Harnessing HPC resources for CMS jobs using a Virtual
Private Network

Benjamin Tovar'*, Brian Bockelman***, Michael Hildreth>***, Kevin Lannon>****, and
Douglas Thain'-'

'Department of Computer Science and Engineering, University of Notre Dame, Indiana
’Department of Physics, University of Notre Dame, Indiana
3Mordridge Institute for Research, Madison, Wisconsin

Abstract. The processing needs for the High Luminosity (HL) upgrade for
the LHC require the CMS collaboration to harness the computational power
available on non-CMS resources, such as High-Performance Computing cen-
ters (HPCs). These sites often limit the external network connectivity of their
computational nodes. In this paper we describe a strategy in which all network
connections of CMS jobs inside a facility are routed to a single point of external
network connectivity using a Virtual Private Network (VPN) server by creating
virtual network interfaces in the computational nodes. We show that when the
computational nodes and the host running the VPN server have the namespaces
capability enabled, the setup can run entirely on user space with no other root
permissions required. The VPN server host may be a privileged node inside the
facility configured for outside network access, or an external service that the
nodes are allowed to contact. When namespaces are not enabled at the client
side, then the setup falls back to using a SOCKS server instead of virtual net-
work interfaces. We demonstrate the strategy by executing CMS Monte Carlo
production requests on opportunistic non-CMS resources at the University of
Notre Dame. For these jobs, cvmfs support is tested via fusermount (cvmf-
sexec), and the native fuse module.

1 Introduction

The increase in data processing needs for CMS after the High Luminosity (HL) upgrade [1]
are expected to be around 20 times the currently available computational power [2]. To
meet this new requirements and projected changes in funding, the CMS collaboration will
need to harness resources from High Performance Computing centers (HPCs) and national
laboratories [2]. These resources are usually behind firewalls that restrict compute nodes to
connect to the outside world. At a bare minimum, a compute node would need access to the
job description to run, the needed software via cvmfs [3], and stage-in and out data via xrootd
to successfully execute an unmodified CMS job.

*e-mail: btovar@nd.edu
**e-mail: bbockelman@morgridge
***e-mail: mhildret@nd.edu
##**e-mail: klannon@nd.edu
Te-mail: dthain@nd.edu

To solve this connectivity problem, we work under three main constraints: 1) jobs must
run on compute nodes without administrator privileges. As far as the HPC is concerned, the
job is just another user job; 2) the CMS job description should remain unchanged; 3) network
usage limits guarantees should be given and enforced.

In this paper we explore a solution that takes advantage of so-called demilitarized zones
(DMZs) of these computing centers which provide an isolated interface to the outside net-
work. In the DMZ, connection from the outside may be performed by vetted services outside
the internal network, trusted third-parties, or by privileged hosts inside the internal network.
In our solution, a Virtual Private Network (VPN) server is run in a host in the DMZ, and
compute nodes route all of their network traffic through the VPN server.

At the compute node side, we use network namespaces [4] to create a virtual network
interface to which all the traffic of the job is routed. A network namespace provides a user
with a logical copy of the network stack, with its own routes, firewall rules, and network
devices. Unprivileged namespaces are available since linux kernel version 4.18 (e.g. RHEL
>=7.8). If network namespaces are not available at the compute nodes, then the VPN client
falls back to the solution proposed by [5], where the network calls are captured and interposed
using using a preloaded library and a SOCKS server.

We evaluate the feasibility of our solution by execution Monte Carlo CMS production
tasks, to which cvmfs is provided via the native fuse module, or as a fusermount from cvmf-
sexec [6]. We tested up-to 200 concurrent jobs, and for these jobs, which are not I0O-bounded,
our results show that there is not a noticeable hit in performance. We also directly measured
the bandwidth obtained in average, and found that link saturation for more than 2 concurrent
transfers occurs at similar values compared to not using our VPN approach. For single trans-
fers, a slowdown of about %060 is observed, which is caused by using TCP over TCP in our
VPN test configuration.

The recipes and instructions to construct the singularity containers that implement our
solution are publicly accessible as github repository [7].

2 Architecture

compute node compute node

all network VPN virtual
raffic e;::;zzl €“—> server th}::t network
interface

Authorized L—
external |, J contact e
service point

DMZ DMZ

job job
payload payload
submit submit
batch jobs batch jobs

restricted restricted
network network

() (b)

Figure 1. Redirecting network output to a trusted external service. (a) The general idea is to route all of
the network traffic of a job’s payload through a contact point of the DMZ. (b) A concrete implementation
using a VPN server-client architecture with virtual network interfaces at the client side.

We show a general view of the architecture in Figure 1.(a). All the network traffic from the
payload in a job running in a compute node is redirected through an authorized contact point
in the DMZ. The network requests can then be fulfilled by trusted external services outside

the HPC restricted network. This is concretely implemented using a Virtual Private Network
(VPN) server-architecture, as shown in Figure 1.(b). At the client side, a virtual network
interface is created to which all traffic of the payload is redirected. This virtual network
interface is configured by the VPN server with an IP address, default network routes, and
name resolution. As far as the payload is concerned, it is running on a host with the IP given
by the VPN server, not by original IP of the compute node.

2.1 Uses for CMS

compute node compute node

cvmfs virtual cvmfs virtual
VPN VPN

xrootd V,PN network xrootd YPN network
server client interface server client interface

¢ condor DMz $
X collector condor
wmAgent submit startd
writing jobs [€—=+ batch jobs .
to disk / xfer output wmAgent submit
batch jobs
DMZ . condor .
restricted restricted
schedd
network network
(a) (b)

Figure 2. Possible uses for CMS. In (a), jobs from the WMAgent are written to disk, from which
a process reads them and submits them to the compute nodes, reporting outputs to the WMAgent as
needed. The payload of a batch job is a CMS job. In (b), HTCondor startd’s are submitted as
payloads. These startd’s function as pilot jobs that contact a collector from which the WMAgent can
find them and use them to execute CMS jobs.

This model can be harnessed in CMS in several ways. In Figure 2.(a) we show the prototype
we follow for our tests for this paper. In the current CMS setup, jobs are created by WMA-
gent [8], and then submitted to the HTCondor [9] batch system for execution. We modified
WDMAgent so that jobs are written to disk together with their dependencies, and wrote a ser-
vice that submitted these jobs inside a restricted network, reporting completions back to the
WMAgent [10].

Another possible use is shown in Figure 2.(b), in which WMAgent is left unmodified,
and instead the payload of the jobs running at the network restricted compute nodes are
HTCondor startd’s daemons. A startd daemon, once running, declares the compute node
to an HTCondor collector, from which pairings of compute node and jobs can be made. In
our case, all communication from/to the startd’s is done through the VPN server.

In all use cases, the payload has access to services such as cvimfs and xrootd through the
VPN server.

Note that the setup presented in this paper aims only to provide the necessary network
connectivity to jobs running inside the HPC, but does not consider any particular pilot job
solution, such as GlideinWMS[11], nor performs any resource management inside the HPC,
such as in ARC Control Tower[12].

3 Implementation

To implement the VPN server-client architecture, we need to create virtual network interfaces
at the client side without administration privileges. By creating a new network namespace [4]

unpriviliged container

unpriviliged container priviliged container

network namespace network namespace

network namespace

1d preload
setgroups,...

to/from to/from to/from
VPN VPN VPN
server clients clients
outisde outisde
network network
(@) (b) (©

Figure 3. Implementing the VPN server-client architecture using namespaces. (a) The VPN client
is run without admin privileges. All its network traffic is routed through a tun interface, created by
openconnect and configured (IP, DNS, and gateway) by the VPN server. (b) VPN server runs with
admin privileges inside a container and it can create directly a virtual network interface (veth®) and
bridge, forwarding messages as needed. (b) VPN server runs without admin privileges. A tap device
is create inside a namespace, to which forwarding and masquerading rules can be applied. The network
stack for the tap interface is run in userspace by slirp4netns.

we can define this virtual network interfaces and and manipulate their addresses, routes and
firewalls without administrator privileges. Any network modifications are only visible to
processes that run inside the namespace.

On the client side, we use openconnect[13], an open source VPN client. In its default
mode of operation, openconnect requires administrator privileges to create the network
interface to route its traffic. However, instead of creating this interface itself, it gives the
option to read/write to a user provided process. This allows to insert a program that creates
a new namespace in which the virtual interface is created. The client then simply reads and
writes to this process instead of a network interface. We use the tool vpnns from the open
source project ocproxy [14] to create the namespace in which the virtual network interface
is defined.

The filesystem cvmfs is by default provided with a fusermount via cvmfsexec[6], but can
alternatively be provided by parrot[15], or mounted directly if available. We encapsulate all
this dependencies inside a singularity container resulting in the client architecture is shown
in Figure 3.a.

For the server side we have two options, which depend on whether we can run privileged
containers in the VPN server host. The VPN server needs to manipulate the iptables related to
its network interface in order to properly route packets from the VPN clients. When the VPN
server runs with administrator privileges it can directly manipulate the traffic to the hardware

interface, and no other component is needed. Regardless, the host needs to be configured to
allow IP forwarding. When the VPN server needs to run without administrator privileges,
we again create a virtual network interface inside a namespace. However, since the VPN
server manipulates Ethernet frames, the network interface created is a tap interface, which
simulates a link layer device. This is different from the interfaces created for the clients,
which are tun interfaces that simulate network layer devices and which carry IP packets.
This subtle distinction means that the TCP/IP stack for the tap interface needs to be run on
userspace, as regular users cannot manipulate Ethernet frames of hardware devices. We use
slirp4netns to create the tap interface together with its TCP/IP stack in userspace. As
with the clients, we have encapsulated all these dependencies in a container.

We use ocserv as the VPN server, the open source companion to the openconnect
client. The design of ocserv assumes that it will be run with administrator privileges. In
particular, for each client connection ocserv creates a worker process that immediately drops
administrator privileges. This provides security guarantees by segregating worker processes,
however, to drop privileges, ocserv makes some system calls that are not allowed to regular
users even inside the namespaces, such as setuid, setgid, and setgroups. As we run
ocserv as a regular user, this drop in privileges is in any case not needed, and we solve this
issue by capturing the relevant system calls and always returning success with a custom Id
preloaded library.

As we mentioned, our setups runs both server and clients inside containers. When run-
ning with admin privileges for the server, both docker and singularity have options to create
virtual network interfaces inside a namespace and configure bridge devices to connect to the
hardware network interfaces. However, this is not strictly necessary, as all the setup can be
done outside the container. This is more evident for the client and a server running without
admin privileges, as for example singularity cannot create any new virtual devices unless
running with escalated privileges.

3.1 Configuration

For hosts running the VPN server and clients, namespaces need to be activated. This
is done with the user.max_user_namespaces=10000 sysctl kernel option. Addition-
ally, IP forwarding should be enabled in the machine running the VPN server with
net.ipv4.ip_forward=1. Further, this machine should allow TCP and UDP connections
to the port the clients will use to contact the server (by default 8443). These are the only steps
that need administration privileges to be configured.

The VPN server configures the IP, DNS, and default gateway of the virtual interfaces of
the clients. When not using the tap interface, by default we use the servers listed in the
/etc/resolv.conf at the host running the VPN server. This host also becomes the default
gateway. With the tap interface, we first route traffic through the slirp4netns network
stack. Once running, slirp4netns provides a default gateway and DNS to the VPN clients,
which network traffic is then routed through slirp4netns and the tap interface to the VPN
server.

In addition to the server address, the client openconnect needs the server private key
fingerprint to verify the identity of the server. In our setup, new certificates are created the
fist time the server runs and the server key fingerprint is written to a file which then can be
included when submitting the batch jobs that will spawn the VPN clients.

3.2 Alternatives

When namespaces are not enabled at the client side, network traffic can still be manipulated
by openconnect via a SOCKS server. Instead of creating a virtual network interface, net-

work calls are captured with the tsocks [16] 1d preloaded library. The captured calls are sent
to a SOCKS server managed by openconnect, such as ocproxy [14], or tunsocks [17].
In [5] such use of capturing network traffic via tsocks, with the SOCKS server is provided
by ssh.

We use a VPN client + SOCKS as a fallback when namespaces are not enabled. We prefer
to create virtual network interfaces when available because it is easier to guarantee that all the
traffic of the job will be correctly routed (e.g., some calls may altogether be missed, a process
may reset 1d preloaded libraries, or may be statically linked), and because tools such as tc can
be used to directly limit traffic through the interface. However, the SOCKS server approach
has the great advantages that it does not require hosts to be configured by an administrator,
and that it is simpler to setup.

4 Evaluation

We first tested out setup by transferring data with iper£[18] to the VPN clients through
the VPN server using different configurations. The server and clients ran on machines with
1 Gbps network links, with the iperf server running in the machine along side the VPN
server. (This to ensure that any bandwidth limit hit was between server and clients, and not
caused by the data server.) Our results are summarized in Table 1, where we show the average
bandwidth for 1, 2, 10, and 20 simultaneous transfers. For the server stack column, kernel
means a direct connection to the hardware interface, while user uses the tap interface.

As it can be seen in the table for multiple transfers, both namespace and SOCKS setups
offer similar performance to not using a VPN at all. As perhaps expected, the network stack
in userspace for the VPN server does incur an overhead, with a bandwidth around 1/5 com-
pared to not using a VPN. This slowdown is in accordance to slirp4netns’s own published
benchmarks [19]. To note, the author of slirp4netns has an experimental tool [20] as of
October 2020 that accelerates slirp4netns to speeds close to the native host in kernels 5.9
and above, thus improvements in bandwidth usage are likely in the short-term.

For non-concurrent transfers, our results show that using the VPN is far from saturating
the 1 Gbps link. This is not observed for multiple concurrent transfers. The most likely
explanation is that we are using TCP over TCP for the communication between server and
clients, which is known to have performance penalties. For openconnect, the recommended
method is TCP over UDP using the DTLS protocol, however so far we have been unable to
use DTLS with the user provided process to which openconnect redirects traffic.

We also tested our setup by running CMS Monte Carlo production tasks. We setup these
tasks to run for about one hour, using the setup suggested in Figure 2.a. The jobs descrip-
tion generated by a WMAgent are written to disk together with all their dependencies, and
transferred to be executed on a remote site [10] that is not owned nor configured by CMS
(opportunistic resources at the University of Notre Dame). In Table 2 we show running time
histograms across different configurations. Since these are Monte Carlo tasks, network traf-
fic mainly comes from cvmfs software dependencies, and staging out results to xrootd. For
these test, we compare cvmfs being provided by the fuse module, and by cvmfsexec across
the different VPN configurations. These results show the feasibility of running CMS tasks
through the proposed VPN setup.

5 Future Directions

Two future directions already available to us which we have not explored extensively are
the shaping of traffic between VPN server and client, and having HTCondor startd’s as

xfers server stack VPN client avg per transfer avg concurrent

1 kernel no 871.98 871.98
namespace 333.59 333.59

socks 196.61 196.61

user namespace 196.06 196.06

2 kernel no 470.99 926.84
namespace 298.68 597.36

socks 190.54 381.09

user namespace 103.24 206.48

10 kernel no 94.87 890.56
namespace 88.26 882.64

socks 86.88 868.87

user namespace 19.96 199.67

20 kernel no 47.63 846.01
namespace 44.24 884.90

socks 43.56 871.35

user namespace 7.24 144.83

Table 1. Bandwidth (Mbps) across different configurations. xfers indicates the number of
simultaneous transfers by iperf for 5 minutes. File server, VPN server and clients run on 1 Gbps
links. server stack indicates whether the VPN server connects directly to the hardware interface
(kernel) or using a tap device with network stack in user space via slirp4netns (user). The VPN client
may be disabled (no), run on top of a tun device in a network namespace, or capture network calls with
a ld preload library and a SOCKS server.

concurrent jobs VPN client cvmfs median runtime (minutes)
50 namespace cvmfsexec 45.13
namespace fuse 41.67
no fuse 41.82
100 namespace cvmfsexec 47.75
namespace fuse 50.71
no fuse 48.90
200 namespace cvmfsexec 59.91
namespace fuse 60.78
no fuse 60.20

Table 2. Median runtime (minutes) of CMS Monte Carlo test jobs. Jobs were constructed to run for
about one hour. We compare the performance of different number of concurrent jobs providing cvmfs
with a fusermount in a namespace (cvmfsexec), or directly with the cvmfs fuse module.

the payload of the batch jobs. For example, when using virtual interfaces we can directly
use standard tools such as tc to limit bursts and bandwidth of egress traffic. Additionally,
ocserv provides separate ingress and egress bandwidth limits, both global and per user.
Another immediate future direction is perform load-balancing using multiple VPN servers to
avoid exhausting single network links.

Software

Recipes and instructions to implement our solution are publicly available here:
https://github.com/cooperative-computing-lab/userlevel- vpn-tun-tap

Acknowledgments

The authors thank Irena Johnson and Paul Brenner for their invaluable help using network
resources at University of Notre Dame; Todor Ivanov for its input running CMS production
jobs; and Mirko Mariotti, Daniele Spiga, and Tommaso Boccali for making their ideas and
modifications to tsocks available to us in the development of this paper.

References

[1] CMS-Collaboration, Projected performance of an upgraded CMS detector at the LHC
and HL-LHC: Contribution to the snowmass process (2013), 1307.7135

[2] T. Boccali, CMS Software and Offline preparation for future runs, in 19th International
Workshop on Advanced Computing and Analysis Techniques in Physics Research (2019)

[3] C. Aguado-Sanchez, J. Bloomer, P. Buncic, L. Franco, S. Klemer, P. Mato, CVMFS a file
system for the CernVM virtual appliance, in Proceedings of XII Advanced Computing
and Analysis Techniques in Physics Research (2008)

[4] ip-netns(8) Linux User’s Manual (2021)

[5] M. Mariotti, D. Spiga, T. Boccali, A possible solution for HEP processing on network
secluded Computing Nodes, in ISGC 2021 (2021), pp. 22-26

[6] cvmfsexec, https://github.com/cvmfs/cvmfsexec (2021), Accessed: 2021-05-03

[7] userlevel-vpn-tun-tap, https://github.com/cooperative-computing-lab/
userlevel-vpn-tun-tap (2021), Accessed: 2021-05-03

[8] E. Fajardo, O. Gutsche, S. Foulkes, J. Linacre, V. Spinoso, A. Lahiff, G. Gomez-
Ceballos, M. Klute, A. Mohapatra, A new era for central processing and production
in CMS, in Journal of Physics: Conference Series (I0P Publishing, 2012), Vol. 396-4

[9] D. Thain, T. Tannenbaum, M. Livny, Concurrency - Practice and Experience 17, 323
(2005)

[10] B. Tovar, D. Thain, Executing CMS production workflows on third-party software,
Manuscript in preparation. (2021)

[11] I Sfiligoi, D.C. Bradley, B. Holzman, P. Mhashilkar, S. Padhi, F. Wurthwein, The Pilot
Way to Grid Resources Using GlideinWMS, in Proceedings of the 2009 WRI World
Congress on Computer Science and Information Engineering (2009), Vol. 2

[12] D. Cameron, A. Filipéi¢, W. Guan, V. Tsulaia, R. Walker, T. Wenaus, Journal of Physics:
Conference Series 898 (2017)

[13] openconnect, http://www.infradead.org/openconnect (2021), Accessed: 2021-05-03

[14] ocproxy, https://github.com/cernekee/ocproxy (2021), Accessed: 2021-05-03

[15] D. Thain, M. Livny, Parrot: An Application Environment for Data-Intensive Computing,
in Journal of Parallel and Distributed Computing Practices (2004)

[16] tsocks, https://sourceforge.net/projects/tsocks/ (2002), Accessed: 2021-05-03

[17] tunsocks, https://github.com/russdill/tunsocks (2019), Accessed: 2021-05-03

[18] Iperf - the TCP/UDP band-width measurement tool, http://dast.nlanr.net/Projects/Iperf
(2020), Accessed: 2021-05-03

[19] Bandwidth benchmarks of slirp4netns, https://github.com/rootless-containers/
rootlesskit/pull/12 (2018), Accessed: 2021-05-03

[20] bypass4netns, https://github.com/rootless-containers/bypass4netns (2020), Accessed:
2021-05-03

