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Abstract

As distributed storage systems grow, the response time between the occurrence of
a fault, detection, and repair becomes significant. Systems built on shared servers
have additional complexity because of the high rate of service outages and revo-
cation. Managing high replica counts in this environment becomes very costly in
terms of the storage required and bandwidth consumption for file copies. The storage
challenge for this situation can thus be phrased as an attempt to function inexpen-
sively with respect to cost constraints such as: disk utilization, network bandwidth
consumption, and server CPU time. The GEMS (Grid Enabled Molecular Simula-
tion) ! storage system provides a replicated and shared workspace for large scale
molecular dynamics simulations, and exemplifies the above issues. The framework
offers a solution to this problem by prioritizing observed faults and repairing them
in an intelligent manner. In this paper, we provide observations from the operation
of GEMS and compare its error handling to like storage systems.
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1 Introduction

An important observation about large systems is that their response to user
and internal system operations is delayed, scaling with the size of the system.
The exact nature of the scaling, of course, depends on the algorithms used.
In an active replication system, system operations to maintain integrity must
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become more frequent as the system grows, and often more expensive indi-
vidually. This is true even if we assume that the underlying components do
not become less reliable, which is a dubious assumption in grid computing. A
typical solution to increase system robustness is to decrease the reliance on a
central server, either by deploying redundant central servers or by shifting the
system architecture to an independent, peer-to-peer model. Yet, reducing the
reliance on a centralized server tends to increase the number of computers in-
volved in a given transaction, thus again increasing latency. This architectural
technique also increases the algorithmic complexity of system operations.

When systems are decentralized, fault-tolerance must be built in. An addi-
tional complexity is often added to grid enabled storage systems: the dis-
tributed ownership of the resource fabric. A shared system allows providers
to pull the plug on their volunteered system at any moment. Thus, such a
system incorporates as little confidence in a storage device as possible, and
fault tolerance is a foundational design feature.

What do we mean by low confidence? A volunteered resource, such as a com-
modity desktop workstation, may be rebooted several times a day. However,
this does not directly indicate permanent data loss, as the vast majority of
machines come back online after a reboot. It does mean that its data is tem-
porarily unavailable, and that an alternative replica must be available. Even
users of mature storage systems, as discussed in the following sections, must
sometimes wait for data. However, a properly replicated system will nearly
eliminate such latencies.

Many modern data grid storage systems are in use for scientific projects
[Finkelstein et al., 2004], and those that utilize data replication may be cat-
egorized as static or dynamic replica systems [Venugopal et al., 2006]. While
static systems place replicas once, possibly with direct user control, dynamic
systems constantly probe for faults and repair them with the allocation of
new replica locations. Repairing storage failures is slow and expensive. Losing
a 250GB disk full of simulation data will cause the controlling servers to search
for and replicate that much data over the network. The repair of this fault
would be vain if the system suddenly came back up. If it does not come back,
since the lost replicas may take a day or more to copy and restructure, other
permanent fault combinations in the meantime could result in permanent data
loss for one or more files. This puts a real cost on not just the storage space
used by extra replicas, but also on the actions taken to respond to changes in
the system, and stresses the need to order repairs effectively.

A recent project at the University of Notre Dame intends to store large quan-
tities of biomolecular simulation data. This work intends to combine experi-
mental and simulated scientific data on a dynamic, shared storage fabric. A
variety of requirements for the storage system were quickly identified from the
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Fig. 1. GEMS Architecture

research domain, including data storage requirements relating to the high per-
formance computational needs of researchers and scientific requirements that
were to improve the utility of the storage system for exploring the valuable
content of the data. A prototype was designed and quickly brought online to
begin experimentation.

The system is designed to maximize the opportunities for scientific exploration
by cataloging complete metadata for data in the system, allowing for automat-
ically spawned simulations, data reuse, and the exploitation of relationships
among data sets for research purposes. More abstractly, GEMS provides a
framework for analyzing, sharing, and archiving important biomolecular data.
The storage fabric for this system is a widely distributed uncontrolled network
of servers that, individually, offer only best effort reliability. This provides an
interesting observatory for the investigation of large scale fault tolerant sys-
tems built upon partially reliable servers.

The resulting system, named GEMS, for Grid Enabled Molecular Simulation,
consists of client tools and a network of services that combine to provide the
requested functionality to researchers in this actively evolving field. Figure 1
provides the skeleton of the system. This figure breaks GEMS into the client
tools used to query the system, and the relationship among the GEMS services
and underlying storage resources.

While GEMS provides a full set of tools, including a graphical browser and
FTP-like get and put operations, the underlying API and protocol consist of
three essential operations. Match is used to query the metadatabase with a va-
riety of simulation parameters for existing files and replica locations. Original
files and their simulation metadata are added to the system by reservation and
committal. File operations in and out of the system are performed by Chirp



operations, over connections made directly from clients to storage servers.
Data may be retrieved or created by running jobs with the Run tool that pro-
vides a virtual filesystem [Thain et al., 2005] to allow data access to general
purpose programs.

We have previously discussed in [Wozniak et al., 2005] how GEMS manages
high levels of disk loss, including the loss of half of the storage servers simulta-
neously. A method of reallocating the replication count of files was presented
to reduce the probability of permanent data loss, resulting in a high degree of
disk utilization control. In this paper, we intend to focus on improvements to
the failure handling model to handle subsequent massive failures, such as the
successive loss of whole storage clusters. In such a case, rapid dynamic replica
creation would be necessary to prevent permanent data loss.

From the ground up, GEMS has been intended to respond to various faults
that occur in large distributed systems. In this paper, we specifically focus on
the effect of failures in the underlying storage servers to deliver requested data,
or, even an acknowledgement. GEMS interprets these events and builds up an
error handling system in response. Thus GEMS is fault-tolerant in the sense
that it can continue to respond to queries and file requests despite the prob-
lematic storage layer upon which it operates. As discussed below, GEMS has
knowledge of the metadata and data stored on its servers, and can prioritize
response operations to reduce the probability of permanent loss of important
data, and attempt to minimize the cost of replicating files unnecessarily.

In this paper, we compare the fault responses of GEMS to that of other sys-
tems, and demonstrate how GEMS meets the requirements of its research-
based user pool. In the next section, we describe the GEMS model as it
compares to other commonly used storage architectures and existing storage
software systems. We then move into GEMS internal management techniques:
Section 3 explains what constitutes a fault in the GEMS model and Section 4
explains the GEMS fault response system. Experimental results are provided
in 5, and we offer some concluding remarks in Section 6.

2 GEMS Distributed Storage Model

GEMS has commonality with distributed file systems, databases, and peer-to-
peer sharing systems. Users of these systems have different expectations when
it comes to error states, and internally, faults are treated differently. Users
of file systems and databases generally expect all-or-nothing responses. File
system users expect that if one file on their machine is present and correct,
then all will be be there. The locality assumption comes from the standard
assumption that when a physical storage device fails, all of its data is perma-



nently lost, and that partial failures are handled by the operating system and
not exposed to the user. This carries over into expectations of network file
systems, which often attempt to emulate the behavior of a local file system.

While GEMS stores whole files and their directory information, it does not
attempt to provide file system behavior. Files that are expected to be found
in the same directory may be found on different hosts, destroying any assump-
tions about locality in the delivery of a file. This affects the design of clients
to GEMS, which have utilize lists of replica locations. While GEMS does not
expose internal faults to the user, the user should be aware of the actions that
GEMS may take in the case of data loss, which include contacting various
remote hosts.

NFS [Sandberg et al., 1985] is a standard point of comparison for file re-
trieval latency and API semantics for remote storage. GEMS is not designed
to compete with a finely tuned cluster storage system, and since it is not a
filesystem, it does not attempt to mimic any system’s API semantics. GEMS
does function in an RPC fashion from the client’s perspective, and is stateless.
On failure, GEMS does not block or disconnect, but continues to attempt to
satisfy a user request, recreating data if possible. If permanent data loss has
occurred, this will be reported and must be handled at a higher level.

AFS [Howard et al., 1988] provides remote file access, but provides some ad-
ditional error handling functionality. Read-only replicas of stored data may
be easily configured, and roll back to previous data is built in. However, AFS
servers must maintain cache consistency for their clients. GEMS does not
need to cache data because of its write-once characteristic, greatly reducing
the server’s responsibilities.

Relational database systems similarly are expected to provide all-or-nothing
reponses. GEMS, however, may only be able to partially fulfill a query and
will resort to partial delivery. GEMS does provide a metadatabase which may
be queried, and normal database user expectations apply; when querying for
output data files, the returned result is a fault-tolerant plan on how to retrieve
the requested information from remote storage devices, and feed it into an
external program.

GEMS can be compared to a peer-to-peer system because it allows users to
query each others’ data sets, and it allows users to pool storage resources. Peer-
to-peer users have very low or non-existant expectations about reliability, for
example, a file that is seen once could quickly vanish forever. However, GEMS
is a write-once system, so that data that is published to the system cannot
be modified, which is quite different from the expectations of most storage
users, but not so surprising in a setting in which data is “published” to other
users. GEMS data is much more reliable than an ad hoc peer-to-peer network,
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because it dynamically creates replicas as needed to keep data alive.

The most obvious point of comparison for a redundant data storage system is
a hardware RAID [Patterson et al., 1988], or a network-based RAID, such as
Zebra [Hartman and Ousterhout, 1993]. In a typical hardware RAID setting,
faults may be detected as blocks are read from the device, where in GEMS,
errors are actively probed by a server component. Zebra detects faults over
the network, which is a techically difficult observation to make. GEMS and
RAID both benefit from hot-pluggable hardware. As devices are added, both
systems can discover and begin utilizing new storage. When a new server
is added to GEMS, it may immediately begin receiving data from a client,
just as some RAID types may immediately use a new disk. Removing a disk
from either may be performed while the system is running. GEMS offers some
additional benefits in that it has knowledge of the importance and replication
status of the stored data, so upon replica loss, replication does not necessarily
immediately consume network bandwidth for all lost data.

As diagrammed in Figure 2, a coordinate system may be considered to compare
various systems by their properties. GEMS is placed as an intermediary be-
tween ideal filesystems and databases, and between totally centralized systems
and pure peer-to-peer systems. GEMS is comparable to scientific databases
for simulation like BioSimGrid [Nga et al., 2006] and Chimera [Foster et al.,
2002]. Chord [Stoica et al., 2001], Gnutella [Ripeanu and Foster, 2002], and
PAST are fully decentralized systems, contrasted with centralized systems
like Postgres [Stonebraker and Rowe, 1986] and NFS [Sandberg et al., 1985]
tend toward centralized control, all of which represent extremes on the dia-
gram. Databases like SHORE [Carey et al., 1994] and Google [Brin and Page,
1998] represent moderately centralized databases, likewise, PVFS [Carns et al.,
2000] and Lustre [Systems, 2002] represent moderately centralized filesystems.
Giggle [Chervenak et al., 2002], OceanStore [Sit et al., 2006], and FARSITE
[Adya et al., 2002] represent replica systems, object systems, and filesystems



that tend toward peer-to-peer characteristics.

With these summarized comparisons, we can describe GEMS in the context of
modern data grids [Finkelstein et al., 2004]. The GEMS architecture combines
a few commonly observed architectures. The storage sites may be thought of as
peer-to-peer clusters that combine to contribute to a complete storage system,
each offering file space and receiving replicas. Since the system is actively
probed for data loss by a variety of server components, it can accurately be
described as an agent controlled system. The active components can reside
on various servers, which lends greatly to fault tolerance and scalability, but
creates the increased possibility of partial failure in the system and requires a
shared critical resource for inter-component communication.

This hybrid architecture allows our fault handling policy to utilize the meta-
data archive to make intelligent choices concerning replication and repair. It
also meets other requirements of the system, such as the ability for contribut-
ing storage servers to revoke storage with limited impact, and simplifies the
security aspects of such a shared system.

Additional recent work has developed the data grid and its implementation in
various systems. From a management perspective, GEMS constitutes a cen-
tralized, dynamic replica management system as defined previously [Lame-
hamedi and Szymanski, 2006]. GEMS application users gain performance and
replica locality in a manner similar to that offered by European Data Grid
[Cameron et al., 2005] projects such as PROuST [Cirielloa et al., 2006], or
a variety of other data location aware grid methodologies [Tang et al., 2006,
Ranganathan and Foster, 2003, Venugopal et al., 2004].

3 Fault Management and Maintenance

The GEMS framework is subject to many of the same error modes that plague
its cousin grid distributed systems. Sample sources of faults include: an errant
user, the desktop hardware, the OS, the TCP connection, the local switch,
numerous routers, the storage server software and its hardware, etc. Even
though the apparent severity of one of the mentioned failures may differ by
orders of magnitude (the loss of one node due to hard drive failure versus
the loss of an entire DNS domain due to switch failure), the GEMS design
embraces the spectrum of failure with one unified resolution policy. Observed
faults are viewed not as pre-emptive exceptions, but events on par with typical
maintenance operations.

To give this concept substance we introduce the concept of a Problem. A
Problem is an object in GEMS which can be assigned a priority based on its
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severity and queued for resolution. Problems are generated through Auditors
which continously audit the system state with respect to the metadata, physi-
cal reality, and user requests as reflected in the metadata. On the failure side of
the Problem continuum, one example would be the loss of a local switch pro-
viding access to ten nodes, say, Cluster A. The Auditor would recognize that
the metadata pointing to Cluster A is now inconsistent and for each unavail-
able file a Problem will be instantiated with all of the pertinent information
necessary for calculation of a Problem priority and resolution. On the mainte-
nance side of the Problem continuum, consider a client who submits a record
of ten files into the database with a requested replication of 5 each. The replica
will make sure the first copy is submitted to stable storage by the client tool
but the remaining requested copies will be handled through the instantiation
of Problems as the metadata shows an insufficient number of replications with
respect to the users request. Hence, Problems can be subtyped to provide a
useful abstraction for error handling.

With this unified response to both failures and maintainance tasks we can
exploit varied risk/cost targets through specification of those metrics which
comprise the prioritization function.

4 Prioritization of Failure Handling Events

The prioritization of Problems is central to the priority queue fault tolerance
model. In this work we do not argue for a specific priority function nor discuss
the suitability of those parameters which are included in the function. We do
however present our prototype’s implementation of the priority calculation and
mention select parameters from our priority function in order to substantiate
a functional implementation. The flexible prioritization function allows the
specific user community to tune the system to their risk/cost demands.



As shown in Figure 3, the Auditor iteratively probes Chirp servers to verify
their contents against the GEMS metadatabase. When any of a variety of
faults are detected (1), the relevant error information is encapsulated into
a Problem object and enqueued (2). When the Replicator pops the queue,
it determines a response, usually by creating an additional replica. Existing
copies of the file in question are located by consulting the metadatabase and
a suitable host for the new replica is found by reading the Chirp catalog (3).
The file is then copied over (4).

Each Problem object contains a set of members which are necessary for the
Problem’s resolution and which also serve as the parameters for the priority
calculations. From the set of priority members a priority is calculated inter-
nally by the Problem on instantiation. Of key interest is the ability for the
Problem to recalculate its own priority. For example, the priority queue could
trigger all Problems in the queue to recalculate their priority (stale Problem
member data is addressed in the following section).

A good demonstration of the priority recalculation utility leads us into the
discussion of priority function parameters. Classical job starvation concerns
would prompt us to include “time in queue” as a parameter with varies in
proporition to an increased priority. Problems involving a host failure which
has only been recognized for a short period are not handled immediately,
which gives the host system a chance to recover, eliminating an unnecessary
file transfer. A second parameter of importance for our scientific user base is
file type. Whereas an output file may be automatically regenerated because
the metadata contains enough information to derive the output files, the in-
put configuration files are irreplacable without human intervention. To again
reduce the probablity of permanent data loss we increase priority in with re-
spect to the number of remaining replications. Additional parameters such as
file size allow us the ability to fine tune the prioritization for improved re-
sponse to massive failure scenarios. An important observation in biomolecular
simulation data sets is that input files tend to be small, and output files are
large. This allows us to aggressively replicate the input files while being more
cavalier about output files, which saves storage space and bandwidth.

4.1 Stale Problems

System state data is inherently stale in a distributed framework, and is expen-
sive to obtain, as discussed in the introduction. Therefore we expect that the
state which was recognized when the Problem was instantiated may not re-
flect the system state when it is handled. In response our failure handler must
validate that the member data is still current. If the Problem data remained in
sync with the current metadata it is resolved as normal, however, if the data is



no longer current the priority status is re-evaluated. If the priority is reduced,
as in the case of a returning storage server, a new Problem will be created
and queued, and if the Problem is eliminated, the Problem is discarded. If the
priority of the new Problem execeeds or matches that of the stale problem it
is, of course, resolved immediately.

4.2 Failed Failure Responses

One challenge in the field of fault tolerance has been the determination of
when to abort attempts at repair if the repair operation itself continues to
fail. Although the GEMS response to the failure of one system is chiefly the
replication of a remaining copy of the file on a second machine to a new des-
tination on a third machine, one can imagine that by the time the Problem
is being handled the second machine with the remaining copy has also gone
down. The typical answer would be to retry at regular intervals with an even-
tual timeout. The GEMS model improves upon this by allowing a Problem to
count its history of failed repairs, and adjust its priority accordingly. Problems
are re-queued when repair fails, so that other repairs may be attempted. Since
the age of a Problem is also recorded, extremely old Problems can signal for
human intervention.

4.3 Starvation and Priority Inversion

Queue structures prompt the user to investigate the fate of those jobs relegated
to the back. The GEMS prioritization function as we have implemented it in-
cludes consideration of the time spent in the queue to prevent starvation. The
priority queue enables preferential response unavailable to sequential queues
but does not guarantee against priority inversion even for a large number of
Problem handlers running in parallel. Our model allows for Problems to repri-
oritized while the repair is in progress, and the Replicator to be interrupted
and forced to pop the queue again, by a third agent that probes for prior-
ity inversion. Thrashing is avoided by prioritizing a Problem currently being
repaired with respect to the size of the data yet to be replicated, and the
fact that it is in progress. Since our priority function includes a term which
is inversely proportional to the square root of the size, copies in progress are
unlikely to be interrupted except in the case of real emergencies, as defined
by the tuned coefficients.

10
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Fig. 4. Queue Performance: Priority Dominated by File Size

4.4 Scaled Response on par with Problem Queue Size

For a sufficient number of Auditor components detecting faults, it is reasonable
to propose that the size of the problem queue is indicative of the number of
failure handlers required. Furthermore the average priority of Problems in the
queue provides insight into the severity of the situation and should influence
the number of failure handlers. Although the experimental results presented
in the work reflect a single failure handler, the authors plan to implement
scaled instantiation of failure handling components on other GEMS servers
with respect to priority queue metrics.

5 Experimental Results

The authors have developed a functional GEMS prototype as reported in
[Wozniak et al., 2005]. Specific to this work we implemented the Problem
Queue and report experimental data in demonstration of the error recovery
capability.

We demonstrate that the new functionality improves upon the previous func-
tionality, which is similar to functionality obtained in a system with limited
access to simulation metadata. Such a data-agnostic system could only repair
errors in the order observed, one at a time, and could not respond dynamically
to a rapidly changing storage fabric. Our prototype can emulate this behavior
if we make all the priorities equivalent, and perform in-order response.

Our example shows that the prototype can respond to faults in the order
specified by the priority function. In this case, small files have priority over
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large files, which is typical in a biomolecular simulation environment where
the input files and configuration files are irreplaceable, and the output files
represent derived data and are only required to speed the retrieval time.

The underlying experimental setup consisted of the client machine, the GEMS
server, and an underlying storage network of various heterogeneous Linux
machines from the Notre Dame campus network running the Chirp file server.
The client machine, a 900MHz AMD Linux system, controlled the experiment
by communicating with the GEMS server, a dual-processor 2.8GHz AMD
Linux machine, via the GEMS clients.

As demonstrated in Figure 4, we start by disabling the GEMS storage manage-
ment components, the Auditor, Replicator, and GarbageCollector. The simu-
lation data sets, about 3 GB total, are added to the system, so each file has
one copy on some Chirp server. The Auditor is then turned on and replica
shortages are detected: the files need to be replicated up to the requested
level. The graphic shows the average priority of problems, which are scored
by, in this case, the size of the file and the replication count. The Replicator
is turned on, and the average priority quickly drops as high priority problems
are quickly handled by replicating these small files on other Chirp hosts. The
average priority slowly levels off as larger, low priority output files are copied
over the network, increasing the disk usage level.

6 Conclusion

Researchers that produce and use biomolecular simulation data have needs,
both computational and scientific, for a storage system that reliably cata-
logs and stores simulation data and metadata. Scientifically, the system must
be centered around the metadata and provide a virtualized data framework,
which makes output data recreateable and new explorations more system-
atic. Computationally, the metadatabase allows the storage policy to act with
substantially more intelligence than existing distributed or replica systems. In
this paper, we explained the necessary observations about the data in question
and showed that it can be prioritized by value and risk in a variety of tunable
ways. We provided our Problem model, which encapsulates information about
any of a variety of observed situations in a sortable context, which facilitates
appropriate response with respect to other conditions in the system.

Because the risk/cost parameters are difficult to obtain in advance, we will
continue experimentation to improve the system performance with respect to
its most important metric: permanent loss of input files. In the meantime,
we provide some observed behavior that shows that a first-try prioritization
scheme is much better than no prioritization, especially important on volatile
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network of unreliable storage servers.
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