argument is

used for any wrapper command required such as Parrot [112]. For instance, if

the nested Makeflow’s DAG is called “Makeflow.nested”, is to be executed in the

current directory, and requires Parrot, then the command would look like this:

109

MAKEFLOW "Makeflow.nested" "." "parrot_run"

For command-line arguments, I introduced new environmental variables such

as MAKEFLOW BATCH QUEUE TYPE and WORK QUEUE MASTER MODE to allow users to

set specific Makeflow options for the nested workflows. This, of course, utilizes

the local task variable mechanism discussed in the previous section.

Implementing the MAKEFLOW operator in the current Makeflow program re-

quired minimal modifications to the parser. In the augmented version of Makeflow,

when the above MAKEFLOW syntax is encountered, it is translated to the following

task shell command:

cd <dag_work_path> && <dag_wrapper> makeflow <dag_path>

Additionally, the node is marked as a Makeflow job to allow the workflow manager

to make resource allocation decisions during execution.

As a proof-of-concept of this resource management ability, I implemented a

mechanism in which the maximum number of local batch jobs for each nested

Makeflow would be proportional to the maximum number of concurrent sub-

workflows in the DAG. To do this, I modified Makeflow’s dag width function

which was originally implemented by Kevin Partington, an undergraduate, using

an algorithm I had designed. The purpose of this function is to determine the

approximate maximum width of a directed acyclic graph. If we can determine

this, then we would know the maximum amount of concurrency possible in our

workflow, since the width represents the largest number of independent tasks.

The algorithm used to compute this width is outlined in Figure 7.3. The idea is

to divide the DAG into levels such that in each level every node is independent of

each other. That is all the nodes in a particular level can be executed in parallel.

110

1 # Return the maximum width of the DAG

2 def dag_width(dag):

3 # Count the number of children each node has.

4 for node in dag.nodes:

5 for file in node.source_files:

6 parent = file.parent

7 parent.children ++

8

9 # Determine leave nodes based on number of children.

10 leaves = []

11 for node in dag.nodes:

12 node.remaining = node.children

13 if node.children == 0:

14 leaves.append(node)

15

16 # Starting from the bottom (i.e. leaves), traverse graph and

17 # mark levels such that a parent node is always one level

18 # higher than its children. Keep track of the maximum level.

19 max_level = 0

20 while leaves:

21 node = leaves.pop()

22 for file in node.source_files:

23 parent = file.parent

24 if parent.level < node.level + 1:

25 parent.level = node.level + 1

26

27 max_level = max(max_level , parent.level)

28

29 parent.remaining --

30 if parent.remaining == 0:

31 leaves.append(parent)

32

33 # Tally up all of the nodes in each level.

34 levels = []

35 for node in dag.nodes:

36 levels[node.level]++

37

38 # The level with the most nodes represents the widest part of

39 # the DAG , so return the maximum level.

40 return max(levels)

Figure 7.3. dag width Algorithm

The basic idea behind this algorithm is to traverse the graph from the bottom up,
setting the node’s level, and tracking the high level. Once the nodes are marked,
we simply count of the number of nodes at each level, and then return the value
of the level with the most nodes.

111

1 1 1 11

2 22

3

0

} Dag Width

} Max Levels

Figure 7.4. dag width Illustration

In this algorithm, we begin marking levels from the bottom and traverse upwards
such that the parent’s level is always one more than its children. The level with the
most nodes is considered the width of the DAG, while the highest level corresponds
to the height of the DAG.

This is done by first marking all of the nodes with the number of children and

determining the leave nodes. For every leaf node, we update its parent nodes to

ensure that the parent’s level is one more than the current leaf. Likewise, we keep

track of the maximum level and update the list of leaves when the parent node’s

count of remaining children reaches zero. Once all of the nodes in the DAG are

separated into levels, then we simply need to count of all the nodes in each level

and then find the level with the most nodes to determine the highest amount of

concurrency available in our workflow.

Figure 7.4 illustrates the dag width algorithm. Going from the bottom up, we

start by marking the first leaf as level 0 and then update all of its parents with level

112

1. This continues up the graph. Afterwards, we look at each level and count all of

the nodes in a particular level. In this case, level 1 has 5 nodes and is the widest

part of the graph. This means that the maximum concurrency for the workflow

is 5, since at any one time, we can have at most 5 nodes running in parallel.

Knowing the width of the DAG allows us to allocate resources appropriately.

In the context of nested Makeflows, I performed a slight variation to the algo-

rithm described, such that it only computed the maximum number of concurrent

nested workflows (rather than all tasks). With this number, I then implemented a

mechanism that would allocate an appropriate amount of local cores to the nested

workflows. Whenever I detected a nested Makeflow that was to be run locally, I

checked the maximum number of concurrent nested DAGs and divided the current

max local jobs by that dag width. For example, if the maximum number of local

jobs is 16 and I have a maximum of 4 nested concurrent workflows, then each of

the child workflows would be allowed 16/4 = 4 local jobs. This is significant be-

cause in the previous version of Makeflow, no resource restraints would be placed

on the nested workflows, which means the local machine could be swamped with

16× 4 = 64 local jobs, which could have a severe performance impact if the tasks

are compute intensive.

The point here is that having nested Makeflows as first-class objects allows the

workflow manager to make intelligent resource allocation decisions for hierarchical

workflows. In this case, we limit the number of local batch jobs for nested work-

flows to prevent overloading the local machine. Having MAKEFLOW as a keyword in

the DAG also allows for the toolchain utilities to be aware of the DAG’s relation-

ship to other workflows. This is important for tools such as makeflow link, which

can recursively link nested workflows for the user. Although use of this informa-

113

tion is limited to this proof-of-concept resource allocation mechanism and to a few

of the toolchain utilities, having the workflow manager aware of nested Makeflows

is a necessary pre-cursor to enabling future work involving more sophisticated

resource management and scheduling.

7.3 Provenance and Annotations

The third set of modifications to Makeflow involve enhancing the provenance

information recording in the workflow manager’s transaction journal. As explained

in Section 6.1, Makeflow records a series of event logs to a journal file during the

execution of a workflow. This event record is a series of numbers denoting the

time of the event, the identity of the node, the state of the node, the job identifier

of the node, and an accounting of all the node states in the graph. The primary

purpose of the log is to allow Makeflow to restart or recover from a failed or

aborted execution. Whenever Makeflow is started, it will attempt to recover the

journal and update its internal DAG to match the state of the journal. This way

tasks that have completed will be skipped during this new attempt, allowing users

to continue a failed or aborted workflow without having to redo all of the previous

work.

While the event log in the current Makeflow is suitable for recovery, it is

not sufficient for the tracking, monitoring, and analyzing features the toolchain

utilities implement. To enable these enhanced profiling tools, I modified Makeflow

in the following ways:

1. Embed DAG: The information in the event records stored in the transac-

tion log only refer to nodes by their identifier number. Based on this number

alone, it is not clear what command was executed or what the input and

114

1 # NODE 2 /usr/bin/env > env1.txt

2 # SYMBOL 2 /usr/bin/env > {OUT}

3 # PARENTS 2

4 # SOURCES 2 /usr/bin/env

5 # TARGETS 2 env1.txt

6 # COMMAND 2 /usr/bin/env > env1.txt

7 # NODE 1 /usr/bin/env > env0.txt

8 # SYMBOL 1 /usr/bin/env > {OUT}

9 # PARENTS 1

10 # SOURCES 1 /usr/bin/env

11 # TARGETS 1 env0.txt

12 # COMMAND 1 /usr/bin/env > env0.txt

13 # NODE 0 /usr/bin/stat /etc/hosts > hosts.stat

14 # SYMBOL 0 /usr/bin/stat {IN} > {OUT}

15 # PARENTS 0

16 # SOURCES 0 /usr/bin/stat /etc/hosts

17 # TARGETS 0 hosts.stat

18 # COMMAND 0 /usr/bin/stat /etc/hosts > hosts.stat

19 # STARTED 1337095010326731

20 1337095010326974 2 1 5465 2 1 0 0 0 3

21 1337095010327204 1 1 5466 1 2 0 0 0 3

22 1337095010340777 1 2 5466 1 1 1 0 0 3

23 1337095010340950 0 1 5469 0 2 1 0 0 3

24 1337095010341021 2 2 5465 0 1 2 0 0 3

25 1337095010370866 0 2 5469 0 0 3 0 0 3

26 # COMPLETED 1337095010370898

Figure 7.5. Modified Makeflow Transaction Journal Example

The modified Makeflow transaction journal now contains (1) embedded DAG, (2)
workflow status records, (3) symbolic annotations. All of this additional prove-
nence information allows for the profiling utilities to perform richer and more
accurate analysis.

output files were. To figure this out, one would have to parse the original

DAG and the transaction journal to match up node ID to task properties.

To having to parse two files and perform this mapping, I modified Makeflow

so that it embeds the DAG inside the transaction log.

This means that before any events are recorded, Makeflow will emit the DAG

it parsed to the top of the journal as shown in Figure 7.5. For each node in

115

the workflow, we record the node identifier and its original shell command.

Next, we list any parents it may have, its source and target files, and the

actual shell command used in the batch job. Because the DAG information

is prefixed with #’s Makeflow will treat these lines as comments and safely

ignore them when recovering a log.

With this information, it is possible for the profiling utilities to map the

event records to actual task nodes in a single pass. Likewise, embedding the

parsed DAG into the transaction log avoids the need to have to parse both

the transaction journal and the DAG. Instead the profiling utilities only

require the Makeflow log files to analyze, monitor, and profile the workflow.

2. Record Workflow Status: The transaction log only records event records.

This means that the journal is only updated when a node is modified (i.e.

changes state). It is not clear when the workflow started or stopped because

the state of the workflow itself is not record. While it is possible to use some

heuristics to determine if a workflow is complete (i.e. all tasks nodes are

in the complete state), it would be difficult to determine if a workflow has

failed or has been aborted.

To make it easier for tools such as makeflow monitor to determine the cur-

rent execution status of a workflow, I simply emit workflow status records.

Again, to avoid conflicting with the existing event record parser, I em-

bedded this new status information as a comment. As demonstrated in

Figure 7.5, when a workflow is started, a # STARTED <TIMESTAMP> record

is emitted. When the workflow completes, # COMPLETED <TIMESTAMP> is

recorded. For failed or aborted workflows, # FAILED <TIMESTAMP> or #

ABORTED <TIMESTAMP> messages are recorded.

116

Having these workflow status records allows for the profiling tools to accu-

rately assess the execution status of Makeflow.

3. Include Debugging Symbols: The final modification to the transaction

log involves including debugging symbols generated by the compiler in the

transaction log. With Weaver, the user can compile a workflow with the

-g flag which will produce a DAG with embedded symbolic annotations as

shown in Figure 7.6. In the example, there are two Abstractions, one that

performs a Map using the convert application and another performing a Map

using the stat program. For each task, there is a comment after the target

and source file specification line denoting the symbol with which the task is

associated.

When the DAG is executed and it contains these symbolic annotations,

this information will be propagated to the transaction journal as shown in

Figure 7.5. After the node identifier and original command are emitted,

the symbolic annotation is recorded. With this information tools such as

makeflow report can not only provide profiling information about individ-

ual tasks but also on Functions and Abstractions. This is important

because with the previous version of the transaction log it would be difficult

to map tasks to the higher-level workflow specification. By including debug-

ging symbols in the DAG and in the transaction log, it is now possible to

construct a complete picture of the workflow from the Python code to the

Makeflow DAG to the transaction log.

117

1 xterm -color_32x32.jpg: /usr/share/pixmaps/xterm -color_32x32.xpm /usr/bin/convert

2 # SYMBOL Map [0](/ usr/bin/convert {IN} {OUT},_Stash /0/0/0/0000001)

3 /usr/bin/convert /usr/share/pixmaps/xterm -color_32x32.xpm xterm -color_32x32.jpg

4 xterm_32x32.jpg: /usr/share/pixmaps/xterm_32x32.xpm /usr/bin/convert

5 # SYMBOL Map [0](/ usr/bin/convert {IN} {OUT},_Stash /0/0/0/0000001)

6 /usr/bin/convert /usr/share/pixmaps/xterm_32x32.xpm xterm_32x32.jpg

7 parcellite.jpg: /usr/bin/convert /usr/share/pixmaps/parcellite.xpm

8 # SYMBOL Map [0](/ usr/bin/convert {IN} {OUT},_Stash /0/0/0/0000001)

9 /usr/bin/convert /usr/share/pixmaps/parcellite.xpm parcellite.jpg

10 xterm -color_48x48.jpg: /usr/share/pixmaps/xterm -color_48x48.xpm /usr/bin/convert

11 # SYMBOL Map [0](/ usr/bin/convert {IN} {OUT},_Stash /0/0/0/0000001)

12 /usr/bin/convert /usr/share/pixmaps/xterm -color_48x48.xpm xterm -color_48x48.jpg

13 xterm_48x48.jpg: /usr/bin/convert /usr/share/pixmaps/xterm_48x48.xpm

14 # SYMBOL Map [0](/ usr/bin/convert {IN} {OUT},_Stash /0/0/0/0000001)

15 /usr/bin/convert /usr/share/pixmaps/xterm_48x48.xpm xterm_48x48.jpg

16 dataset.py.stat: /usr/bin/stat /home/pbui/src/research/weaver/weaver/dataset.py

17 # SYMBOL Map [1](/ usr/bin/stat {IN} > {OUT},_Stash /0/0/0/0000003)

18 /usr/bin/stat /home/pbui/src/research/weaver/weaver/dataset.py > dataset.py.stat

19 abstraction.py.stat: /usr/bin/stat /home/pbui/src/research/weaver/weaver/abstraction.py

20 # SYMBOL Map [1](/ usr/bin/stat {IN} > {OUT},_Stash /0/0/0/0000003)

21 /usr/bin/stat /home/pbui/src/research/weaver/weaver/abstraction.py > abstraction.py.stat

22 compat.py.stat: /usr/bin/stat /home/pbui/src/research/weaver/weaver/compat.py

23 # SYMBOL Map [1](/ usr/bin/stat {IN} > {OUT},_Stash /0/0/0/0000003)

24 /usr/bin/stat /home/pbui/src/research/weaver/weaver/compat.py > compat.py.stat

25 options.py.stat: /home/pbui/src/research/weaver/weaver/options.py /usr/bin/stat

26 # SYMBOL Map [1](/ usr/bin/stat {IN} > {OUT},_Stash /0/0/0/0000003)

27 /usr/bin/stat /home/pbui/src/research/weaver/weaver/options.py > options.py.stat

Figure 7.6. Weaver Generated Debugging Symbols Example

When symbolic annotations are enabled, the compiler will record the Function or Abstraction the task is associated
with by embedding a comment before the task’s shell command. This symbol is then used by the profiling utilities to group
related tasks for analysis.

118

The purpose of these augmentations to Makeflow is to facilitate and improve

debugging and tracking of a user’s workflow by enhancing the amount of prove-

nance information in the transaction journal. This additional information is used

by the toolchain’s profiling utilities to analyze workflows, monitor their progress,

and generate statistical reports about the components of the workflows.

7.4 Garbage Collection

The final modification to Makeflow involves using garbage collection to tackle

the problem of intermediate files. As noted in previous chapters, in some scientific

workflows, many intermediate files are generated throughout the course of the ex-

ecution of the application. For small applications this does not pose a problem.

However, for larger workflows too many intermediate files in the workflow sand-

box can severely impact the performance of the overall application. Moreover,

having too many intermediate files in the workspace not only adversely affects

performance, but also makes it difficult for the user to browse their workspace

and perform operations such as monitoring and debugging.

In Chapter 4, I described two techniques to address this problem. The first

was the Stash structure which provides the user a convenient means of spreading

their intermediate files across an internal directory hierarchy. The second method

was to partition a workflow into smaller sub-workflows using hierarchical work-

flows. While both of these methods help prevent the pernicious problem of inode

exhaustion, they do not handle the case where the user may have limited stor-

age for their workspace. This could either be due to lack of storage capacity or

system-enforced quotas. Additionally, these methods also do not address the case

where the user only cares about the final outputs and not any of intermediate

119

ones. Instead of keeping the intermediate files around, it would be more desirable

to remove them when the workflow manager has determined they are no longer

necessary.

To address these types of situations, I augmented Makeflow to support auto-

matic removal of volatile or temporary intermediate output files. Currently, users

can schedule tasks to remove intermediate files as a part of the workflow, but

such tasks violate the semantics of Makeflow and lead to strange behavior of the

workflow is aborted and resumed. This is because Makeflow uses the existence

of files (along with its journal log) to help it determine if a task has been com-

pleted. Removing a file will trigger the generating event to re-run if the Makeflow

is resumed or restarted.

In the modified version of Makeflow, users can mark certain files as volatile or

temporary. During execution of the workflow, Makeflow will periodically perform

garbage collection on this list of temporary files, thus alleviating the user from

having to schedule removal tasks. Since Makeflow understands that certain files

are volatile it can be smarter about scheduling tasks that generate temporary

files. For instance, the augmented Makeflow will avoid re-scheduling an already

completed task if an input or output file is missing but was marked as a temporary

file. However, if a re-scheduled failed or aborted task required input files that were

previously garbage collected, then those parent tasks would also be re-scheduled.

This way, the re-schedule task is guaranteed to have all of its necessary input files.

For this dissertation, I modified Makeflow to support the following methods of

garbage collection:

1. Immediately: Temporary files are removed as soon as they are no longer

needed. This is similar to reference counting [11], where once the number of

120

references to an object reaches zero it is then deleted. In my implementation,

this technique is labeled RefCount.

2. On-demand: Temporary files are only removed when there is need for more

space or inodes. This is used by many ”stop-and-collect” garbage collectors

[14] which will pause the program once it runs out of available resources and

perform garbage collection to free up more. This method is appropriately

called OnDemand in Makeflow.

3. Incrementally: In this method, Makeflow periodically removes a fixed

amount of temporary files or only used a pre-determined amount of time to

perform garbage collection. This is similar to incremental garbage collec-

tors [7] used by applications that require real-time performance guarantees.

There are two versions of this method: IncrFile which collects up to a

user-defined amount of files (default is 16), and IncrTime which collects as

many files as it can in a limited time window (default is 5 seconds).

Internally, reference counting is used to track which files are available for col-

lecting. When the DAG is initially parsed, a list of volatile temporary files is

stored in the MAKEFLOW COLLECT LIST variable. This means that if users wish to

mark a file as volatile, they simply need to append it to this variable:

out.0: in.0

@_MAKEFLOW_COLLECT_LIST+=in.0

command in.0 > out.0

Once the MAKEFLOW COLLECT LIST variable is set, then Makeflow will create a

collection table that maps each file in the list to the number of references it has in

121

the graph. To compute the amount of references, Makeflow traverses the DAG and

increments the appropriate entry in the mapping table for each node that requires

the volatile file. When a task is returned from the batch system, Makeflow checks

if any of its input files are in the collection table. If it exists in the table, then

the reference count in collection table is decremented. Furthermore, if the current

garbage collection method is RefCount (i.e. reference counting), then the file will

be removed immediately if the count reaches zero.

For the other methods (OnDemand, IncrFile, and IncrTime), Makeflow will

periodically attempt to perform garbage collection after a certain amount of tasks

have completed. Currently, this amount is limited to 5% of the total number of

tasks. That is if a workflow has 100 tasks, Makeflow will attempt to perform

garbage collection 5 times. This is done to space out the time between collection

(otherwise all the other methods devolve into just reference counting). When a

workflow successfully completes, a final attempt to collect files will be performed.

1 NFILES = int(CurrentScript (). arguments [0])

2 stat = ParseFunction('stat {IN} > {OUT}')
3 files = Iterate('ls > {OUT}', NFILES , '{i}')
4 stats_0 = Map(stat , files , '{BASE}. stat_0 ', collect=True)

5 stats_1 = Map(stat , files , '{BASE}. stat_1 ', collect=True)

6

7 Merge(stats_0 , 'all.stats_0 ', collect=True)

8 Merge(stats_1 , 'all.stats_1 ', collect=True)

Figure 7.7. Garbage Collection Benchmark Workflow

For this benchmark, we create a large amount of files by listing the directory and
storing the contents into an output file. We then stat these files twice and merge
these results into two tables. Only the final two tables are kept; all other interme-
diate files are marked for collection.

122

To evaluate these garbage collections, I constructed the benchmark in Figure

7.7 and executed on three different filesystems (local, AFS, and NFS) using

Makeflow’s local batch system. In this benchmark, I create a 10, 000 files by

listing the directory and storing the output in a new file. I then perform stat

twice on each of these files and then merge the results into two separate tables.

To mark which input files to garbage collect, I set the collect keyword to True

on lines 4, 5, 7, and 8. This tells the compiler to mark all of the inputs for these

abstractions as volatile and allow the run-time system to remove them when they

are no longer necessary. At the end of the workflow, then, I should only have the

two resulting tables as all of the intermediate output files are marked as temporary

and volatile.

For each filesystem, I executed the workflow multiple times with all four of the

garbage collection methods described above and with garbage collection turned off

as a baseline. The execution times for these benchmarks is shown in Figure 7.8.

For the local filesystem, garbage collection lead to a minimal amount performance

increase, while on NFS, the methods yielded a slight performance decrease. On

AFS, however, garbage collection had a great impact on the workflows’ execution

times. Here, RefCount lead to a severe performance loss compared to not using any

garbage collection, while IncrTime and OnDemand lead to significant performance

increases. IncrFile only produced a slight performance increase.

The differences in the performance impacts of the garbage collection methods

on these filesystems can be in part explained by the information in Figures 7.9 and

7.10. The first chart shows the percentage of the workflow’s execution time that

removing files occupied. For the local filesystem, deleting volatile files is a relative

inexpensive operation and thus the garbage collection methods did not take up

123

 0

 500

 1,000

 1,500

 2,000

 2,500

 3,000

AFS Local NFS

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

Filesystem

None
RefCount
IncrFile
IncrTime
OnDemand

Figure 7.8. Garbage Collection Benchmark Execution Times

This graph presents the mean execution of the benchmark workflow using different
garbage collection methods (none, reference counting, incremental by file, incre-
mental by time, and on demand) across multiple filesystems (AFS, Local, NFS).
On the Local filesystem, garbage collection provided a modest performance in-
crease, while on NFS it lead to a slight performance decrease. On AFS, collecting
garbage lead to dramatically different results, depending on the method utilized.

much of the overall execution time. On NFS, however, due to the overhead of

the network RPCs that must take place, removing files proved to be a somewhat

costly and thus slightly degraded performance. With AFS, the garbage collection

techniques also occupied a larger percentage of the workflow’s execution time. In

particular, the RefCount and IncrTime methods took a much larger percentage

of the running time and had the worse performances. The cost of removing files

on AFS, however, was offset by the gains in getting to list a smaller directory in

the case of IncrTime and OnDemand. That is, while deleting files is costly in AFS,

so is listing the directory, especially if it is full of files.

124

 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

 100%

RefCount

IncrFile

IncrTime

OnDemand

RefCount

IncrFile

IncrTime

OnDemand

RefCount

IncrFile

IncrTime

OnDemand

P
e
rc

e
n
t
o
f
R

u
n
n
in

g
 T

im
e

AFS Local NFS

Execution
Garbage Collection

Figure 7.9. Garbage Collection Benchmark Running Time Percentages

This charrt hows the percentage of the workflows’ running time garbage collection
occupied. On AFS, removing files proved costly and thus ate up a signficant amount
of execution time. For the local filesystem, deletion was much more inexpensive
and thus did not significantly impact the execution time. On NFS, deletion was
also costly and lead to slight decrease in workflow performance.

Figure 7.10 provides further insight into the performance impacts of the garbage

collection methods. These histograms show how often each method collected 1−10

files, 10−100 files, 100−1, 000 files, 1, 000−10, 000 files, and more than 10, 000 files

during each cycle. Unsurprisingly, the RefCount method shows 100% frequency of

deleting one file across each filesystem. This in part explains why RefCount is so

expensive on AFS; for each volatile file, it will perform a single unlink command.

At the other end, it is also unsurprising that OnDemand method always collected

more than 10, 000 files at a time. This is because workflows with this method

only triggered a collection cycle when the number of inodes surpassed the limit of

214 = 16384 files. Likewise, IncrFile usually collected 16 files per cycle because

that is what the method was designed to do. However, this collection amount did

125

not keep up with the number of volatile files because the IncrFile technique also

had to spend a modest amount of its collection time removing more than 10, 000

files. Out of all the methods, IncrTime displayed the most variation. On AFS,

this method spent nearly equal time deleting 100−1, 000 and 1, 000−10, 000 files

at a time. This explains why its performance on AFS was as good as OnDemand; it

was able to delete large batches of files at once, and thus minimized the amount

of network callbacks and drove down the cost of listing a directory. For local and

NFS, IncrTime spent most of it’s time deleting 1, 000− 10, 000 files per cycle.

All of these results demonstrate the performance impact of these garbage col-

lection techniques. Overall, the IncrTime and OnDemand techniques appear to

work the best, particularly on AFS, because they delete a large batch of files

at once, rather than a few at a time. IncrTime could be brought closer to the

performance of these two methods by simply increasing its threshold (the bench-

marks utilized the default of 16). Reference counting, on the other hand, is not

recommend, especially for AFS, where it led to a significant performance decrease.

As noted previously, the compiler toolchain utilizes Makeflow as its target run-

time system. While the workflow manager is provides a stable and easy target for

generating workflow DAGs and executing them on a variety of distributed plat-

forms, it was insufficient for some of the features desired by the toolchain. Because

of this, I modified Makeflow to support local task variables, nested Makeflows as

first-class objects, additional provenance and symbolic annotations, and garbage

collection. All of these additions are utilized and taken advantage of by vari-

ous parts of the compiler toolchain and serve to enhance Makeflow as an capable

workflow manager for distributed data intensive scientific workflows.

126

 0%

 20%

 40%

 60%

 80%

 100%

RefCount IncrFile IncrTime OnDemand

%
 T

im
e

 C
o

lle
c
ti
n

g
 >

 N
 F

ile
s

Garbage Collection Method

> 1 Files
> 10 Files
> 100 Files
> 1,000 Files
> 10,000 Files

(a) AFS Histogram

 0%

 20%

 40%

 60%

 80%

 100%

RefCount IncrFile IncrTime OnDemand

%
 T

im
e

 C
o

lle
c
ti
n

g
 >

 N
 F

ile
s

Garbage Collection Method

> 1 Files
> 10 Files
> 100 Files
> 1,000 Files
> 10,000 Files

(b) Local Histogram

 0%

 20%

 40%

 60%

 80%

 100%

RefCount IncrFile IncrTime OnDemand

%
 T

im
e

 C
o

lle
c
ti
n

g
 >

 N
 F

ile
s

Garbage Collection Method

> 1 Files
> 10 Files
> 100 Files
> 1,000 Files
> 10,000 Files

(c) NFS Histogram

Figure 7.10. Garbage Collection Benchmark Collection Histograms

These histograms show the percentage frequency of how many files were deleted
during each collection cycle. For instance, RefCount always removes one file at
time, so workflows using that method will have 100% frequency of deleting 1− 10
files.

127

CHAPTER 8

CONCLUSION

With the growing amount of computational resources available to researchers

today and the explosion of scientific data in modern research, it is imperative

that scientists be able to efficiently and effectively construct data intensive ap-

plications that harness these vast computing systems. To address this need, I

proposed applying concepts from traditional compilers, linkers, and profilers to

the construction of distributed workflows and evaluated this idea by implement-

ing a complete compiler toolchain that allows both novice and expert users to

compose distributed data intensive scientific workflows in a high-level program-

ming language.

8.1 Automatic Optimizations

In Chapters 4, I described a few compiler optimization techniques that can be

utilized by users to improve the performance their workflows. While these tech-

niques demonstrated significant performance improvements in certain situations,

they all required some form of manual user intervention or input. For instance,

instruction selection requires the user to enable the native keyword argument,

while task inlining requires the user to specify a particular group size. Likewise,

hierarchical workflows requires the user to manually partition the workflow into

128

separate components. In all of these cases, the compiler cannot make a good

decision by itself since it does not have enough information to make an accurate

decision on how to apply these optimizations.

One possible way to enable the compiler to perform automatic optimizations

is to leverage the additional provenance information described in Chapter 7 to

implement profile-guided optimization [92]. In this new technique, the compiler

enables symbolic annotations and samples the workflow by executing small sub-

sections of the workflow with different optimization parameters and examine the

transaction journal. Because of the annotations, the compiler can parse the log

and map the execution times back to the high-level Abstractions and Functions

and determine which optimization parameters yielded the best performance and

thus optimize the whole workflow accordingly.

Another method would again take advantage of the provenance information,

but this time to mine a large corpus of transaction journals for patterns. Instead

of having the compiler perform sampling, the user would apply a new data-mining

tool to a set of annotated transaction logs to extract any performance patterns

from previous set of executions. Previous work has used data-mining for debugging

purposes [32], but not necessarily for optimizing a workflow. In some ways, this

would be similar to what a tracing just-in-time (JIT) [46] compiler does, but offline

instead of during execution.

8.2 Dynamic Workflows

Another major possible consideration for the compiler is to support dynamic

workflows. Currently, the compiler can only generate static workflows where all

the tasks must be enumerated before execution. While this encompasses a large

129

number of scientific data processing applications, it does not allow for iterative

applications such as optimization, filtering, and simulation where run-time deci-

sions that affect the direction of the workflow must be made. This restriction is

primarily due to the fact that the run-time system, Makeflow, does not provide

the necessary primitives for dynamic scheduling.

Despite this limitation, it still is possible to do some forms of dynamic work-

flows with the toolchain. For instance, the one way of constructing an iterative

application using the is to have a top-level script that simply compiles and ex-

ecutes a Nest for each iteration. Because the Weaver compiler is written as a

Python library with a front-end script, it is possible for normal Python scripts to

programmatically construct, compile, and execute workflows. While this would

mostly work, the problem with this technique, however, is that the user does not

have the ability to restart or resume their workflow unless they manually imple-

ment some form of checkpointing.

Figure 8.1 provides a contrived example of this type of application. In this

demonstration, we construct a Nest whose sole task is to create a file .dat file.

After each execution of the Nest we check for how many .dat files we have. If we

have two, then we break out of the loop. One can imagine, how this example can

be modified to perform an optimization or simulation type of application.

Another way to implement dynamic workflows is to use a system of trampolin-

ing. Normally this method is used to used in dynamic programming languages

such as Scheme to support continuations [47] by having an outer function call an

inner function to generate the next function to call [6]. In the context of DAG-

based workflows, we would basically have a rule that generates another workflow

and then executes that generated DAG. As can be imagined, this can be quite

130

1 from weaver.function import ParseFunction

2 from weaver.nest import Nest

3 import glob

4

5 touch = ParseFunction('touch {OUT}')
6

7 for i in range (5):

8 with Nest() as nest:

9 touch(outputs='{0}. dat'.format(i))
10 nest.compile ()

11 nest.execute ()

12

13 if len(glob.glob('*.dat')) == 2:

14 break

Figure 8.1. Iteration Workflow Example

This provides an example of how to construct an iterative application such as op-
timization or simulation by using the Weaver compiler library directly in a normal
Python script to construct a Nest, compile it, and then execute it.

complex and difficult to manage manually, but it is a viable technique and would

make applications such as filtering possible.

In order to fully support dynamic workflows, Makeflow must be modified to

provide a means of dynamic task generation. If the run-time system allowed tasks

to generate other tasks, then the toolchain could be updated to support a broader

range of workflow applications. For instance, Swift [120, 126] is implemented

as a compiler and yet it supports dynamic workflows with conditionals (e.g. if

and switch statements) due to its run-time system. Likewise, Skywriting [82]

is an interpreter-based functional language for developing cloud applications that

supports iteration and recursion due to the fact that its CIEL [83] execution engine

is capable of dynamically constructing DAGs. Augmenting Makeflow to support

features for defining tasks at run-time would enable dynamic applications such as

optimization, filtering, and simulations.

131

8.3 Compiling to DAGs

The discussion of dynamic versus static workflows often brings into question

why a compiler and not an interpreter? For the most part, this is a poorly framed

question because even traditional interpreters for languages such as Python and

Lua compile the input source into byte-codes that are processed by an internal

virtual machine. In other words, it is unclear what the difference between a com-

piler and an interpreter are suppose to be since many interpreters do compilation

internally (they just do it at run-time). As demonstrated earlier, we can simulate a

basic interpreter by constructing, compiling, and executing workflows on-demand

within a normal Python script.

I believe that the more interesting and relevant question is why compile a

workflow to a DAG? That is why produce DAGs for Makeflow, when the toolchain

could dispatch jobs as it parses the workflow specification on its own? The initial

answer is due to practicality. Makeflow exists and does a great job of executing

workflows in a portable and reliable way and so to target it I must generate a

DAG. If I were to remove the dependency on Makeflow, I would basically have

to re-create a workflow manager inside the compiler to make it a true interpreter,

duplicating previous work instead of researching new areas. Despite this, however,

given enough time, I could in fact re-implement Makeflow inside of Weaver to

create an intrepreter, and so practicality is not a sufficient answer.

A more convincing reply is that compiling a DAG allows us to apply opti-

mizations. When we compile a workflow, we have the opportunity to examine the

structure of the workflow and modify it to improve its performance. A prime ex-

ample of this is inlining tasks as presented in Chapter 4. With this optimization,

we can group or cluster elements of a dataset together and have them all processed

132

by a single worker to minimize dispatch latency. Unfortunately, this reason also

falls short, because there is nothing that stops an interpreter from also perform-

ing most of these optimizations on the fly as done by traditional programming

languages such as Python.

The best reason for using a DAG as an intermediate representation of the

workflow is that it allows the compiler and run-time to analyze the entire work-

flow and make intelligent decisions. More specifically, having a complete repre-

sentation of the workflow as a DAG means that the toolchain and run-time can

perform whole program optimizations [68], dynamic scheduling [95], and resource

allocation [103]. The first feature refers to the fact that while an interpreter can

perform optimizations on individual Abstractions or Functions, it cannot per-

form Nest or workflow level transformations without constructing a DAG. The

second ability means that the run-time system can analyze the whole structure of

the graph and re-adjust how it schedules its tasks. The third capability is similar

to the second except it means that the workflow manager can analyze the DAG

to optimize resource allocation. A hint of this was presented in Chapter 7 where

we used the dag width function to proportionately allocate local batch jobs for

nested Makeflows. These types of features are only available if we have a complete

graph of the workflow.

8.4 Beyond Distributed Computing

Looking beyond distributed computing, I believe that software engineering ap-

proach underlying by my dissertation is applicable to many software construction

problems today. While is important to be able to create highly-optimized code,

most programmers develop software by piecing together these specialized com-

133

ponents to form sophisticated applications. When using the toolchain presented

here, users are basically coordinating an ensemble of applications and abstractions

to form a distributed scientific workflow. What is important to note is that the

toolchain is not designed for the users creating the specialized applications, but

the developers who will be gluing these components together to synthesize a larger

application. This is the software engineering concept in my work:

Abstract the performance critical components into individual

independent modules which users can combine to form more so-

phisticated applications.

Outside the distributed computing field, many programming language, com-

puter architecture, and software engineering researchers are tackling the problem

of how to enable more users the ability to harness the computation power of high-

performance parallel devices such as multi-core machines and graphics processors.

Some researchers promote low level mechanism such as threads [24] or MPI [39],

while others call for new languages such as Chapel [27] or Fortress [108]. Still

more push for frameworks such a OpenCL [81].

As my dissertation demonstrates, another approach that should be considered

is to focus on creating a set of libraries and utilities that programmers can combine

to create applications that take advantage of multi-core machines and GPUs.

For instance, a library of data structures optimized for multi-core would enable

users to substitute their existing data structure implementations with these high

performance modules. Likewise, a library of mathematical functions that take

advantage of the GPU could be used by a variety of data processing applications

to greatly improve their throughput.

134

Having these optimized components, however, is not enough. Users must be

able to combine them with their existing code and with other specialized compo-

nents. Whether it is through a domain-specific language, a library API, a set of

executables, or any other method, these optimized components need to be avail-

able and allow users to compose them together to create new high-performance

applications. A compiler toolchain, as demonstrated by my dissertation, is an ef-

fective tool for integrating these optimized modules and allowing users to construct

sophisticated applications that take full advantage of available computational re-

sources.

8.5 Impact

Recalling the Fred Brooks’ idea of computer scientist as toolsmith, the success

of any systems software research is measured by the collaborations it enables and

the research it promotes. Under these terms, the compiler toolchain is a success.

Elements of the toolchain have been in use for the past for years. In additional to

a few external users, many current users of the toolchain are collaborators here at

the University of Notre Dame.

For instance, it is currently employed in various operations for the Computer

Research Vision Laboratory (CVRL) at Notre Dame. Specifically, it is used to

perform biometrics experiments and as the transcoding framework that processes

terabytes of data for the BXGrid [17, 20] web portal. Likewise, the toolchain has

been adopted by members of the Notre Dame Biological Computing group to port

existing genomic workflows to a variety of distributed systems [67, 114]. Using

the toolchain, these researchers are now able to run previously infeasible work-

flows to analyze genomic data on campus distributed systems with much shorter

135

turn-around time. Thus, the toolchain allows the researchers to concentrate on

analyzing gene sequences and discovering new biological breakthroughs.

As such, the compiler toolchain is succeeding in its goal of enabling novice

and expert users to efficiently and effectively construct distributed data intensive

scientific workflows.

136

APPENDIX A

WEAVER API

Chapter 3 presented an overview of the programming interface and execution

model of the Weaver workflow compiler. Recall that Weaver provides a simple,

though restricted, programming model that consists of datasets, functions, ab-

stractions, and nests. These concepts are the fundamental building blocks of

the Weaver application programming interface (API) and are implemented as a

custom Python package consisting of modules, classes, and functions that end

users combine and extend to define their distributed scientific workflows.

This appendix provides an in-depth examination of the programming model

the compiler presents to end users along with example Python source code.

A.1 Datasets

Many scientific computing tasks involve processing a repository or collection

of experimental data, which are normally stored as files on a physical filesystem.

In the Weaver programming model, collections of data objects are organized into

datasets, where each object’s string (i.e. str) method returns the location of

the file that contains the data. This simple convention allows for datasets to take

the form of a Python list, set, generator function, or any other Python object that

implements the language’s native iteration protocol.

137

Although specifying a dataset can be as straightforward as defining a list of file

paths, Weaver provides a collection of custom Dataset objects that simplify the

specification and selection of input data. Each object in these Dataset collections

contains the path to the data file as required by the programming model, along

with a set of attributes shared by all the members of the dataset. This common

set of metadata properties can be accessed and manipulated by the user through

the Query function, which will be explained shortly.

One example of a Dataset provided by the Weaver framework is the Files

Dataset. Since the most common type of dataset is simply a group of data files,

Weaver provides the Glob constructor, which given a file path pattern, this dataset

builder will return the set of file objects that match the specified pattern. Another

common method for keeping track of files is to store the list of data paths in a

text file. Weaver provides a simple FileList object for constructing this type of

collection. Each object in both of these collections contains the location of the file,

along with relevant filesystem metadata of each file such as size and timestamps.

An example of a Files Dataset generated by the Glob constructor is shown

below in Figure A.1.

In addition to files stored on a filesystem, another common source for scientific

data is a SQL [28] database. For these datasets, Weaver provides a simplified

database specification and querying interface that facilitates accessing information

stored in conventional SQL databases such as MySQL [84] or SQLite [90]. Besides

specifying the details about how to connect to the database as shown in Figure

A.1, the user only needs to define a path function which determines the location

of the data file based on the object record returned by a SQL query. The user

may either directly map the database record to a file on disk, or the user may

138

1 # Define dataset using Glob constructor

2 fls_ds = Glob('/path/to/files /*.txt')
3

4 # Filter files dataset for sizes > 1024

5 my_fds = Query(fls_ds , fls_ds.c.size > 1024)

6

7 # Define dataset using MySQL constructor

8 sql_ds = MySQLDataset('localhost ', 'biometrics ', 'files ')
9

10 # Filter SQL records based on eye color

11 my_sds = Query(sql_ds ,

12 Or(sql_ds.c.EyeColor == 'Blue',
13 sql_ds.c.EyeColor == 'Green '))

Figure A.1. Weaver Dataset Examples

This figure shows examples of defining Datasets using a couple of provided Weaver
constructors and demonstrations on how to filter these collections based on the
metadata associated with each item in the dataset. Note that while the first dataset
is a list of files and the second one is a MySQL database, both can be manipulated
using the same ORM interface provided by Weaver’s Query function.

materialize a file containing information from the database record and return the

path to that generated file. In either case, it is up to the user to specify how to

translate the database record to a physical file location as required by the Weaver

programming model. An example of mapping a database record to a physical

path for data from the BXGrid [17] repository is provided in Figure A.2. In

this demonstration, the fileid of the database record is used to map into the

filesystem namespace provided by the Parrot [112] BXGrid driver [19].

Sometimes it is necessary to filter or select a subset of the dataset from a

larger collection before processing it. For instance, a scientific database may con-

tain thousands of records, but the user is only interested in a specific subset for

experimentation. To facilitate this selection operation, Weaver provides a Query

function that allows the user to filter items in Weaver Datasets. This selection

139

1 # Function to map database record to physical file location

2 def bxgrid_path(self , object):

3 return '/bxgrid /{0}/ fileid /{1}'.format(
4 self.db_host , object['fileid '])
5

6 # Configure BXGrid database dataset

7 dataset = MySQLDataset(host='localhost ', name='biometrics ',
8 table='files ', path=bxgrid_path)

9

10 # Filter dataset based on fileid and size

11 files = Query(dataset ,

12 Or(And(dataset.c.fileid == '321',
13 dataset.c.size > 1040000) ,

14 And(dataset.c.fileid == '322',
15 dataset.c.size > 1040000)))

16 Map('stat {IN} > {OUT}', files , '{BASE}. stat0 ')
17

18 # Select data without fileids

19 files = Query(dataset ,

20 dataset.c.fileid == None , limit =10)

21 Map('stat {IN} > {OUT}', files , '{BASE}.stat1 ')
22

23 # Select data with fileids beginning with '12'
24 files = Query(dataset ,

25 dataset.c.fileid % '12%', limit =10)

26 Map('stat {IN} > {OUT}', files , '{BASE}.stat2 ')
27

28 # Select data with specified extensions

29 files = Query(dataset ,

30 dataset.c.extension | ('gz', 'abs.gz'), limit =10)

31 Map('stat {IN} > {OUT}', files , '{BASE}.stat3 ')

Figure A.2. BXGrid SQL Dataset Examples

This code listing demonstrates how to setup a connection to the BXGrid repository
and provides examples of querying the database for biometric data. The first few
lines define bxgrid path, which is used to determine how to map the database
record returned by the queries into a physical file location. The ORM language
provided by Weaver’s Query function is similar to the expression language made
popular by SQLAlchemy and closely resembles standard SQL.

is possible because objects in Weaver Dataset collections contain metadata infor-

mation common to each item in the set, and thus allow for the user to filter these

sets of objects based on their attributes.

140

The Weaver Query function exposes this selection mechanism by supporting

a SQL-like query expression language which translates the user-defined queries

into an appropriate form for the underlying data structure. This query expres-

sion language is similar to the SQLAlchemy expression language [105], a popular

Python object-relational mapping (ORM) [62] system. For datasets that are ac-

tual databases, the function will translate the ORM query expression into the

appropriate SQL expression and use the generated SQL to perform the query on

the database server. In the case of datasets that are collections of Python objects,

the ORM query expressions are translated into a series of filter functions that are

applied to each object in the dataset to produce the desired subset of the data

collection. To use the Query function, the user simply specifies the name of the

dataset, followed by an ORM query expression. As shown in Figures A.1 and A.2,

this allows users to filter their datasets in a simple and consistent manner.

It is important to note that these filtering and selection operations occur during

compilation. In fact, all of the Dataset collections are enumerated at compile time

because Weaver is a static workflow compiler. This means that all elements of the

DAG, including input and output datasets, must be generated and enumerated

by Weaver during compilation and thus before executing the actual workflow.

Moreover, this also denotes that the structure of the workflow is static and does

not change over the course of the workflow execution.

In summary, users may specify datasets using normal Python collections such

as lists, tuples, or sets, or they may use one of the provided Weaver Dataset

constructors such as Glob, FileList, SQLDataset. Utilizing one of the Weaver

Dataset constructors further enables selection and filtering using a simple ORM

system provided through the Query function.

141

A.2 Functions

The second major component of most scientific workflows are the executables

used to process the data. The Weaver programming model accounts for these

executables by providing the notion of a function specification object. In Weaver,

a Function is a Python object that defines the interface to an external application

or embedded script. It specifies information such as the path to the executable

and how arguments to the Function are to be formatted to generated a shell

command that can be executed to perform the desired operation. Like objects

in a dataset, each Function also corresponds to a physical file, in this case an

executable or script, on the filesystem.

As with Datasets, Weaver provides a set of custom Python components de-

signed to expedite and simplify the specification of workflow functions. The base

constructor is the generic Function class that contains the path to the executable

as well as a couple of methods: command format and call . The first method

specifies how to generate the appropriate shell command string needed to execute

the task given a set of input and output files, while the second method allows the

Function object to be called as a normal Python function. The side-effect of ex-

ecuting a Function is scheduling a task generated based on the command format

method and the arguments to the call method. Examples of defining and

calling various Weaver Functions are demonstrated in the source code examples

in Figure A.3.

The shell command generated by a Function’s command format method is

internally based on the object’s cmd format attribute which can be specified dur-

ing construction as shown in the Convert example in Figure A.3. This attribute

is a string template that is used to substitute in values using the rules specified

142

1 # 1. Create convert function directly using Function constructor

2 Convert = Function('convert ', cmd_format='{EXE} {IN} {OUT}')
3 Convert('example.jpg', 'example.png')
4

5 # 2. Create cat function using utility ParseFunction constructor

6 Cat = ParseFunction('cat {inputs} > {outputs}')
7 Cat('/etc/hosts ', 'hosts.txt')
8

9 # 3. Create script function using ShellFunction constructor

10 Touch_SH = ShellFunction('touch $2 && chmod $1 $2',
11 cmd_format='{EXE} {ARG} {OUT}')
12 Touch_SH(outputs='touch.txt', arguments='600')
13

14 # 4. Create sum function from inline Python code

15 def py_sum (*args):

16 print(sum(map(int , args)))

17 Sum = PythonFunction(py_sum)

18 Sum(outputs='sum.txt', arguments =[0, 1, 2, 3, 4, 5])

19

20 # 5. Create meta -Function using Pipeline constructor

21 GetPids = Pipeline (["ps aux",

22 "grep {ARG}",

23 "awk '{{print $$2}}' > {OUT}"], separator='|')
24 GetPids(outputs='makeflow.pids', arguments='makeflow ')

Figure A.3. Weaver Function Examples

The first example shows how to specify a Function directly by using the base
Function constructor and how to call the constructed object in order to schedule a
new task. The second example uses the ParseFunction utility function to specify
the executable and cmd format in a much simpler manner. The third example
demonstrates how to create a ShellFunction which is an embedded shell script
that will be materialized by the compiler for the user. The fourth example is
similar, except this time an inline Python function is used instead of an embedded
script. The final example demonstrates how to combine multiple Functions into
a meta-Function using the Pipeline constructor.

in Table A.1. Looking at the Convert example in Figure A.3, when the call

method is called internally after executing the line:

Convert('example.jpg', 'example.png')

The object’s command format method would yield the following based on the

143

arguments to call and the internal cmd format attribute:

/usr/bin/convert example.jpg example.png

The goal behind all of this formatting and templating is to provide the end

user with a simple but flexible way of specifying how the shell command for each

function should be constructed.

TABLE A.1

WEAVER COMMAND FORMAT TEMPLATE

Key Alias Substitution Value

{executable} {EXE} Full path to the executable associated with
Function.

{arguments} {ARG} Command line arguments to Function.

{inputs} {IN} Input file arguments to Function.

{outputs} {OUT} Output file arguments to Function.

Because specifying an executable and the cmd format is a relatively common

operation, Weaver includes a ParseFunction utility function that will automat-

ically produce the correct type of function for the user. For instance, in Figure

A.3 the Cat Function is constructed by call:

Cat = ParseFunction('cat {inputs} > {outputs}')

144

In this example, the ParseFunction takes the input string and constructs a

Function where the executable (e.g. cat) is the first token in the input string

and the cmd format is the remainder of the input (e.g. {inputs} > {outputs}).

When calling a Function, the user may specify inputs, outputs, arguments,

includes, local, and environment as keyword arguments to the call method.

These parameters are used in following manner:

• inputs: This parameter specifies the input files to be processed by the

Function. Normally the parameter would be Dataset, but if it is not, then

all of the items in the collection are converted to Files using Weaver’s

Makefile utility function which calls each object’s str method to deter-

mine the path to the object. If the Function does not expect any inputs,

then this parameter may be omitted.

• outputs: This parameter specifies the output files the Function should

create. If no outputs are to be generated, then this parameter may be

omitted. The outputs parameter may either be a list of output files or a

template string. In the case of a string template, the output list is generated

by iterating over the list of inputs and substituting elements in the string

template with values generated according to the rules in Table A.2.

• arguments: This parameter specifies any non-file command-line arguments

to include in the shell command.

• includes: If there are any files that need to be included with the Function

(e.g. libraries, configuration files, etc.), they can be specified by the user by

setting this parameter.

145

• local: The scheduled task generated by the Function can be forced to use

the local batch system by setting this parameter to True.

• environment: The user may pass a Python dict() to this parameter to

specify any environment variables that should be set for the task sched-

uled by invoking this Function. Note, that this only sets the environment

variables; it does not export them. Chapter 7 has more details on how

environmental variables work.

TABLE A.2

WEAVER OUTPUTS TEMPLATE

Key Alias Substitution Value

{fullpath} {FULL} Full path of the corresponding input file.

{fullpath woext} {FULL WOEXT} Full path of the corresponding input file
without extension.

{basename} {BASE} Base name of the corresponding input file.

{basename woext} {BASE WOEXT} Base name of the corresponding input file
without extension.

{i} {NUMBER} Current index of corresponding input file
in hexadecimal.

{stash} Path of the next available Stash file.

146

In addition to the ParseFunction utility function, Weaver also includes two

ScriptFunction constructors: ShellFunction and PythonFunction. Normally,

Functions refer to external executables such as those typically found in the sys-

tem’s /usr/bin directory or locally in the user’s workspace. Sometimes, however,

it would be convenient to embed a short script or function in the DAG specification

rather than actually creating a script in the filesystem a priori. For these situa-

tions, Weaver supports ScriptFunctions which are Functions that will create

the actual executable on-demand from source embedded in the DAG specification.

The first type of ScriptFunction is a ShellFunction. As the name suggests,

this constructor can be used to specify a short shell script from a string stored

in the workflow script. In Figure A.3, the third example demonstrates how to

construct a ShellFunction that creates a file using touch and sets the permissions

on the file using chmod. Once constructured, the ShellFunction behaves as any

other Function and may be called to generate a task. By default the /bin/sh

shell command is utilized as the interpreter, but the user may change this by

setting the shell keyword argument to another value (e.g. /bin/bash).

The second type of ScriptFunction is a PythonFunction, which can be used

to convert an inlined Python function into an external executable on-the-fly. Fig-

ure A.3 provides an example of creating a PythonFunction that converts the

py sum function that prints the sum of its arguments into a Function. As with the

ShellFunction, once defined, the PythonFunction acts as a normal Function.

It is important to the note that when using a PythonFunction, the user must

take care to ensure that source Python function imports any external modules

it requires inside the function definition. This is because the Python function is

extracted from its original source and written to a new script file which may lack

147

the same module namespace in which it was defined. For convenience, the os and

sys are automatically imported in the generated PythonFunction and are thus

available to the source Python function.

Finally, Weaver allows users to combine multiple Functions into a single meta-

Function by using the Pipeline utility function. This is demonstrated in the fifth

example in Figure A.3. In this example, we combine three Functions using stan-

dard UNIX pipe "|" syntax to find the process IDs of any instances of makeflow.

As with all the other constructors, Functions created using the Pipeline utility

behave like any other Function. There are a few reasons to use Pipeline:

1. Dependencies: By using Pipeline to combine multiple Functions, the

scheduled task is guaranteed to have all of the necessary dependencies. If

done as normal Function, then each of the executables would have to be

added as a dependency to the Function manually. Using the Pipeline

utility allows for automatic detection of the executable and thus dependency.

2. Ordering: Using a Pipeline enables the user to perform a specific order

of operations without the use of file dependencies. For instance, it may

be necessary to create a file and then modify it as in the case of the third

example in Figure A.3. Although the example uses a ShellFunction instead

of a Pipeline the idea remains the same. If this ShellFunction were split

into two separate tasks, then it is possible for a race condition to occur.

3. Optimization: By combining a sequence of operations into a single meta-

Function and thus reducing the amount of task dispatching required to

perform the desired computation, the Pipeline function serves as way to

perform manual function inlining [30] or vertical clustering [63].

148

4. Clarity: The final reason to use the Pipeline function is that the syntax

makes it clear that user intends to connect all of these functions together.

Altogether, the ParseFunction, ShellFunction, PythonFunction, and Pipeline

constructors provided by Weaver allow end users to specify their Functions in a

straightforward and flexible manner.

A.3 Abstractions

The third component in the Weaver programming model is support for ab-

stractions, which are patterns or models of computation with a precise set of

semantics. As with datasets and functions, Weaver provides a built-in collection

of distributed computing Abstractions to the end user as higher order functions

that the user explicitly invokes in order to utilize the pattern in a workflow.

The first Abstraction is AllPairs. This is an abstraction that is frequently

used in fields such as biometrics and data-mining [78]. In this pattern of com-

putation each member of one dataset is compared to each member of a second

dataset to produce a matrix that contains the resulting scores for each compari-

son. Because each individual comparison can be executed independently of each

other, the workflow tasks for this abstraction can be scheduled to run in parallel.

The second Abstraction is Map, which is a common pattern used for work

that exhibits data parallelism. Map takes an input function and applies it to each

item in the input dataset. The results of each function application is stored in a

collection of output data objects. Since each function application is independent

of each other, the individual tasks in this pattern can be executed concurrently.

Weaver also provides a related Abstraction called Iterate, which is just Map,

except the input list is not a set of files, but arguments to passed to the Function.

149

The third Abstraction provided by Weaver is MapReduce, which is a dis-

tributed computing abstraction first introduced by Google [35] and made popular

by Hadoop [51] for large scale data processing and analysis. In this pattern, a

mapper function is applied to the initial set of inputs to generate a group of inter-

mediate output files which are partitioned, sorted, and then passed to the reducer

function for aggregation. All the tasks in the both the mapper and reducer phases

exhibit data independence and therefore can be run in parallel.

The final Abstraction is Merge. This pattern of computation involves per-

forming a parallel reduction [64] of the input dataset to merge or concatenate the

original data into a single output. In the original version of the compiler [21], this

Abstraction was an internal function that was only called if the user requested

for the outputs of an Abstraction to be aggregated into a single file. In the most

recent version of the compiler, this Abstraction is now exposed directly to the

user and must be called explicitly to merge output files into a single target.

In Weaver, an Abstraction is conceptually a Dataset that is constructed

by applying one or more Functions to an set of inputs to produce a set of

outputs by performing a specific pattern of computation. These generated out-

put files are yielded when the Abstraction is iterated over by another object.

That is whenever the results of an Abstraction are required, for instance by an-

other Abstraction or by a Function, the Dataset generated by executing the

Abstraction is supplied. As a side-effect of determining this output Dataset,

the Abstraction schedules an appropriate set of tasks to actually perform the

computation in the generated workflow.

Because Weaver Datasets and Functions are designed to behave as if they

are normal Python iterators and functions, implementing these patterns of com-

150

putations as Abstractions is rather straightforward. For instance, a simplified

version of the Map Abstraction can be defined as follows:

for i, o in zip(inputs, outputs):

yield function(i, o)

where inputs, outputs, and function are the arguments passed to the Map

Abstraction.

Figure A.4 demonstrates how these Abstractions are invoked and how to

connect the outputs of one Abstraction to another. In the first section of the

listing, a MapReduce is performed to determine the word count of the Weaver

source code. The output of this operation, which is a collection of files, is stored

in the ouptuts 0 Python variable. This variable is then passed to Map as the input

dataset where the stat command is used to compute the file sizes of each input

item. Next, an AllPairs is performed on outputs 1 to determine the difference in

file sizes for each pair-wise combination of files. Finally, Merge is used to tabulate

outputs 2 as the final result of executing all four Abstractions.

The capturing of the outputs of one abstraction and passing it to a proceeding

one is how data dependencies are constructed in Weaver. Rather than having users

explicitly construct the directed acyclic graph as is common in other workflow

languages, the Weaver compiler extracts the structure of the workflow from these

variable assignments and data dependencies automatically for the user. Therefore,

to ensure a set of tasks executes before another, the end user simply has to pass the

outputs of the first set of tasks as inputs or includes for the next set of tasks. This

ability to connect and pipeline multiple Abstractions is the principle mechanism

for constructing a distributed workflow in Weaver and is the fundamental design

principle for the compiler’s programming model.

151

1 # 1. MapReduce

2 def wordcount_mapper(key , value):

3 for word in value.split ():

4 print('{0}\t{1}'.format(word , 1))

5

6 def wordcount_reducer(key , values):

7 print('{0}\t{1}'.format(key , sum(int(v) for v in values)))

8

9 outputs_0 = MapReduce(

10 mapper = wordcount_mapper ,

11 reducer = wordcount_reducer ,

12 inputs = Glob('weaver /*.py'),
13)

14

15 # 2. Map

16 outputs_1 = Map('stat -c %s {IN} > {OUT}', outputs_0)

17

18 # 3. AllPairs

19 def diff(file_0 , file_1):

20 sizes = [int(open(f).read ()) for f in (file_0 , file_1)]

21 print(sizes [0] - sizes [1])

22

23 outputs_2 = AllPairs(diff , outputs_1 , outputs_1)

24

25 # 4. Merge

26 outputs_3 = Merge(outputs_2)

Figure A.4. Weaver Abstraction Examples

The first part of this listing shows how to use the MapReduce Abstraction to
perform a word count on the Weaver source code. The output of the MapReduce is
then passed to Map, which applies the stat function to the data in order to compute
the file size of each item. After this, the file sizes are then used in AllPairs to get
the differences between each file. Finally, these results are tabulated using Merge.

Each of the Abstractions takes advantage of the data parallelism [54] present

in the patterns of computation in order maximize the amount of parallelism in

the workflow. In other words, all of these Abstractions manifest data inde-

pendence which allows the compiler to schedule the tasks associated with each

pattern concurrently. Through the use of variable assignment and passing, these

Abstractions can be pipelined to form sophisticated data intensive workflows.

152

A.4 Nests

The final component of the Weaver programming model is the concept of

nests. In Weaver, all workflows consist of a workspace and a directed acyclic

graph. The workspace serves as a reserved storage area for any output artifacts

of the workflow, while the DAG encodes the relationships between tasks in the

workflow. Nests are Weaver objects that represent both a workspace and DAG.

Whenever an Abstraction is processed, it is done so in the context of a particular

Nest, which captures any tasks produced by the abstraction being executed.

Because of this duality, the Nest is usually the most difficult object in the

Weaver to understand for those unfamiliar with the programming model. The

key to understanding this concept is to realize that a workflow consists of both

a namespace and a graph. Taken together, both the namespace and the graph

combine to uniquely identify a single workflow. In Weaver, each Nest object is

associated with a particular namespace and a single DAG. Therefore, each Nest

represents a specific workflow.

The purpose of having a Nest object in Weaver is to provide an execution

context for the Datasets, Functions, and Abstractions. Whenever one of these

objects is invoked it must is necessary for the compiler to know which workflow

it must refer to or modify. For instance, when an Abstraction is executed, the

compiler must determine which namespace it should use to retrieve and store any

files and which DAG it should use to schedule new tasks. Because of this, all

operations in Weaver are performed under the context of a single Nest. This

active or current Nest can be retrieved by the CurrentNest function.

Implied in this discussion is the possibility of having more than one Nest

in a workflow specification. In Weaver, users can hierarchically partition their

153

1 dataset = Glob('weaver /*.py')
2

3 with Nest('stats0 '):
4 stats0 = Map('stat {IN} > {OUT}', dataset , '{BASE}.stat')
5 with Nest('stats00 '):
6 stats00 = Map('stat {IN} > {OUT}', stats0 , '{BASE}.stat')
7

8 with Nest('stats1 '):
9 stats1 = Map('stat {IN} > {OUT}', dataset , '{BASE}.stat')

10 with Nest('stats10 '):
11 stats10 = Map('stat {IN} > {OUT}', stats1 , '{BASE}.stat')
12

13 Merge ([stats0 , stats1], '01. stats')
14 Merge ([stats00 , stats10], '0010. stats ')

Figure A.5. Weaver Nests Examples

This is one of the scripts used in the Weaver test suite. In this example, we
construct a hierarchical workflow where we perform stats on the various files,
starting with the Weaver source code and then merges all of the output. The code
here demonstrates how to use Nest in conjunction with Python’s with statement
to manage the CurrentNest.

workflows by creating new Nest objects and utilizing these new objects as the

current context manager. The most straightforward way to do this is by utilizing

Python’s with statement syntax as shown in Figure A.5. In Python, the with

statement is used as means of simplifying the use of a context manager that

performs actions before and after the proceeding code block is executed. In the

case of Nest, when used with the with statement the newly created object is set

as the CurrentNest and thus any tasks that are scheduling during the execution

of the code block contained by the with statement will be associated with the

created Nest. When the code block exists, the previous Nest is restored. In this

way, the user can consider this as a convenient way of managing a stack of Nests.

For example, on line 3 of Figure A.5, we use Python’s with statement to con-

struct a new Nest named ‘stats0’ and set it as the CurrentNest. The proceeding

154

Map operation on line 4 will use the ‘stats0’ Nest as its associated workflow and

thus will schedule its tasks to that Nest. On line 5, we create yet another Nest,

‘stats00’, and make it active. When the Map on line 6 is executed, it will schedule

tasks to the ‘stats00’ workflow. When we reach line 7, we have passed through all

of the code blocks, so the CurrentNest is reset to the original root Nest. Finally,

note that in lines 13 and 14 of Figure A.5, we are able to refer to variables and

datasets defined Nests that are no longer active. Weaver handles the translation

between these multiple namespaces for the end user transparently.

In summary, the Weaver programming model provides the workflow as a first-

class object to the user through the use of Nests, which consist of both a workspace

and a DAG. Users may construct Nests with in other Nests and thus partition

their workflow into hierarchical structures. The utility of this data partitioning is

explored later in Section 4.3.

With all of these components, the Weaver programming model provides users

with a solid set of building blocks for constructing distributed data intensive sci-

entific workflows. Using Datasets, users select the data they wish to process and

analyze. Functions allow the users to specify the tools they wish to use, while

Abstractions determine how to apply these applications to their data. Finally,

Nests allow users to modify the structure of their workflow through hierarchical

data partitioning.

155

APPENDIX B

WEAVER INTERNALS

Internally, Weaver’s domain-specific language is implemented by overriding

methods in Python’s object protocol for the library components it provides. Ev-

ery object in Python has a set of special methods that are defined by a strict

protocol. Many of the common operators and functions in Python, such as [],

+, or len() correspond to specific methods in an object (getitem , add ,

and len respectively). For example, if a user performs len(object) to get

the length of an object, this is basically translated internally by the interpreter

to object. len (self) (Python methods include an explicit self argument to

refer to the active object instance). To implement the DSL necessary to generate

workflows, Weaver carefully overrides a few of the special object protocol methods

in the Dataset, Function, and Abstraction components.

In the case of Functions, the call method is defined such that when a

Function object is executed, it will schedule a task rather than actually per-

form the computation. In Python, F(*args, *kwargs) is basically transformed

into F. call (*args, *kwargs)). By overriding the call method, we can

change what happens when an object is used as a Python function. In this case, we

want the Weaver Function to behave as a normal Python function by returning

a list of results, and to act as a function in the DSL by scheduling the necessary

task with the Nest so it will be included in the compiled DAG.

156

1 def __call__(self , inputs=None , outputs=None , arguments=None ,

2 includes=None , local=False , environment=None):

3 abstraction = CurrentAbstraction ()

4 nest = CurrentNest ()

5 options = Options(environment=self.environment)

6

7 inputs = parse_input_list(inputs)

8 outputs = parse_output_list(outputs , inputs)

9 includes = parse_input_list(includes) + \

10 parse_input_list(self.includes)

11 command = self.command_format(inputs , outputs , arguments)

12

13 if local:

14 options.local = True

15

16 if environment:

17 options.environment.update(environment)

18

19 nest.schedule(abstraction , self , command ,

20 list(inputs) + list(includes), outputs , options)

21

22 return outputs

Figure B.1. Weaver Function call Method

In Weaver, the Function’s call method is overridden such that is it schedules
a task with the CurrentNest and returns a list of output files the task generates.
Overriding this method allows Weaver Functions to look and act like normal
Python functions.

Figure B.1 shows Weaver’s implementation of the Function call method.

The top portion of the code involves setting up variables and parsing the argu-

ments passed to the Function. In parsing the outputs argument on line 7, we are

also determining what the return value of the call should be. On line 19, we sched-

ule a task with the CurrentNest with the arguments parsed by the Function’s

call method. Afterwards, we simply return the list of output files generated

by this Function. Doing so allows us to store the results of a Function call and

use it as an argument to another Function or to an Abstraction.

157

Weaver Datasets and Abstractions use a similar technique to allow these

objects to behave as normal Python collections and to schedule the appropriate

tasks required to execute the desired operation. In Python, any object that im-

plements the special iter method can be used for iteration. For instance, the

code for i in object: print(i) is translated by the Python interpreter to

for i in object. iter (): print(i). The purpose of the iter method

is to return an iterator for that object. An iterator, in turn, is an object that

implements the next special method and raises the StopIteration exception

to terminate the iteration.

For Datasets, Weaver overrides the iter method to create memoized fu-

tures [5]. The implementation of Weaver’s Dataset iter method is shown in

Figure B.2. The core principles behind this design are: (1) rather than generated

the dataset every time we need to iterate over it, we should cache it the first time

we generate the dataset and (2) we should delay generating the dataset until we

absolutely need it. To accomplish this, the iter method first checks to see

if the cache file containing the contents of the dataset exists. If it is available

and was generated after we began compiling, then the method simply returns the

contents of this file in the form of a Python generator as shown on line 14. If

the file does not exist, then we call the generate method to retrieve a Python

generator that actually constructs the Dataset. This means that Datasets in

Weaver are lazily evaluated since their contents are not calculated until they are

actually iterated over by another object.

To ensure that all Datasets memoize or cache their contents, Weaver provides

a cache generation Python decorator that can be applied to the generate

method of a Dataset. This decorator transparently modifies the generate

158

1 def __iter__(self):

2 # Generate the cache under any of the following conditions:

3 #

4 # 1. Cache file does not exist

5 # 2. Cache file exists , is older than compile start time ,

6 # and we are forced to do so

7 debug(D_DATASET , 'Iterating on Dataset {0}'.format(self))
8 if os.path.exists(self.cache_path):

9 # If cache file is made after we started compiling ,

10 # then it is valid , so don't bother generating.

11 if CurrentScript (). start_time <= \

12 os.stat(self.cache_path). st_ctime:

13 debug(D_DATASET , 'Loading Dataset {0}'.format(self))
14 return (MakeFile(f.strip(), self.nest) \

15 for f in open(self.cache_path , 'r'))
16

17 message = 'Cache file {0} already exists '.format(
18 self.cache_path)

19 if CurrentScript (). force:

20 warn(D_DATASET , message)

21 else:

22 fatal(D_DATASET , message)

23

24 debug(D_DATASET , 'Generating Dataset {0}'.format(self))
25 return self._generate ()

Figure B.2. Weaver Dataset iter Method

The overridden Dataset iter method will first check to see if cached listing
of the Dataset exists. If it does and it was generated after we started compiling,
then we return this cached listing, otherwise we report an error. If the cache does
not exist, then we generate it by calling the generate method.

method such that any items yielded by the original generate method is cap-

tured and stored in a cache file. Figure B.3 displays the implementation of the

Map Abstraction’s generate method. In this implementation, Map simply it-

erates over the inputs and outputs and calls the Function it was given with these

arguments to schedule the appropriate tasks. Because the cache generation dec-

orator is used, the items yielded by Map’s generate method are cached to a file

for retrieval by the iter method in subsequent iterations.

159

1 @cache_generation

2 def _generate(self):

3 with self:

4 debug(D_ABSTRACTION , 'Generating Abstraction {0}'.format(
5 self))

6

7 function = parse_function(self.function)

8 inputs = parse_input_list(self.inputs)

9 outputs = parse_output_list(self.outputs , inputs)

10 includes = parse_input_list(self.includes)

11

12 for i, o in zip(inputs , outputs):

13 with Options(local=self.options.local ,

14 collect =[i] if self.collect else None):

15 yield function(i, o, None , includes)

Figure B.3. Weaver Map generate Method

All Abstractions in Weaver are also Datasets, therefore the implementation of
the actual Abstraction is found in the generate method. This example shows
the implementation of the Map abstraction. Note the use of the cache generation

Python decorator which will store the results of the method in a cache file for later
retrieval by the iter method.

In addition to overriding Python object protocol methods, the Weaver com-

piler depends heavily on Python’s with statement to set and restore various global

variables that constitute the current workflow context. For instance, it maintains

stacks for the active Nest, Abstraction, Script, and Options objects (a Script

object refers to the compiler script and is used to access compiler flags, while

the Options object stores various task parameters and is discussed in Chapter

7). To access the current instance of these objects, the compiler provides the

CurrentNest, CurrentAbstraction, CurrentScript, and CurrentOptions func-

tions respectively. Using the with statement along with these stacks allows the

compiler to track and access these objects in a sane manner, without having to

pass all of these parameters everywhere.

160

Evaluating a script and generating the graph as a side-effect of that evaluation

is a technique similar that used by GRID superscalar [104] except that Weaver

is an optimizing compiler, rather than a run-time system. Moreover, the Weaver

compiler utilizes lazy evaluation and caching to implement the core elements of

the domain-specific language. By overriding some of Python’s special methods in

the Dataset, Function, and Abstraction classes, Weaver is able to have these

objects behave as normal Python iterators and functions and at the same time

generate tasks for the workflow.

161

BIBLIOGRAPHY

1. The directed acyclic graph manager. http://www.cs.wisc.edu/condor/dagman,
2002. URL http://www.cs.wisc.edu/condor/dagman.

2. In F. Berman, G. Fox, and T. Hey, editors, Grid Computing: Making the
Global Infrastructure a Reality. John Wiley, 2003.

3. M. Albrecht, P. Donnelly, P. Bui, and D. Thain. Makeflow: A portable
abstraction for cluster, cloud, and grid computing. Technical Report TR-
2011-02, Department of Computer Science and Engineering, University of
Notre Dame, 2011.

4. A. Appel. Garbage collection can be faster than stack allocation. Information
Processing Letters, 25(4):275–279, 1987.

5. H. C. Baker, Jr. and C. Hewitt. The incremental garbage collection of pro-
cesses. In Proceedings of the 1977 symposium on Artificial intelligence and
programming languages, pages 55–59, New York, NY, USA, 1977. ACM.
doi: 10.1145/800228.806932. URL http://doi.acm.org/10.1145/800228.

806932.

6. H. G. Baker. CONS should not CONS its arguments, part II: Cheney
on the M.T.A. SIGPLAN Not., 30:17–20, September 1995. ISSN 0362-
1340. doi: http://doi.acm.org/10.1145/214448.214454. URL http://doi.

acm.org/10.1145/214448.214454.

7. H. Baker Jr and C. Hewitt. The incremental garbage collection of processes.
ACM Sigplan Notices, 12(8):55–59, 1977.

8. R. Barga and L. Digiampietri. Automatic generation of workflow provenance.
Provenance and Annotation of Data, pages 1–9, 2006.

9. A. Barker and J. van Hemert. Scientific Workflow: A Survey and Research
Directions. In R. Wyrzykowski and et al., editors, Seventh International
Conference on Parallel Processing and Applied Mathematics, Revised Selected
Papers, volume 4967 of LNCS, pages 746–753. Springer, 2008.

162

http://www.cs.wisc.edu/condor/dagman
http://doi.acm.org/10.1145/800228.806932
http://doi.acm.org/10.1145/800228.806932
http://doi.acm.org/10.1145/214448.214454
http://doi.acm.org/10.1145/214448.214454

10. M. E. Benitez and J. W. Davidson. A portable global optimizer and linker.
In Proceedings of the ACM SIGPLAN 1988 conference on Programming Lan-
guage design and Implementation, PLDI ’88, pages 329–338, New York, NY,
USA, 1988. ACM. ISBN 0-89791-269-1. doi: http://doi.acm.org/10.1145/
53990.54023. URL http://doi.acm.org/10.1145/53990.54023.

11. D. Bevan. Distributed garbage collection using reference counting. In PARLE
Parallel Architectures and Languages Europe, pages 176–187. Springer, 1987.

12. J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel. Optimizing matrix mul-
tiply using phipac: a portable, high-performance, ansi c coding methodology.
In Proceedings of the 11th international conference on Supercomputing, ICS
’97, pages 340–347, New York, NY, USA, 1997. ACM. ISBN 0-89791-902-5.

13. R. Blumofe, C. Joerg, B. Kuszmaul, C. Leiserson, K. Randall, and Y. Zhou.
Cilk: an efficient multithreaded runtime system. In ACM SIGPLAN Notices,
volume 30, August 1995.

14. H. Boehm and M. Weiser. Garbage collection in an uncooperative environ-
ment. Software: Practice and Experience, 18(9):807–820, 1988.

15. H.-J. Boehm and M. Weiser. Garbage collection in an uncooperative en-
vironment. Software: Practice and Experience, 18(9):807–820, 1988. ISSN
1097-024X. doi: 10.1002/spe.4380180902.

16. F. P. Brooks, Jr. The computer scientist as toolsmith ii. Commun. ACM,
39(3):61–68, Mar. 1996. ISSN 0001-0782. doi: 10.1145/227234.227243. URL
http://doi.acm.org/10.1145/227234.227243.

17. H. Bui, M. Kelly, C. Lyon, M. Pasquier, D. Thomas, P. Flynn, and D. Thain.
Experience with BXGrid: A Data Repository and Computing Grid for Bio-
metrics Research. Journal of Cluster Computing, 12(4):373, 2009.

18. H. Bui, P. Bui, P. Flynn, and D. Thain. ROARS: A Scalable Repository for
Data Intensive Scientific Computing. In The Third International Workshop
on Data Intensive Distributed Computing at ACM HPDC 2010, 2010.

19. H. Bui, P. Bui, P. Flynn, and D. Thain. ROARS: A scalable repository for
data intensive scientific computing. In Proceedings of the 19th ACM Interna-
tional Symposium on High Performance Distributed Computing, HPDC ’10,
pages 766–775, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-942-8.

20. H. Bui, D. Wright, C. Helm, R. Witty, P. Flynn, and D. Thain. Towards
long term data quality in a large scale biometrics experiment. In Proceedings
of the 19th ACM International Symposium on High Performance Distributed

163

http://doi.acm.org/10.1145/53990.54023
http://doi.acm.org/10.1145/227234.227243

Computing, HPDC ’10, pages 565–572, New York, NY, USA, 2010. ACM.
ISBN 978-1-60558-942-8.

21. P. Bui, L. Yu, and D. Thain. Weaver: Integrating distributed computing
abstractions into scientific workflows using Python. In Proceedings of the
19th ACM International Symposium on High Performance Distributed Com-
puting, HPDC ’10, pages 636–643, New York, NY, USA, 2010. ACM. ISBN
978-1-60558-942-8.

22. P. Bui, D. Rajan, B. Abdul-Wahid, J. Izaguirre, and D. Thain. Work Queue
+ Python: A Framework For Scalable Scientific Ensemble Applications. In
Workshop on Python for High Performance and Scientific Computing at
SC11, 2011.

23. P. Bui, L. Yu, A. Thrasher, R. Carmichael, I. Lanc, P. Donnelly, and
D. Thain. Scripting distributed scientific workflows using Weaver. Con-
currency and Computation: Practice and Experience, 2011.

24. D. Butenhof. Programming with POSIX threads. Addison-Wesley Profes-
sional, 1997.

25. Cascading. http://www.cascading.org/, 2010. URL http://www.

cascading.org/.

26. R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey, D. Shakib, S. Weaver, and
J. Zhou. Scope: easy and efficient parallel processing of massive data sets.
Proc. VLDB Endow., 1:1265–1276, August 2008. ISSN 2150-8097.

27. B. Chamberlain, D. Callahan, and H. Zima. Parallel programmability and
the chapel language. International Journal of High Performance Computing
Applications, 21(3):291–312, 2007.

28. D. D. Chamberlin and R. F. Boyce. Sequel: A structured english query
language. In Proceedings of the 1974 ACM SIGFIDET (now SIGMOD)
workshop on Data description, access and control, SIGFIDET ’74, pages
249–264, New York, NY, USA, 1974. ACM. doi: 10.1145/800296.811515.
URL http://doi.acm.org/10.1145/800296.811515.

29. C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry, R. Bradshaw,
and N. Weizenbaum. Flumejava: easy, efficient data-parallel pipelines. In
Proceedings of the 2010 ACM SIGPLAN conference on Programming lan-
guage design and implementation, PLDI ’10, pages 363–375, New York, NY,
USA, 2010. ACM. ISBN 978-1-4503-0019-3.

30. P. Chang and W. Hwu. Inline function expansion for compiling c programs.
ACM SIGPLAN Notices, 24(7):246–257, 1989.

164

http://www.cascading.org/
http://www.cascading.org/
http://doi.acm.org/10.1145/800296.811515

31. D. Chase. Safety consideration for storage allocation optimizations. ACM
SIGPLAN Notices, 23(7):1–10, 1988.

32. D. Cieslak, N. Chawla, and D. Thain. Troubleshooting Thousands of Jobs on
Production Grids Using Data Mining Techniques. In IEEE Grid Computing,
pages 217–224, 2008.

33. C. Collberg, J. Hartman, S. Babu, and S. Udupa. Slinky: Static linking
reloaded. In USENIX 2005 Annual Technical Conference, pages 309–322,
2005.

34. L. Dagum and R. Menon. OpenMP: An industry standard api for shared
memory programming. IEEE Computational Science and Engineering, 1998.

35. J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large
clusters. In Operating Systems Design and Implementation, 2004.

36. E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
K. Vahi, B. Berriman, J. Good, A. Laity, J. Jacob, and D. Katz. Pega-
sus: A framework for mapping complex scientific workflows onto distributed
systems. Scientific Programming Journal, 13(3), 2005.

37. G. Dong, R. Hull, B. Kumar, J. Su, and G. Zhou. A framework for optimizing
distributed workflow executions. In R. Connor and A. Mendelzon, editors,
Research Issues in Structured and Semistructured Database Programming,
volume 1949 of Lecture Notes in Computer Science, pages 152–167. Springer
Berlin / Heidelberg, 2000.

38. J. Dongarra and A. Hinds. Unrolling loops in fortran. Software: Practice
and Experience, 9(3):219–226, 1979.

39. J. J. Dongarra and D. W. Walker. MPI: A standard message passing inter-
face. Supercomputer, pages 56–68, January 1996.

40. N. Dun, K. Taura, and A. Yonezawa. Paratrac: a fine-grained profiler for
data-intensive workflows. In Proceedings of the 19th ACM International Sym-
posium on High Performance Distributed Computing, HPDC ’10, pages 37–
48, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-942-8. doi: 10.1145/
1851476.1851482. URL http://doi.acm.org/10.1145/1851476.1851482.

41. J. Ekanayake, S. Pallickara, and G. Fox. Mapreduce for data intensive
scientific analyses. In Proceedings of the 2008 Fourth IEEE International
Conference on eScience, ESCIENCE ’08, pages 277–284, Washington, DC,
USA, 2008. IEEE Computer Society. ISBN 978-0-7695-3535-7. doi: 10.1109/
eScience.2008.59. URL http://dx.doi.org/10.1109/eScience.2008.59.

165

http://doi.acm.org/10.1145/1851476.1851482
http://dx.doi.org/10.1109/eScience.2008.59

42. W. Emmerich, B. Butchart, L. Chen, B. Wassermann, and S. L. Price. Grid
service orchestration using the business process execution language (bpel).
Journal of Grid Computing, 3:283–304, 2005.

43. S. Feldman. Make – A Program for Maintaining Computer Programs. Soft-
ware: Practice and Experience, 9:255–265, November 1978.

44. S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff. A sense of self for
unix processes. In Security and Privacy, 1996. Proceedings., 1996 IEEE
Symposium on, pages 120–128. IEEE, 1996.

45. C. W. Fraser, R. R. Henry, and T. A. Proebsting. Burg: fast optimal in-
struction selection and tree parsing. SIGPLAN Not., 27:68–76, April 1992.
ISSN 0362-1340.

46. A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. Haghighat, B. Ka-
plan, G. Hoare, B. Zbarsky, J. Orendorff, et al. Trace-based just-in-time type
specialization for dynamic languages. In ACM Sigplan Notices, volume 44,
pages 465–478. ACM, 2009.

47. S. E. Ganz, D. P. Friedman, and M. Wand. Trampolined style. In Proceed-
ings of the fourth ACM SIGPLAN international conference on Functional
programming, ICFP ’99, pages 18–27, New York, NY, USA, 1999. ACM.
ISBN 1-58113-111-9.

48. W. Gentzsch. Sun grid engine: Towards creating a compute power grid. In
Proceedings of the 1st International Symposium on Cluster Computing and
the Grid, CCGRID ’01, pages 35–, Washington, DC, USA, 2001. IEEE Com-
puter Society. ISBN 0-7695-1010-8. URL http://dl.acm.org/citation.

cfm?id=560889.792378.

49. J. Gosling, B. Joy, G. Steele, and G. Bracha. Java(TM) Language Specifica-
tion, The (3rd Edition) (Java (Addison-Wesley)). Addison-Wesley Profes-
sional, 2005. ISBN 0321246780.

50. S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof: A call graph
execution profiler. In Proceedings of the 1982 SIGPLAN symposium on
Compiler construction, SIGPLAN ’82, pages 120–126, New York, NY, USA,
1982. ACM. ISBN 0-89791-074-5. doi: 10.1145/800230.806987. URL
http://doi.acm.org/10.1145/800230.806987.

51. Hadoop. http://hadoop.apache.org/, 2007. URL http://hadoop.apache.

org/.

166

http://dl.acm.org/citation.cfm?id=560889.792378
http://dl.acm.org/citation.cfm?id=560889.792378
http://doi.acm.org/10.1145/800230.806987
http://hadoop.apache.org/
http://hadoop.apache.org/

52. R. Hank, W.-m. Hwu, and B. Rau. Region-based compilation: Introduc-
tion, motivation, and initial experience. International Journal of Parallel
Programming, 25:113–146, 1997. ISSN 0885-7458.

53. T. Hey, S. Tansley, and K. Tolle, editors. The Fourth Paradigm: Data-
Intensive Scientific Discovery. Microsoft Research, Redmond, Washington,
2009. URL http://research.microsoft.com/en-us/collaboration/

fourthparadigm/.

54. W. Hillis and G. Steele Jr. Data parallel algorithms. Communications of the
ACM, 29(12):1170–1183, 1986.

55. W. W. Ho and R. A. Olsson. An approach to genuine dynamic linking. Softw.
Pract. Exper., 21(4):375–390, Apr. 1991. ISSN 0038-0644. doi: 10.1002/spe.
4380210404. URL http://dx.doi.org/10.1002/spe.4380210404.

56. J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Side-
botham, and M. West. Scale and performance in a distributed file system.
ACM Trans. on Comp. Sys., 6(1):51–81, February 1988.

57. D. Hudak and S. Abraham. Compiler techniques for data partitioning of se-
quentially iterated parallel loops. In ACM SIGARCH Computer Architecture
News, volume 18, pages 187–200. ACM, 1990.

58. R. Ierusalimschy, L. De Figueiredo, and W. Filho. Lua-an extensible exten-
sion language. Software Practice and Experience, 26(6):635–652, 1996.

59. M. Isard and Y. Yu. Distributed data-parallel computing using a high-level
programming language. In SIGMOD ’09: Proceedings of the 35th SIGMOD
international conference on Management of data, pages 987–994, New York,
NY, USA, 2009. ACM. ISBN 978-1-60558-551-2.

60. M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed
data parallel programs from sequential building blocks. In Proceedings of
EuroSys, March 2007.

61. James da Silva. http://netbsd.gw.com/cgi-bin/man-
cgi?crunchgen++NetBSD-current, 1994. URL http://netbsd.gw.

com/cgi-bin/man-cgi?crunchgen++NetBSD-current.

62. W. Keller. Mapping objects to tables. In Proceedings of Second European
Conference on Pattern Languages of Programming (EuroPLoP’97). Siemens
Technical Report, volume 120. Citeseer, 1997.

167

http://research.microsoft.com/en-us/collaboration/fourthparadigm/
http://research.microsoft.com/en-us/collaboration/fourthparadigm/
http://dx.doi.org/10.1002/spe.4380210404
http://netbsd.gw.com/cgi-bin/man-cgi?crunchgen++NetBSD-current
http://netbsd.gw.com/cgi-bin/man-cgi?crunchgen++NetBSD-current

63. Y.-K. Kwok and I. Ahmad. Static scheduling algorithms for allocating di-
rected task graphs to multiprocessors. ACM Comput. Surv., 31:406–471,
December 1999. ISSN 0360-0300.

64. R. Ladner and M. Fischer. Parallel prefix computation. Journal of the ACM
(JACM), 27(4):831–838, 1980.

65. M. Lam. Software pipelining: An effective scheduling technique for vliw
machines. In ACM Sigplan Notices, volume 23, pages 318–328. ACM, 1988.

66. M. Lammie, D. Thain, and P. Brenner. Scheduling Grid Workloads on Mul-
ticore Clusters to Minimize Energy and Maximize Performance. In IEEE
Grid Computing, 2009.

67. I. Lanc, P. Bui, D. Thain, and S. Emrich. Adapting Bioinformatics Applica-
tions for Heterogeneous Systems: A Case Study. In Emerging Computational
Methods for the Life Sciences Workshop at ACM HPDC, pages 7–13, 2011.

68. J. Larus. Whole program paths. ACM SIGPLAN Notices, 34(5):259–269,
1999.

69. C. Lattner and V. Adve. Llvm: A compilation framework for lifelong pro-
gram analysis & transformation. In Proceedings of the international sym-
posium on Code generation and optimization: feedback-directed and runtime
optimization, CGO ’04, pages 75–, Washington, DC, USA, 2004. IEEE Com-
puter Society. ISBN 0-7695-2102-9. URL http://dl.acm.org/citation.

cfm?id=977395.977673.

70. J. Levon and P. Elie. Oprofile: A system profiler for linux, 2004.

71. C. C. Lian, F. Tang, P. Issac, and A. Krishnan. Gel: Grid execution language.
Journal of Parallel and Distributed Computing, 65:2005, 2005.

72. J. Linderoth, S. Kulkarni, J.-P. Goux, and M. Yoder. An enabling framework
for master-worker applications on the computational grid. In IEEE High
Performance Distributed Computing, pages 43–50, Pittsburgh, Pennsylvania,
August 2000.

73. T. Lindholm and F. Yellin. Java Virtual Machine Specification. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 1999.
ISBN 0201432943.

74. P. Louridas. Orchestrating web services with bpel. IEEE Software, 25:85–87,
2008. ISSN 0740-7459. doi: http://doi.ieeecomputersociety.org/10.1109/MS.
2008.42.

168

http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673

75. B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A.
Lee, J. Tao, and Y. Zhao. Scientific workflow management and the kepler
system. Concurrency and Computation: Practice and Experience, 18(10):
1039–1065, 2006.

76. E. Meijer, B. Beckman, and G. Bierman. LINQ: reconciling object, relations
and XML in the .NET framework. In Proceedings of the 2006 ACM SIGMOD
international conference on Management of data, SIGMOD ’06, pages 706–
706, New York, NY, USA, 2006. ACM. ISBN 1-59593-434-0.

77. P. Miller. Recursive make considered harmful, 1997.

78. C. Moretti, J. Bulosan, D. Thain, and P. Flynn. All-Pairs: An Abstraction
for Data Intensive Cloud Computing. In IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 1–11, 2008.

79. C. Moretti, H. Bui, K. Hollingsworth, B. Rich, P. Flynn, and D. Thain.
All-Pairs: An Abstraction for Data Intensive Computing on Campus Grids.
IEEE Transactions on Parallel and Distributed Systems, 21(1):33–46, 2010.

80. R. Morrison, M. Atkinson, A. Brown, and A. Dearle. On the classification
of binding mechanisms. Information Processing Letters, 34(1):51–55, 1990.

81. A. Munshi et al. The opencl specification. Khronos OpenCL Working Group,
pages 11–15, 2009.

82. D. Murray and S. Hand. Scripting the cloud with skywriting. In Proceedings
of the 2nd USENIX conference on Hot topics in cloud computing, pages 12–
12. USENIX Association, 2010.

83. D. Murray, M. Schwarzkopf, C. Smowton, S. Smith, A. Madhavapeddy, and
S. Hand. Ciel: a universal execution engine for distributed data-flow com-
puting. In Proceedings of NSDI, 2011.

84. A. MySQL. Mysql, 2005.

85. T. Oinn, M. Addis, J. Ferris, D. Marvin, T. Carver, M. R. Pocock, and
A. Wipat. Taverna: A tool for the composition and enactment of bioinfor-
matics workflows. Bioinformatics, 20:2004, 2004.

86. T. Oinn, M. Greenwood, M. Addis, M. N. Alpdemir, J. Ferris, K. Glover,
C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. R. Pocock,
M. Senger, R. Stevens, A. Wipat, and C. Wroe. Taverna: lessons in cre-
ating a workflow environment for the life sciences: Research articles. Con-
curr. Comput. : Pract. Exper., 18:1067–1100, August 2006. ISSN 1532-
0626. doi: 10.1002/cpe.v18:10. URL http://portal.acm.org/citation.

cfm?id=1148437.1148448.

169

http://portal.acm.org/citation.cfm?id=1148437.1148448
http://portal.acm.org/citation.cfm?id=1148437.1148448

87. T. Oliphant. A Guide to NumPy, volume 1. Trelgol Publishing, 2006.

88. C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a
not-so-foreign language for data processing. In SIGMOD ’08: Proceedings of
the 2008 ACM SIGMOD international conference on Management of data,
pages 1099–1110, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-102-
6.

89. Oozie. http://yahoo.github.com/oozie/, 2010. URL http://yahoo.github.

com/oozie/.

90. M. Owens. The definitive guide to SQLite. Apress, 2006.

91. S. Papadimitriou and J. Sun. Disco: Distributed co-clustering with map-
reduce: A case study towards petabyte-scale end-to-end mining. In Pro-
ceedings of the 2008 Eighth IEEE International Conference on Data Min-
ing, ICDM ’08, pages 512–521, Washington, DC, USA, 2008. IEEE Com-
puter Society. ISBN 978-0-7695-3502-9. doi: 10.1109/ICDM.2008.142. URL
http://dx.doi.org/10.1109/ICDM.2008.142.

92. K. Pettis and R. Hansen. Profile guided code positioning. In ACM SIGPLAN
Notices, volume 25, pages 16–27. ACM, 1990.

93. R. Pike, S. Dorward, R. Griesemer, and S. Quinlan. Interpreting the data:
Parallel analysis with sawzall. Scientific Programming Journal, 13(4):227–
298.

94. C. D. Polychronopoulos. The hierarchical task graph and its use in auto-
scheduling. In Proceedings of the 5th international conference on Supercom-
puting, ICS ’91, pages 252–263, New York, NY, USA, 1991. ACM. ISBN
0-89791-434-1.

95. R. Prodan and T. Fahringer. Dynamic scheduling of scientific workflow appli-
cations on the grid: a case study. In Proceedings of the 2005 ACM symposium
on Applied computing, pages 687–694. ACM, 2005.

96. Python Programming Language. http://www.python.org/, 2010. URL
http://www.python.org/.

97. I. Raicu, Y. Zhao, C. Dumitrescu, I. Foster, and M. Wilde. Falkon: a
fast and light-weight task execution framework. In Proceedings of the 2007
ACM/IEEE conference on Supercomputing, SC ’07, pages 43:1–43:12, New
York, NY, USA, 2007. ACM. ISBN 978-1-59593-764-3. doi: 10.1145/1362622.
1362680. URL http://doi.acm.org/10.1145/1362622.1362680.

170

http://yahoo.github.com/oozie/
http://yahoo.github.com/oozie/
http://dx.doi.org/10.1109/ICDM.2008.142
http://www.python.org/
http://doi.acm.org/10.1145/1362622.1362680

98. C. Rasmussen, M. Sottile, S. Shende, and A. Malony. Bridging the lan-
guage gap in scientific computing: The chasm approach. Concurrency and
Computation: Practice and Experience, 18(2):151–162, 2006.

99. M. Samek. Portable inheritance and polymorphism in c. Embedded Systems
Programming, 10:54–67, 1997.

100. R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design
and implementation of the Sun network filesystem. In USENIX Summer
Technical Conference, pages 119–130, 1985.

101. C. E. Scheidegger, H. T. Vo, D. Koop, J. Freire, and C. T. Silva. Querying
and re-using workflows with vistrails. In Proceedings of the 2008 ACM SIG-
MOD international conference on Management of data, SIGMOD ’08, pages
1251–1254, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-102-6.

102. H. J. Siegel. A model of simd machines and a comparison of various intercon-
nection networks. IEEE Trans. Comput., 28(12):907–917, Dec. 1979. ISSN
0018-9340. doi: 10.1109/TC.1979.1675280. URL http://dx.doi.org/10.

1109/TC.1979.1675280.

103. G. Singh, C. Kesselman, and E. Deelman. Optimizing grid-based workflow
execution. Journal of Grid Computing, 3:201–219, 2005. ISSN 1570-7873.

104. R. Sirvent, J. M. Pérez, R. M. Badia, and J. Labarta. Automatic grid
workflow based on imperative programming languages: Research articles.
Concurr. Comput. : Pract. Exper., 18:1169–1186, August 2006. ISSN 1532-
0626. doi: 10.1002/cpe.v18:10.

105. SQLAlchemy. http://sqlalchemy.org/, 2010. URL http://sqlalchemy.

org/.

106. R. Stallman. Using and porting the gnu compiler collection. Free Software
Foundation, 59:02111–1307, 1989.

107. R. Stallman and R. Pesch. Using GDB: A guide to the GNU source-level
debugger. Free software foundation, 1991.

108. G. Steele Jr. Parallel programming and parallel abstractions in fortress. In
Parallel Architectures and Compilation Techniques, 2005. PACT 2005. 14th
International Conference on, page 157. IEEE, 2005.

109. G. Steele Jr and G. Sussman. Lambda: The ultimate imperative. Technical
report, DTIC Document, 1976.

171

http://dx.doi.org/10.1109/TC.1979.1675280
http://dx.doi.org/10.1109/TC.1979.1675280
http://sqlalchemy.org/
http://sqlalchemy.org/

110. R. Taylor. An overview of the hadoop/mapreduce/hbase framework and
its current applications in bioinformatics. BMC Bioinformatics, 11(Suppl
12):S1, 2010. ISSN 1471-2105. doi: 10.1186/1471-2105-11-S12-S1. URL
http://www.biomedcentral.com/1471-2105/11/S12/S1.

111. D. Thain and M. Livny. How to Measure a Large Open Source Distributed
System. Concurrency and Computation: Practice and Experience, 18(15):
1989–2019, 2006.

112. D. Thain and M. Livny. Parrot: An Application Environment for Data-
Intensive Computing. Scalable Computing: Practice and Experience, 6(3):
9–18, 2005.

113. D. Thain, T. Tannenbaum, and M. Livny. Condor and the grid. In gri [2].

114. A. Thrasher, R. Carmichael, P. Bui, L. Yu, D. Thain, and S. Emrich. Taming
complex bioinformatics workflows with Weaver, Makeflow, and Starch. In
Workflows in Support of Large-Scale Science (WORKS), 2010 5th Workshop
on, pages 1 –6, 2010.

115. Valery Reznic. http://statifier.sourceforge.net/, 2010. URL http://

statifier.sourceforge.net/.

116. G. von Laszewski and M. Hategan. Workflow concepts of the java cog kit.
Journal of Grid Computing, 3:239–258, 2005. ISSN 1570-7873.

117. J. Wang, D. Crawl, and I. Altintas. Kepler + hadoop: a general archi-
tecture facilitating data-intensive applications in scientific workflow sys-
tems. In Proceedings of the 4th Workshop on Workflows in Support of
Large-Scale Science, WORKS ’09, pages 12:1–12:8, New York, NY, USA,
2009. ACM. ISBN 978-1-60558-717-2. doi: 10.1145/1645164.1645176. URL
http://doi.acm.org/10.1145/1645164.1645176.

118. B. Wassermann, W. Emmerich, B. Butchart, N. Cameron, L. Chen, and
J. Patel. Sedna: A bpel-based environment for visual scientific workflow
modelling. In In Workflows for eScience - Scientific Workflows for Grids.
Springer Verlag, 2007.

119. M. Wilde, I. Foster, K. Iskra, P. Beckman, Z. Zhang, A. Espinosa, M. Hate-
gan, B. Clifford, and I. Raicu. Parallel scripting for applications at the
petascale and beyond. Computer, 42:50–60, 2009. ISSN 0018-9162.

120. M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and I. Foster.
Swift: A language for distributed parallel scripting. Parallel Computing,
37(9):633–652, 2011. URL http://linkinghub.elsevier.com/retrieve/

pii/S0167819111000524.

172

http://www.biomedcentral.com/1471-2105/11/S12/S1
http://statifier.sourceforge.net/
http://statifier.sourceforge.net/
http://doi.acm.org/10.1145/1645164.1645176
http://linkinghub.elsevier.com/retrieve/pii/S0167819111000524
http://linkinghub.elsevier.com/retrieve/pii/S0167819111000524

121. P. Wilson. Uniprocessor garbage collection techniques. In Y. Bekkers and
J. Cohen, editors, Memory Management, volume 637 of Lecture Notes in
Computer Science, pages 1–42. Springer Berlin / Heidelberg, 1992. URL
http://dx.doi.org/10.1007/BFb0017182.

122. H.-c. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker. Map-reduce-
merge: simplified relational data processing on large clusters. In Pro-
ceedings of the 2007 ACM SIGMOD international conference on Manage-
ment of data, SIGMOD ’07, pages 1029–1040, New York, NY, USA, 2007.
ACM. ISBN 978-1-59593-686-8. doi: 10.1145/1247480.1247602. URL
http://doi.acm.org/10.1145/1247480.1247602.

123. J. Yu and R. Buyya. A taxonomy of workflow management systems for grid
computing. Journal of Grid Computing, 3:171–200, 2006.

124. L. Yu, C. Moretti, A. Thrasher, S. Emrich, K. Judd, and D. Thain. Har-
nessing Parallelism in Multicore Clusters with the All-Pairs, Wavefront, and
Makeflow Abstractions. Journal of Cluster Computing, 13(3):243–256, 2010.

125. C. Zhang and H. De Sterck. Cloudwf: A computational workflow system
for clouds based on hadoop. In M. Jaatun, G. Zhao, and C. Rong, editors,
Cloud Computing, volume 5931 of Lecture Notes in Computer Science, pages
393–404. Springer Berlin / Heidelberg, 2009. ISBN 978-3-642-10664-4.

126. Y. Zhao, J. Dobson, L. Moreau, I. Foster, and M. Wilde. A Notation and
System for Expressing and Executing Cleanly Typed Workflows on Messy
Scientific Data. In SIGMOD, 2005.

This document was prepared & typeset with pdfLATEX, and formatted with
nddiss2ε classfile (v3.0[2005/07/27]) provided by Sameer Vijay.

173

http://dx.doi.org/10.1007/BFb0017182
http://doi.acm.org/10.1145/1247480.1247602

	Abstract
	CONTENTS
	FIGURES
	TABLES
	ACKNOWLEDGMENTS
	CHAPTER 1: INTRODUCTION
	CHAPTER 2: RELATED WORK
	2.1 Workflow Systems
	2.2 Distributed Computing Abstractions
	2.3 Programming Languages
	2.4 Compiler Toolchain

	CHAPTER 3: COMPILING WORKFLOWS
	3.1 Programming Interface
	3.2 Workflow Compiler
	3.3 Workflow Manager

	CHAPTER 4: OPTIMIZING WORKFLOWS
	4.1 Structured Allocation
	4.2 Instruction Selection
	4.3 Hierarchical Workflows
	4.4 Inlining Tasks

	CHAPTER 5: LINKING WORKFLOWS
	5.1 Application Linker
	5.2 Workflow Linker

	CHAPTER 6: PROFILING WORKFLOWS
	6.1 Workflow Analyzer
	6.2 Workflow Monitor
	6.3 Workflow Reporter

	CHAPTER 7: MANAGING WORKFLOWS
	7.1 Local Variables
	7.2 Nested Makeflows
	7.3 Provenance and Annotations
	7.4 Garbage Collection

	CHAPTER 8: CONCLUSION
	8.1 Automatic Optimizations
	8.2 Dynamic Workflows
	8.3 Compiling to DAGs
	8.4 Beyond Distributed Computing
	8.5 Impact

	APPENDIX A: WEAVER API
	A.1 Datasets
	A.2 Functions
	A.3 Abstractions
	A.4 Nests

	APPENDIX B: WEAVER INTERNALS
	BIBLIOGRAPHY

