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Abstract—In this paper we discuss challenges of common
bioinformatics applications when deployed outside their initial
development environments. We propose a three-tiered approach
to mitigate some of these issues by leveraging an encapsulation
tool, a high-level workflow language, and a portable intermediary.
As a case study, we apply this approach to refactor a custom
EST analysis pipeline. The Starch tool encapsulates program
dependencies to simplify task specification and deployment. The
Weaver language provides abstractions for distributed computing
and naturally encourages code modularity. The Makeflow work-
flow engine provides a batch system agnostic engine to execute
compiled Weaver code. To illustrate the benefits of our frame-
work, we compare implementations, show their performance,and
discuss benefits derived from our new workflow approach relative
to traditional bioinformatics development.

I. I NTRODUCTION

The rapid production of Bioinformatics applications by
academic institutions has led to the development of many pow-
erful and useful tools. Many of these tools require significant
computational resources for any nontrivial task. Further,in-
creasing numbers of research groups are deploying externally
developed bioinformatics applications in their own computing
environments and modifying or building upon them.

Unfortunately, deployment and modification of bioinformat-
ics applications has proven challenging. Commonly encoun-
tered challenges (Section II) include dependence on specific
distributed computing resources, complex program dependen-
cies, and intermingling of conceptually distinct tasks within
code. The first two problems severely impede deployment
efforts, while the third undermines customization, debugging
and code maintenance.

Here, we propose to separate these problems and address
each with a different layer of a software stack. Using a
production pipeline described in Section III, we implementthe
three tiers described in Section IV: an encapsulation layerto
reduce complex webs of coordinated programs and libraries,
a high level workflow language to concisely and intuitively
describe this pipeline, and a portable low level workflow
language and execution environment.

In Section V, we describe three tools developed by the Uni-
versity of Notre Dame’s Cooperative Computing Lab which
mitigate the previously mentioned problems. Starch provides
a method for packaging complex program dependencies into
a single executable archive. Weaver is a Python-based high
level workflow description language with support for con-

cise implementation of many common distributed computing
patterns. Weaver programs are compiled into make-like low
level workflow descriptions that can be executed through the
highly portable Makeflow workflow engine. In Section VI
and VII we leverage these tools to refactor an internally
developed EST analysis pipeline into a maintainable and easily
deployed workflow, and compare this refactored pipeline to its
predecessor with respect to its conciseness, maintainability,
robustness, and portability.

II. COMMON CHALLENGES IN BIOINFORMATICS

APPLICATIONS

A. Portability

When leveraging the parallelism in their software, many
development sites focus on a particular distributed resource
because it is the only resource accessible to them, and they
don’t possess the resources or expertise to develop interfaces
for more systems. As a result, few applications are developed
with the flexibility to utilize a variety of distributed resources.
This introduces serious challenges when organizations attempt
to deploy computationally intensive tools without access to the
same computing resources as the original developers.

B. Software Maintainability

Bioinformatics users often need to handle hypotheses and
data outside of the application’s original scope. Such diffi-
culties are particularly pronounced in code bases that lack
modularity, implement their control logic at very low levels
(rather than describing it through higher level work patterns
or abstractions), or perform their function indirectly through
the runtime generation of code. Some programs achieve a
modest degree of modularity, but are implemented with low
level control and programmatically-generated intermediate ex-
ecutables [1], [2].

C. Dependency Management

Many bioinformatics applications feature tasks with a high
degree natural parallelism. Naturally, bioinformaticians (peo-
ple developing tools for biologists) take advantage of thisby
running work on many nodes, often in grid or cloud settings.
The execution of such workloads depends on the ability to
transport the required dependencies for each task to each
worker node. However, many bioinformatics tools rely on
third-party applications and libraries to function. This leads to



difficulty in adapting them to run in distributed environments,
especially heterogeneous systems such as Condor. It is typi-
cally impractical to guarantee the existence of required soft-
ware on all computation nodes because of diverse execution
environments. As a result, inconsistencies in available libraries
and applications among worker nodes often lead to failures
when attempting to run distributed bioinformatics applications.

III. EST PIPELINE DESCRIPTION

Expressed Sequence Tags (ESTs) are an important source
of bioinformatics data. EST sequencing involves extracting
and sequencing representatives of the mRNA of a cell, which
represent the expressed portion of an organism’s genes. Since
ESTs capture the expressed genes of an organism, biologists
are able to glean significant amounts of information from
diverse species, including organisms where whole-genome se-
quencing resources are not yet available. This is a particularly
useful method for research on non-model organisms, including
those important in studying ecological and environmental
questions [3].

Due to the effectiveness of these data for ecological ques-
tions, we created specialized tools for analyzing EST data
from natural populations of butterflies [4]. These tools were
created to be run as a pipeline of custom Ruby scripts
written by a member of the Notre Dame Bioinformatics Lab;
however, each step in the analysis reported in [4] (including
several large BLAST jobs) was run individually and manually.
These scripts have many dependencies in the form of Ruby
libraries, both custom and public. These dependencies made
the subtasks of this workflow difficult to run on the various
resources available, or even to share among researchers. These
challenges were exacerbated when analysts attempted to run
independent components in parallel.

Our initial efforts began with a step familiar to many
bioinformatics developers—the creation of a wrapper Perl
script. Because of our previous experience, we chose to use a
Perl wrapper script to generate a Makeflow [5], and through
it execute tasks. This process is similar to the mechanism by
which InterproScan [2] generates makefile descriptions of its
workflows. However, this particular workflow was based on
Ruby and specific Ruby libraries such as BioRuby, which
were not available on many of the machines available in our
distributed system (Condor). To overcome this, cumbersome
rules were written to specify library dependencies, and the
workflow subtasks could only be executed on machines with
access to the Ruby interpreter. Furthermore, the wrapper script
was hard to read and modify because the functionality it was
providing was buried in the print statements it used to generate
the workflow.

In our experience many pipelined bioinformatics tools are
released as such: functional but inelegant. They work on a
single system, rely heavily on custom wrapper scripts, and
have complex dependencies and specifications.
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Fig. 1. Stack of applications.

IV. SOLUTION STRATEGY

Based on these limitations we explored an alternative frame-
work, using a layered approach (Figure 1) to address each
of our problems separately. The clearest challenge we were
experiencing was that of dependency management, but we
had already suffered from coding errors because of the nature
of our wrapper script. Further, we hoped to expand to more
computational resources.

A. Portable low level workflow engine

We required the ability to execute our workflows on a
variety of systems. To achieve this we needed an engine that
could support execution of the same workflow in multiple
batch execution environments. Such an engine would ideally
provide us with execution robustness and detailed logs of
runtime behaviors to increase reliability and ease debugging.

B. High level workflow specification language

While the low level language of Makeflow provided the
desired portability and logging, we knew from our initial
pipeline that the Perl wrapper script necessary to generate
makeflows was difficult to understand and modify. A high
level workflow language that would express the structure of
the workflow programmatically, modularly describe units of
work, and provide abstractions for common patterns of work
would greatly increase the transparency and maintainability of
the code.

C. Encapsulation

We quickly recognized that our dependency problems could
be resolved with some sort of encapsulation strategy. To be
effective, such a strategy needed to reduce the entire web of
dependencies to a single package. Additionally, the execution
of that package needed to be as simple as possible. Such a
change would also conveniently simplify the specification of
tasks in a workflow specification language.

V. SOLUTION TOOLS

A. Makeflow

Makeflow [6] is a workflow engine targeted at execution
on clusters, grids and clouds. It accepts a specification of
a workflow and parallelizes the execution on multiple cores
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Fig. 2. The EST pipeline takes an AMOS bank from an assembly and three BLAST databases.

or machines whenever possible. The syntax of a Makeflow
workflow specification is similar to the traditional UNIX
Make program. It consists of a list of rules where each rule
contains a set of source files, a set of target files and a
command to generate those target files from the source files.
The dependencies among the rules are implicitly expressed
in the source and target files. For example, if a source file
of rule A is also a target file of rule B, then Makeflow
would know that rule A depends on rule B. Thus, all the
dependencies in the workflow can be visualized in a directed
acyclic graph (DAG). Because Makeflow knows the DAG
structure of the workflow, it can readily determine which rules
have had their dependencies satisfied thus far, and execute such
rules in parallel. An example makeflow DAG describing the
EST analysis pipeline is shown in Figure 2.

The Makeflow specification can work on different computer
systems, such as multicore machines, Condor and Sun Grid
Engine (SGE) batch systems, and the bundled Work Queue
system. For example, a user can combine some number of
Condor nodes with some number of SGE nodes to work on
the same workflow using Work Queue. As a workflow engine
that drives various parallel systems, Makeflow provides fault-
tolerance across all the underlying systems that it supports. If
a workflow fails or stops during the execution, Makeflow will
continue from where it left off upon resuming.

B. Weaver

Although makeflows (and other DAG-based workflow spec-
ifications such as DAGman) are relatively straightforward to
construct for small applications, they can be cumbersome
and difficult to program and maintain for the large pipelines
commonly found in bioinformatics. Rather than generating
Makeflows manually or using ad-hoc scripts, we utilize the
Weaver distributed computing framework that allows us to
develop workflows in the Python programming language [7].

While many workflow-type languages enforce a graph-
based or agent-based programming paradigm, Weaver allows
users to program in a variety of common styles such as
imperative, functional, and object-oriented while exposing a
simple programming model consisting of datasets, functions,
and abstractions. In Weaver, datasets are simply collections
of input files. These can be a Python list of file names, a
generator function, or even a SQL query. Functions in the
Weaver programming model are formal specifications of the
interface of executables. Weaver functions may be external
programs or they may be inlined Python code. To develop with
Weaver, the user simply specifies their datasets and functions
and then organize them into pipelines using Weaver’s features.

By default, Weaver also includes the following abstractions:
Map, All-Pairs [6], Wavefront [6], and Map-Reduce [8]. Users
may combine any of these abstractions in their workflows to
construct sophisticated pipelines.

To run a workflow written in Weaver, the programmer must



Fig. 3. Users provide a set of executables, libraries, and environment settings
to Starch, which internally produces an application archive. This is then
appended to a template shell script to produce a standalone application archive
that can be executed as a normal application.

first compile it using the Weaver compiler. The user constructs
the workflow as a Python script and passes it to Weaver,
which then compiles the code into a workflow sandbox. This
sandbox encapsulates the Makeflow DAG file and any input
data and executables specified in the Weaver script. To run the
workflow, the user simply executes Makeflow from inside the
sandbox.

Weaver provides a high-level language in which to specify
our workflow. It possesses the necessary abstractions and
modularity support to create transparent and maintainable
code.

C. Starch

A common problem in large distributed applications is the
packaging and management of individual application compo-
nents. While Weaver and the underlying Makeflow system
support specifying dependent files and environmental vari-
ables, it is often necessary to test these individual application
components independently. To solve this problem, Weaver
includes a tool named Starch to create standalone application
archives (SAA).

To create a SAA, the user simply specifies a list of executa-
bles and libraries to include in the execution image along with
the command run when the SAA is executed by the user. To
aid in packaging, Starch will automatically search for any dy-
namically linked libraries required by the executables specified
and include those in the list of libraries to embed in the SAA.
If the application requires any special input data files, they may
also be included. Likewise, for special environmental variables
and other runtime configuration options, Starch allows users
to include environment scripts that will be imported beforethe
application’s command is executed.

The general process for creating a SAA is shown in Fig-
ure 3. Once the user specifies all of the necessary options, the
executables, libraries, and environment scripts are compressed
and archived as a UNIX tarball. This application archive
is then appended to a template shell script to generate a
standalone application archive. When the SAA is executed the
wrapper shell script will automatically extract the embedded
archive, configure the environment, and run the user specified

command.
The benefit of using Starch to package applications is three-

fold: First, it allows for complex applications with multiple
dependencies to be bundled as a single self-contained exe-
cutable. This is important for bioinformatics workflows where
a single application may require a wrapper script and multiple
external programs and libraries to execute properly. Second,
because Starch produces a standalone application archive,the
individual application component is naturally versioned,and
easier to test and share among researchers. Finally, the self-
contained nature of the SAAs also facilitates deployment in
distributed systems where it is not known if the target working
environment contains all the necessary libraries and programs.
This clearly satisfies our encapsulation needs.

VI. F INAL EST PIPELINE

We used these tools to implement the final version of our
EST pipeline. Starch enabled us to encapsulate large complex
steps into more convenient archives that are easy to distribute.
We used Weaver rather than Perl to express our workflow. This
compiled into a Makeflow program capable of running on a
variety of batch systems.

Figure 4 is an excerpt of Weaver code for running the
EST pipeline. It is compiled into Makeflow code describing
the DAG shown in Figure 2. From the figure, we notice
immediately that there are several steps that can be run in
parallel. Each of the runblast mf.pl steps generates several
thousand intermediate steps as they run BLAST subjobs in
parallel.

VII. PIPELINE CHARACTERISTICS

The final pipeline demonstrates the promising technical
characteristics of workflows implemented using this stack.

A. Provenance

While they do not support provenance queries, Starch,
Weaver, and Makeflow provide a powerful tool for gathering
provenance information.

First, Starch naturally provides versioning and encapsula-
tion. Once a Starch archive is created, it remains the same
regardless of changes to the source executables, providinga
working frozen copy of a program. This facilitates debugging
and helps users avoid many of the problems associated with
upgrades and updates in complex dependency environments.

Each run of a Weaver program produces a different make-
flow, describing the specific steps about to be executed and
the full set of dependencies for each step. Further, upon
execution, a makeflow can generate a great deal of provenance
information, including the node of execution, start and end
time, and exit status of each substep of the makeflow. Existing
tools for analyzing and displaying runtime have been adapted
to Makeflow logs (Figure 5).

B. Encapsulation

Starch takes only two minutes to create the packages
required for running this EST pipeline. One such archive con-
tains 14519 files, clearly motivating the need for encapsulation.



def run_blast_mf(r):
run = Function(’run_blast_mf.pl’)
run.output_string = lambda i: i
run.command_string = lambda i, o: \

’LOCAL ./run_blast_mf.pl ’ + r
run.add_functions(’blastwrapper.pl’)
run.add_functions(’tee’)
run.add_functions(’blastall’)
return run

def unigeneSNPs(r):
run = Function(’unigeneSNPs.sfx’)
run.output_string = lambda i: i
run.command_string = lambda i, o: \
’./unigeneSNPs.sfx > ’ + o
run.add_functions(bank+’.sfx’)
return run

def unigeneLenCov(r):
run = Function(’unigeneLenCov.sfx’)
run.output_string = lambda i: i
run.command_string = lambda i, o: \
’./unigeneLenCov.sfx > ’ + o
run.add_functions(bank+’.sfx’)
return run

Fig. 4. Excerpt from the Weaver EST pipeline code.

C. Performance

Weaver also generates makeflows, so we did not expect
performance gains relative to our original Perl. As expected,
a Weaver makeflow executes in approximately the same time
as a Perl-generated makeflow (Table I).

The EST pipeline, however, provided significant advantages
over its manual incarnation. Even with the assistance of
campus computing resources for BLAST the pipeline suffered
from turnaround times of approximately one work week.
With the creation of an automated pipeline aided by Starch,
turnaround time for previous data has been reduced to under
an hour.

Weaver enables programmers to take advantage of native
abstractions. For BLAST (Table I), the Weaver map varia-
tion is slightly faster than a highly optimized non-Weaver
implementation [5]. Other programs may see more pronounced
performance gains from abstractions [7].

D. Portability

We have run our pipeline using a variety of batch systems,
and even by combining multiple systems (SGE and Condor).
This flexibility is derived from the technical characteristics of
Makeflow (see Section V).

E. Fault Tolerance

In a distributed system, there are numerous ways a task
can fail. Makeflow provides batch system-independent fault
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Fig. 5. EST pipeline runtime graph that can be generated fromthe log output
of Makeflow.

TABLE I
RESULTS FROM RUNS OF TWO DIFFERENT APPLICATIONS USINGWEAVER

AND USING PERL.

Application Weaver Non-Weaver
EST pipeline 2,529s 2,882s

BLAST 665s 677s

tolerance. In the worst case, Makeflow can emit both regular
and debugging output. This assists the programmer, or user,
in investigating the causes of failure. It also contributesto the
body of provenance information generated by the system.

VIII. D ISCUSSION

We see a number of improvements related to the develop-
ment, use, and maintenance of our pipeline.

We have found our Weaver scripts to be both more concise
and understandable. For example, our Weaver implementation
of BLAST is approximately one-third shorter than our Perl
implementation. More importantly, Weaver more closely re-
sembles general purpose programming languages, which in our
experience has helped development and maintenance of bioin-
formatics tools. This advantage is increased by the availability
of built-in abstractions, which in our experience has reduced
code volume and increased readability as MapReduce [8] has
for other applications.

The object oriented nature of Weaver helps bioinformatics
programmers to write modular code, as individual makeflow
steps are coded as functions that run on objects. Unlike
many typical bioinformatics applications, bioinformaticians
are encouraged to create sets of objects and functions that can
be reused. This also enables many different types of analysis
to be performed or updated from these core sets of functions
and objects.

In addition to making our workflow-description code more
concise, the use of Starch reduces the overall size by a third
(and as a result reduces complexity) while still producing the
same correct output. By packaging programs that depend on
many libraries or subprograms into a Starch archive, we can
simply specify the archive and then execute it on a remote
machine.



This increased level of software engineering should help to
alleviate some of the issues currently associated with running
bioinformatics applications. Weaver applications tend tobe
more readable than corresponding Perl scripts. This allowsfor
easier modification and maintenance of existing software.

Weaver does not necessarily provide any direct performance
benefit. These makeflows, however, can by executed in mul-
tiple distributed environments at the same time and built-
in abstractions are also available. Traditionally, programmers
have had to implement abstractions to take advantage of
the parallelism available or use specific abstractions suchas
MapReduce [8]. With Weaver, the programmer can simply call
multiple abstractions as needed to achieve parallelism with
relative ease.

IX. CONCLUSION

The rapid production nature of bioinformatics applications
gives rise to useful and powerful tools. However many of them
would benefit from improved encapsulation, clarity of code,
and portability. We believe that Starch, Weaver, and Makeflow
begin the process of addressing some of these problems.
Starch encapsulates program dependencies to simplify task
specification and deployment. Weaver provides a natural way
to express workflows modularly, and at a high level. Makeflow
provides a batch-system agnostic engine to execute compiled
Weaver workflows.

X. RELATED WORK

There is certainly no shortage of distributed systems and
workflow tools available for bioinformatics. The single most
popular tool in distributed systems recently is the MapRe-
duce [8] paradigm. However, MapReduce is only a single type
of abstraction for distributed computing; it is not sufficient for
all tasks. Therefore Weaver implements a MapReduce func-
tion, but many other abstractions as well. Unlike the Hadoop
MapReduce, the Weaver implementation of MapReduce does
not take advantage of data locality.

The Swarm [9], Taverna [10], Pegasus [11] and Galaxy [12]
services take advantage of several computing resources, simi-
lar to Makeflow’s capabilities. However, they are designed to
manage many users’ jobs and require additional infrastructure
to host. Makeflow is designed to be run on a per-user basis
and requires no special infrastructure.

The Kepler [13] workflow system provides a method to
generate scientific workflows. However it is not designed
to assist the developer in creating parallel workflows from
third party executables. Weaver and Makeflow encourage the
developer to parallelize third party executables with minimal
effort.

The SAGA [14] system is similar to our Makeflow layer
in that it provides the abstraction to the execution layer.
However, Makeflow is workflow description language and
execution engine. SAGA is only an API for interacting with
various distributed computing systems. Makeflow has this as
a component, but provides much more to the user.

Makeflow collects much provenance data. It would be
extremely useful to develop a system to query this data as
suggested in the First Provenance Challenge [15]. Makeflow
is already able to emit the DAG that it constructs so the user
can see the steps that lead to each output.
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