CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2012; 24:1685-1707
Published online 9 November 2011 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.1871

Scripting distributed scientific workflows using Weaver

Peter Bui*"‘, Li Yu, Andrew Thrasher, Rory Carmichael, Irena Lanc, Patrick Donnelly
and Douglas Thain

Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA

SUMMARY

Weaver is a high-level distributed computing framework that enables researchers to construct scalable
scientific data-processing workflows. Instead of developing a new workflow language, we introduce a
domain-specific language built on top of Python called Weaver, which takes advantage of users’ famil-
iarity with the programming language, minimizes barriers to adoption, and allows for integration with a rich
ecosystem of existing software. In this paper, we provide an overview of Weaver’s programming model,
which allows users to organize and specify scientific workflows by using a collection of datasets, functions,
and abstractions. We also explain how these workflow specifications are compiled into a directed acyclic
graph that is used by the Makeflow workflow manager to dispatch work to a variety of distributed execution
platforms. To demonstrate the power and benefits of using the framework in constructing scientific research
applications, the paper examines four distinct real-world applications scripted using Weaver and analyzes
the performance, scalability, and impact of the distributed generated scientific workflows. Copyright © 2011
John Wiley & Sons, Ltd.

Received 8 February 2011; Revised 24 June 2011; Accepted 29 August 2011

KEY WORDS: scripting; workflow; distributed systems; weaver; makeflow; python

1. INTRODUCTION

In recent years, the increase in the availability of vast amounts of distributed computing resources
has led to the development of new programming tools and systems that simplify and ease the
use of such resources. Primarily, these tools have come in the form of distributed comput-
ing abstractions, such as MapReduce [1] and All-Pairs [2], that optimize specific patterns or
models of computation. These new systems have been useful in enabling the development of
high-performance/high-throughput distributed scientific applications.

Unfortunately, although these abstractions have been successful in improving specific patterns
of computation, they often fail to encompass large and sophisticated scientific workflows. This
is because whereas many computational data-processing workflows consist of a series of sepa-
rate computational stages, these tools normally focus on a single particular stage. For instance,
in the case of biometrics as shown in Figure 1, a basic experimental workflow consists of select-
ing a subset of data from a repository, transforming the raw data into an intermediate form suitable
for processing, and finally performing the experiment. Such multi-stage workflows are often too
complicated to be performed in a single abstraction and may in fact require the use of multiple
computational abstractions.

*Correspondence to: Peter Bui, Department of Computer Science and Engineering, University of Notre Dame, Notre
Dame, IN, USA.

TE-mail: pbui@cse.nd.edu

Copyright © 2011 John Wiley & Sons, Ltd.

1686 P. BUI ET AL.

¥ L] ¥
RAW "‘[Convert]"i Comgare][Compare][Comgare]
""[Convert]“" '[Comgare][Compare][Compare }
AAW l-[Convert }"[Comgane][Comparg J[Compare]

Query Map All-Pairs

2
=

Figure 1. Biometrics workflow.

To address this problem a few workflow systems have been developed such as Dryad [3],
DAGMan [4], and Pegasus [5], which allow users to specify a pipeline of computational tasks.
These specifications usually consist of relationships between tasks and the data inputs and outputs,
and are used by the software tools to construct a directed acyclic graph (DAG) representing the flow
of data through the pipeline. Distributed computing abstractions are incorporated into these systems
by implementing the abstraction directly as nodes in the DAG or by using a specialized implementa-
tion as a single node in the graph. Once a DAG has been formed, it can be processed by a workflow
manager, which dispatches tasks to a distributed computing engine such as Condor [6].

The main disadvantage of these DAG-based systems is that they require end users to explicitly
construct workflow graphs, which is often cumbersome and complex for larger sophisticated work-
flows [7-9]. For example, it is not uncommon for scientific workflows to consist of thousands to
millions of tasks, where each job must be specified as a DAG node. Recent research projects such
as Swift [10] tackle the problem of efficiently specifying scientific workflows by proposing new
programming languages. In these high-level languages, the DAG is implicitly constructed by a com-
piler that parses and processes a workflow specification written in a high-level scripting language.
The advantage of this approach is that it allows for rapid construction of sophisticated distributed
applications in concise and maintainable workflow scripts.

The introduction of a new workflow scripting language, however, has significant adoption and
usage challenges [11]. For instance, it is not always possible to deploy the new system onto unpriv-
ileged distributed resources, and it may be difficult to convince non-expert users to adopt the new
language due to the unfamiliar syntax or programming model. Rather than developing a new lan-
guage, we address the problem of efficiently constructing distributed workflows by building a
distributed computing framework named Weaver [9] on top of an existing general-purpose pro-
gramming language, Python [12]. By providing a framework that facilitates the development of dis-
tributed applications as a domain-specific language in Python, we enable researchers to effectively
and efficiently script scientific distributed workflows using a familiar and ubiquitous programming
language with a rich ecosystem of existing software, documentation, and community.

Using the Weaver framework, research scientists develop distributed applications by specifying
the properties of their workflow in a Python script. The framework provides a set of high-level
constructs such as datasets, functions, and abstractions that implement the domain-specific lan-
guage and allows the users to rapidly construct their applications. Once these workflow scripts are
complete, they are processed by the Weaver compiler to produce a DAG that is then utilized by
a workflow manager such as Makeflow [13]. This workflow manager, in turn, executes the appli-
cation on a variety of distribute execution engines such as Condor or Sun Grid Engine (SGE) by
dispatching jobs on the basis of the tasks specified in the generated DAG.

This paper is an extended version of our workshop paper introducing Weaver [9]. Since this initial
work, we have developed additional datasets and functions to support the new applications pre-
sented in this paper. Moreover, we have extended the programming model with the concept of nests
that enables the user to construct hierarchical workflows for large sophisticated data-processing
pipelines. Additionally, we also developed the Starch application packager, which was introduced
at a recent biometrics workflow workshop [14], as a complementary part of the Weaver framework.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1685-1707
DOI: 10.1002/cpe

SCRIPTING DISTRIBUTED SCIENTIFIC WORKFLOWS USING WEAVER 1687

This new tool enables creating portable standalone application archives (SAAs) and therefore pro-
vides users a simple means of managing application dependencies separate from the entire workflow.
Finally, Weaver has been utilized in a variety of different distributed applications ranging from bio-
metrics experiments and multimedia transcoding to bioinformatics analysis pipelines, allowing us to
evaluate Weaver’s effectiveness in enabling both distributed computing experts and non-specialists
to effectively script distributed scientific workflows.

The remainder of this paper explores the details of Weaver. In Section 2, we explain the program-
ming model used in Weaver and identify what components are provided by the framework and how
they fit together. Section 3 discusses the execution model used by Weaver, describes the complete
software application stack, and examines how the different pieces integrated into the framework.
Section 4 provides an evaluation of four applications developed using Weaver along with analysis
of the effectiveness of the framework in developing these workflows. This is followed by a short dis-
cussion of work related to Weaver. Finally, we conclude the paper with an exploration of possible
future work and our summary of the current version of Weaver.

2. PROGRAMMING MODEL

Weaver is a distributed computing framework that enables researchers to construct scalable scientific
workflows in the Python programming language. This framework utilizes a simplified programming
model that consists of datasets, functions, abstractions, and nests as shown in Table I. These
concepts are the fundamental building blocks of the Weaver application programming interface
and are implemented as a collection of custom Python modules, classes, and functions that end
users combine and extend to define their workflows. This section provides a high-level overview
of these components and explains how they work together to enable the construction of distributed
workflows.

2.1. Datasets

Many scientific computing tasks involve processing a repository or collection of experimental data,
which is normally stored as files on a physical filesystem. In the Weaver programming model, col-
lections of data objects are organized into datasets, where each object’s string method returns the
location of the file that contains the data. This simple convention allows for datasets to take the form
of a Python list, set, generator function, or any other Python object that implements the language’s
iteration protocol.

Although specifying a dataset can be as straightforward as defining a list of file paths, Weaver
provides a collection of custom DataSet objects that simplify the specification and selection of input
data. Each object in these DataSet collections contains the path to the data file as required by the
programming model, along with a set of attributes shared by all the members of the dataset. This
common set of metadata properties can be accessed and manipulated by the user through the Query
function, which will be explained shortly.

2.1.1. File DataSets. One example of a DataSet provided by the Weaver framework is the Files-
DataSet. Since the most common type of dataset is simply a group of data files, Weaver provides
the FilesDataSet constructor, which given a file path pattern, this dataset builder will return the set
of file objects that match the specified pattern. Another common method for keeping track of files

Table I. Weaver programming model.

Component Summary

Datasets Collections of data objects that represent physical files.

Functions Specifications of executables used to process data.

Abstractions Patterns of execution that define how functions are applied to datasets.

Nests Combination of workspace and directed acyclic graph that defines the workflow namespace.
Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1685-1707

DOI: 10.1002/cpe

1688 P. BUI ET AL.

is to store the list of data paths in a text file. Weaver provides a simple FileListDataSet object for
this type of collection. Each object in both of these collections contains the location of the file,
along with relevant filesystem metadata of each file such as size and timestamps. An example of the
FilesDataSet is shown below in Listing 1.

Define dataset using Files constructor
files_ds = FilesDataSet (' /path/to/files/x.txt’)

Filter files dataset for sizes > 1024
my_fds = Query(files_ds, files_ds.c.size > 1024)

Define dataset using SQL constructor
sgl_ds = SQLDataSet ('db’, ’'biometrics’, ’irises’)

Filter SQL records based on eye color
my_sds = Query (sqgl_ds,
Or (sgl_ds.c.EyeColor == ’'Blue’, sgl_ds.c.EyeColor == ’'Green’))

Listing 1. Weaver datasets examples.

2.1.2. Structured Query Language DataSets. In addition to data files stored on a filesystem, another
common source for scientific data is a Structured Query Language (SQL) database. Weaver provides
a simplified database querying interface that facilitates accessing information stored in conventional
SQL databases such as MySQL or SQLite. Besides specifying the details about how to connect to
the database as shown in Listing 1, the user only needs to define a £ile path method, which
returns the location of the data file on the basis of the object record returned by an SQL query. The
user may either directly map the database record to a file on disk, or the user may materialize a file
containing information from the database record and return the path to that generated file. In either
case, it is up to the user to specify how to translate the database record to a physical data file as
demanded by the Weaver programming model.

2.1.3. DataSet Queries. Sometimes it is necessary to filter or select a subset of data from a large col-
lection before processing it. For instance, a scientific database may contain thousands of records, but
the user is only interested in a specific subset for experimentation. To facilitate this selection oper-
ation, Weaver provides a Query function that allows the user to filter a dataset in a manner similar
to the SQLAIchemy expression language [15], a popular Python object-relational mapping (ORM)
system. Users can specify queries on arbitrary datasets using SQL-like operations on datasets regard-
less of whether the underlying data is an actual database or collection of Python objects as shown in
Listing 1.

Because objects in Weaver DataSet collections contain metadata information common to each
item in the set, it is possible for the user to filter these sets of objects based on their attributes.
The Weaver Query function provides this selection operation by implementing an SQL-like query
expression language, which translates the user-defined queries into an appropriate form for the
underlying data collection. For datasets that are actual databases, the function will translate the
ORM query expression into the appropriate SQL expression and use the generated SQL to perform
the query on the database server. In the case of datasets that are collections of Python objects, the
ORM query expressions are translated into filter functions that are applied to each object in the
dataset to produce the desired subset of the data collection. To use the Query function, the user
simply specifies the name of the dataset, followed by an ORM query expression. As can be see in
Listing 1, this allows users to filter and select all their datasets in a simple and consistent manner.

In summary, users may specify datasets by using normal Python collections such as lists,
tuples, or sets, or they may use one of the provided Weaver DataSet constructors such as
FilesDataSet, FileListDataSet, and SQLDataSet. Utilizing one of the Weaver DataSet construc-
tors further enables selection and filtering using a simple ORM system provided through the
Query function.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1685-1707
DOI: 10.1002/cpe

SCRIPTING DISTRIBUTED SCIENTIFIC WORKFLOWS USING WEAVER 1689

2.2. Functions

The second major component of most scientific workflows are the executables used to process the
data. The Weaver programming model accounts for these executables by providing the notion of
a function specification wrapper, which is a Python object that defines the interface to an external
application or embedded script. Like objects in a dataset, each Weaver function also corresponds to
a physical file, in this case an executable or script, on the filesystem.

As with datasets, Weaver provides a set of custom Python components designed to expedite and
simplify the specification of workflow functions. The base object is a generic Function object that
contains the path to the executable as well as a couple of methods: command and output. The
first method specifies how to generate the appropriate shell command string needed to execute the
task given a set of input and output files, whereas the second method allows the user to provide a
default means of naming the output files of the function.

Users may further modify the specification of a Function by passing a cmd_format argument
or a cmd_args parameter. The former allows the user to specify the order in which the executable,
arguments, inputs, and outputs are to be placed in the command string. The latter allows the user
to specify additional non-file arguments as shown in Listing 2. In the example, the grep Function
is formed using the base Function constructor, and the cmd_args parameter is used to specify the
needle to search for during the operation. The reason for this separate cmd_args parameter is that
the inputs and outputs of Weaver Functions must refer to physical file locations.

def sum_all_floats (xargs):
for £ in args:
print sum(map (float, open(f).readlines()))

grep = Function (’grep’, cmd_args = 'needle’)

cat = StreamFunction (’cat’, out_suffix = "txt’)

img_to_png = SimpleFunction (’convert’, out_suffix = ’'png’)

float_sum = PythonFunction (sum_all_floats)

script = ScriptFunction (’#!/bin/sh\nchmod 664 && mv —-f $1 $2\n’)

Listing 2. Weaver functions examples.

To further simplify the definition of functions, Weaver includes a set of constructors that build
upon base Function constructor.

2.2.1. StreamFunction. A common type of executable is one that takes one or more input files and
outputs the results to standard output (stdout). An example of this is the cat utility, which takes
a set of input files and concatenates their contents to the output stream. Such an application can
be specified in Weaver by using the provided StreamFunction constructor. Because these executa-
bles require capturing standard output in order to generate a output file, the StreamFunction object
modifies the command method to reflect this requirement.

2.2.2. SimpleFunction. Some executables simply require the user to explicitly specify the input and
output files as arguments in the shell command. Weaver provides the SimpleFunction constructor
for these types of applications. The SimpleFunction is similar to the StreamFunction except that
the shell command generated by the command method does not capture standard output to a file
because the executable requires an explicit output file to be specified.

As shown in Listing 2, both the StreamFunction and SimpleFunction constructors allow the user
to specify a default output suffix by passing the out suffix keyword argument to the function
constructor. This suffix is used by the output method of each constructor to generate an output file
name on the basis of the executable and the input filename. This generated output file name is then
used by the command method to generate an appropriate shell command.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1685-1707
DOI: 10.1002/cpe

1690 P. BUI ET AL.

2.2.3. PythonFunction. A third Function object provided by Weaver is the PythonFunction con-
structor, which allows for Python functions embedded in the specification script to be invoked as
normal executables. As shown in Listing 2, this is done by simply passing the desired Python func-
tion to the PythonFunction constructor. Since all functions in the Weaver programming model must
be manifested as physical files on the filesystem, the constructor marshals the specified Python
function and embeds it into a template Python script that is materialized on the filesystem. Any
arguments passed to this generated script, such as the input and output files, are passed to the mar-
shaled function as normal Python function arguments. The availability of this constructor allows
users to specify complete workflows entirely in the Python programming language, which is useful
for prototyping or experimentation.

2.2.4. ScriptFunction. Along the same lines, sometimes it is useful specify a short sequence of
shell commands rather than a single executable command. For these situations, Weaver provides
the ScriptFunction constructor. Like PythonFunction, ScriptFunction allows workflow designers to
embed shell scripts in their workflow specification. These scripts are materialized on the filesys-
tem upon compilation and work as normal executables. Listing 2 provides an example of a simple
ScriptFunction. In this short shell sequence, the function changes the permissions of the input file
and moves the input file to an output target location. This is a useful script because it atomically
modifies the properties of a file and then renames it.

All together, these Weaver Function constructors, StreamFunction, SimpleFunction, PythonFunc-
tion, and ScriptFunction, simplify the task of specifying and defining functions that are to be used
in a distributed scientific workflow.

2.3. Abstractions

The third component in the Weaver programming model is the notion of abstractions, which are
patterns or models of computation with a precise set of semantics. Unlike most other high-level
workflow frameworks, Weaver provides a built-in collection of distributed computing abstractions
to the end user as higher-order functions that the user explicitly invokes in order to utilize the pattern
in a workflow [13].

Each abstraction takes in a set of datasets and functions as arguments and applies those functions
to the input data in a particular pattern. For the development of pipelined workflows, the output
of each abstraction is another collection of data objects, thus enabling the output of one abstrac-
tion to be used as the input to another. If a collection of output files is not desired, the user may
choose to merge these output files into a single file by specifying an output file when invoking
the abstraction.

As with datasets and functions, Weaver includes a library of readily available Abstractions. A
summary of these abstractions can be found in Table II. The following subsections describe the five
patterns of computation commonly found in scientific workflows that are included as a part of the
Weaver framework.

2.3.1. Run. The most basic pattern is simply executing a single task on the basis of a set of inputs
and outputs. In Weaver, this is the Run abstraction, which takes a single function and applies the

Table II. Weaver abstractions.

Abstraction Description

Run (function, inputs) Apply inputs to function.

Map (function, inputs) For each input in inputs, apply function.

MapReduce (mapper, reducer, inputs) For each input in inputs apply mapper, sort
intermediate outputs, and then apply reducer.

AllPairs (function, inputs_a, inputs b) Apply function to all combinations of
inputs_a and inputs_b.

Wavefront (function, matrix) Compute recurrence relation by applying

function to matrix in a wave pattern.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1685-1707
DOI: 10.1002/cpe

SCRIPTING DISTRIBUTED SCIENTIFIC WORKFLOWS USING WEAVER 1691

inputs to generate the outputs. Although very simple, this abstraction is useful for constructing
more complicated patterns of execution.

2.3.2. Map. The Map abstraction is a common pattern used for work that exhibits data paral-
lelism. Map in an input function, which is applied to each item in the input dataset. The results
of each function application is stored in a collection of output data objects or as a single data
file if the user specifies an output target. Because each function application is independent of
other function executions, the individual tasks in this pattern are data parallel and thus can be
executed concurrently.

2.3.3. MapReduce. Another common data-processing abstraction provided by Weaver is
MapReduce [1]. In this pattern, a mapper function is applied to the initial set of inputs to generate
a group of intermediate output files that are partitioned, sorted, and then passed to the reducer
function for aggregation. All the tasks in both the mapper and reducer phases exhibit data
independence and therefore can be run in parallel.

2.3.4. All-Pairs. An abstraction that is frequently used in fields such as biometrics and data-mining
is All-Pairs [2]. In this pattern of work, each member of one dataset is compared with each member
of another dataset to produce a matrix that contains the scores for each comparison. Like the pre-
vious abstractions, the individual comparison tasks can execute independently of each other, which
allows the jobs to be scheduled to run concurrently.

2.3.5. Wavefront. An abstraction used in game theory and gene sequencing applications is
Wavefront [13], which computes a two-dimensional recurrence relationship where each cell in the
output matrix is generated by a function whose arguments are the values in the cell immediately to
the left, below, and diagonally left and below. Although some cells can be processed in parallel, due
to the recurrence relationship, special care must be taken to ensure the proper ordering of dependent
cell computations.

By default, Weaver includes all five of these abstractions as a part of the framework. However,
because abstractions are just normal Python functions, it is possible for users to extend the existing
ones or define their own abstractions specific to their workflow.

2.4. Nests

The final component of the Weaver programming model is the concept of nests. In Weaver, all
workflows consist of a workspace and a DAG. The workspace is normally a directory that serves
as a reserved storage area for outputs and any intermediate workflow artifacts, whereas the DAG
encodes the relationships between tasks in the workflow. Nests are Weaver objects that represent
both a workspace and a DAG. Whenever an abstraction is processed, it is done so in the context of
a particular Nest, which captures any tasks produced by the abstraction being executed.

Users may utilize multiple Nests by using the SubNest constructor to produce additional sub-
workflows with separate namespaces. Using a SubNest allows for the creation of hierarchical
workflows, which means that a single workflow can be composed of a set of smaller workflows.
Because each Nest has its own workspace, outputs and artifacts of each workflow are isolated,
preventing naming collisions. Moreover, each sub-workflow contains its own DAG and thus runs
independently from each other, which aids in scaling larger workflows that can be broken up into
smaller data-processing pipelines.

A simple example of the use of SubNests is shown in Listing 3. In this example, we define two
datasets (images on the local machine) and three functions (image transcoders). We then create sep-
arate SubNests and perform Map operations. In the first case, we create a png nest explicitly and
pass the new SubNest as the nest argument to the Map abstraction. All abstractions in Weaver take
this nest argument; if it is not specified, then the default CurrentNest object is accessed from
the global environment. After explicitly defining and passing a nest, we then create a hierarchy of
nests by using Python’s with statement syntax and Weaver’s SubNest constructor. When the

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1685-1707
DOI: 10.1002/cpe

1692 P. BUI ET AL.

Datasets
pngs = FilesDataSet (' /usr/share/pixmaps/+.png’)
xpms = FilesDataSet (’ /usr/share/pixmaps/*.xpm’)

Functions

png_to_jpg = SimpleFunction (’convert’, out_suffix=’]jpg’)
xpm_to_ppm = SimpleFunction (’convert’, out_suffix='ppm’)
ppm_to_gif = SimpleFunction (’convert’, out_suffix='gif’)

Explicitly define and set subnest
png_nest = SubNest (’'pngs’)
Jjpgs = Map (png_to_Jjpg, pngs, nest=png_nest)

Implicity define subnests into hierarchy
with SubNest (’ xpms’) :
ppms = Map (xpm_to_ppm, xpms)
with SubNest (' ppms’) :
gifs = Map (ppm_to_gif, ppms)

Listing 3. Weaver subnest example.

with statement is executed in conjunction with the SubNest constructor, a new nest is created
and immediately set as the CurrentNest. Because of this context created by the Python with
statement, we do not have to pass the newly constructed SubNest explicitly to the proceeding
Map operations. Note that child SubNests can reference datasets defined by ancestor Nests. Once we
are out of the scope of the with statement, the previous nest is restored as the CurrentNest.

As explained, the Weaver programming model consists of datasets, functions, abstractions, and
nests. Datasets identify a set of input files to be processed, whereas functions define executables
that are used to process such files. Abstractions are higher-order functions that govern the pattern in
which functions are applied to datasets and allow the user to take advantage of data parallelism to
achieve increased performance. Because the input and output of each abstraction is simply another
dataset, different abstractions can be pipelined together to form sophisticated scientific workflows.
Nests allow for organizing multiple workflows together in a hierarchical manner.

3. EXECUTION MODEL

To construct a distributed workflow using Weaver, the user programs a specification in Python that
invokes the various dataset, function, abstraction, and nest components that are provided by the
Weaver framework as described earlier. Once the specification is complete, the user processes the
script by using the Weaver compiler, which generates a sandbox (directory) that contains a DAG
detailing the relationships between each task in the workflow. Additionally, if the user requested for
executables and input data to be copied, then these files are also placed in the sandbox along with any
scripts that were generated by the compiler. Using the sandbox as a workspace, a workflow manager
schedules the tasks specified in the generated DAG by dispatching the jobs to a distributed execution
engine. This section further examines the components of the Weaver execution model in detail.

3.1. Compiler

The core of the Weaver framework is a collection of Python packages and modules that provide the
various datasets, functions, and abstractions described previously. To construct a workflow, users
simply import and utilize the components provided in the Weaver libraries in addition to any exist-
ing Python modules that they wish to utilize. To generate a DAG for use with a workflow manager,
the user processes the workflow script with the Weaver compiler.

As shown in Figure 2, the output of the Weaver compiler is a sandbox that primarily contains a
DAG. If specified by the user, various input and executable files are also copied to this workspace.
As such, the sandbox is the physical manifestation of the Nest concept described previously. When

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1685-1707
DOI: 10.1002/cpe

SCRIPTING DISTRIBUTED SCIENTIFIC WORKFLOWS USING WEAVER 1693

Input Compiler Output

Python

Figure 2. Weaver compiler.

the compiler begins, it creates an initial sandbox, which serves as the default location for the com-
piler’s output and as the environment for the workflow manager. To construct the DAG that encodes
the relationship between the various tasks specified by the workflow script, the compiler sets up
an initial Weaver environment by importing the various components of the framework and setting
required paths, and then, it evaluates the Python script using Python’s execfile function.

During the evaluation of the workflow script, the compiler tracks the task generated by the abstrac-
tions. That is, whenever users invoke one of the Weaver abstractions in the Python script, Functions
are applied to DataSets in the pattern proscribed by the Abstraction, and a sequence of tasks in the
form of (command, inputs, outputs) tuples is registered with the current Nest. If the user
specifies a SubNest, then a new sub-workflow is initialized and subsequent tasks are associated with
this new Nest. This continues until the SubNest is out of scope or no longer specified. The tracking
of Nests enables Weaver to construct hierarchical workflows that are isolated from each other. Like-
wise, the compiler also tracks what files need to be copied (executables or input data if specified)
and which files require materialization (PythonFunctions and ScriptFunctions), and performs these
operations while processing the script. When the whole script has been evaluated, the compiler then
processes the generated task list for each Nest and generates a DAG description file in a format
appropriate for the target workflow manager.

In other words, a DAG of tasks is generated as a side effect of the evaluation of the imperative
Python script, which is similar to GRID superscalar [16] except that Weaver is a compiler, rather
than a run-time system. In Weaver, the compiler tracks all these tasks and allows the users to per-
form various optimizations. For instance, rather than having a single DAG node responsible for a
single task, the user may wish to aggregate a group of tasks into one single super DAG node. This is
an example of clustering, which was shown by the Pegasus project to have significant performance
benefits on the Montage and Tomography applications [17]. Weaver allows users to do this easily
by simply chunking their datasets into sub-collections (i.e., lists of lists), which will notify the com-
piler to group generated tasks into super nodes. Another possible optimization technique is the use
of instruction selection, which is discussed in detail in Section 3.3. Through the use of the various
Python libraries provided by Weaver, users are able to quickly construct scientific workflows and
then fine-tuned them with various optimization techniques.

3.2. Workflow manager

The output of the Weaver compiler is a sandbox environment containing a DAG and various files
required for proper execution of the workflow. This workspace is used by a workflow manager as
the storage area for the outputs of the workflow and any intermediate workflow artifacts generated
during execution.

Currently, Weaver supports the Makeflow [13] workflow manager. When a workflow script is
compiled with Weaver, a Makeflow DAG is generated in the sandbox directory. This DAG contains
rules similar to those found in a normal Makefile that describe tasks in terms of the input and out-
put dependencies and is used by Makeflow to form an internal graph of the entire pipeline. In this
graph, the nodes are the data to be processed and the tasks to be executed with this data, and the
links are the relationships between the tasks and the necessary input and output files. By forming this
directed graph, Makeflow can accurately determine which tasks depend on others and can schedule

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1685-1707
DOI: 10.1002/cpe

1694 P. BUI ET AL.

the work appropriately to optimize concurrency. Once the DAG is generated by Weaver, users pass
it to Makeflow to perform the actual execution of the workflow.

The relationship between the user-defined Weaver workflow script, and the generated Makeflow
DAG is shown in Table III. In this simple example, we wish to convert a thousand JPG images to
PNG format. We can specify this workflow in three lines of Weaver as shown on the left side of the
table. If we run the workflow script through the Weaver compiler, we get the Makeflow DAG dis-
played on the right side of Table III. Note that this is only an abbreviation of the Makeflow DAG, as
the whole DAG would be 2000 lines, which is much longer than the three line Weaver specification.

The complete Weaver software stack is composed of three layers as shown in Figure 3. The first
layer is the Weaver framework, which is used to generate a DAG. The second layer is the Makeflow
workflow manager, which processes the DAG and dispatches jobs to the third layer, the various dis-
tributed execution engines. As a flexible DAG-based workflow manager, Makeflow provides access
to multiple execution engine targets such as Condor [6], SGE, Work Queue [13], and local Unix pro-
cesses. To perform workflow execution, Makeflow utilizes the master—worker paradigm to perform
task scheduling and resource allocation.

Because Weaver generates Makeflow DAGs rather than directly scheduling for a specific execu-
tion engine, users of the framework can easily take advantage of multiple execution environments
by simply selecting the appropriate platform at run-time. This flexibility allows users to adapt to
the resources available to them without having to modify their workflow specification. Additionally,
Makeflow utilizes a journal or log to record the progress of a workflow. This journal is stored as a
plain text file in the Weaver workspace and can be used to collect provenance information such as
the number of tasks failures, attempts, execution times, and so on. The log also enables Makeflow
to resume or restart a failed workflow without rescheduling already completed tasks. Batch system
specific logs such as a Condor log file are also stored in the Weaver workspace and can also be used
to collect provenance information.

This system architecture is similar to other workflow systems such as Swift and Pegasus. For
instance, Swift relies on Community Grid (CoG) Karajan execution engine [10, 18] to dispatch tasks
and perform resource allocation, while Pegasus relies on Condor DAGMan [4, 5] for distributed exe-
cution. In this case, Weaver depends on a workflow manager such as Makeflow to perform the actual

Table III. Weaver and Makeflow directed acyclic graph (DAG) example.

Weaver source Makeflow DAG

jpgs=[str(i)+’.jpg’ for i in range (1000)] 0.png: 0.jpg /usr/bin
/convert

conv = SimpleFunction (' convert’, out suffix='png’) /usr/bin/convert 0.jpg 0.png

pngs = Map (conv, jpgs) l.png: l.jpg /usr/bin
/convert

/usr/bin/convert 1.jpg 1.png

2.png: 2.jpg /usr/bin
/convert

/usr/bin/convert 2.jpg 2.png

999.png: 999.jpg /usr/bin
/convert

/usr/bin/convert 999.jpg
/999 .png

[Weaver w

| Makeflow

| Local " Condor ” SGE |ka0ueua b

Figure 3. Weaver software stack.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1685-1707
DOI: 10.1002/cpe

SCRIPTING DISTRIBUTED SCIENTIFIC WORKFLOWS USING WEAVER 1695

execution of the workflow. The power and utility of Weaver is that it allows for users to rapidly con-
struct and configure workflows in a high-level language. This is important because it is not always
clear what the best decomposition of a workflow should be. Using Weaver, users can prototype and
optimize their workflows in a concise and effective manner.

3.3. Optimized tools

As discussed earlier, Weaver implements a variety of distributed computing abstractions such as
All-Pairs. Normally, Weaver Abstractions generate a sequence of task tuples in order to implement
the appropriate execution pattern while relying on the workflow manager to assemble a DAG and
determine proper execution order. This allows for the specification of sophisticated workflows con-
sisting of high-level abstractions that are completely agnostic of the underlying execution engine.
Therefore, one can view the abstraction primitives provided by Weaver as generic operations that
work on any distributed execution platform.

Unfortunately, these generic operations are not necessarily the most optimal or efficient imple-
mentations of the particular abstraction. One reason is that the Weaver programming model requires
input and output data to be manifested as physical files. In workflows that involve many short run-
ning applications, this model will yield an inefficient implementation because each data record will
need to be instantiated on the filesystem and each application will appear as a separate task in the
DAG. Depending on the execution engine, the latency for each job start up can greatly diminish the
performance of such a workflow.

Another reason why the generic implementations may be non-optimal is that some abstractions
require intimate knowledge of the underlying distributed system to be effective. For instance, the
MapReduce implementation presented by Google is successful not only because of the data-parallel
task scheduling but also because of its ability to take advantage of data locality.

Because there already exists optimized tools that implement some of the abstractions provided
by Weaver and because the generic implementations may be non-optimal, Weaver allows users to
easily specify which version of the abstraction to utilize. To use an optimized native version of an
abstraction, the user sets the use_native keyword argument in the abstraction’s constructor to
True. If the native version is available for that abstraction, then Weaver will use that optimized tool
instead of a generic version.

This ability to choose between a generic operation and a specialized operation is similar to the
use of single instruction, multiple data (SIMD) instructions with computer processors. In a con-
ventional compiler, operations are compiled using the lowest-common-denominator instruction set
for a particular platform. However, if the user requests an architecture-specific optimization, such
as SIMD instructions, the compiler will output an optimized program code that takes advantage
of the hardware. Weaver behaves in a similar manner. By default, it generates DAGs with generic
implementations of any requested abstraction. If the user specifies the use of a native tool, then
Weaver will forgo the generic version and instead use the optimized tool. As shown in Figure 4,

Generic All-Pairs Optimized All-Pairs

~L~

AllPairs Native Tool

Figure 4. Generic versus optimized All-Pairs directed acyclic graphs.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1685-1707
DOI: 10.1002/cpe

1696 P. BUI ET AL.

a native tool can greatly reduce the size of the DAG because it no longer needs to implement
the whole abstraction as a set of task rules and instead uses the specialized software as a single
optimized task.

The ability to choose between a generic implementation and an optimized one makes Weaver
flexible and attractive for exploring new abstractions. For instance, new patterns of execution can
be quickly developed as a set of DAG relationships and tested on a variety of execution engines.
If the new abstraction proves useful, then an optimized implementation can be developed and then
plugged into Weaver seamlessly.

3.4. Application packager

Although Weaver supports specifying the file dependencies of a particular function, it is often
desirable to execute these individual application components independently (i.e., separate from
the workflow). Moreover, some applications require data files or configuration that are difficult
or cumbersome to specify in Weaver. To solve this problem, Weaver includes an application pack-
ager named Starch [14] to create SAAs, which is single file that contains all of the dependencies,
configuration, and environment variables necessary to execute the application.

To create an SAA using Starch, the user specifies a list of executables and libraries to include in
the target execution image along with the appropriate shell command to run when the SAA is exe-
cuted by the user. By default, Starch will automatically search for any dynamically linked libraries
required by the executables specified and embed those in the SAA. If any special input data files
are required by the application, they may also be specified to be included in the SAA. Addition-
ally, special environmental variables and other run-time configuration options can be stored in the
SAA through the use of user-defined environment scripts that will be imported before the SAA’s
command is executed.

Once all of the necessary options are specified, the executables, libraries, and environment scripts
are archived and compressed as a standard Unix tarball. This tarball is then appended to Starch’s
template shell script to generate an SAA. When the SAA is executed, the wrapper shell script will
automatically extract the embedded archive, configure the environment, and run the user-specified
shell command. To integrate Starch-generated application packages, users simply replace the normal
executables with the constructed SAA’s in their function specifications.

Altogether, the separation of workflow specification, task management, and execution engine
make the Weaver execution model quite flexible. The compiler reads in a specification and outputs a
sandbox containing a DAG. This in turn is used by a workflow manager, currently Makeflow, which
dispatches jobs onto a variety of execution platforms. To allow users to take advantage of existing
optimized abstraction software, Weaver provides a mechanism for providing hints to the compiler
to use the specialized tool rather than a generic implementation. Likewise, to simplify the distri-
bution of applications and to enable testing of individual workflow tasks, Weaver provides Starch
an applications packager that creates SAAs. With the described Weaver software stack, it is possi-
ble to script a workflow specification in Python and effectively and reliably execute it on multiple
distributed systems.

4. APPLICATIONS

In this section, we analyze and evaluate four different real-world scientific workflows performed
at the University of Notre Dame. Each of these distributed applications was scripted using the
Weaver framework and was executed on our local Condor and SGE clusters, which are composed
of hundreds of 64-bit Red Hat Linux (RHELS5) machines. These clusters are composed of a hetero-
geneous mixture of machines with AMD Opterons to Intel Core 2 Duos and an assorted mixture
of memory configurations. The purpose of the analysis is to evaluate the effectiveness of script-
ing large distributed workflows by examining different throughput and scalability measurements
produced by running the four workflows generated by Weaver on our campus grid. In doing so,
we identify the various strengths and weaknesses of our framework as discovered through practice
and experience.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1685-1707
DOI: 10.1002/cpe

SCRIPTING DISTRIBUTED SCIENTIFIC WORKFLOWS USING WEAVER 1697

4.1. Biometrics

One of the primary uses of Weaver is to construct and streamline biometric experiments, which usu-
ally consist of multiple data-processing stages as described in Section 1. First, the interested dataset
must be selected or extracted from the original data repository. In our case, this is the BXGrid
biometrics repository, which contains over 8 TB of image and video data collected by our col-
legues in the Computer Vision Research Lab [19]. Next, the raw data must be transformed into
a format suitable for experimentation. Finally, the experiment is performed, which, in the case of
biometrics, involves comparing all members of the dataset with each other to produce a matrix of
match scores.

Listing 4 provides a Weaver implementation of the biometrics workflow depicted in Figure 1 as
just described. To specify the interested dataset, the user first instantiates a database connection to
BXGrid biometrics repository and, then, uses the Query function to select records with the desired
properties. In this example, we use the built-in ORM query system (the Query and Or functions) to
select irises that are marked enrolled and have the color green or blue. These selected files can then
be converted to an appropriate format by using the Map abstraction. The results of the conversions
form a new dataset that is then used as arguments to the All-Pairs abstraction, which schedules tasks
to compare each member of the converted dataset with each other. As can be seen, it is quite easy to
reuse the same workflow for different sets of records. The user only needs to modify the Query and
recompile using Weaver to produce biometrics workflow custom-tailored to the interested dataset.

While utilizing this workflow script on our campus grid, we noticed some interesting behavior
regarding the scalability and performance of using the native optimized All-Pairs tool versus the
generic implementation produced by Weaver. Figure 5 shows the results of biometric experiments
with the native tool optimization option enabled and disabled.

In these experiments, we varied the size of the workloads by using datasets consisting of 10 to
1000 301-KB images. Each of these image files was converted to a specialized bit format using the
Map abstraction. These bit files were then compared with each other using All-Pairs to generate a

db = SQLDataSet ('db’, ’"biometrics’, ’irises’)
irises = Query (db, db.c.state == ’'Enrolled’,
Or (db.c.color == ’"Blue’, db.c.color == ’'Green’))

iris_to_bit SimpleFunction (' convert_iris_to_template’, out_suffix="bit’)
compare_bits = SimpleFunction (' compare_iris_templates’)

bits = Map(iris_to_bit, irises)
AllPairs (compare_bits, bits, bits, output=’scores.txt’)

Listing 4. Weaver biometrics experiment source.

7000 — ‘
Generic —»—
6000 - Optimized -8 |
— 5000 Generic becomes unreasonable
8 beyond this point
c
8 4000
@
o
o 3000
£
— 2000
100 e B
0 13- _.....E----..-....T f o ‘. | |
0 200 400 600 800 1000

Matrix Size (width)

Figure 5. Biometrics workflows using generic versus optimized abstractions.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1685-1707
DOI: 10.1002/cpe

1698 P. BUI ET AL.

scoring matrix. For each dataset, we generated workflows with and without the optimized native
implementations using Weaver’s SIMD-like compiler mechanism and executed both on our campus
cluster. From the graph, it is clear that the generic version scales poorly as the number of images
increases, whereas the optimized native version scales almost linearly. The generic implementation
is several orders of magnitude slower because it must use files for intermediate storage and is unable
to take advantage of specific execution engine environment features. For instance, the optimized All-
Fuairs tool uses the Work Queue execution engine to enable low-latency work dispatching and takes
advantage of multi-core systems by intelligently scheduling tasks to multiple cores. Moreover, the
native tool stores the intermediate outputs in memory and outputs the results as a single file.

The results from the biometrics scaling and throughput experiments show that there is a perfor-
mance penalty associated with using the generic abstraction implementations. The Weaver program-
ming model requires that input and output data must be stored as files, which greatly constrains
the performance of certain types of workflows as demonstrated earlier. In these cases, a special-
ized native tool easily outperforms the generic implementation because it is not constrained by the
programming model and can take advantage of particular platform features. Fortunately, Weaver
provides a mechanism to take advantage of these optimized abstraction implementations, allowing
for specialized versions to be used when possible. Moreover, it is important to note that the avail-
ability of generic abstraction implementations is useful and necessary for the cases where a native
implementation does not exist or does not match the semantics of the user’s workflow. This allows
users to still take advantage of a particular pattern of work, even if the tool is not available for their
particular distributed computing platform.

4.2. Data transcoding

The second major application of Weaver is transcoding over 500,000 multimedia files contained in
the BXGrid biometrics data repository. The BXGrid system is composed of two main distinct parts:
an object storage system based on rich object archival system [20] and a Web portal front—end to the
data archive [19]. One of the key user interactions with the BXGrid Web portal is viewing snapshots
of the collected image and video data. This allows researchers to quickly and easily enroll, verify,
and modify data in the repository for purposes of maintaining data quality and integrity [21].

Because some of the raw biometric data is quite large (e.g., 2-GB high-definition videos), it is
impossible to present the user with data directly from the storage system. Instead, smaller thumb-
nails must be generated from the raw data and used by the Web portal as shown in Figure 6. Initially,
this thumbnail generation was performed on-demand by the Web server; that is, a thumbnail was
created whenever a user browsed a collection and required viewing an image or video file. This
stressed the Web server and, at times, crippled it because of the excessive bandwidth and CPU
required to generate thumbnails on the raw data. Moreover, for large files such as videos, this on-
demand transcoding lead to unacceptable latencies (e.g., several minutes to produce a thumbnail)
that negatively impacted the user experience on the Web site. Our solution to this problem was to
use Weaver to periodically generate distributed workflows that transcoded the raw data from the
repository into smaller thumbnails and cache them on the Web server.

Listing 5 is the Weaver script used to construct these distributed transcoding workflows. As can
be seen, BXGrid has four major types of files: point data contained in abs format, various com-
pressed images, raw digital photos, and different types of videos. Each file type requires a separate
transcoding tool that is specified in the workflow along with the appropriate ORM query necessary
to select the particular files. The Weaver script constructs the workflow in the following manner:

1. For each file type, find the missing thumbnails. Note that, in BXGrid, we generate three
thumbnail sizes (small, medium, and large) and, thus, we check the cache for each size.

2. Check if the number of missing files is larger than a user-defined CHUNK SIZE. If it is, then
split the larger dataset into smaller sized chunks.

3. For each chunk or dataset, create a SubNest, and schedule the thumbnail generation tasks.
After the thumbnail is created, move it to the Web server cache using a ScriptFunction that
automatically sets the appropriate file permissions and moves the file.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1685-1707
DOI: 10.1002/cpe

SCRIPTING DISTRIBUTED SCIENTIFIC WORKFLOWS USING WEAVER 1699

Bataret state helg] Constraine daip) Uit tmapes Mede Tags
| e whetecs 2] [amy] (25 2] [sman [2][mns 2]

Shawing 1 10 48 67 11753 reiuti. Dewabaad sl raaults o TF or £ 6r MML or TAR

Shawing 11 to 45 of 17750 revults. Cownbaad 8 a0 T e CFY or XML o TAR.

Figure 6. BXGrid Web portal screenshot.

from transcode import BXGrid, GenerateThumbnails, find_missing_thumbnails

CHUNK_SIZE = 2500
FILE_TYPES (
("abs’,
"convert_abs_to_gif_animation’,

lambda db: Query (db, Or(db.c.type == ’'gz’, db.c.type == ’"abs.gz’))),

(’ image’,

’convert_image_to_Jjpg’,

lambda db: Query (db, Or(db.c.type == 'JPG’, db.c.type == ’'ppm’,
db.c.type == "tiff’))),

(" raw’,

’convert_raw_to_ijpg’,

lambda db: Query (db, Or(db.c.type == 'NEF’, db.c.type == ’cr2’))),

("video’,

"convert_video_to_gif_animation’,

lambda db: Query (db, Or(db.c.type == 'avi’, db.c.type == 'mp4’,
db.c.type == '"MPG’, db.c.type == 'ts’))),

)
bxgrid = BXGrid()

for file_type, command, query in FILE_TYPES:
missing = [find_missing_thumbnails (f) for f in query (bxgrid)]
missing = filter (lambda x: x, missing)

if len(missing) > CHUNK_SIZE:
with SubNest (file_type):
for i, chunk in enumerate (Chunk (missing, CHUNK_SIZE)) :
with SubNest (' %s.%04X’ % (file_type, 1)):
GenerateThumbnails (file_type, command, chunk)
else:
with SubNest (file_type) :
GenerateThumbnails (file_type, command, missing)

Listing 5. Weaver data transcoding source.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1685-1707
DOI: 10.1002/cpe

1700 P. BUI ET AL.

The use of SubNests allows us to create a hierarchical workflow, where the sub-workflow for
each file type is isolated from the others. This allows for easier monitoring and provenance track-
ing while increasing scalability. By creating a hierarchy of workflows, we can execute multiple
transcoding workflows concurrently and thereby increase our overall throughput. That is, by using
the SubNest mechanism, we create isolated and independent sub-workflows. These sub-workflows
can then be scheduled and executed concurrently, with different masters or controllers running
on different machines, which thus increases scalability as workers will not be bottlenecked by a
single-master/controller compute node.

It is for this reason that we also split large datasets by a user-defined CHUNK SIZE. From our
experience, breaking a dataset transcoding workflow into separate, smaller sub-workflows increases
the performance and reliability of our distributed application. Not only does the hierarchical design
allow for workflows to be executed in parallel, but it also means that the workflow manager, in this
case Makeflow, has to keep track of a fewer amount of tasks and files and can thus schedule faster
and use less resources.

To automate our transcoding workflow, we schedule the Weaver script to run every night via
cron on the Web server where it generates the appropriate workflows for any image or video data
ingested into the BXGrid system the previous day. When the Weaver script runs, it checks the cache
for missing thumbnails and queues tasks to generate those files as explained earlier. Next, workers
are dispatched to our local campus grid. After this, the main workflow is executed, and it in turn
executes the sub-workflows for each of the file types. Each of these sub-workflows is in charge for
a subset of the thumbnails and shares the workers from the initial pool.

Table IV provides the summary of three separate transcoding activities performed using Weaver.
Most of the image transcoding work on files that are relatively small (less than 1 MB), and thus,
the batch job overhead incurred for scheduling and dispatching the task is often greater than the
cost of simply fetching the file and transcoding it locally. However, because Work Queue workers
serve as glide-in jobs, we can utilize Work Queue low-latency batch job dispatching mechanism
to minimize these overheads. As Table IV shows, for larger file types such as raw or video, the
Weaver-generated workflows are able to achieve a higher average data throughput. Overall, the
automated data transcoding with Weaver has been a relative success. The system described has
been in place for about 8 months and runs daily on our live BXGrid Web portal. The generation of
thumbnails ahead of time has been the key in maintaining a positive interactive experience for the
biometrics researchers who regularly use the Web site. Because Weaver supports nested workflows
through the hierarchical SubNest system, we are able to split larger datasets across smaller and more
manageable workflows. Likewise, this hierarchical design allows us to run multiple sub-workflows
concurrently. Finally, because Weaver is designed to be agnostic about the target distributed system,
we can target multiple distributed execution platforms. In this case, we utilize the Work Queue mas-
ter/worker framework for its low-latency dispatching due to the large number of tasks required by
transcoding workflows.

4.3. Expressed sequence tag pipeline

Another scientific workflow that utilizes Weaver at the University of Notre Dame is a biological
computing pipeline used by our bioinformatics colleagues to analyze the expressed sequence tags
(ESTs) of various biological entities such as butterflies [14]. In an EST pipeline, ESTs are first col-
lected from a genome assembler and then sequenced. Next, the generated sequences are compared
and analyzed by using Basic Local Alignment Search Tool (BLAST) [22] with multiple databases.

Table IV. Sample transcoding metrics.

File type No. of files Avg. file size Run-time Data throughput Task throughput
Image 20388 0.4 MB 74 min 1.8 MB/s 5.32 tasks/s
Raw (CR2) 3541 19.0 MB 56 min 20.0 MB/s 2.09 tasks/s
Video (MP4) 1680 13.0 MB 46 min 8.4 MB/s 1.20 tasks/s
Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1685-1707

DOI: 10.1002/cpe

SCRIPTING DISTRIBUTED SCIENTIFIC WORKFLOWS USING WEAVER 1701

The comparison outputs from BLAST are combined with statistical information computed by
additional software to form the final merged analysis result.

Initially, our bioinformatics colleagues created an EST pipeline composed of an ad hoc mixture
of Ruby and shell scripts, which had to be run manually. Unfortunately, this workflow was cumber-
some and took over a week to execute. Eventually, this analysis pipeline was organized by a PERL
wrapper script, a common technique amongst bioinfomaticians. This PERL script soon became
unwieldy and difficult to maintain or extend. Moreover, because of the intricate dependencies of the
different scripts and tasks, it was difficult to isolate an individual function from the whole workflow
and thus impractical to test or debug. It was also difficult to port the workflow to the various campus
grid resources available because many parts of the PERL wrapper were specific to their local cluster
environment. To rectify this, the group rewrote their pipeline using Weaver.

Although the users were new to the Python programming language, they were able to reconstruct
their bioinformatics workflow in less than a month using Weaver. The result of this port is the EST
pipeline depicted in Figure 7. To tackle the problem of complex dependencies, they packaged indi-
vidual parts of their pipeline using the Starch application packager. This resolved their complex
dependency problems and allowed them to test individual workflow functions outside the scope of
their pipeline. Moreover, because of the self-contained nature of the SAAs produced by Starch, they
could easily share the packaged applications with each other and thereby increase their collabora-
tion and productivity. This is particularly important because parts of their pipeline depended on the
BioRuby library, which is not available on most of the cluster machines. Because Starch supports
embedding libraries into the application package, this allows for the executable to be run portably
on any of the cluster machines.

Table V compares the performance of the Weaver-generated workflow against that of the PERL
pipeline. As can been seen, Weaver provides slightly better performance, though not by much,
for the overall EST pipeline and for the BLAST sub-workflows. According to the bioinformatics

sertalis_isotig.bnk.sfx

get_unigenes_and_singlets.sfx

— sertalis_isotig.bnk.sng.seq
sertalis_isotig.bnk.uni.seq

\
fastaToSTE.sfx Hmn,mlm,.mpl ‘ run_blast_mf.pl ‘ run_blast_mf.pl ‘ unigeneSNPs.sfx ‘ unigeneSNPs.sfx unigeneLenCov.sfx ‘
1] J
\ [sena]is,.soug.bnk,uni.seq».4se.ompm] [senaus,ismig.bnk.uui.seq.\u495.ompuxH sertalis_isotig.bnk.uni.seq.v.372.output]
\
blastProtFramer.sfx ‘ blastHitCountToSTF.sfx blastHitCountToSTF.sfx blastHitCountToSTF.sfx
/ |

[senalmiwtigb“k-486-bpﬁﬂme } { scrm11s,ismigvbnkAS&hilcounl} {scnalis,isoug.bnk,495.1mcoum] [scrmhs,ismigvbnk.372vhi(counl]

sertalis_isotig.bnk betacalc

mergeStf.sfx

sertalis_isotig.bnk.stf
Figure 7. Expressed sequence tag pipeline.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1685-1707
DOI: 10.1002/cpe

1702 P. BUI ET AL.

Table V. Expressed sequence tag (EST) workflow run-times.

Application Weaver (s) PERL (s)
EST pipeline 2529 2882
BLAST 665 677

researchers, the main advantages of using the Weaver framework instead of the custom PERL script
were the following:

1. Encapsulation. Using Starch allowed the researchers to create application packages of their
executables to hide the complexity of their programs. In some cases, archives contained over
14,000 files. The SAAs enabled testing of individual functions and eased deployment on
different distributed systems because of their portable nature.

2. Portability. Because Weaver does not rely on any particular feature of a distributed execution
engine, it can produce platform agnostic workflows. As such, the EST pipeline generated by
Weaver was able to be deployed on different cluster configurations and with different batch
systems.

3. Code clarity. The Weaver workflow script ended up being approximately a third shorter than
the PERL wrapper. Moreover, the researchers found the resulting Weaver script to be much
more concise and understandable despite their lack of familiarity of Python. Additionally,
Weaver’s component library also helped encourage modular code and object-oriented design,
which the researchers felt would improve the long-term maintainability of the EST pipeline.

All of these features enabled the bioinformatics researchers to successfully use Weaver to port
their ad hoc set of scripts to a more maintainable code base. The final workflow constructed using
Weaver was slightly more efficient than their hand-coded system, and offered additional advantages
such as testing of individual segments of their pipeline, greater portability, and easier maintenance.

4.4. Paired-end mapper pipeline

The final workflow presented here is the application of Weaver to paired-end mapper (PEMer)
[23], a structural variation detection workflow. Given a reference genome and a set of mated pair
sequence queries, the PEMer analysis pipeline is designed to infer genomic structural variants from
the sequencing data using the following steps:

1. Preprocessing on a list of paired DNA sequences to generate a set of mate pairs.

2. Independently align mate pair ends using a tool such as MegaBLAST [24].

3. Find optimal placement of mate pair reads according to alignments that seek to minimize the
occurrence of outliers.

4. Identify the mate pair outliers.

5. Categorize sets of outlier mate pairs as structural variations if N or more independent paired
ends can be clustered according to each variation.

The stock PEMer pipeline outlined earlier executes well for smaller datasets but quickly becomes
intractable in terms of running time on larger datasets. For instance, running the PEMer genome
analysis on the water flea Daphnia pulex, which has a 227 million-character genome, sequentially
on an 8-core 32-GB machine would require more than 2 weeks to complete. In order to address
this problem, one of our bioinformatics colleagues decided to use the Weaver framework to refac-
tor PEMer so that parts of the pipeline would execute on a distributed system. Although she was a
distributed systems and Python novice, she was able to complete this port on her own in less than
2 months and achieve significant throughput improvements.

Figure 8 displays the workflow our bioinformatics colleague constructed to make PEMer execute
on distributed systems. Step 1 in the diagram is the first phase of the distributed PEMer workflow
and corresponds to the first four steps of the normal PEMer pipeline, while step 2 is the last step.
Both of these two steps are separate workflows but run end-to-end. The reason for this separation is

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1685-1707
DOI: 10.1002/cpe

SCRIPTING DISTRIBUTED SCIENTIFIC WORKFLOWS USING WEAVER 1703

Step 1
v Step 2
linput f O J | dpibes_DataBasenhi | | dpubin_DalaBte fig | | gt _DataBais s | | megablast | p
e
[Step 1
[(sowmemsmumnnest | [wreonsen]

:I seafen 0 cal CumerCommenSwaciuraiVanians —| I scafioid_717 ol |

Figure 8. PEMer pipeline.

that Weaver currently only supports static workflows, meaning that all of the inputs and outputs of
workflow must be known at compile time and that new dependencies and tasks cannot be generated
dynamically from the same script. Recall that the last step in the PEMer pipeline is to categorize
the outlier mate pairs on the basis of clustering behavior. Unfortunately, it is not known ahead of
time how many outliers are present, therefore, this categorization step cannot be specified in the first
workflow. A workaround, as implemented by our colleague, is to simply have the last tasks in the
first workflow use Weaver to compile a new workflow DAG at run-time on the basis of the generated
outliers found in the initial step and then execute the dynamically generated workflow to complete
the analysis. Although relatively inelegant, the solution is successful and works around a current
limitation in Weaver.

A summary of the results of distributed PEMer workflow are shown in Table VI. To evaluate the
workflow, our colleague executed the original pipeline on an 8-core 32-GB machine. After 2 weeks,
the pipeline had not advanced beyond the third step, and it was stopped. Using 2 weeks of running
time as the lower bound then, our colleague ran the workflow on our campus cluster using both the
Condor and Work Queue execution engines. As can be seen in Table VI, the Weaver-generated work-
flows were able to complete in less than a day. Using Condor, she was able to get 91.5x speedup
with 100 nodes and 211.5x speedup with 300 nodes. With Work Queue, she achieved 85.0x speedup

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1685-1707
DOI: 10.1002/cpe

1704 P. BUI ET AL.

Table VI. Paired-end mapper workflow run-times.

System No. of Workers Running time Speedup
8-core single node 1 >2 weeks 1.0
Condor 100 19:16 91.5
Condor 300 7:45 211.5
Work Queue 100 23:44 85.0
Work Queue 300 11:06 169.0

with 100 workers and 169.0x speedup with 300 workers. This means that the workflows were able
to scale up with additional workers or compute nodes.

Using Weaver, our bioinformatics colleague, who was a novice to both distributed systems and
Python, was able to successfully convert a complex genome analysis pipeline to a distributed work-
flow. Although she had to use some workarounds to overcome some limitations in the Weaver
framework, she was still able to achieve significant performance improvements and produce a
scalable distributed PEMer workflow.

Altogether, these four different scientific applications demonstrate the different aspects of Weaver
and how they can be used to solve real-world problems. The biometrics experiment pipeline took
advantage of Weaver’s ability to combine multiple abstractions and plug in optimized native imple-
mentations when available. The multimedia transcoding application utilized Weaver’s hierarchical
workflow feature to construct large automated data-processing workflows that ran effectively and
reliably on multiple distributed platforms. The EST pipeline showed that novices could port existing
legacy workflows to the Weaver framework and gain in maintainability and code clarity. Addition-
ally, the use of Starch-enabled packaging complex applications into isolated, portable, and testable
standalone archives for use in distributed workflows. The PEMer pipeline demonstrated that non-
experts can effectively port data-processing pipelines to distributed systems by using Weaver and
achieve significant performance improvements. After evaluating these applications, it is clear that
Weaver is a capable means of scripting together scientific workflows for use on distributed systems.

5. RELATED WORK

Because distributed computing resources can be quite complex to use and often require significant
effort and knowledge to utilize effectively, there has been a large amount of previous and ongo-
ing research focused on providing users with simplified and efficient programming interfaces to
these systems. Like Weaver, these distributed computing frameworks provide a compact program-
ming model where the user specifies their workflow that is then translated into a set of tasks to be
performed by a distributed execution engine.

Pig [25] and Sawzall [26] are two languages that provide a high-level interface to MapReduce
[1]. The former targets the open source Hadoop [27] MapReduce platform, whereas the latter
runs on the Google’s proprietary MapReduce system. Both of these languages provide a simpli-
fied programming model composed of datasets and functions that is presented as new declarative
programming languages with an SQL-like syntax. Because these languages are tightly tied to the
MapReduce abstraction, the user is constrained in the types of workflows that they can efficiently
specify. Cascading [28] is a Java library built on top Hadoop that allows users to explicitly con-
struct dataflow graphs in order to program data-parallel pipelines that run on Hadoop’s MapReduce.
FlumeJava [7] is another Java library that runs on top of Hadoop and also supports constructing
data-processing pipelines by performing operations on a set of parallel collections provided by the
library. Because of the nature of the Hadoop platform, it can be difficult to integrate legacy or
external software.

For more traditional workflows, there has been an ongoing research into specifying distributed
workflows as DAGs. DAGMan [4] and Pegasus [5] are two such workflow specification languages
that allow the user to specify a set of tasks to compute and the relationship between each task. Each
of these systems provide a custom programming language and a compiler or interpreter that takes

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1685-1707
DOI: 10.1002/cpe

SCRIPTING DISTRIBUTED SCIENTIFIC WORKFLOWS USING WEAVER 1705

the job specification and produces a static workflow graph. A similar type of workflow system is
Kepler [29], which is a sophisticated scientific workflow application that allows users to construct
workflows using a graphical interface. Oozie [30] is an XML-based DAG workflow system that runs
on top of Hadoop. Although these tools are effective and scale well to large workflows, from our
experience, the manual construction of DAGs can be tedious and error-prone.

Dryad [3] is another attempt at simplifying the construction of distributed workflows through the
construction of graphs. Because the work of building a workflow graph is rather low-level and com-
plex, the authors of Dryad suggest the use of various higher-level tools such as DryadLINQ [8]. This
programming construct takes advantage of the LINQ programming idiom in Microsoft’s .NET sys-
tem to allow the specification of MapReduce-type workflows using a single LINQ [31] expression.
Another language built on top of Dryad is SCOPE [32], which is a declarative scripting language
where programs are written in a variant of SQL. Like Pig and Sawzall, these Dryad-based languages
are tied to their distributed computing platform and are limited to the MapReduce programming
model.

Swift [10] also tackles the problem of specifying diverse scientific workflows but does so by pro-
viding a general-purpose programming language complete with a data type system. In Swift, users
construct data structures representing their input and output data and specify functions that operate
on these structures in a custom programming language. This specification is then compiled into a
set of abstract computation plans, which is processed by the CoG Karajan [18] execution engine,
which works in conjunction with the Swift run-time system to execute the plans.

GRID superscalar [16] demonstrates the use of an imperative programming language to implicitly
construct workflows. In the GRID superscalar programming environment, users utilize either C/C++
or PERL in conjunction with Common Object Request Broker Architecture interface definition
language specifications of the tasks to automatically generating a task data-dependent work-
flow graph. This workflow generation an execution is accomplished using a run-time library that
dispatches tasks in a master—worker paradigm.

Overall, Weaver shares many of the important features present in these projects. Like tradi-
tional grid workflow systems such as Condor DAGMan, Pegasus, and TAVERNA, Weaver utilizes a
DAG-based workflow engine and provides a user-directed language-based approach to constructing
distributed workflows [33]. Because it does not force users to define workflows in terms of graph
nodes and links, Weaver is most similar to DryadLINQ, Swift, and FlumeJava in providing a high-
level programming interface to the underlying distributed systems. Like FlumeJava but unlike Swift,
Weaver builds on top of an existing programming language Python rather than introduce a new one.
This takes advantage of Python’s user-friendliness and allows programmers to utilize the plethora
of existing Python software. Likewise, Weaver is not restricted to a single programming construct
as in DryadLINQ, Pig, and Sawzall, but it encompasses a whole library of components that form a
domain-specific language for distributed computing. Finally, unlike most of the projects mentioned
previously, Weaver supports multiple distributed computing abstractions as standard components,
enabling scientific researchers to incorporate powerful distributed computing tools into their work-
flows. All of these features make Weaver a unique and powerful framework for scripting together
distributed applications.

6. CONCLUSIONS AND FUTURE WORK

Despite Weaver’s usefulness and success, there are still a few promising areas for further research
and work. For instance, it would also be interesting to expose the notion of data locality in the frame-
work. Currently, Weaver collects the input data in a sandbox. When Makeflow is executed, the data
and executables are sent to the appropriate computational nodes for processing. For large datasets,
this data transfer can be problematic and hinder throughput (as in the case of transcoding large sets
of videos). If an active storage system such as Hadoop or Chirp [34] were available to the user, then
it would be better to only send the executables to where the data is and perform the processing there.
Some initial work has been performed on the lower software layers to address this problem, but it
is not clear how this locality information should be exposed at the Weaver level or how to take full
advantage of it.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1685-1707
DOI: 10.1002/cpe

1706 P. BULET AL.

Another possibility for future work is to consider more dynamic workflows. Currently, Weaver is
used to compile a workflow, which is then executed using Makeflow. Although this works well for
static pipelines, there are some applications that require more dynamic workflows such as the PEMer
pipeline evaluated in this paper. Another common example of this type of dynamic application is a
simulation where the same tasks are repeated with small changes between each iteration. To account
for this type of work, users can conceivably utilize Weaver as an interpreter with just-in-time com-
pilation to iteratively generate workflows at run-time rather than producing a single static workflow.
Another approach would be to implement a method of persistently check-pointing a Weaver script.
This would require defining a consistent workspace convention for keeping track of the progress
of workflow execution and repeatedly calling the same Weaver script. On reinvocation, the Weaver
script could trace the progress of its execution and jump to where it left off.

As demonstrated by the applications presented in this paper, Weaver enables researchers to solve
real-world problems by scripting distributed scientific workflows in Python. In this paper, we pre-
sented the Weaver programming model, which consists of datasets, functions, abstractions, and
nests. We also explained the Weaver execution model and discussed the software stack that consists
of the Weaver compiler, the Makeflow workflow manager, native optimized tools, and the Starch
application packager. To demonstrate the use of the framework, we provided four applications con-
structed using Weaver and evaluated the effectiveness of the framework in the context of scripting
scientific workflows for distributed systems. Overall, Weaver is a capable and effective framework
for constructing distributed scientific workflows.

ACKNOWLEDGEMENTS

We gratefully acknowledge the support of the US Department of Education through a Graduate Assistance
in Areas of National Need (GAANN) Fellowship for Peter Bui (award P200A090044). This work was
also supported in part by National Science Foundation grants NSF-CNS-0643229, NSF-CCF-0621434, and
NSF-CNS-0855047.

REFERENCES

1. Dean J, Ghemawat S, Google Inc. MapReduce: simplified data processing on large clusters. In OSDI’04: Proceed-
ings of the 6th conference on Symposium on Opearting Systems Design & Implementation. USENIX Association,
2004.

2. Moretti C, Bulosan J, et al. All-Pairs: an abstraction for data intensive cloud computing. IEEE International Parallel
and Distributed Processing Symposium (IPDPS), Miami, FL, 2008; 1-11.

3. Isard M, Budiu M, et al. Dryad: distributed data parallel programs from sequential building blocks. Proceedings of
EuroSys, Lisbon, Portugal, 2007.

4. The directed acyclic graph manager, 2002. Available from: http://www.cs.wisc.edu/condor/dagman.

5. Deelman E, Singh G, et al. Pegasus: a framework for mapping complex scientific workflows onto distributed systems.
Scientific Programming Journal 2005; 13(3):219-237.

6. Thain D, Tannenbaum T, et al. Condor and the grid. In Grid Computing: Making the Global Infrastructure a Reality,
Berman F, Fox G, Hey T (eds). John Wiley: Chichester, 2003.

7. Chambers C, Raniwala A, et al. FlumelJava: easy, efficient data-parallel pipelines. In Proceedings of the 2010 ACM
SIGPLAN conference on Programming Language Design and Implementation, PLDI 10. ACM: New York, NY,
USA, 2010; 363-375.

8. Isard M, Yu Y. Distributed data-parallel computing using a high-level programming language. In SIGMOD ’09: Pro-
ceedings of the 35th SIGMOD International Conference on Management of Data. ACM: New York, NY, USA, 2009;
987-994.

9. Bui P, Yu L, ef al. Weaver: integrating distributed computing abstractions into scientific workflows using Python. In
Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing, HPDC ’10.
ACM: New York, NY, USA, 2010; 636-643.

10. Zhao Y, Dobson J, Foster I, Wilde LMM. A Notation and System for Expressing and Executing Cleanly Typed
Workflows on Messy Scientific Data. SIGMOD Record. 2005; 34:37-43.

11. Barker A, van Hemert J. Scientific workflow: a survey and research directions. In Seventh International Conference
on Parallel Processing and Applied Mathematics, Revised Selected Papers, Vol. 4967, Wyrzykowski R et al. (eds),
LNCS. Springer: Berlin, Germany, 2008; 746-753.

12. Python Programming Language, 2010. Available from: http://www.python.org/.

13. Yu L, Moretti C, ef al. Harnessing parallelism in multi-core clusters with the all-pairs, wavefront, and makeflow
abstractions. Cluster Computing 2010; 13:243-256.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1685-1707
DOI: 10.1002/cpe

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
217.
28.
29.
30.
31.
32.

33.
34.

SCRIPTING DISTRIBUTED SCIENTIFIC WORKFLOWS USING WEAVER 1707

Thrasher A, Carmichael R, et al. Taming complex bioinformatics workflows with Weaver, Makeflow, and Starch.
Workflows in Support of Large-Scale Science (WORKS), 2010 5th Workshop on, New Orleans, LA, 2010; 1-6.
SQLAIchemy, 2010. Available from: http://sqlalchemy.org/.

Sirvent R, Pérez JM, et al. Automatic grid workflow based on imperative programming languages: research articles.
Concurrency Computing: Practice and Experience August 2006; 18:1169-1186. DOI: 10.1002/cpe.v18:10.

Singh G, Kesselman C, et al. Optimizing grid-based workflow execution. Journal of Grid Computing 2005;
3:201-219.

von Laszewski G, Hategan M. Workflow concepts of the Java CoG kit. Journal of Grid Computing 2005; 3:239-258.
DOI: 10.1007/s10723-005-9013-5.

Bui H, Kelly M, et al. Experience with BXGrid: a data repository and computing grid for biometrics research. Journal
of Cluster Computing 2009; 12(4):373.

Bui H, Bui P, er al. ROARS: a scalable repository for data intensive scientific computing. In Proceedings of the 19th
ACM International Symposium on High Performance Distributed Computing, HPDC *10. ACM: New York, NY,
USA, 2010; 766-775.

Bui H, Wright D, ef al. Towards long term data quality in a large scale biometrics experiment. In Proceedings of
the 19th ACM International Symposium on High Performance Distributed Computing, HPDC ’10. ACM: New York,
NY, USA, 2010; 565-572.

Altschul S, Gish W, et al. Basic Local Alignment Search Tool. Journal of Molecular Biology 1990; 3(215):403-410.
Korbel J, Abyzov A, et al. PEMer: a computational framework with simulation-based error models for inferring
genomic structural variants from massive paired-end sequencing data. Genome Biology 2009; 10(2):R23. DOI:
10.1186/gb-2009-10-2-r23.

Zhang Z, Schwartz S, et al. A greedy algorithm for aligning DNA sequences. Journal of Computational Biology
2000; 7:203-214.

Olston C, Reed B, et al. Pig latin: a not-so-foreign language for data processing. In SIGMOD ’08: Proceedings of
the 2008 ACM SIGMOD International Conference on Management of Data. ACM: New York, NY, USA, 2008;
1099-1110.

Pike R, Dorward S, et al. Interpreting the data: parallel analysis with Sawzall. Scientific Programming Journal;
13(4):227-298.

Hadoop, 2007. Available from: http://hadoop.apache.org/.

Cascading, 2010. Available from: http://www.cascading.org/.

Ludischer B, Altintas I, er al. Scientific workflow management and the kepler system. Concurrency and Computa-
tion: Practice and Experience 2006; 18(10):1039-1065.

Oozie, 2010. Available from: http://yahoo.github.com/oozie/.

Meijer E, Beckman B, et al. LINQ: reconciling object, relations and XML in the .NET framework. In Proceedings
of the 2006 ACM SIGMOD International Conference on Management of Data, SIGMOD ’06. ACM: New York, NY,
USA, 2006; 706-706.

Chaiken R, Jenkins B, et al. Scope: easy and efficient parallel processing of massive data sets. Proceedings of the
VLDB Endowment 2008; 1:1265-1276.

Yu J, Buyya R. A taxonomy of scientific workflow systems for grid computing. SIGMOD Record 2005; 34:44-49.
Thain D, Moretti C, et al. Chirp: a practical global filesystem for cluster and grid computing. Journal of Grid
Computing 2009; 7(1):51-72.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 24:1685-1707

DOI: 10.1002/cpe

